1
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
2
|
Long Noncoding RNA MALAT1 Interacts with miR-124-3p to Modulate Osteosarcoma Progression by Targeting SphK1. JOURNAL OF ONCOLOGY 2021; 2021:8390165. [PMID: 34373692 PMCID: PMC8349266 DOI: 10.1155/2021/8390165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Introduction Long noncoding RNAs (lncRNAs) have been implicated in a variety of biological functions, including tumor proliferation, apoptosis, progression, and metastasis. lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is overexpressed in various cancers, as well as osteosarcoma (OS); however, its underlying mechanism in OS is poorly understood. This investigation aims to elucidate the mechanisms of MALAT1 in OS proliferation and migration and to provide theoretical grounding for further targeted therapy in OS. Methods In the present study, we applied qRT-PCR to assess the MALAT1 expression in OS tissues and cell lines. The effects of MALAT1 and miR-124-3p on OS cell proliferation and migration were studied by CCK-8 and scratch assays. Cell cycle and apoptosis were tested using a flow cytometer. The competing relationship between MALAT1 and miR-124-3p was confirmed by dual-luciferase reporter assay. Results MALAT1 was overexpressed in OS cell lines and tissue specimens, and knockdown of MALAT1 significantly inhibited cell proliferation and migration and increased cell apoptosis and the percentage of G0/G1 phase. Furthermore, MALAT1 could directly bind to miR-124-3p and inhibit miR-124-3p expression. Moreover, MALAT1 overexpression significantly relieved the inhibition on OS cell proliferation mediated by miR-124-3p overexpression, which involved the derepression of sphingosine kinase 1 (SphK1). Conclusions We propose that lncRNA MALAT1 interacts with miR-124-3p to modulate OS progression by targeting SphK1. Hence, we identified a novel MALAT1/miR-124-3p/SphK1 signaling pathway in the regulation of OS biological behaviors.
Collapse
|
3
|
Truman JP, Ruiz CF, Trayssac M, Mao C, Hannun YA, Obeid LM. Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB J 2021; 35:e21284. [PMID: 33484475 DOI: 10.1096/fj.202001814rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023]
Abstract
It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christian F Ruiz
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Northport Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
4
|
Sun D, Wang S. Sphingosine kinases are involved in the regulation of all-trans retinoic acid sensitivity of K562 chronic myeloid leukemia cells. Oncol Lett 2021; 22:581. [PMID: 34122632 DOI: 10.3892/ol.2021.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
The efficacy of all-trans retinoic acid (ATRA) for the treatment of chronic myeloid leukemia (CML) has been reported to be limited both as single-drug treatment or in combination with other drugs. Our previous study demonstrated that sphingosine 1-phosphate attenuated the effects of ATRA on human colon cancer cells by blocking the expression of retinoic acid receptor β. The aim of the present study was to investigate whether the ATRA-dependent proliferation inhibition of K562 cells was regulated by sphingosine kinases (SphKs). The results of cell proliferation assay and reverse transcription-PCR demonstrated that ATRA may exert synergistic effects with the SphK1 inhibitor SKI 5C or the pan-SphK inhibitor SKI II to inhibit the proliferation of K562 cells and upregulate the expression levels of the ATRA-inducible enzyme cytochrome P450 26A1 (CYP26A1). Knocking down the expression of SphK1 or SphK2 in K562 cells by small interfering RNA enhanced the inhibitory effects of ATRA and induced the expression of CYP26A1. Crude asterosaponins, which abrogated the expression of SphK2, also enhanced the effects of ATRA on K562 cells. In conclusion, the results of the present study demonstrated that SphKs may be involved in the regulation of the sensitivity of CML cells to ATRA.
Collapse
Affiliation(s)
- Defu Sun
- Department of Bioengineering, School of Life Science, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Siping Wang
- Department of Gastroenterology, Yantai Shan Hospital, Yantai, Shandong 264005, P.R. China
| |
Collapse
|
5
|
Shi H, Niimi A, Takeuchi T, Shiogama K, Mizutani Y, Kajino T, Inada K, Hase T, Hatta T, Shibata H, Fukui T, Chen-Yoshikawa TF, Nagano K, Murate T, Kawamoto Y, Tomida S, Takahashi T, Suzuki M. CEBPγ facilitates lamellipodia formation and cancer cell migration through CERS6 upregulation. Cancer Sci 2021; 112:2770-2780. [PMID: 33934437 PMCID: PMC8253294 DOI: 10.1111/cas.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Ceramide synthase 6 (CERS6) promotes lung cancer metastasis by stimulating cancer cell migration. To examine the underlying mechanisms, we performed luciferase analysis of the CERS6 promoter region and identified the Y-box as a cis-acting element. As a parallel analysis of database records for 149 non-small-cell lung cancer (NSCLC) cancer patients, we screened for trans-acting factors with an expression level showing a correlation with CERS6 expression. Among the candidates noted, silencing of either CCAAT enhancer-binding protein γ (CEBPγ) or Y-box binding protein 1 (YBX1) reduced the CERS6 expression level. Following knockdown, CEBPγ and YBX1 were found to be independently associated with reductions in ceramide-dependent lamellipodia formation as well as migration activity, while only CEBPγ may have induced CERS6 expression through specific binding to the Y-box. The mRNA expression levels of CERS6, CEBPγ, and YBX1 were positively correlated with adenocarcinoma invasiveness. YBX1 expression was observed in all 20 examined clinical lung cancer specimens, while 6 of those showed a staining pattern similar to that of CERS6. The present findings suggest promotion of lung cancer migration by possible involvement of the transcription factors CEBPγ and YBX1.
