1
|
Ghergus D, Martin M, Knapp AM, Delmotte F, Joublin-Delavat A, Jung S, Schickel JN, Mendel I, Dupuis A, Drénou B, Ghesquières H, Salles G, Baseggio L, Herbrecht R, Korganow AS, Vallat L, Soulas-Sprauel P, Meffre E, Martin T. Normal B cells express ZAP70 in chronic lymphocytic leukemia: A link between autoimmunity and lymphoproliferation? Am J Hematol 2024; 99:48-56. [PMID: 37853951 DOI: 10.1002/ajh.27137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
ZAP70 has a prognostic value in chronic lymphocytic leukemia (CLL), through altered B-cell receptor signaling, which is important in CLL pathogenesis. A good correlation between ZAP70 expression in CLL cells and the occurrence of autoimmune phenomena has been reported. Yet, the great majority of CLL-associated autoimmune cytopenia is due to polyclonal immunoglobulin (Ig) G synthesized by nonmalignant B cells, and this phenomenon is poorly understood. Here, we show, using flow cytometry, that a substantial percentage of CD5- nonmalignant B cells from CLL patients expresses ZAP70 compared with CD5- B cells from healthy subjects. This ZAP70 expression in normal B cells from CLL patients was also evidenced by the detection of ZAP70 mRNA at single-cell level with polyclonal Ig heavy- and light-chain gene transcripts. ZAP70+ normal B cells belong to various B-cell subsets and their presence in the naïve B-cell subset suggests that ZAP70 expression may occur during early B-cell development in CLL patients and potentially before malignant transformation. The presence of ZAP70+ normal B cells is associated with autoimmune cytopenia in CLL patients in our cohort of patients, and recombinant antibodies produced from these ZAP70+ nonmalignant B cells were frequently autoreactive including anti-platelet reactivity. These results provide a better understanding of the implication of ZAP70 in CLL leukemogenesis and the mechanisms of autoimmune complications of CLL.
Collapse
Affiliation(s)
- Dana Ghergus
- Strasbourg University, Strasbourg, France
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Mickaël Martin
- Strasbourg University, Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, Tertiary Center for Primary Immunodeficiency, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Strasbourg University Hospital, Strasbourg, France
- Department of Internal Medicine, Poitiers University Hospital, Poitiers, France
| | | | - Fabien Delmotte
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Sophie Jung
- Strasbourg University, Strasbourg, France
- Faculty of Dentistry, Strasbourg University, Strasbourg, France
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Arnaud Dupuis
- French Blood Institute of Strasbourg, Strasbourg, France
| | - Bernard Drénou
- Department of Hematology, Groupe Hospitalier de la Région Mulhouse Sud Alsace, Mulhouse, France
| | - Hervé Ghesquières
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Gilles Salles
- Department of Clinical Hematology, Hospices Civils de Lyon, Lyon, France
| | - Lucile Baseggio
- Laboratory of Hematology, Hospices Civils de Lyon, Lyon, France
| | - Raoul Herbrecht
- Department of Hematology, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France
- Strasbourg University, IINSERM UMR-S1113/IRFAC, Strasbourg, France
| | - Anne-Sophie Korganow
- Strasbourg University, Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, Tertiary Center for Primary Immunodeficiency, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Strasbourg University Hospital, Strasbourg, France
| | - Laurent Vallat
- Department of Molecular Genetics of Cancer, Strasbourg University Hospital and INSERM UMR-S1113, Strasbourg, France
| | - Pauline Soulas-Sprauel
- Strasbourg University, Strasbourg, France
- Faculty of Pharmacy, Strasbourg University, Strasbourg, France
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thierry Martin
- Strasbourg University, Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, Tertiary Center for Primary Immunodeficiency, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Strasbourg University Hospital, Strasbourg, France
| |
Collapse
|
2
|
Stefaniuk P, Onyszczuk J, Szymczyk A, Podhorecka M. Therapeutic Options for Patients with TP53 Deficient Chronic Lymphocytic Leukemia: Narrative Review. Cancer Manag Res 2021; 13:1459-1476. [PMID: 33603488 PMCID: PMC7886107 DOI: 10.2147/cmar.s283903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/20/2020] [Indexed: 01/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL), which is the most common type of leukemia in western countries in adults, is characterized by heterogeneity in clinical course, prognosis and response to the treatment. Although, in recent years a number of factors with probable prognostic value in CLL have been identified (eg NOTCH1, SF3B1 and BIRC-3 mutations, or evaluation of microRNA expression), TP53 aberrations are still the most important single factors of poor prognosis. It was found that approximately 30% of all TP53 defects are mutations lacking 17p13 deletion, whereas sole 17p13 deletion with the absence of TP53 mutation consists of 10% of all TP53 defects. The detection of del(17)(p13) and/or TP53 mutation is not a criterion itself for starting antileukemic therapy, but it is associated with an aggressive course of the disease and poor response to the standard chemoimmunotherapy. Treatment of patients with CLL harbouring TP53-deficiency requires drugs that promote cell death independently of TP53. Novel and smarter therapies revolutionize the treatment of del(17p) and/or aberrant TP53 CLL, but development of alternative therapeutic approaches still remains an issue of critical importance.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Julia Onyszczuk
- Students Scientific Association, Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Barber-Axthelm IM, Barber-Axthelm V, Sze KY, Zhen A, Suryawanshi GW, Chen IS, Zack JA, Kitchen SG, Kiem HP, Peterson CW. Stem cell-derived CAR T cells traffic to HIV reservoirs in macaques. JCI Insight 2021; 6:141502. [PMID: 33427210 PMCID: PMC7821595 DOI: 10.1172/jci.insight.141502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5– donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell–mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.
Collapse
Affiliation(s)
- Isaac M Barber-Axthelm
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Valerie Barber-Axthelm
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kai Yin Sze
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA
| | - Gajendra W Suryawanshi
- UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Irvin Sy Chen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and
| |
Collapse
|
4
|
Chen J, Moore A, Ringshausen I. ZAP-70 Shapes the Immune Microenvironment in B Cell Malignancies. Front Oncol 2020; 10:595832. [PMID: 33194762 PMCID: PMC7653097 DOI: 10.3389/fonc.2020.595832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Zeta-chain-associated protein kinase-70 (ZAP-70) is a tyrosine kinase mainly expressed in T cells, NK cells and a subset of B cells. Primarily it functions in T cell receptor (TCR) activation through its tyrosine kinase activity. Aberrant expression of ZAP-70 has been evidenced in different B cell malignancies, with high expression of ZAP-70 in a subset of patients with Chronic Lymphocytic Leukemia (CLL), associating with unfavorable disease outcomes. Previous studies to understand the mechanisms underlying this correlation have been focused on tumor intrinsic mechanisms, including the activation of B cell receptor (BCR) signaling. Recent evidence also suggests that ZAP-70, intrinsically expressed in tumor cells, can modulate the cross-talk between malignant B cells and the immune environment, implying a more complex role of ZAP-70 in the pathogenesis of B cell malignancies. Meanwhile, the indispensible roles of ZAP-70 in T cell and NK cell activation also demonstrate that the autologous expression of ZAP-70 in the immune environment can be a central target in modulation of tumor immunity. Here we review the evidences of the link between ZAP-70 and tumor immunology in the microenvironment in B cell malignancies. Considering an emerging role of immunotherapies in treating these conditions, understanding the distinct molecular functions of ZAP-70 in a broader cellular context could ultimately benefit patient care.
Collapse
Affiliation(s)
| | | | - Ingo Ringshausen
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Märklin M, Heitmann JS, Kauer J, Wirths S, Müller MR. Genetic loss of NFAT2 (NFATc1) impairs B cell development of B1 and B2 B cells. Cell Immunol 2020; 349:104048. [PMID: 32014271 DOI: 10.1016/j.cellimm.2020.104048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
NFAT2 activity was shown to be of critical importance in B cell receptor signaling, development and proliferation; however its role in B cell development in the periphery is still not completely understood. We confirmed that NFAT2 deletion leads to impaired B1 B cell development, supported by our finding of limited B1 progenitors in the bone marrow and spleen of NFAT2 deficient mice. Moreover, we show for the first time that loss of NFAT2 increases immature B cells in particular transitional T2 and T3 as well as mature follicular B cells while marginal zone B cells are decreased. We further demonstrate that NFAT2 regulates the expression of B220, CD23, CD38, IgM/IgD and ZAP70 in murine B cells. In vivo analyses revealed decreased proliferation and increased apoptosis of NFAT2 deficient B cells. In summary, this study provides an extensive analysis of the role of NFAT2 in peripheral B lymphocyte development.
Collapse
Affiliation(s)
- Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany.
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Joseph Kauer
- University of Tübingen, Interfaculty Institute for Cell Biology, Dept. of Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Stefan Wirths
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Martin R Müller
- Dept. of Hematology, Oncology and Immunology, University Hospital Tübingen, Tübingen, Germany; Dept. of Hematology, Oncology and Immunology, Klinikum Region Hannover, KRH Klinikum Siloah, Hannover, Germany.
| |
Collapse
|
6
|
Alack K, Weiss A, Krüger K, Höret M, Schermuly R, Frech T, Eggert M, Mooren FC. Profiling of human lymphocytes reveals a specific network of protein kinases modulated by endurance training status. Sci Rep 2020; 10:888. [PMID: 31964936 PMCID: PMC6972788 DOI: 10.1038/s41598-020-57676-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
To date, the effects of endurance exercise training on lymphocyte physiology at the kinome level are largely unknown. Therefore, the present study used a highly sensitive peptide-based kinase activity profiling approach to investigate if the basal activity of tyrosine (Tyr) and serine/threonine (Ser/Thr) kinases of human lymphocytes is affected by the aerobic endurance training status. Results revealed that the activity of various tyrosine kinases of the FGFR family and ZAP70 was increased, whereas the activity of multiple Ser/Thr kinases such as IKKα, CaMK4, PKAα, PKCα+δ (among others) was decreased in lymphocytes of endurance trained athletes (ET). Moreover, functional associations between several differentially regulated kinases in ET-derived lymphocytes were demonstrated by phylogenetic mapping and network analysis. Especially, Ser/Thr kinases of the AGC-kinase (protein kinase A, G, and C) family represent exercise-sensitive key components within the lymphocytes kinase network that may mediate the long-term effects of endurance training. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) and Reactome pathway analysis indicate that Ras as well as intracellular signaling by second messengers were found to be enriched in the ET individuals. Overall, our data suggest that endurance exercise training improves the adaptive immune competence by modulating the activity of multiple protein kinases in human lymphocytes.
Collapse
Affiliation(s)
- Katharina Alack
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany.
| | - Astrid Weiss
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - Mona Höret
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Ralph Schermuly
- Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany
| | - Torsten Frech
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Sciences, Justus-Liebig-University, Giessen, Germany
| | - Martin Eggert
- Center for Extracorporeal Organ Support, Department of Internal Medicine, Universitätsmedizin Rostock, Rostock, Germany
| | | |
Collapse
|
7
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
8
|
Kugyelka R, Prenek L, Olasz K, Kohl Z, Botz B, Glant TT, Berki T, Boldizsár F. ZAP-70 Regulates Autoimmune Arthritis via Alterations in T Cell Activation and Apoptosis. Cells 2019; 8:cells8050504. [PMID: 31137740 PMCID: PMC6562615 DOI: 10.3390/cells8050504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
T cells play an essential role in the pathogenesis of both human rheumatoid arthritis (RA) and its murine models. A key molecule in T cell activation is ZAP-70, therefore we aimed to investigate the effects of partial ZAP-70 deficiency on the pathogenesis of recombinant human G1(rhG1)-induced arthritis (GIA), a well-established mouse model of RA. Arthritis was induced in BALB/c and ZAP-70+/- heterozygous mice. Disease progression was monitored using a scoring system and in vivo imaging, antigen-specific proliferation, cytokine and autoantibody production was measured and T cell apoptotic pathways were analyzed. ZAP-70+/- mice developed a less severe arthritis, as shown by both clinical picture and in vitro parameters (decreased T cell proliferation, cytokine and autoantibody production). The amount of cleaved Caspase-3 increased in arthritic ZAP-70+/- T cells, with no significant changes in cleaved Caspase-8 and -9 levels; although expression of Bim, Bcl-2 and Cytochrome C showed alterations. Tyrosine phosphorylation was less pronounced in arthritic ZAP-70+/- T cells and the amount of Cbl-b-a negative regulator of T cell activation-decreased as well. We hypothesize that the less severe disease seen in the partial absence of ZAP-70 might be caused by the decreased T cell activation accompanied by increased apoptosis.
Collapse
Affiliation(s)
- Réka Kugyelka
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Lilla Prenek
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Zoltán Kohl
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary.
- Department of Radiology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Tibor T Glant
- Department of Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| |
Collapse
|
9
|
Vásquez A, Baena A, González LA, Restrepo M, Muñoz CH, Vanegas-García A, Ortiz-Reyes B, Abdoel N, Rojas M, García LF, Vásquez G. Altered recruitment of Lyn, Syk and ZAP-70 into lipid rafts of activated B cells in Systemic Lupus Erythematosus. Cell Signal 2019; 58:9-19. [PMID: 30840855 DOI: 10.1016/j.cellsig.2019.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
There is evidence that B cells from patients with Systemic Lupus Erythematosus (SLE) could be hyperactivated due to changes in their lipid rafts (LR) composition, leading to altered BCR-dependent signals. This study aimed to characterize possible alterations in the recruitment of protein tyrosine kinases (PTK) into B cells LR from SLE patients. Fifteen patients with SLE and ten healthy controls were included. Circulating B cells were isolated by negative selection and stimulated with goat Fab´2 anti-human IgM/IgG. LR were isolated with a non-ionic detergent and ultracentrifuged on 5-45% discontinuous sucrose gradients. Proteins from each fraction were analyzed by Western Blot. Total levels of Lyn, Syk, and ZAP-70 in resting B cells were similar in SLE patients and healthy controls. Upon BCR activation, Lyn, Syk and ZAP-70 recruitment into LR increased significantly in B cells of healthy controls and patients with inactive SLE. In contrast, in active SLE patients there was a great heterogeneity in the recruitment of signaling molecules and the recruitment of ZAP-70 was mainly observed in patients with decreased Syk recruitment into LR of activated B cells. The reduction in Flotilin-1 and Lyn recruitment in SLE patients seem to be associated with disease activity. These findings suggest that in SLE patients the PTK recruitment into B cell LR is dysregulated and that B cells are under constant activation through BCR signaling. The decrease of Lyn and Syk, the expression of ZAP-70 by B cells and the increase in Calcium fluxes in response to BCR stimulation in active SLE patients, further support that B cells from SLE patients are under constant activation through BCR signaling, as has been proposed.
Collapse
Affiliation(s)
- Ana Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Andrés Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Luis A González
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio Restrepo
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Carlos H Muñoz
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Sección Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas-García
- Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Sección Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Blanca Ortiz-Reyes
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Nursamaa Abdoel
- Centro Nacional de Enfermedades Reumáticas, Hospital Universitario de Caracas, Carcas, Venezuela
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia; Unidad de Citometria, Universidad de Antioquia, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Sede de investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Carrera 53, # 61-30, Medellín, Colombia; Grupo de Reumatología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
10
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
11
|
Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2014; 94:193-205. [PMID: 25080849 DOI: 10.1111/ejh.12427] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity.
Collapse
Affiliation(s)
- Vaclav Seda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
12
|
Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M, Bernhagen J, El Bounkari O. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. THE JOURNAL OF IMMUNOLOGY 2014; 192:5273-84. [PMID: 24760155 DOI: 10.4049/jimmunol.1302209] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with chemokine-like functions that plays a pivotal role in the pathogenesis of inflammatory diseases by promoting leukocyte recruitment. We showed that MIF promotes the atherogenic recruitment of monocytes and T cells through its receptors CXCR2 and CXCR4. Effects of MIF on B cell recruitment have not been addressed. In this study, we tested the involvement of MIF in B cell chemotaxis and studied the underlying mechanism. We show that MIF promotes primary murine B cell chemotaxis in a dose-dependent manner, comparable to the B cell chemokines CXCL13 and CXCL12. Splenic B cells express CXCR4 and the receptor CD74 but not CXCR2. Inhibition of CXCR4 or CD74 or a genetic deficiency of Cd74 in primary B cells fully abrogated MIF-mediated B cell migration, implying cooperative involvement of both receptors. MIF stimulation of B cells resulted in a rapid increase in intracellular Ca(2+) mobilization and F-actin polymerization. Intriguingly, the tyrosine kinase ZAP-70 was activated upon MIF and CXCL12 treatment in a CXCR4- and CD74-dependent manner. Pharmacological inhibition of ZAP-70 resulted in abrogation of primary B cell migration. Functional involvement of ZAP-70 was confirmed by small interfering RNA-mediated knockdown in Ramos B cell migration. Finally, primary B cells from ZAP-70 gene-deficient mice exhibited ablated transmigration in response to MIF or CXCL12. We conclude that MIF promotes the migration of B cells through a ZAP-70-dependent pathway mediated by cooperative engagement of CXCR4 and CD74. The data also suggest that MIF may contribute to B cell recruitment in vivo (e.g., in B cell-related immune disorders).