Collapse
Affiliation(s)
- Hanxiao Shi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan.,Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kazuya Shiogama
- Department of Morphology and Cell Function, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Yasuyoshi Mizutani
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kenichi Inada
- Diagnostic Pathology, Bantane Hospital, Fujita Health University, Toyoake, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Hatta
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Shibata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kazuki Nagano
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.,College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
6
|
Kim MY, Jung S, Kim J, Lee HJ, Jeong S, Sim SJ, Kim SK. Highly sensitive and multiplexed one-step RT-qPCR for profiling genes involved in the circadian rhythm using microparticles. Sci Rep 2021; 11:6463. [PMID: 33742035 PMCID: PMC7979730 DOI: 10.1038/s41598-021-85728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Given the growing interest in molecular diagnosis, highly extensive and selective detection of genetic targets from a very limited amount of samples is in high demand. We demonstrated the highly sensitive and multiplexed one-step RT-qPCR platform for RNA analysis using microparticles as individual reactors. Those particles are equipped with a controlled release system of thermo-responsive materials, and are able to capture RNA targets inside. The particle-based assay can successfully quantify multiple target RNAs from only 200 pg of total RNA. The assay can also quantify target RNAs from a single cell with the aid of a pre-concentration process. We carried out 8-plex one-step RT-qPCR using tens of microparticles, which allowed extensive mRNA profiling. The circadian cycles were shown by the multiplex one-step RT-qPCR in human cell and human hair follicles. Reliable 24-plex one-step RT-qPCR was developed using a single operation in a PCR chip without any loss of performance (i.e., selectivity and sensitivity), even from a single hair. Many other disease-related transcripts can be monitored using this versatile platform. It can also be used non–invasively for samples obtained in clinics.
Collapse
Affiliation(s)
- Mi Yeon Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.,Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Seungwon Jung
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea
| | - Junsun Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.,Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Heon Jeong Lee
- Department of Psychiatry and Chronobiology Institute, Korea University College of Medicine, Seoul, KS013, Korea
| | - Seunghwa Jeong
- Department of Psychiatry and Chronobiology Institute, Korea University College of Medicine, Seoul, KS013, Korea
| | - Sang Jun Sim
- Department of Chemical Biological Engineering, Korea University, Seoul, KS013, Korea
| | - Sang Kyung Kim
- Center for Molecular Recognition Research, Materials and Life Science Research Division, Korea Institute of Science and Technology(KIST), Seoul, KS013, Korea.
| |
Collapse
|
7
|
Hori A, Ishida F, Nakazawa H, Yamaura M, Morita S, Uehara T, Honda T, Hidaka H. Serum sphingomyelin species profile is altered in hematologic malignancies. Clin Chim Acta 2020; 514:29-33. [PMID: 33279503 DOI: 10.1016/j.cca.2020.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 01/27/2023]
Abstract
Sphingomyelin (SM) plays key roles in regulating cell membrane fluidity and in intracellular signal transduction. However, little is known as to whether alterations in SM concentration or SM species distribution are linked pathological conditions. The present study examined SM concentrations and species profiles in serum taken from patients with hematologic malignancies. Serum was collected from normal subjects and from patients with B-cell lymphoma, myelodysplastic syndrome (MDS), acute myeloid leukemia (AML) and acute lymphatic leukemia/ lymphoblastic lymphoma (ALL/LBL). Serum SM species distribution was analyzed using electrospray ionization mass spectrometry/ mass spectrometry (ESI MS/MS). Serum lipids concentration were measured using enzymatic assays. Normal and hematologic malignancy sera were similar in terms of total serum SM and phosphatidylcholine (PC) concentrations and SM/PC ratio. However, all hematologic malignancy sera had lower levels of SM species containing saturated odd chain fatty acids (OCFAs) in the side chain compared to normal serum. In addition, the proportion of SM species with saturated (C20 and C22) and mono unsaturated fatty acids (C18, C20, C22) were lower in MDS patient serum compared to normal serum. The present study revealed that the serum SM species profile in patients with hematologic malignancies differed from that of normal subjects despite total serum SM and PC concentrations and SM/PC ratios being similar between the various cancer groups and the normal group.
Collapse
Affiliation(s)
- Atsushi Hori
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideyuki Nakazawa
- Division of Hematology, Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Makoto Yamaura
- Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, Japan; Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Sunao Morita
- Department of Medical Technology, Iida Municipal Hospital, Iida, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Hiroya Hidaka
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan.
| |
Collapse
|
8
|
Hengst JA, Hegde S, Paulson RF, Yun JK. Development of SKI-349, a dual-targeted inhibitor of sphingosine kinase and microtubule polymerization. Bioorg Med Chem Lett 2020; 30:127453. [PMID: 32736077 DOI: 10.1016/j.bmcl.2020.127453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models. Owning to the effectiveness of SKI-178, we sought to further refine the chemotype while maintaining "on-target" SKI and MDA activities. Herein, we modified the "linker region" between the substituted phenyl rings of SKI-178 through a structure guided approach. These studies have yielded the discovery of an SKI-178 congener, SKI-349, with log-fold enhancements in both SphK inhibition and cytotoxic potency. Importantly, SKI-349 also demonstrates log-fold improvements in therapeutic efficacy in a retro-viral transduction model of MLL-AF9 AML as compared to previous studies with SKI-178. Together, our results strengthen the hypothesis that simultaneous targeting of the sphingosine kinases (SphK1/2) and the induction of mitotic spindle assembly checkpoint arrest, via microtubule disruption, might be an effective therapeutic strategy for hematological malignancies including AML.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| | - Shailaja Hegde
- Hoxworth Blood Center, University of Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA.
| |
Collapse
|
9
|
Inoue C, Sobue S, Mizutani N, Kawamoto Y, Nishizawa Y, Ichihara M, Takeuchi T, Hayakawa F, Suzuki M, Ito T, Nozawa Y, Murate T. Vaticanol C, a phytoalexin, induces apoptosis of leukemia and cancer cells by modulating expression of multiple sphingolipid metabolic enzymes. NAGOYA JOURNAL OF MEDICAL SCIENCE 2020; 82:261-280. [PMID: 32581406 PMCID: PMC7276413 DOI: 10.18999/nagjms.82.2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Resveratrol (RSV) has recently attracted keen interest because of its pleiotropic effects. It exerts a wide range of health-promoting effects. In addition to health-promoting effects, RSV possesses anti-carcinogenic activity. However, a non-physiological concentration is needed to achieve an anti-cancer effect, and its in vivo bioavailability is low. Therefore, the clinical application of phytochemicals requires alternative candidates that induce the desired effects at a lower concentration and with increased bioavailability. We previously reported a low IC50 of vaticanol C (VTC), an RSV tetramer, among 12 RSV derivatives (Ito T. et al, 2003). However, the precise mechanism involved remains to be determined. Here, we screened an in-house chemical library bearing RSV building blocks ranging from dimers to octamers for cytotoxic effects in several leukemia and cancer cell lines and their anti-cancer drug-resistant sublines. Among the compounds, VTC exhibited the highest cytotoxicity, which was partially inhibited by a caspase 3 inhibitor, Z-VAD-FMK. VTC decreased the expression of sphingosine kinase 1, sphingosine kinase 2 and glucosylceramide synthase by transcriptional or post-transcriptional mechanisms, and increased cellular ceramides/dihydroceramides and decreased sphingosine 1-phosphate (S1P). VTC-induced sphingolipid rheostat modulation (the ratio of ceramide/S1P) is thought to be involved in cellular apoptosis. Indeed, exogenous S1P addition modulated VTC cytotoxicity significantly. A combination of SPHK1, SPHK2, and GCS chemical inhibitors induced sphingolipid rheostat modulation, cell growth suppression, and cytotoxicity similar to that of VTC. These results suggest the involvement of sphingolipid metabolism in VTC-induced cytotoxicity, and indicate VTC is a promising prototype for translational research.