Collapse
Affiliation(s)
- Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | - Marieke Sternkopf
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | | | - Corinna Schmitz
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | - Nicole Heussen
- Institute of Medical Statistics, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | - Elias Hobeika
- Department of Molecular Immunology, Biology III, University of Freiburg, 79108 Freiburg, Germany; and Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Ella Levit-Zerdoun
- Department of Molecular Immunology, Biology III, University of Freiburg, 79108 Freiburg, Germany; and Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany
| | - Michael Reth
- Department of Molecular Immunology, Biology III, University of Freiburg, 79108 Freiburg, Germany; and Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany;
| | - Omar El Bounkari
- Institute of Biochemistry and Molecular Cell Biology, Rheinisch-Westfälisch Technical University (RWTH) Aachen, D-52074 Aachen, Germany;
| |
Collapse
|
13
|
Sevov M, Rosenquist R, Mansouri L. RNA-based markers as prognostic factors in chronic lymphocytic leukemia. Expert Rev Hematol 2014; 5:69-79. [DOI: 10.1586/ehm.11.80] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Prognostic value of immunohistochemical expression of ZAP-70 and CD38 in chronic lymphocytic leukaemia detected on bone marrow and lymph node biopsies / Valoarea prognostică a expresiei imunohistochimice a ZAP-70 si CD38 în leucemia limfocitară cronică detectată pe biopsii osteomedulare și limfoganglionare. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractChronic lymphocytic leukemia (CLL) has a heterogeneous clinical course. Among useful markers in identifiyng patients with poor outcome are unmutated IgVH, ZAP-70 and CD38 expression. Both ZAP-70 and CD38 were shown to be capable of identifying aggressive CLL.We analysed data from 35 patients diagnosed with CLL based on morphological and immunophenotypical criteria. In all cases peripheral blood immunophenotyping was performed as initial diagnostic test. Immunohistochemical expression of ZAP-70 and CD38 was evaluated on 21 cases of lymph node biopsies and 14 cases of bone marrow biopsies, performed at the time of diagnosis. In addition in-situ hybridization for EBER-1 was evaluated.The median age of patients was 60 years and we noted a slight male predominance. The immunophenotypic criteria (C23Prognostic information given by ZAP-70 and CD38 could be used in guiding treatment decisions and they probably should be recommended to all patients with B-CLL in trying to obtain a more clear profile of the disease at the time of diagnosis.
Collapse
|
15
|
Burger JA, Chiorazzi N. B cell receptor signaling in chronic lymphocytic leukemia. Trends Immunol 2013; 34:592-601. [PMID: 23928062 DOI: 10.1016/j.it.2013.07.002] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
B cell receptor (BCR) signaling plays an important pathogenic role in chronic lymphocytic leukemia (CLL) and B cell lymphomas, based on structural restrictions of the BCR, and BCR-dependent survival and growth of the malignant B cells. In CLL and lymphoma subtypes, ligand-independent ('tonic') and ligand-dependent BCR signaling have been characterized, which can involve mutations of BCR pathway components or be triggered by (auto)antigens present in the tissue microenvironment. In CLL, based on high response rates and durable remissions in early-stage clinical trials, there is rapid clinical development of inhibitors targeting BCR-associated kinases [Bruton's tyrosine kinase (BTK), phosphoinositide 3-kinase (PI3K)δ], which will change treatment paradigms in CLL and other B cell malignancies. Here, we discuss the evolution of this field, from BCR-related prognostic markers, to mechanisms of BCR activation, and targeting of BCR-associated kinases, the emerging Achilles' heel in CLL pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|
16
|
Rosenquist R, Cortese D, Bhoi S, Mansouri L, Gunnarsson R. Prognostic markers and their clinical applicability in chronic lymphocytic leukemia: where do we stand? Leuk Lymphoma 2013; 54:2351-64. [PMID: 23480493 DOI: 10.3109/10428194.2013.783913] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically and biologically heterogeneous disease where the majority of patients have an indolent disease course, while others may experience a far more aggressive disease, treatment failure and poor overall survival. During the last two decades, there has been an intense search to find novel biomarkers that can predict prognosis as well as guide treatment decisions. Two of the most reliable molecular prognostic markers, both of which are offered in routine diagnostics, are the immunoglobulin heavy chain variable (IGHV) gene mutational status and fluorescence in situ hybridization (FISH) detection of prognostically relevant genomic aberrations (e.g. 11q-, 13q-, +12 and 17p-). In addition to these markers, a myriad of additional biomarkers have been postulated as potential prognosticators in CLL, on the protein (e.g. CD38, ZAP70, TCL1), the RNA (e.g. LPL, CLLU1, micro-RNAs) and the genomic (e.g. TP53, NOTCH1, SF3B1 and BIRC3 mutations) level. Efforts are now being made to test these novel markers in larger patient cohorts as well as in prospective trials, with the ultimate goal to combine the "best" markers in a "CLL prognostic index" applicable for the individual patient. Although it is clear that these studies have significantly improved our knowledge regarding both prognostication and the biology of the disease, there is still an immediate need for recognizing biomarkers that can predict therapy response, and efforts should now focus on addressing this pertinent issue. In the present article, we review the extensive literature in the field of prognostic markers in CLL, focus on the most clinically relevant markers and discuss future directions regarding biomarkers in CLL.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
17
|
Craig FE, Monaghan SA, Surti U, Swerdlow SH. ZAP-70 and Bcl-2 expression in B lymphoblastic leukemia cells and hematogones. CYTOMETRY PART B-CLINICAL CYTOMETRY 2011; 82:85-92. [DOI: 10.1002/cyto.b.20623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022]
|
18
|
ZAP-70 enhances migration of malignant B lymphocytes toward CCL21 by inducing CCR7 expression via IgM-ERK1/2 activation. Blood 2011; 118:4401-10. [PMID: 21865343 DOI: 10.1182/blood-2011-01-333682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ZAP-70 in chronic lymphocytic leukemia (CLL) has been associated with enhanced B-cell receptor (BCR) signaling, survival, and migration. We investigated whether ZAP-70 can directly govern migration and the underlying mechanisms. In the ZAP-70 stably transfected Ramos cell line, IgM stimulation, but no IgD, enhanced phosphorylation of ERK1/2, Akt and Syk, and delayed IgM and CD79b internalization. In contrast, in the Raji cell line, where ZAP-70 was constitutively phosphorylated, ERK1/2, but not Akt, was phosphorylated, suggesting that MAPK pathway mediates ZAP-70 effects. BCR stimulation modulated the expression of CCR7, CXCR4, CXCR5, CD44, CD49d, and CD62L, which were up-regulated in ZAP-70-positive CLL primary subclones. The most dramatic change after BCR engagement in ZAP-70-transfected cells was CCR7 up-regulation, this being impaired by ERK1/2 inhibition and translating into both increased signaling and migration toward CCL21. Primary CLL subclones with high ZAP-70 expression showed increased migration toward CCL21. In conclusion, ZAP-70 ectopic expression led to enhanced BCR signaling after IgM stimulation and increased the expression of CCR7 predominantly via ERK1/2, increasing the response and migration toward CCL21. In primary CLL samples, cellular subsets with high ZAP-70 expression had increased expression of adhesion molecules and chemokine receptors in addition to an enhanced ability to migrate toward CCL21.
Collapse
|
19
|
Bharti B, Mishra R. Isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2071-8. [PMID: 21854813 DOI: 10.1016/j.bbamcr.2011.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/08/2011] [Accepted: 08/02/2011] [Indexed: 01/27/2023]
Abstract
The Pax5 and its isoforms influence proliferation of B- and T-cells, during development and oncogenesis but molecular mechanism and host-tumor relationship is not clear. This report describes status of Pax5 isoforms and co-regulation of molecular markers of ascite cells causing Dalton's lymphoma in murine. Higher expressions of Pax5, CD19, CD3, Ras and Raf were observed in DLA cells. The levels of transcripts as well as p53 protein were also higher in DLA cells. The transcript of p53 from DLA cells was a variant of p53 having deletion of 50bp as compared to control. On annotation, it reflects transformation related protein p53 pseudogene mRNA. Lower level of superoxide dismutase (SOD) indicates oxidative stress and higher level of LDH5 in DLA cells reflects hypoxia in cancerous condition. The expression of Pax5d/e isoforms in DLA cells suggests presence of resting B-cells. Thus, isoforms of Pax5 and co-regulation of T- and B-cells associated genes influence phenotypic traits of ascetic cells causing Dalton's lymphoma.
Collapse
Affiliation(s)
- Brij Bharti
- Department of Zoology, Banaras Hindu University, India.
| | | |
Collapse
|
20
|
The functional in vitro response to CD40 ligation reflects a different clinical outcome in patients with chronic lymphocytic leukemia. Leukemia 2011; 25:1760-7. [PMID: 21709686 DOI: 10.1038/leu.2011.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Malignant B lymphocytes from chronic lymphocytic leukemia (CLL) patients maintain the capacity to respond to CD40 ligation, among other microenvironmental stimuli. In this study, we show that (i) leukemic CLL cells stimulated with the soluble form of CD40L in vitro show differential responses in terms of upregulation of surface markers (CD95 and CD80) and induction of chemokines (CCL22 and CCL17) expression/secretion, and that (ii) these changes are mirrored by a distinct activation of intracellular signalling pathways including increase in IKKalpha/beta phosphorylation and upregulation of antiapoptotic proteins (BCL-2 and MCL-1). CLL patients can then be segregated into two distinct functional subsets. We defined the responsive subset of cases CD40L dependent, considering the capacity to respond as a sign of persistent need of this stimulation for the leukemic expansion. Conversely, we named the unresponsive cases CD40L independent, considering them less dependent on this microenvironmental signal, presumably because of a higher autonomous proliferative and survival potential. Importantly, we report that (iii) the two functional subsets show an opposite clinical outcome, with CD40L-independent cases having a shorter time to progression. This indicates that the functional differences observed in vitro may reflect a different leukemic potential in vivo likely responsible for a distinct clinical course.
Collapse
|
21
|
Abstract
CD160 is a human natural killer (NK)-cell-activating receptor that is also expressed on T-cell subsets. In the present study, we examined 811 consecutive cases of B-cell lymphoproliferative disorders (B-LPDs), and demonstrated CD160 expression in 98% (590 of 600) of chronic lymphocytic leukemia (CLL) cases, 100% (32 of 32) of hairy cell leukemia (HCL) cases, 15% (5 of 34) of mantle cell lymphoma (MCL) in the leukemic phase, and 16% (23 of 145) of other B-LPD cases. CD160 transcript and protein were absent in the normal B-cell hierarchy, from stem cells, B-cell precursors, maturing B cells in the germinal center, and circulating B cells, including CD5(+)CD19(+) B1 cells in umbilical cord. CD160 positivity was significantly higher in CLL and HCL in terms of percentage (65.9% and 67.8%, respectively, P < .0001) and median fluorescence intensity (552 and 857, respectively, P < .0001) compared with all other B-LPD cases. Lymph node CLL samples were also CD160(+). Using the disease-specific expression of CD5, CD23, and CD160, a score of 3 characterized CLL (diagnostic odds ratio, 1430); a score of 0 excluded CLL, MCL, and HCL; and the CD23/CD5 ratio differentiated CLL from leukemic CD23(+) MCL. In the B-cell lineage, CD160 is a tumor-specific antigen known to mediate cellular activation signals in CLL, and is a novel target for therapeutic manipulation and monitoring of minimal residual disease.
Collapse
|
22
|
Bertilaccio MTS, Scielzo C, Muzio M, Caligaris-Cappio F. An overview of chronic lymphocytic leukaemia biology. Best Pract Res Clin Haematol 2011; 23:21-32. [PMID: 20620968 DOI: 10.1016/j.beha.2009.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is characterised by accumulation of CD5(+) monoclonal B cells in primary and secondary lymphoid tissues. Genetic defects and stimuli originating from the microenvironment concur to the selection and expansion of the malignant clone. Several lines of evidence, including molecular and functional analysis of the monoclonal immunoglobulin, support the hypothesis that stimulation through the B-cell receptor affects life and death of leukaemic cells. The microenvironment also has a critical role in the survival and accumulation of leukaemic cells within lymphoid organs where signals delivered from the surrounding cells are likely crucial in inducing proliferation. Nevertheless, several major biological issues still remain to be solved including regulation of the balance between proliferation and survival of leukaemic cells and the links between emerging gene abnormalities and microenvironment. In this context, mouse models are helpful tools in understanding disease mechanisms and in evaluating the efficacy of novel therapeutic agents.
Collapse
Affiliation(s)
- M T S Bertilaccio
- Laboratory of Lymphoid Malignancies, Division of Molecular Oncology, Istituto Scientifico San Raffaele, Milan, Italy.
| | | | | | | |
Collapse
|
23
|
Kaplan D, Meyerson HJ, Li X, Drasny C, Liu F, Costaldi M, Barr P, Lazarus HM. Correlation between ZAP-70, phospho-ZAP-70, and phospho-Syk expression in leukemic cells from patients with CLL. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 78:115-22. [PMID: 20014315 DOI: 10.1002/cyto.b.20506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For patients with chronic lymphocytic leukemia (CLL), expression of ZAP-70 in the leukemic cells is an indicator of poor prognosis. However, the mechanism that accounts for this effect is not known. ZAP-70 expression has previously been associated with increased B cell antigen receptor signaling upon surface immunoglobulin ligation in vitro as shown by ZAP-70 and Syk phosphorylation. This finding has led to the suggestion that a more aggressive clinical course is correlated with B cell antigen receptor signaling. Using high resolution immunophenotyping to analyze CLL cells ex vivo (without stimulation in vitro), we have demonstrated CLL cells from all patients express some ZAP-70 and that increased expression of ZAP-70 is correlated with decreased levels of phosphorylated ZAP-70 and phosphorylated Syk measured directly ex vivo. Conversely, high levels of phosphorylated ZAP-70 and phosphorylated Syk are found only in samples with low levels of ZAP-70 expression, and Syk and ZAP-70 phosphorylation appear to be mostly independent of each other. Additionally, Syk phosphorylation is directly correlated with levels of p21(cip1), a cell cycle inhibitor and a p53 target. Together these findings suggest that lower levels of p21(cip1) and/or a defect in p53 activity may account in part for the more aggressive disease course in patients with high levels of ZAP-70 rather than enhanced B cell antigen receptor signaling as has been previously hypothesized.
Collapse
Affiliation(s)
- David Kaplan
- Department of Pathology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2010; 117:1781-91. [PMID: 21148333 DOI: 10.1182/blood-2010-07-155663] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several cell types have been suggested as giving rise to chronic lymphocytic leukemia (CLL), and these suggestions have reflected the sophistication of technology available at the time. Although there is no consensus as to the normal cellular counterpart(s) in the disease, an antigen-experienced B lymphocyte appears required based on surface membrane phenotypes and gene expression profiles. However, what is still unclear is whether a single or multiple normal precursors were stimulated to evolve into CLL and at what stage(s) this occurred. A unifying, parsimonious theory is that CLL clones with either mutated or unmutated IGHVs derive from marginal zone B cells. However, evidence for remarkably similar B-cell receptor amino acid sequence and striking differences in polyantigen and autoantigen-binding activity, found in some but not all CLL clones, challenge a single-cell derivation for CLL. In this Perspective, we summarize data regarding normal counterparts of CLL cells and suggest that a multistep process of leukemogenesis is important to consider when assigning a cellular origin for this disease. Finally, although available data do not definitively identify the cell(s) of origin, we offer possibilities for single- and multiple-cell origin models as straw men that can be improved on and hopefully lead to final answers to this puzzle.
Collapse
|
25
|
Tomomatsu J, Isobe Y, Oshimi K, Tabe Y, Ishii K, Noguchi M, Hirano T, Komatsu N, Sugimoto K. Chronic lymphocytic leukemia in a Japanese population: varied immunophenotypic profile, distinctive usage of frequently mutated IGH gene, and indolent clinical behavior. Leuk Lymphoma 2010; 51:2230-9. [PMID: 21067444 DOI: 10.3109/10428194.2010.527403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is relatively rare in Japan. Among 46 cases of mature B-cell leukemia, we identified 28 Japanese patients with CLL, including prolymphocytoid and lymphoplasmacytoid morphological variants. Compared with Western patients with CLL, only 52.0% of cases showed the typical immunophenotypic profile. IgG-bearing (15.4%) and clearly CD20-expressing (71.4%) cases were frequently observed. Most cases harbored a mutated immunoglobulin heavy-chain (VH) gene (88.5%) and commonly used a VH3 family member (61.5%) other than VH3-21. During the median follow-up period of 64 months, 20 cases (71.4%) showed an indolent clinical course without any treatment, and six cases (21.4%) were accompanied by other malignancies. Binet A stage (p = 0.003), low-risk category according to the modified Rai classification (p = 0.016), and ≤ 15 U/mL level of serum thymidine kinase activity (p = 0.016) were associated with prolongation of treatment-free status. Although Japanese cases of CLL showed heterogeneity in morphology and immunophenotype, most cases arose from post-antigen-selected B cells and presented with indolent clinical behavior.
Collapse
Affiliation(s)
- Junichi Tomomatsu
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Friedrichs B, Siegel S, Reimer R, Barsoum A, Coggin J, Kabelitz D, Heidorn K, Schulte C, Schmitz N, Zeis M. High expression of the immature laminin receptor protein correlates with mutated IGVH status and predicts a favorable prognosis in chronic lymphocytic leukemia. Leuk Res 2010; 35:721-9. [PMID: 21055809 DOI: 10.1016/j.leukres.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/22/2010] [Accepted: 10/04/2010] [Indexed: 11/29/2022]
Abstract
The immature laminin receptor (iLR) is a tumor-associated antigen. We analyzed the expression of iLR on malignant B cells of 134 unselected patient samples with CLL and hypothesized that iLR expression would have prognostic significance due to a differential expression pattern. High ILR expression (cut-off value 30%) was correlated with mutated IGVH status (p<0.0001). Patients with high iLR-expression had a significantly longer time to progression (p=0.039). Combination of CD38, ZAP-70, and iLR by flow cytometry can be used to construct a diagnostic score identifying patients with a median progression free survival of 80 months, if no adverse marker is present.