Collapse
Affiliation(s)
- Chisato Inoue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Naoki Mizutani
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Yuji Nishizawa
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Toshiyuki Takeuchi
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Fumihiko Hayakawa
- Department of Medical Technology, Nagoya University Graduate School of Health Sciences, Nagoya, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, Fujita Health University, Toyoake, Japan
| | - Tetsuro Ito
- Gifu Pharmaceutical University, Gifu, Japan.,Gifu Prefectural Research Institute for Health and Environmental Sciences, Kakamigahara, Japan
| | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
10
|
Ghazaly EA, Miraki-Moud F, Smith P, Gnanaranjan C, Koniali L, Oke A, Saied MH, Petty R, Matthews J, Stronge R, Joel SP, Young BD, Gribben J, Taussig DC. Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function. J Biol Chem 2020; 295:5496-5508. [PMID: 32161116 PMCID: PMC7170527 DOI: 10.1074/jbc.ra119.010467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/26/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity.
Collapse
Affiliation(s)
- Essam A. Ghazaly
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Farideh Miraki-Moud
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Institute of Cancer Research, Sutton, London, United Kingdom
| | - Paul Smith
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Chathunissa Gnanaranjan
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Lola Koniali
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Adedayo Oke
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Marwa H. Saied
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Robert Petty
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Janet Matthews
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Randal Stronge
- Institute of Cancer Research, Sutton, London, United Kingdom
- Department of Haematology, Royal Marsden Hospital, Sutton, United Kingdom
| | - Simon P. Joel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Bryan D. Young
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - David C. Taussig
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Institute of Cancer Research, Sutton, London, United Kingdom
- Department of Haematology, Royal Marsden Hospital, Sutton, United Kingdom
| |
Collapse
|
11
|
Sakai E, Kurano M, Morita Y, Aoki J, Yatomi Y. Establishment of a Measurement System for Sphingolipids in the Cerebrospinal Fluid Based on Liquid Chromatography-Tandem Mass Spectrometry, and Its Application in the Diagnosis of Carcinomatous Meningitis. J Appl Lab Med 2020; 5:656-670. [DOI: 10.1093/jalm/jfaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Sphingolipids have been demonstrated to be involved in many human diseases. However, measurement of sphingolipids, especially of sphingosine 1-phosphate (S1P) and dihydro-sphingosine 1-phosphate (dhS1P), in blood samples requires strict sampling, since blood cells easily secrete these substances during sampling and storage, making it difficult to introduce measurement of sphingolipids in clinical laboratory medicine. On the other hand, cerebrospinal fluid (CSF) contains few blood cells. Therefore, we attempted to establish a system based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the measurement of sphingolipids in the CSF, and applied it for the diagnosis of carcinomatous meningitis.
Methods
We developed and validated a LC-MS/MS-based measurement system for S1P and dhS1P and for ceramides and sphingosines, used this system to measure the levels of these sphingolipids in the CSF collected from the subjects with cancerous meningitis, and compared the levels with those in normal routine CSF samples.
Results
Both the measurement systems for S1P/dhS1P and for ceramides/sphingosines provided precision with the coefficient of variation below 20% for sphingolipids in the CSF samples. We also confirmed that the levels of S1P, as well as ceramides/sphingosines, in the CSF samples did not increase after the sampling. In the CSF samples collected from patients with cancerous meningitis, we observed that the ratio of S1P to ceramides/sphingosine and that of dhS1P to dihydro-sphingosine were higher than those in control samples.
Conclusions
We established and validated a measurement system for sphingolipids in the CSF. The system offers promise for being introduced into clinical laboratory testing.
Collapse
Affiliation(s)
- Eri Sakai
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
13
|
Wątek M, Durnaś B, Wollny T, Pasiarski M, Góźdź S, Marzec M, Chabowska A, Wolak P, Żendzian-Piotrowska M, Bucki R. Unexpected profile of sphingolipid contents in blood and bone marrow plasma collected from patients diagnosed with acute myeloid leukemia. Lipids Health Dis 2017; 16:235. [PMID: 29216917 PMCID: PMC5721620 DOI: 10.1186/s12944-017-0624-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/21/2023] Open
Abstract
Background Impaired apoptotic pathways in leukemic cells enable them to grow in an uncontrolled way. Moreover, aberrations in the apoptotic pathways are the main factor of leukemic cells drug resistance. Methods To assess the presence of potential abnormalities that might promote dysfunction of leukemic cells growth, HPLC system was used to determine sphingosine (SFO), sphinganine (SFA), sphingosine-1-phosphate (S1P) and ceramide (CER) concentration in the blood collected from patients diagnose with acute myeloblastic leukemia (AML; n = 49) and compare to values of control (healthily) group (n = 51). Additionally, in AML group concentration of SFO, SFA, S1P and CER was determined in bone marrow plasma and compared to respective values in blood plasma. The concentration of S1P and CER binding protein – plasma gelsolin (GSN) was also assessed in collected samples using immunoblotting assay. Results We observed that in AML patients the average SFO, SFA and CER concentration in blood plasma was significantly higher (p < 0.001) compare to control group, when blood plasma S1P concentration was significantly lower (p < 0.001). At the same time the CER/S1P ratio in AML patient (44.5 ± 19.4) was about 54% higher compare to control group (20.9 ± 13.1). Interestingly the average concentration of S1P in blood plasma (196 ± 13 pmol/ml) was higher compare to its concentration in plasma collected from bone marrow (154 ± 21 pmol/ml). Conclusions We hypothesize that changes in profile of sphingolipids concentration and some of their binding protein partners such as GSN in extracellular environment of blood and bone marrow cells in leukemic patients can be targeted to develop new AML treatment method(s).