Collapse
Affiliation(s)
- Birte Friedrichs
- Asklepios Clinic St. Georg, Department of Hematology & Stem Cell Transplantation, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Poggi A, Prevosto C, Catellani S, Rocco I, Garuti A, Zocchi MR. Engagement of CD31 delivers an activating signal that contributes to the survival of chronic lymphocytic leukaemia cells. Br J Haematol 2010; 151:252-264. [PMID: 20813004 DOI: 10.1111/j.1365-2141.2010.08343.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study showed that engagement of CD31 delivers a survival signal in chronic lymphocytic leukaemia (CLL) cells. We describe two groups of CLL, showing different kinetics of apoptosis in vitro and distinct ratios between anti-apoptotic and pro-apoptotic proteins: CLL-I displayed low Bcl-x(L) /Bax and Bcl-2/Bax ratio and underwent rapid apoptosis in vitro; CLL-II had high Bcl-x(L) /Bax and Bcl-2/Bax ratio and were resistant to apoptosis for several days. Nurse-like cells, expressing vimentin, CD68 and CD31 were detected mainly in CLL-II cultures. Of note, CD31 cross-linking, obtained with a specific monoclonal antibody (mAb), induced phosphatidylinositol-3-kinase-dependent Akt phosphorylation and nuclear translocation of the nuclear factor-kBp65 and p52 subunits in both CLL groups, leading to upregulation of Bcl-2 and Bcl-x(L) transcription and increased cell survival. Binding to CD31(+) stable transfectants, could also deliver an anti-apoptotic signal in B cells of both CLL-I and CLL-II, increasing the Bcl-2 and Bcl-x(L) protein content, regardless the expression of CD38. On the other hand, the addition of the F(ab')₂ (that is unable to oligomerize the target molecule) of the anti-CD31 mAb prevented these effects. These data suggest that the CD31 adhesion system may play a role also in vivo in maintaining CLL survival.
Collapse
Affiliation(s)
- Alessandro Poggi
- Laboratory of Molecular Oncology and Angiogenesis, National Institute for Cancer Research, University of Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
28
|
Hassanein NM, Perkinson KR, Alcancia F, Goodman BK, Weinberg JB, Lagoo AS. A single tube, four-color flow cytometry assay for evaluation of ZAP-70 and CD38 expression in chronic lymphocytic leukemia. Am J Clin Pathol 2010; 133:708-17. [PMID: 20395517 DOI: 10.1309/ajcpqs4oxjjsz5kn] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We describe a simple and robust flow cytometry assay for ZAP-70 and CD38 expression. The steps required to validate this assay in a clinical flow cytometry laboratory are described. Two criteria were used to characterize ZAP-70 expression into positive, negative, and indeterminate categories and applied to 111 cases of chronic lymphocytic leukemia (CLL) resulting in 29.7% positive, 56.8% negative, and 13.5% indeterminate cases. A sensitivity-specificity crossover plot between ZAP-70 and CD38 suggested a cutoff of 12.5% for defining CD38 positivity. ZAP-70+ cases were significantly more likely to be at a higher clinical stage and, together with CD38+ cases, were more likely to have unmutated IgV(H). However, for individual patients, the concordance between these markers was not perfect. It may be necessary to evaluate several prognostic markers simultaneously in CLL, and availability of convenient assays for ZAP-70 and CD38 is desirable for optimal clinical decision making.
Collapse
|
29
|
The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22:1175-84. [PMID: 20206686 DOI: 10.1016/j.cellsig.2010.03.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/01/2010] [Indexed: 01/03/2023]
Abstract
The Src, Syk, and Tec family kinases are three of the most well characterized tyrosine kinase families found in the human genome. Members of these kinase families function downstream of antigen and F(c) receptors in hematopoietic cells and transduce signals leading to calcium mobilization, altered gene expression, cytokine production, and cell proliferation. Over the last several years, structural and biochemical studies have begun to uncover the molecular mechanisms regulating activation of these kinases. It appears that each kinase family functions as a distinct type of molecular switch. This review discusses the activation of the Src, Syk, and Tec kinases from the perspective of structure, phosphorylation, allosteric regulation, and kinetics. The multiple factors that regulate the Src, Syk, and Tec families illustrate the important role played by each of these kinases in immune cell signaling.
Collapse
|
30
|
Chantepie SP, Vaur D, Grunau C, Salaün V, Briand M, Parienti JJ, Heutte N, Cheze S, Roussel M, Gauduchon P, Leporrier M, Krieger S. ZAP-70 intron1 DNA methylation status: determination by pyrosequencing in B chronic lymphocytic leukemia. Leuk Res 2009; 34:800-8. [PMID: 19944462 DOI: 10.1016/j.leukres.2009.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/24/2009] [Accepted: 10/23/2009] [Indexed: 12/31/2022]
Abstract
ZAP-70 expression is a strong prognostic indicator in chronic lymphocytic leukemia. However, ZAP-70 quantification by flow cytometry lacks sufficient standardization. Based upon the correlation between ZAP-70 expression and its gene methylation status, we have developed a quantitative pyrosequencing assay for the determination of ZAP-70 methylation adapted for routine use. Methylation in four CpG pairs (C-223, C-243, C-254, and C-267) in the first intron of ZAP-70 is associated with repression of ZAP-70. Moreover, it correlates with CD38 expression (n=111, p<.0001), IgHv mutation status (n=106, p<.0001), time to treatment (p<.0001), and overall survival (p=.0014). Pyrosequencing of ZAP-70 provides a good alternative to flow cytometry.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- DNA Methylation
- Disease Progression
- Female
- Flow Cytometry/methods
- Gene Expression Regulation, Leukemic
- Humans
- Introns/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Predictive Value of Tests
- Prognosis
- Sequence Analysis, DNA/methods
- ZAP-70 Protein-Tyrosine Kinase/genetics
Collapse
Affiliation(s)
- Sylvain P Chantepie
- GRECAN, Centre François Baclesse, Université de Caen Basse-Normandie, Caen Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sanchez-Aguilera A, Rattmann I, Drew DZ, Müller LUW, Summey V, Lucas DM, Byrd JC, Croce CM, Gu Y, Cancelas JA, Johnston P, Moritz T, Williams DA. Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia 2009; 24:97-104. [PMID: 19847197 PMCID: PMC3869226 DOI: 10.1038/leu.2009.217] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RhoH is a hematopoietic-specific, GTPase-deficient member of the Rho GTPase family that functions as a regulator of thymocyte development and T-cell receptor signaling by facilitating localization of zeta-chain-associated protein kinase 70 (ZAP70) to the immunological synapse. Here we investigated the function of RhoH in the B-cell lineage. B-cell receptor (BCR) signaling was intact in Rhoh(-/-) mice. Because RhoH interacts with ZAP70, which is a prognostic factor in B-cell chronic lymphocytic leukemia (CLL), we analyzed the mRNA levels of RhoH in primary human CLL cells and showed a 2.3-fold higher RhoH expression compared with normal B cells. RhoH expression in CLL positively correlated with the protein levels of ZAP70. Deletion of Rhoh in a murine model of CLL (Emu-TCL1(Tg) mice) significantly delayed the accumulation of CD5(+)IgM(+) leukemic cells in peripheral blood and the leukemic burden in the peritoneal cavity, bone marrow and spleen of Rhoh(-/-) mice compared with their Rhoh(+/+) counterparts. Phosphorylation of AKT and ERK in response to BCR stimulation was notably decreased in Emu-TCL1(Tg);Rhoh(-/-) splenocytes. These data suggest that RhoH has a function in the progression of CLL in a murine model and show RhoH expression is altered in human primary CLL samples.
Collapse
Affiliation(s)
- A Sanchez-Aguilera
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fridberg M, Servin A, Anagnostaki L, Linderoth J, Berglund M, Söderberg O, Enblad G, Rosén A, Mustelin T, Jerkeman M, Persson JL, Wingren AG. Protein expression and cellular localization in two prognostic subgroups of diffuse large B-cell lymphoma: Higher expression of ZAP70 and PKC-β II in the non-germinal center group and poor survival in patients deficient in nuclear PTEN. Leuk Lymphoma 2009; 48:2221-32. [DOI: 10.1080/10428190701636443] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Bekeredjian-Ding I, Doster A, Schiller M, Heyder P, Lorenz HM, Schraven B, Bommhardt U, Heeg K. TLR9-activating DNA up-regulates ZAP70 via sustained PKB induction in IgM+ B cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:8267-77. [PMID: 19050243 DOI: 10.4049/jimmunol.181.12.8267] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the past, ZAP70 was considered a T cell-specific kinase, and its aberrant expression in B-CLL cells was interpreted as a sign of malignant transformation and dedifferentiation. It was only recently that ZAP70 was detected in normal human B cells. In this study, we show that TLR9-activated B cells resemble B-cell chronic lymphocytic leukemia cells with regard to CD5, CD23, CD25, and heat shock protein 90 expression. Furthermore, stimulatory CpG and GpC DNA oligonucleotides target CD27(+)IgM(+) and CD27(-)IgM(+) B cells (but not IgM(-) B cells) and enhance ZAP70 expression predominantly in the IgM(+)CD27(+) B cell subset. ZAP70 is induced via activation of TLR-7 or -9 in a MyD88-dependent manner, depends on protein kinase B (PKB)/mammalian target of rapamycin signaling and is rapamycin sensitive. Furthermore, ZAP70 expression levels correlate with induction of cyclin A2, prolonged B cell proliferation, and sustained induction of PKB. These events are not observed upon CD40 ligation. However, this deficit can be overcome by the expression of constitutively active PKB, given that CD40 ligation of PKB-transgenic B cells induces B cell proliferation and ZAP70 expression. These results highlight a major difference between CD40- and TLR-7/9-mediated B cell activation and suggest that ZAP70 expression levels in B cells give an estimate of the proliferative potential and the associated PKB availability.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Department of Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Synovial B cells of rheumatoid arthritis express ZAP-70 which increases the survival and correlates with the inflammatory and autoimmune phenotype. Clin Immunol 2009; 131:98-108. [PMID: 19136305 DOI: 10.1016/j.clim.2008.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 01/01/2023]
Abstract
B cells have acquired an important role in the pathogenesis of rheumatoid arthritis (RA) since B cell depletion allowed to rescue patients poorly responders to TNFalpha blockers. This study focused on the involvement of ZAP-70 as a bio-marker of B cells immune activation in RA. ZAP-70 expression in synovial fluid (SF) B cells obtained from RA patients was increased compared to SF B cells of osteoarthritis (OA) patients. Moreover we found that ZAP-70 positive/CD38 positive and ZAP-70 positive/CD5 positive B cells were enriched in SF. The analysis of B cell apoptosis in vitro showed that the percentage of ZAP-70 negative B cells spontaneously undergoing apoptosis was significantly higher than ZAP-70 positive B cells. The ZAP-70 positive B cell ratio (SF/peripheral blood (PB)) showed a positive correlation with SF autoantibody levels and with local levels of BAFF and IL6. ZAP-70 positive B cells seem to define a subset characterized by increased survival and high relationship with local inflammation and autoimmunity.
Collapse
|
35
|
Van Bockstaele F, Verhasselt B, Philippé J. Prognostic markers in chronic lymphocytic leukemia: A comprehensive review. Blood Rev 2009; 23:25-47. [DOI: 10.1016/j.blre.2008.05.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Shankey TV, Forman M, Scibelli P. Optimized whole-blood assay for measurement of ZAP-70 protein expression. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 9:Unit9.22. [PMID: 18770856 DOI: 10.1002/0471142956.cy0922s39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a clonal expansion of small lymphocytes commonly expressing cell surface markers (CD5 and CD19) that are consistent with a population of B lymphocytes. This unit describes a technique to measure ZAP-70 protein expression in whole-blood specimens from CLL samples. The protocols presented include an optimized fixation/permeabilization technique that allows labeling of cell surface markers and intracellular ZAP-70 protein with significantly improved signal-to-noise ratio, an optimized combination of antibodies-fluorophores to maximize ZAP-70 expression levels, standardized methodology for instrument setup, including compensation, to improve inter- and intra-laboratory reproducibility, and a method to index ZAP-70 protein expression levels to internal positive and negative cell populations. Residual normal T and B cells function as internal positive and negative controls. These are used to index ZAP-70 protein expression levels in the CLL population.
Collapse
|
37
|
Fallah-Arani F, Schweighoffer E, Vanes L, Tybulewicz VLJ. Redundant role for Zap70 in B cell development and activation. Eur J Immunol 2008; 38:1721-33. [PMID: 18465772 DOI: 10.1002/eji.200738026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of the Syk family tyrosine kinase Zap70 is strongly correlated with poor clinical outcome in chronic lymphocytic leukemia, the most common human leukemia characterized by B cell accumulation. The expression of Zap70 may reflect the specific cell of origin of the tumor or may contribute to pathology. Thus, the normal role of Zap70 in B cell physiology is of great interest. While initial studies reported that Zap70 expression in the mouse was limited to T and NK cells, more recent work has shown expression in early B cell progenitors and in splenic B cells, suggesting that the kinase may play a role in the development or activation of B cells. In this study, we show that Zap70 is expressed in all developing subsets of B cells as well as in recirculating B cells, marginal zone B cells and peritoneal B1 cells. Analysis of Zap70-deficient mice shows no unique role for Zap70 in either the development of B cells or in their in vitro and in vivo activation. However, we show that Zap70 can rescue the defective positive selection of immature B cells into the recirculating pool in Syk-deficient mice, demonstrating functional redundancy between these two kinases.
Collapse
Affiliation(s)
- Farnaz Fallah-Arani
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
38
|
Poggi A, Catellani S, Bruzzone A, Caligaris-Cappio F, Gobbi M, Zocchi MR. Lack of the leukocyte-associated Ig-like receptor-1 expression in high-risk chronic lymphocytic leukaemia results in the absence of a negative signal regulating kinase activation and cell division. Leukemia 2008; 22:980-988. [PMID: 18288129 DOI: 10.1038/leu.2008.21] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 01/04/2023]
Abstract
In this study, we analysed 30 patients with B-cell chronic lymphocytic leukaemia (CLL), compared with 10 healthy donors, for the expression and function of the leukocyte-associated Ig-like receptor-1 (LAIR-1). LAIR-1 is an inhibitory receptor containing a cytoplasmic tyrosine-based inhibitory motif (ITIM) that binds to the SH2 domain of phosphatases, leading to dephosphorylation of different kinases. Constitutive activation of c-Jun aminoterminal kinase (JNK), p38 mitogen-activated protein kinase and extracellular signal-regulated kinase, has been reported in CLL. We show that LAIR-1 is absent in high-risk (HR) CLL and differently expressed on intermediate- and low-risk CLL and the intensity of expression, which is always significantly lower than in healthy donors, correlates with disease stage and progression. Interestingly, both constitutive and sIgM-induced phosphorylation of p38 and JNK is inhibited by LAIR-1 through an ITIM-dependent signal, as demonstrated by the use of specific ITIM-binding peptides; importantly, this inhibitory signal is missing when LAIR-1 is not expressed as occurs in HR CLL. Moreover, engagement of LAIR-1 blocks constitutive and sIgM-induced Akt phosphorylation, besides nuclear factor kappa-B nuclear translocation, and prevents CLL division. These results suggest that CLL lacking LAIR-1 may miss one of the molecular mechanisms controlling B-cell activation and proliferation.
Collapse
Affiliation(s)
- A Poggi
- Laboratory of Experimental Oncology D, National Institute for Cancer Research, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
ZAP70 expression assessed by immunohistochemistry on peripheral blood: a simple prognostic assay for patients with chronic lymphocytic leukemia. Appl Immunohistochem Mol Morphol 2008; 15:471-6. [PMID: 18091393 DOI: 10.1097/01.pai.0000213152.41440.34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The somatic hypermutational (SHM) status of the immunoglobulin heavy-chain variable (IgVH) gene is a powerful prognostic factor in patients with chronic lymphocytic leukemia (CLL). However, IgVH SHM analysis is not well-suited to routine use in the clinical diagnostic laboratory. ZAP70 expression is a potential surrogate for the absence of SHM. Given the current problems with the standardization of ZAP70 assessment by flow cytometry, we sought an alternative approach, using immunohistochemistry (IHC). The utility of IHC is largely restricted to tissues, precluding its routine application to most patients with CLL who are typically diagnosed based upon peripheral blood (PB) findings. Accordingly, we developed an IHC assay that can be performed on PB. Enriched PB mononuclear cells from 29 patients with CLL were analyzed for ZAP70 expression by IHC on paraffin-embedded cell blocks, using standard techniques. IgVH SHM analysis was performed on all cases, and clinical features recorded. Seventeen specimens (59%) were negative for ZAP70 expression and 12 (41%) were positive for ZAP70 expression. SHM was evident in 20 specimens (69%), and absent in 9 (31%). Seventy-six percent of the specimens (22/29) displayed "concordant" ZAP70 and SHM results, in that 15 (52%) were SHM-positive/ZAP70 negative, whereas 7 (24%) were SHM-negative/ZAP70 positive. ZAP70 expression in this small cohort correlated with poor clinical outcome. Importantly, IHC analysis of ZAP70 in PB is a simple, reliable, robust assay that may have a valuable role in the routine clinical laboratory assessment of patients with CLL.