Collapse
Affiliation(s)
- Marzena Wątek
- Department of Hematology, Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland
| | - Bonita Durnaś
- Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Tomasz Wollny
- Department of Hematology, Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland
| | - Marcin Pasiarski
- Department of Hematology, Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland.,Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland.,Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Michał Marzec
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Chabowska
- Regional Blood Transfusion Center in Bialystok, 15-950, Bialystok, Poland
| | - Przemysław Wolak
- Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and Ergonomics Department Medical University of Bialystok, 15-222, Bialystok, Poland
| | - Robert Bucki
- Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland. .,Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222, Bialystok, Poland.
| |
Collapse
|
14
|
Pharmacokinetics of Jaspine B and Enhancement of Intestinal Absorption of Jaspine B in the Presence of Bile Acid in Rats. Mar Drugs 2017; 15:md15090279. [PMID: 28862650 PMCID: PMC5618418 DOI: 10.3390/md15090279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/13/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
We aimed to investigate the pharmacokinetics and the underlying mechanisms of the intestinal absorption, distribution, metabolism, and excretion of Jaspine B in rats. The oral bioavailability of Jaspine B was 6.2%, but it decreased to 1.6% in bile-depleted rats and increased to 41.2% (normal) and 23.5% (bile-depleted) with taurocholate supplementation (60 mg/kg). Consistent with the increased absorption in the presence of bile salts, rat intestinal permeability of Jaspine B also increased in the presence of 10 mM taurocholate or 20% bile. Further studies demonstrated that the enhanced intestinal permeability with bile salts was due to increased lipophilicity and decreased membrane integrity. Jaspine B was designated as a highly tissue-distributed compound, because it showed large tissue to plasma ratios in the brain, kidney, heart, and spleen. Moreover, the recovery of Jaspine B from the feces and urine after an intravenous administration was about 6.3%, suggesting a substantial metabolism of Jaspine B. Consistent with this observation, 80% of the administered Jaspine B was degraded after 1 h incubation with rat liver microsomes. In conclusion, the facilitated intestinal permeability in the presence of bile salts could significantly increase the bioavailability of Jaspine B and could lead to the development of oral formulations of Jaspine B with bile salts. Moreover, the highly distributed features of Jaspine B in the brain, kidney, heart, and spleen should be carefully considered in the therapeutic effect and toxicity of this compound.
Collapse
|
15
|
Hengst JA, Dick TE, Sharma A, Doi K, Hegde S, Tan SF, Geffert LM, Fox TE, Sharma AK, Desai D, Amin S, Kester M, Loughran TP, Paulson RF, Claxton DF, Wang HG, Yun JK. SKI-178: A Multitargeted Inhibitor of Sphingosine Kinase and Microtubule Dynamics Demonstrating Therapeutic Efficacy in Acute Myeloid Leukemia Models. CANCER TRANSLATIONAL MEDICINE 2017; 3:109-121. [PMID: 28890935 DOI: 10.4103/ctm.ctm_7_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To further characterize the selectivity, mechanism-of-action and therapeutic efficacy of the novel small molecule inhibitor, SKI-178. METHODS Using the state-of-the-art Cellular Thermal Shift Assay (CETSA) technique to detect "direct target engagement" of proteins intact cells, in vitro and in vivo assays, pharmacological assays and multiple mouse models of acute myeloid leukemia (AML). RESULTS Herein, we demonstrate that SKI-178 directly target engages both Sphingosine Kinase 1 and 2. We also present evidence that, in addition to its actions as a Sphingosine Kinase Inhibitor, SKI-178 functions as a microtubule network disrupting agent both in vitro and in intact cells. Interestingly, we separately demonstrate that simultaneous SphK inhibition and microtubule disruption synergistically induces apoptosis in AML cell lines. Furthermore, we demonstrate that SKI-178 is well tolerated in normal healthy mice. Most importantly, we demonstrate that SKI-178 has therapeutic efficacy in several mouse models of AML. CONCLUSION SKI-178 is a multi-targeted agent that functions both as an inhibitor of the SphKs as well as a disruptor of the microtubule network. SKI-178 induced apoptosis arises from a synergistic interaction of these two activities. SKI-178 is safe and effective in mouse models of AML, supporting its further development as a multi-targeted anti-cancer therapeutic agent.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA.,The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Taryn E Dick
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA.,The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arati Sharma
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Kenichiro Doi
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Shailaja Hegde
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Laura M Geffert
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA.,The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd E Fox
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Mark Kester
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - David F Claxton
- Department of Hematology, Penn State Hershey Cancer Institute, Hershey, PA, USA
| | - Hong-Gang Wang
- Department of Pediatrics, Penn State Hershey College of Medicine, Hershey, PA, USA
| | - Jong K Yun
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, PA, USA.,The Jake Gittlen Laboratories for Cancer Research, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
16
|
Aoyama Y, Sobue S, Mizutani N, Inoue C, Kawamoto Y, Nishizawa Y, Ichihara M, Kyogashima M, Suzuki M, Nozawa Y, Murate T. Modulation of the sphingolipid rheostat is involved in paclitaxel resistance of the human prostate cancer cell line PC3-PR. Biochem Biophys Res Commun 2017; 486:551-557. [PMID: 28322796 DOI: 10.1016/j.bbrc.2017.03.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/01/2023]
Abstract
Taxoids are anti-cancer drugs frequently used to treat solid tumors, but they are sometimes ineffective and tumors may become resistant to their action. Here, we examined the involvement of sphingolipid metabolic enzymes in paclitaxel (PTX) resistance using a human prostate cancer cell line, PC3, and its PTX-resistant subline, PC3-PR. PTX (20 nM) suppressed cell proliferation and increased various ceramide species in PC3, but not PC3-PR, cells. PC3-PR contained higher S1P levels than did PC3, regardless of PTX treatment. Western blotting revealed that PC3-PR cells expressed higher levels of sphingosine kinase 1 (SPHK1) and glucosylceramide synthase (GCS) but lower levels of acid sphingomyelinase (ASMase) and neutral sphingomyelinase 2 than did PC3 cells. Inhibition of SPHK1 using siRNA or a pharmacological inhibitor decreased S1P levels in PC3-PR cells and inhibited proliferation in the presence or absence of PTX, suggesting that SPHK1 is at least partially responsible for PTX resistance. Similarly, GCS inhibitors (PDMP and PPMP) increased cellular ceramides and suppressed the proliferation of PC3-PR. However, inhibition of proteasome function or histone deacetylase activity increased SMase and ceramide levels and suppressed PC3-PR proliferation. These results suggest that modulation of metabolic enzyme expression and alteration of the sphingolipid rheostat protects cancer cells against PTX.