Collapse
|
40
|
Zucchetto A, Bomben R, Bo MD, Nanni P, Bulian P, Rossi FM, Del Principe MI, Santini S, Del Poeta G, Degan M, Gattei V. ZAP-70 expression in B-cell chronic lymphocytic leukemia: evaluation by external (isotypic) or internal (T/NK cells) controls and correlation with IgV(H) mutations. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 70:284-92. [PMID: 16906587 DOI: 10.1002/cyto.b.20127] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Expression of T cell specific zeta-associated protein 70 (ZAP-70) by B-cell chronic lymphocytic leukemia (B-CLL) cells, as investigated by flow cytometry, has both prognostic relevance and predictive power as surrogate for immunoglobulin heavy chain variable region (IgV(H)) mutations, although a standardization of the cytometric protocol is still lacking. METHODS Flow cytometric analyses for ZAP-70 were performed in peripheral blood samples from 145 B-CLL (124 with IgV(H) mutations) by a standard three-color protocol. Identification of ZAP-70(+) cell population was based on an external negative control, i.e., the isotypic control (ISO method) or an internal positive control, i.e., the population of residual normal T/NK cells (TNK method). A comparison between these two approaches was performed. RESULTS While 86/145 cases were concordant as for ZAP-70 expression according to the two methods (ISO(+)TNK(+) or ISO(-)TNK(-)), 59/145 cases had discordant ZAP-70 expression, mainly (56/59) showing a ISO(+)TNK(-) profile. These latter cases express higher levels of ZAP-70 in their normal T cell component. Moreover, discordant ISO(+)TNK(-) cases had a IgV(H) gene mutation profile similar to that of concordantly positive cases and different from ZAP-70 concordantly negative B-CLL. CONCLUSION Analysis of ZAP-70 expression by B-CLL cells by using the ISO method allows to overcome the variability in the expression of ZAP-70 by residual T cells and yields a better correlation with IgV(H) gene mutations. A receiver operating characteristic analysis suggests to employ a higher cut-off than the commonly used 20%. A parallel evaluation of the prognostic value of ZAP-70 expression, as determined according to the ISO and TNK methods, is still needed.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/immunology
- Calibration
- Female
- Flow Cytometry/methods
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Mutation
- Reproducibility of Results
- T-Lymphocytes/immunology
- ZAP-70 Protein-Tyrosine Kinase/analysis
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/immunology
Collapse
Affiliation(s)
- Antonella Zucchetto
- Clinical and Experimental Hematology Research Unit, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Zap-70, a crucial molecule for the selective activation of T cells, through its interaction with the zeta chain of the TCR/CD3 complex, is a tyrosine kinase. This well studied molecule has gained a renewed interest upon the demonstration of its transduction and expression in B cells from patients with chronic lymphocytic leukemia. Here the major characteristics of this cytosolic protein are reviewed, as well as its expression in various cell types and some indications about its detection.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- ZAP-70 Protein-Tyrosine Kinase/analysis
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
|
42
|
Letestu R, Rawstron A, Ghia P, Villamor N, Boeckx N, Leuven NB, Boettcher S, Buhl AM, Duerig J, Ibbotson R, Kroeber A, Langerak A, Le Garff-Tavernier M, Mockridge I, Morilla A, Padmore R, Rassenti L, Ritgen M, Shehata M, Smolewski P, Staib P, Ticchioni M, Walker C, Ajchenbaum-Cymbalista F. Evaluation of ZAP-70 expression by flow cytometry in chronic lymphocytic leukemia: A multicentric international harmonization process. CYTOMETRY PART B-CLINICAL CYTOMETRY 2007; 70:309-14. [PMID: 16906588 DOI: 10.1002/cyto.b.20132] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The clinical course of patients with chronic lymphocytic leukemia (CLL) is heterogeneous with some patients requiring early therapy whereas others will not be treated for years. The evaluation of an individual CLL patient's prognosis remains a problematic issue. The presence or absence of somatic mutations in the IgVH genes is currently the gold-standard prognostic factor, but this technique is labor intensive and costly. Genomic studies uncovered that 70 kDa zeta-associated protein (ZAP-70) expression was associated with unmutated IgVH genes and ZAP-70 protein expression was proposed as a surrogate for somatic mutational status. Among the available techniques for ZAP-70 detection, flow cytometry is most preferable as it allows the simultaneous quantification of ZAP-70 protein expression levels in CLL cells and residual normal lymphocyte subsets. However, several factors introduce variability in the results reported from different laboratories; these factors include the anti-ZAP-70 antibody clone and conjugate, the staining procedure, the gating strategy, and the method of reporting the results. The need for standardization of the approach led to the organization of an international working group focused on harmonizing all aspects of the technique. During this workshop, a technical consensus was reached on the methods for cell permeabilization and immunophenotyping procedures. An assay was then designed that allowed comparison of two clones of anti-ZAP-70 antibody and the identification of the expression of this molecule in B, T, and NK cells identified in a four multicolor analysis. This procedure was applied to three stabilized blood samples, provided by the UK NEQAS group to all participating members of this study, in order to minimize variability caused by sample storage and shipment. Analysis was performed in 20 laboratories providing interpretable data from 14 centers. Various gating strategies were used and the ZAP-70 levels were expressed as percentage positive (POS) relative to isotype control or normal B-cells or normal T-cells; in addition the levels were reported as a ratio of expression in CLL cells relative to T-cells. The reported level of ZAP-70 expression varied greatly depending on the antibody and the method used to express the results. The CLL/T-cell ZAP-70 expression ratio showed a much lower interlaboratory variation than other reporting strategies and is recommended for multicenter studies. Stabilization results in decreased expression of CD19 making gating more difficult and therefore stabilized samples are not optimal for multicentric analysis of ZAP-70 expression. We assessed the variation of ZAP-70 expression levels in fresh cells according to storage time, which demonstrated that ZAP-70 is labile but sufficiently stable to allow comparison using fresh samples distributed between labs in Europe. These studies have demonstrated progress toward a consensus reporting procedure, and further work is underway to harmonize the preparation and analysis procedures.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibody Specificity
- Anticoagulants/pharmacology
- Antigen-Antibody Reactions
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/immunology
- Consensus
- Flow Cytometry/methods
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- International Cooperation
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Mutation
- Reproducibility of Results
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- ZAP-70 Protein-Tyrosine Kinase/analysis
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/immunology
Collapse
Affiliation(s)
- Remi Letestu
- Service d'Hématologie Biologique, Hôpital Avicenne, Bobigny, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C, Allen SL, Rai KR, Chiorazzi N. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 2007; 110:3352-9. [PMID: 17684154 PMCID: PMC2200908 DOI: 10.1182/blood-2007-04-083832] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/26/2007] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells are thought to have diminished cell-cycling capacity, a view challenged by their phenotypic resemblance to activated human B lymphocytes. The present study addresses the cell-cycling status of CLL cells, focusing on those leukemic cells expressing CD38, a molecule involved in signaling and activation that also serves as a prognostic marker in this disease. CD38(+) and CD38(-) members of individual CLL clones were analyzed for coexpression of molecules associated with cellular activation (CD27, CD62L, and CD69), cell-cycle entry (Ki-67), signaling (ZAP-70), and protection from apoptosis (telomerase and Bcl-2). Regardless of the size of the CD38(+) fraction within a CLL clone, CD38(+) subclones are markedly enriched for expression of Ki-67, ZAP-70, human telomerase reverse transcriptase, and telomerase activity. Although the percentage of cells (approximately 2%) entering the cell cycle as defined by Ki-67 expression is small, the absolute number within a clone can be sizeable and is contained primarily within the CD38(+) fraction. Despite these activation/proliferation differences, both CD38(+) and CD38(-) fractions have similar telomere lengths, suggesting that CD38 expression is dynamic and transient. These findings may help explain why high percentages of CD38(+) cells within clones are associated with poor clinical outcome.
Collapse
Affiliation(s)
- Rajendra N Damle
- Laboratory of Experimental Immunology, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish (LIJ) Health System, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Caligaris-Cappio F, Ghia P. The normal counterpart to the chronic lymphocytic leukemia B cell. Best Pract Res Clin Haematol 2007; 20:385-97. [PMID: 17707828 DOI: 10.1016/j.beha.2007.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the monoclonal expansion of small mature-looking B cells that accumulate in the blood, marrow, and lymphoid organs, and have a remarkable phenotypic homogeneity. By definition, CLL cells co-express CD5 and CD23 with faint to undetectable amounts of monoclonal surface immunoglobulins (sIg). The concept of phenotypic homogeneity has been reinforced by gene expression profiling data, which suggest that the pathogenesis of CLL has to be associated with a fairly common mechanism of transformation. In recent years the biology of CLL has been enriched by an unprecedented flurry of new observations that are leading to a better understanding of the natural history of the disease. Still CLL cells have so far defied any attempt to satisfactorily answer the simple time-honored question of what their cell of origin is. It is the purpose of this review to discuss the features a cell must possess to be considered with reasonable approximation the normal counterpart of a CLL B cell.
Collapse
Affiliation(s)
- Federico Caligaris-Cappio
- Department of Oncology, Lymphoma Unit, Università Vita-Salute San Raffaele and Istituto Scientifico San Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
45
|
Muzio M, Scielzo C, Frenquelli M, Bachi A, De Palma M, Alessio M, Ghia P, Caligaris-Cappio F. HS1 complexes with cytoskeleton adapters in normal and malignant chronic lymphocytic leukemia B cells. Leukemia 2007; 21:2067-70. [PMID: 17508001 DOI: 10.1038/sj.leu.2404744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Amin S, Parker A, Mann J. ZAP70 in chronic lymphocytic leukaemia. Int J Biochem Cell Biol 2007; 40:1654-8. [PMID: 17625948 DOI: 10.1016/j.biocel.2007.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 01/05/2023]
Abstract
The protein tyrosine kinase zeta-chain associated protein kinase (ZAP70), normally expressed in T cells and a subset of B cells, is solely expressed in poor prognosis chronic lymphocytic leukaemia and implicated in enhanced B cell receptor signalling. As a result, the expression of this protein provides an ideal prognostic marker for the disease. A previous study has shown differential CpG methylation of a 5' region of ZAP70 in leukaemic lymphoid cells, although no further epigenetic studies have been reported. Further investigation into the expression of ZAP70 may therefore provide targets for therapies.
Collapse
MESH Headings
- Animals
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- ZAP-70 Protein-Tyrosine Kinase/chemistry
- ZAP-70 Protein-Tyrosine Kinase/genetics
- ZAP-70 Protein-Tyrosine Kinase/metabolism
Collapse
Affiliation(s)
- Shilu Amin
- Cell Signalling, Institute of Cellular Medicine, 4th Floor Catherine Cookson Building, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom.
| | | | | |
Collapse
|
47
|
Efremov DG, Gobessi S, Longo PG. Signaling pathways activated by antigen-receptor engagement in chronic lymphocytic leukemia B-cells. Autoimmun Rev 2007; 7:102-8. [PMID: 18035318 DOI: 10.1016/j.autrev.2007.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several features of the B-cell receptor (BCR) have emerged as major prognostic factors in chronic lymphocytic leukemia (CLL). In particular, the absence of somatic mutations in the immunoglobulin variable region genes and expression of the protein tyrosine kinase ZAP-70 are strongly associated with an aggressive clinical course, and both features have been correlated with a greater capacity of the BCR to transmit antigen-induced signals. Additionally, differences in BCR structure and reactivity indicate that CLL B-cells from the two prognostic subsets may recognize different types of antigens. Antigens that are not rapidly internalized induce sustained BCR signaling that can promote the survival of the leukemic B-cells. The BCR signal is initially transmitted by the Syk kinase and modulated by ZAP-70, which shows inefficient or absent tyrosine kinase activation in B-cells. However, both ZAP-70 expression and sustained BCR engagement have been associated with prolonged activation of the Akt and ERK kinases, which is required for the induction of several antiapoptotic proteins, including Mcl-1, Bcl-xL and XIAP. Therefore, targeting components along the BCR signaling pathway may be a promising strategy for the treatment of CLL.
Collapse
Affiliation(s)
- Dimitar G Efremov
- Molecular Hematology Group, International Centre for Genetic Engineering & Biotechnology, Monterotondo Outstation, CNR Campus A. Buzzati-Traverso, Rome, Italy.
| | | | | |
Collapse
|
48
|
Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 2006; 109:2032-9. [PMID: 17038529 DOI: 10.1182/blood-2006-03-011759] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Expression of ZAP-70 is an important negative prognostic factor in chronic lymphocytic leukemia (CLL). This protein tyrosine kinase is a key mediator of T-cell receptor (TCR) signaling and is structurally homologous to Syk, which plays an analogous role in B-cell receptor (BCR) signaling. Recent studies indicate that ZAP-70 may participate in BCR signaling as well, but the mechanism of action is not completely understood. We have now compared antigen receptor-induced activation of ZAP-70 in B cells and T cells by analyzing phosphorylation of critical regulatory tyrosine residues. We show that BCR-mediated activation of ZAP-70 is very inefficient in CLL and lymphoma B cells and is negligible when compared to activation of Syk. Despite the inefficient catalytic activation, the ability of ZAP-70 to recruit downstream signaling molecules in response to antigen receptor stimulation appeared relatively preserved. Moreover, ectopic expression of ZAP-70 enhanced and prolonged activation of several key mediators of BCR signaling, such as the Syk, ERK, and Akt kinases, and decreased the rate of ligand-mediated BCR internalization. We conclude that the role of ZAP-70 in BCR signaling is quite distinct from its role in TCR signaling and is likely mediated by inhibition of events that terminate the signaling response.
Collapse
Affiliation(s)
- Stefania Gobessi
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Outstation-Monterotondo, Consiglio Nazionale delle Ricerche (CNR) Campus Adriano Buzzati-Traverso, Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Lin K, Glenn MA, Harris RJ, Duckworth AD, Dennett S, Cawley JC, Zuzel M, Slupsky JR. c-Abl Expression in Chronic Lymphocytic Leukemia Cells: Clinical and Therapeutic Implications. Cancer Res 2006; 66:7801-9. [PMID: 16885384 DOI: 10.1158/0008-5472.can-05-3901] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
c-Abl is important for normal B-cell development, but little is known about the function of this nonreceptor tyrosine kinase in chronic lymphocytic leukemia (CLL). Therefore, the aim of the present study was to examine the clinical, therapeutic, and pathogenetic importance of c-Abl in this disease. We show that the malignant cells of CLL predominantly express the type 1b splice variant of c-Abl and that the expression of c-Abl protein is higher in CLL cells than in normal peripheral blood B cells. Moreover, we show that the levels of c-Abl protein expression correlate positively with tumor burden and disease stage, and negatively with IgVH mutation. We also show that STI-571, an inhibitor of c-Abl kinase activity, induces apoptosis of CLL cells with high c-Abl expression levels through a mechanism involving inhibition of nuclear factor κB. We conclude that overexpression of c-Abl is likely to play a pathogenetic role in CLL and that STI-571 may be of potential use in the treatment of this disease. (Cancer Res 2006; 66(15): 7801-9)
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- B-Lymphocytes/metabolism
- Benzamides
- Genes, Immunoglobulin Heavy Chain
- Humans
- Imatinib Mesylate
- Immunoglobulin Variable Region/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Mutation
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Piperazines/pharmacology
- Protein Isoforms
- Proto-Oncogene Proteins c-abl/biosynthesis
- Proto-Oncogene Proteins c-abl/genetics
- Pyrimidines/pharmacology
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
Collapse
Affiliation(s)
- Ke Lin
- Department of Haematology, University of Liverpool, Daulby Street, Liverpool L69 3GA, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shankey TV, Forman M, Scibelli P, Cobb J, Smith CM, Mills R, Holdaway K, Bernal-Hoyos E, Van Der Heiden M, Popma J, Keeney M. An optimized whole blood method for flow cytometric measurement of ZAP-70 protein expression in chronic lymphocytic leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2006; 70:259-69. [PMID: 16906581 DOI: 10.1002/cyto.b.20135] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND ZAP-70 protein expression has been proposed as a marker for immunoglobulin heavy chain mutational status, which some studies have correlated with disease course in B-cell chronic lymphocytic leukemia (CLL). Studies published to date measuring levels of expression of ZAP-70 intracellular protein using flow cytometry have demonstrated poor performance, as defined by the difference in signal in known positive and negative lymphocyte populations. METHODS A recently published method (Chow S, Hedley DW, Grom P, Magari R, Jacobberger JW, Shankey TV, Cytometry A 2005;67:4-17) to measure intracellular phospho-epitopes was optimized using a design of experiments (DOE) approach to provide the best separation of ZAP-70 expression in positive T- or NK-cells as compared to negative B-cells in peripheral blood samples. A number of commercially available anti-ZAP-70 antibody-conjugates were screened using this methodology, and the antibody-conjugate showing the best performance was chosen to develop a four-color, five antibody assays to measure ZAP-70 levels in whole blood specimens. RESULTS Using the optimized fixation and permeabilization method, improvement in assay performance (signal-to-noise, S/N) was seen in most of the antibodies tested. The custom SBZAP conjugate gave the best S/N when used in conjunction with this optimized fixation /permeabilization method. In conjunction with carefully standardized instrument set-up protocols, we obtained both intra- and interlaboratory reproducibility in the analysis of ZAP-70 expression in whole blood samples from normal and CLL patients. CONCLUSIONS The development of a sensitive, specific and highly reproducible ZAP-70 assay represents only the first essential step for any clinical assay. The universal implementation of a validated data analysis method and the establishment of methodology-based cutoff points for clinical outcomes must next be established before ZAP-70 protein analysis can be routinely implemented in the clinical laboratory.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antigen-Antibody Reactions
- B-Lymphocytes/chemistry
- B-Lymphocytes/immunology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/immunology
- Cell Membrane Permeability
- Flow Cytometry/methods
- Humans
- Killer Cells, Natural/chemistry
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Reproducibility of Results
- Staining and Labeling
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
- Tissue Fixation/methods
- ZAP-70 Protein-Tyrosine Kinase/analysis
- ZAP-70 Protein-Tyrosine Kinase/biosynthesis
- ZAP-70 Protein-Tyrosine Kinase/immunology
Collapse
|