Collapse
Affiliation(s)
- Yuka Aoyama
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Naoki Mizutani
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Chisato Inoue
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Yoshiyuki Kawamoto
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Yuji Nishizawa
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Masatoshi Ichihara
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Mamoru Kyogashima
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, 466-0064, Japan
| | - Motoshi Suzuki
- Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama, 362-0806, Japan
| | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan.
| |
Collapse
|
17
|
Mizutani N, Omori Y, Kawamoto Y, Sobue S, Ichihara M, Suzuki M, Kyogashima M, Nakamura M, Tamiya-Koizumi K, Nozawa Y, Murate T. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells. Biochem Biophys Res Commun 2016; 470:851-6. [PMID: 26809095 DOI: 10.1016/j.bbrc.2016.01.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/18/2022]
Abstract
Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5'-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan; College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Sayaka Sobue
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Kyogashima
- Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama, Japan
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | - Takashi Murate
- College of Life and Health Sciences, Chubu University, Kasugai, Japan.
| |
Collapse
|
18
|
Evangelisti C, Evangelisti C, Teti G, Chiarini F, Falconi M, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Beak DJ, Bittman R, Pyne S, Pyne NJ, Martelli AM. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 2015; 5:7886-901. [PMID: 25226616 PMCID: PMC4202168 DOI: 10.18632/oncotarget.2318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is formed by the phosphorylation of sphingosine and catalysed by sphingosine kinase 1 (SK1) or sphingosine kinase 2 (SK2). Sphingosine kinases play a fundamental role in many signaling pathways associated with cancer, suggesting that proteins belonging to this signaling network represent potential therapeutic targets. Over the last years, many improvements have been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL); however, novel and less toxic therapies are still needed, especially for relapsing and chemo-resistant patients. Here, we analyzed the therapeutic potential of SKi and ROMe, a sphingosine kinase 1 and 2 inhibitor and SK2-selective inhibitor, respectively. While SKi induced apoptosis, ROMe initiated an autophagic cell death in our in vitro cell models. SKi treatment induced an increase in SK1 protein levels in Molt-4 cells, whereas it activated the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) pathway in Jurkat and CEM-R cells as protective mechanisms in a sub-population of T-ALL cells. Interestingly, we observed a synergistic effect of SKi with the classical chemotherapeutic drug vincristine. In addition, we reported that SKi affected signaling cascades implicated in survival, proliferation and stress response of cells. These findings indicate that SK1 or SK2 represent potential targets for treating T-ALL.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy. Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - Gabriella Teti
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Chiarini
- Institute of Molecular Genetics, National Research Council-Rizzoli Orthopedic Institute, Bologna, Italy. Muscoloskeletal Cell Biology Laboratory, IOR, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Fraia Melchionda
- Pediatric Oncology and Hematology Unit 'Lalla Seragnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit 'Lalla Seragnoli', S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Alice Bertaina
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Franco Locatelli
- Oncoematologia Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Dong Jae Beak
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, New York, United States
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, New York, United States
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, Suzuki M, Nozawa Y, Murate T. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem 2015; 158:309-19. [PMID: 25888580 DOI: 10.1093/jb/mvv039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
Abstract
Acid ceramidase (ACDase) metabolizes ceramide to sphingosine, leading to sphingosine 1-phosphate production. Reportedly, ACDase has been upregulated in prostate cancer. However, its regulatory mechanism remains unclear. LNCaP (androgen-sensitive prostate cancer cell line) but not PC3 and DU-145, (androgen-unresponsive cell lines) exhibited the highest ACDase protein. Among three cell lines, ASAH1 mRNA level was not correlated with ACDase protein expression, and the 5'-promoter activity did not show androgen dependency, suggesting the post-transcriptional regulation of ACDase in LNCaP cells. Based on these results, LNCaP was analysed further. Casodex, androgen receptor antagonist, and charcoal-stripped FCS (CS-FCS) decreased ACDase protein and activity, whereas dihydrotestosterone in CS-FCS culture increased ACDase protein and enzyme activity. MG132, a proteasome inhibitor, prevented the decrease of ACDase protein when cultured in CS-FCS, suggesting the involvement of ubiquitin/proteasome system. Reportedly, USP2, a deubiquitinase, plays an important role in LNCaP cells. USP2 siRNA decreased ACDase protein, whereas USP2 overexpression increased ACDase protein of LNCaP cells. However, SKP2, an ubiquitin E3 ligase known to be active in prostate cancer, did not affect androgen-dependent ACDase expression in LNCaP cells. Thus, ACDase regulation by androgen in androgen-sensitive LNCaP cells is mainly due to its prolonged protein half-life by androgen-stimulated USP2 expression.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Minami Inoue
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Hiromi Ito
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Keiko Tamiya-Koizumi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Akira Takagi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu 501-1196
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathophysiology and Therapeutics, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 467-8603
| | - Masahiro Nakatochi
- Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya 466-8560; and
| | - Yoshinori Nozawa
- Department of Food and Health Science, Tokai Gakuin University, Kakamigahara 504-8511, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673;
| |
Collapse
|
20
|
Chen L, Luo LF, Lu J, Li L, Liu YF, Wang J, Liu H, Song H, Jiang H, Chen SJ, Luo C, Li KK. FTY720 induces apoptosis of M2 subtype acute myeloid leukemia cells by targeting sphingolipid metabolism and increasing endogenous ceramide levels. PLoS One 2014; 9:e103033. [PMID: 25050888 PMCID: PMC4106898 DOI: 10.1371/journal.pone.0103033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/25/2014] [Indexed: 12/17/2022] Open
Abstract
The M2 subtype Acute Myeloid Leukemia (AML-M2) with t(8;21) represents an unmet challenge because of poor clinical outcomes in a sizable portion of patients. In this study,we report that FTY720 (Fingolimod), a sphingosine analogue and an FDA approved drug for treating of multiple sclerosis, shows antitumorigenic activity against the Kasumi-1 cell line, xenograft mouse models and leukemic blasts isolated from AML-M2 patients with t(8;21) translocation. Primary investigation indicated that FTY720 caused cell apoptosis through caspases and protein phosphatase 2A (PP2A) activation. Transcriptomic profiling further revealed that FTY720 treatment could upregulate AML1 target genes and interfere with genes involved in ceramide synthesis. Treatment with FTY720 led to the elimination of AML1-ETO oncoprotein and caused cell cycle arrest. More importantly, FTY720 treatment resulted in rapid and significant increase of pro-apoptotic ceramide levels, determined by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry based lipidomic approaches. Structural simulation model had also indicated that the direct binding of ceramide to inhibitor 2 of PP2A (I2PP2A) could reactivate PP2A and cause cell death. This study demonstrates, for the first time, that accumulation of ceramide plays a central role in FTY720 induced cell death of AML-M2 with t(8;21). Targeting sphingolipid metabolism by using FTY720 may provide novel insight for the drug development of treatment for AML-M2 leukemia.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Line
- Ceramides/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Fingolimod Hydrochloride
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Models, Molecular
- Oncogene Proteins, Fusion/genetics
- Propylene Glycols/therapeutic use
- Protein Phosphatase 2/metabolism
- RUNX1 Translocation Partner 1 Protein
- Sphingolipids/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/therapeutic use
Collapse
Affiliation(s)
- Limin Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liu-Fei Luo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lianchun Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuan-Fang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Heng Song
- Department of Chemistry, East China University of Science and Technology, Shanghai, China
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CL); (KKL)
| | - Keqin Kathy Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (CL); (KKL)
| |
Collapse
|
21
|
Nishida Y, Mizutani N, Inoue M, Omori Y, Tamiya-Koizumi K, Takagi A, Kojima T, Suzuki M, Nozawa Y, Minami Y, Ohnishi K, Naoe T, Murate T. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase IV transcription of daunorubicin-resistant leukemia cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:265-74. [PMID: 24530422 DOI: 10.1016/j.bbagrm.2014.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/01/2014] [Accepted: 02/06/2014] [Indexed: 01/29/2023]
Abstract
Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we characterized the expression of non-homologous DNA end joining (NHEJ) components, a major DNA double strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone (K562/DNR). K562/DNR overexpressed major enzymes of NHEJ, DNA-PKcs and DNA ligase IV, and K562/DNR repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR) cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level, and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5'-region between -49bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1 and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells. DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition. EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHEJ component expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.
Collapse
Affiliation(s)
- Yayoi Nishida
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minami Inoue
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Tamiya-Koizumi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Takagi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Yosuke Minami
- Division of Blood Transfusion/Division of Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Kazunori Ohnishi
- Oncology Center, Hamamatsu University Graduate School of Medicine, Hamamatsu, Japan
| | - Tomoki Naoe
- National Hospital Organization, Nagoya Medical Center, Nagoya, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
22
|
Truman JP, García-Barros M, Obeid LM, Hannun YA. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1174-88. [PMID: 24384461 DOI: 10.1016/j.bbalip.2013.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022]
Abstract
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Mónica García-Barros
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Lina M Obeid
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA; Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| |
Collapse
|
23
|
Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. Anticancer Drugs 2013; 24:473-83. [DOI: 10.1097/cad.0b013e32835f705f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Mizutani N, Kobayashi M, Sobue S, Ichihara M, Ito H, Tanaka K, Iwaki S, Fujii S, Ito Y, Tamiya-Koizumi K, Takagi A, Kojima T, Naoe T, Suzuki M, Nakamura M, Banno Y, Nozawa Y, Murate T. Sphingosine kinase 1 expression is downregulated during differentiation of Friend cells due to decreased c-MYB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1006-16. [DOI: 10.1016/j.bbamcr.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 12/23/2012] [Accepted: 01/02/2013] [Indexed: 12/19/2022]
|
25
|
Camgoz A, Gencer EB, Ural AU, Baran Y. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leuk Lymphoma 2012; 54:1279-87. [PMID: 23098068 DOI: 10.3109/10428194.2012.737919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Multidrug resistance remains a significant obstacle to successful chemotherapy. The ability to determine the possible resistance mechanisms and surmount the resistance is likely to improve chemotherapy. Nilotinib is a very effective drug in the treatment of imatinib-sensitive or -resistant patients. Although very successful hematologic and cytogenetic responses have been obtained in nilotinib-treated patients, in recent years cases showing resistance to nilotinib have been observed. We aimed to examine the mechanisms underlying nilotinib resistance and to provide new targets for the treatment of chronic myeloid leukemia (CML). There was an up-regulation of antiapoptotic BCR/ABL, GCS and SK-1 genes and MRP1 transporter gene and down-regulation of apoptotic Bax and CerS1 genes in nilotinib-resistant cells. There was no mutation in the nilotinib-binding region of BCR/ABL in resistant cells. Inhibiton of GCS and SK-1 restored nilotinib sensitivity. Targeting the proteins that are involved in nilotinib resistance in addition to the inhibition of BCR/ABL could be a better method of treatment in CML.
Collapse
Affiliation(s)
- Aylin Camgoz
- Department of Molecular Biology and Genetics, Faculty of Science, İ zmir Institute of Technology, Izmir, Turkey
| | | | | | | |
Collapse
|
26
|
Stevenson CE, Takabe K, Nagahashi M, Milstien S, Spiegel S. Targeting sphingosine-1-phosphate in hematologic malignancies. Anticancer Agents Med Chem 2012; 11:794-8. [PMID: 21707492 DOI: 10.2174/187152011797655122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that regulates several processes important for hematologic cancer progression. S1P is generated by two sphingosine kinases, SphK1 and SphK2, and is exported outside the cell, where it activates specific cell surface S1P G-protein coupled receptors in autocrine/paracrine manner, coined "inside-out signaling". In this review, we highlight the importance of SphK1 and inside-out signaling by S1P in hematologic malignancy. We also summarize the results of studies targeting the SphK1/S1P/S1P receptor axis and the effects of the S1P receptor modulator, FTY720, in hematologic malignancy.
Collapse
Affiliation(s)
- Christina E Stevenson
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, 23298-0614, USA
| | | | | | | | | |
Collapse
|
27
|
Ito H, Tanaka K, Hagiwara K, Kobayashi M, Hoshikawa A, Mizutani N, Takagi A, Kojima T, Sobue S, Ichihara M, Suzuki M, Tamiya-Koizumi K, Nakamura M, Banno Y, Nozawa Y, Murate T. Transcriptional regulation of neutral sphingomyelinase 2 in all-trans retinoic acid-treated human breast cancer cell line, MCF-7. J Biochem 2012; 151:599-610. [PMID: 22496486 DOI: 10.1093/jb/mvs037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effects of all-trans retinoic acid (ATRA) on sphingomyelinase expression were examined using MCF-7 (ATRA-sensitive) and MDA-MB-231 (ATRA-resistant) breast cancer cells. Increased NSMase activity, NSMase2 mRNA and protein were observed in ATRA-treated MCF-7 but not in ATRA-treated MDA-MB-231. Increased NSMase2 mRNA of ATRA-treated MCF-7 was mostly due to enhanced transcription. Promoter analysis revealed the important 5'-promoter region of NSMase2 between -148 and -42 bp containing three Sp1 sites but no retinoic acid responsive elements. Experiments using mutated Sp1 sites of the NSMase2 promoter, Mithramycin A (a Sp inhibitor) and Sp family over-expression demonstrated the importance of Sp family protein and the three Sp1 sites for ATRA-induced NSMase2 transcription of MCF-7 cells. Although no quantitative change of bound Sp1 on NSMase2 promoter region after ATRA treatment was detected, Sp1 phosphorylation (activation) by ATRA was observed. Interestingly, PKCδ was involved in ATRA-induced increased NSMase2 transcription. ATRA-induced PKCδ phosphorylation and then activated PKCδ phosphorylated Sp1. Chromatin immunoprecipitation (ChIP) assay showed Sp1, RARα and RXRα complex formation in MCF-7 cells regardless of ATRA treatment and ATRA-induced acetylated histone H3 of the 5'-promoter. Thus, NSMase2 mRNA expression enhanced by ATRA was due to increased transcription via phosphorylated Sp1 caused by PKCδ activation, followed by chromatin remodelling with histone H3 acetylation.
Collapse
Affiliation(s)
- Hiromi Ito
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mondal S, Roy S, Maity R, Mallick A, Sangwan R, Misra-Bhattacharya S, Mandal C. Withanolide D, carrying the baton of Indian rasayana herb as a lead candidate of antileukemic agent in modern medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:295-312. [PMID: 22695853 DOI: 10.1007/978-1-4614-3381-1_20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susmita Mondal
- Cancer Biology and Inflammatory Diseases, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Gault CR, Obeid LM. Still benched on its way to the bedside: sphingosine kinase 1 as an emerging target in cancer chemotherapy. Crit Rev Biochem Mol Biol 2011; 46:342-51. [PMID: 21787121 DOI: 10.3109/10409238.2011.597737] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
For several decades, lipid biologists have investigated how sphingolipids contribute to physiology, cell biology, and cell fate. Foremost among these discoveries is the finding that the bioactive sphingolipids ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have diverse and often opposing effects on cell fate. Interestingly, these bioactive sphingolipids can be interconverted by just a few enzymatic reactions. Therefore, much attention has been paid to the enzymes which govern these reactions with a disproportionate amount of focus on the enzyme sphingosine kinase 1 (SK1). Several studies have found that tissue expression of SK1 correlates with cancer stage, chemotherapy response, and tumor aggressiveness. In addition, overexpression of SK1 in multiple cancer cell lines increases their resistance to chemotherapy, promotes proliferation, allows for anchorage independent growth, and increases local angiogenesis. Inhibition of SK1 using either pharmacological inhibitors or by crossing SK1 null mice has shown promise in many xenograft models of cancer, as well as several genetic and chemically induced mouse models of carcinogenesis. Here, we review the majority of the evidence that suggests SK1 is a promising target for the prevention and/or treatment of various cancers. Also, we strongly advocate for further research into basic mechanisms of bioactive sphingolipid signaling, and an increased focus on the efficacy of SK inhibitors in non-xenograft models of cancer progression.
Collapse
Affiliation(s)
- Christopher R Gault
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425-7790, USA
| | | |
Collapse
|
30
|
Edmonds Y, Milstien S, Spiegel S. Development of small-molecule inhibitors of sphingosine-1-phosphate signaling. Pharmacol Ther 2011; 132:352-60. [PMID: 21906625 DOI: 10.1016/j.pharmthera.2011.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pleiotropic sphingolipid mediator, sphingosine-1-phosphate, produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2, regulates many cellular and physiological processes important for homeostasis and development and pathophysiology. Many of the actions of S1P are mediated by a family of five specific cell surface receptors that are ubiquitously and specifically expressed, although important direct intracellular targets of S1P have also recently been identified. S1P, SphK1, and or S1P receptors have been linked to onset and progression of numerous diseases, including many types of cancer, and especially inflammatory disorders, such as multiple sclerosis, asthma, rheumatoid arthritis, inflammatory bowel disease, and sepsis. S1P formation and signaling are attractive targets for development of new therapeutics. The effects of a number of inhibitors of SphKs and S1PRs have been examined in animal models of human diseases. The effectiveness of the immunosuppressant FTY720 (known as Fingolimod or Gilenya), recently approved for the treatment of multiple sclerosis, whose actions are mediated by downregulation of S1PR1, has become the gold standard for S1P-centric drugs. Here, we review S1P biology and signaling with an emphasis on potential therapeutic benefits of specific interventions and discuss recent development of small molecule antagonists and agonists that target specific subtypes of S1P receptors as well as inhibitors of SphKs.
Collapse
Affiliation(s)
- Yvette Edmonds
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
31
|
Marfe G, Di Stefano C, Gambacurta A, Ottone T, Martini V, Abruzzese E, Mologni L, Sinibaldi-Salimei P, de Fabritis P, Gambacorti-Passerini C, Amadori S, Birge RB. Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Exp Hematol 2011; 39:653-665.e6. [PMID: 21392556 DOI: 10.1016/j.exphem.2011.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/18/2011] [Accepted: 02/26/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE As a better understanding of the molecular basis of carcinogenesis has emerged, oncogene-specific cell-signaling pathways have been successfully targeted to treat human malignances. Despite impressive advances in oncogene-directed therapeutics, genetic instability in cancer cells often manifest acquired resistance. This is particularly noted in the use of tyrosine kinase inhibitors therapies and not more evident than for chronic myeloid leukemia. Therefore, it is of great importance to understand the molecular mechanisms affecting cancer cell sensitivity and resistance to tyrosine kinase inhibitors. MATERIALS AND METHODS In this study, we used continuous exposure to stepwise increasing concentrations of imatinib (0.6-1 μM) to select imatinib-resistant K562 cells. RESULTS Expression of BCR-ABL increased both at RNA and protein levels in imatinib-resistant cell lines. Furthermore, expression levels of sphingosine kinase 1 (SphK1) were increased significantly in resistant cells, channeling sphingoid bases to the SphK1 pathway and activating sphingosine-1-phosphate-dependent tyrosine phosphorylation pathways that include the adaptor protein Crk. The partial inhibition of SphK1 activity by N,N-dimethylsphingosine or expression by small interfering RNA increased sensitivity to imatinib-induced apoptosis in resistant cells and returned BCR-ABL to baseline levels. To determine the resistance mechanism-induced SphK1 upregulation, we used pharmacological inhibitors of the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathway and observed robust downmodulation of SphK1 expression and activity when AKT2, but not AKT1 or AKT3, was suppressed. CONCLUSIONS These results demonstrate that SphK1 is upregulated in imatinib-resistant K562 cells by a pathway contingent on a phosphoinositide 3-kinase/AKT2/mammalian target of rapamycin signaling pathway. We propose that SphK1 plays an important role in development of acquired resistance to imatinib in chronic myeloid leukemia cell lines.
Collapse
Affiliation(s)
- Gabriella Marfe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats. J Neuroinflammation 2011; 8:13. [PMID: 21310085 PMCID: PMC3050721 DOI: 10.1186/1742-2094-8-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/11/2011] [Indexed: 11/21/2022] Open
Abstract
Sphingosine kinase 1 (SphK1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P) has been shown to be expressed in monocytes and monocyte-derived peripheral macrophages. This study demonstrates SphK1 immunoexpression in amoeboid microglial cells (AMC), a nascent monocyte-derived brain macrophage in the corpus callosum of developing rat brain. SphK1 immunofluorescence expression, which appeared to be weak in AMC in normal brain, was markedly induced by lipopolysaccharide (LPS) or hypoxia treatment. Western blot analysis also showed increased expression level of SphK1 in the corpus callosum rich in AMC after LPS treatment. Detection of SphK1 mRNA and its upregulation after LPS treatment was confirmed in primary culture AMC by RT-PCR. Administration of N, N-dimethylsphingosine (DMS), a specific inhibitor of SphK1, effectively reduced upregulated SphK1 immunoexpression in AMC both in vivo and in vitro. This was corroborated by western blot which showed a decrease in SphK1 protein level of callosal tissue with DMS pretreatment. Remarkably, LPS-induced upregulation of the transcription factor NFκB was suppressed by DMS. We conclude that SphK1 expression in AMC may be linked to regulation of proinflammatory cytokines via an NFκB signaling pathway.
Collapse
|
33
|
Apoptotic sphingolipid ceramide in cancer therapy. J Lipids 2011; 2011:565316. [PMID: 21490804 PMCID: PMC3066853 DOI: 10.1155/2011/565316] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022] Open
Abstract
Apoptosis, also called programmed cell death, is physiologically and pathologically involved in cellular homeostasis. Escape of apoptotic signaling is a critical strategy commonly used for cancer tumorigenesis. Ceramide, a derivative of sphingolipid breakdown products, acts as second messenger for multiple extracellular stimuli including growth factors, chemical agents, and environmental stresses, such as hypoxia, and heat stress as well as irradiation. Also, ceramide acts as tumor-suppressor lipid because a variety of stress stimuli cause apoptosis by increasing intracellular ceramide to initiate apoptotic signaling. Defects on ceramide generation and sphingolipid metabolism are developed for cancer cell survival and cancer therapy resistance. Alternatively, targeting ceramide metabolism to correct these defects might provide opportunities to overcome cancer therapy resistance.
Collapse
|
34
|
Malavaud B, Pchejetski D, Mazerolles C, de Paiva GR, Calvet C, Doumerc N, Pitson S, Rischmann P, Cuvillier O. Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer 2010; 46:3417-24. [PMID: 20970322 DOI: 10.1016/j.ejca.2010.07.053] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE Sphingosine kinase-1 (SphK1) was shown in preclinical models and non-genitourinary cancers to be instrumental in cancer progression, adaptation to hypoxia and in tumour angiogenesis. No data were available in human prostate cancer. The present study was designed to assess SphK1 expression and activity in radical prostatectomy specimens and to research correlations with clinical features. MATERIALS AND METHODS Transverse section of fresh tissue was obtained from 30 consecutive patients undergoing laparoscopic prostatectomy. SphK1 enzymatic activities of tumour and normal counterpart were determined. Relationships with PSA, Gleason sum, pathological stage, resection margin status and treatment failure were researched. SphK1 pattern of expression was then assessed on tissue microarray. RESULTS A significant 2-fold increase in SphK1 enzymatic activity(11.1 ± 8.4 versus 5.9 ± 3.2 (P<0.04)) was observed in cancer. The upper quartile of SphK1 activity was associated with higher PSA (16.7 versus 6.4 ng/ml, P = 0.04), higher tumor volumes (20.7 versus 9.8, P = 0.002), higher rates of positive margins (85.7% versus 28.6%, P = 0.01) and surgical failure (71.4% versus 9.5%, P = 0.003) than the lower three quartiles. Odds ratios (OR) for treatment failure showed a strong relationship with SphK1 activity (OR: 23.7, P = 0.001), positive resection margins (OR: 15.0, P = 0.007) and Gleason sum (≥4+3, OR: 8.0, P = 0.003). Tissue microarrays showed discrete epithelial expression that varied with Gleason sum with significant relationship between SphK1 expression and higher Gleason sum. CONCLUSION In complement to preclinical literature, the demonstrated relationships between SphK1-increased activity in cancer and relevant clinical features confirm a central role for SphK1 in prostate cancer that herald promising avenues in risk-assessment and treatment.
Collapse
|
35
|
Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C. Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 2010; 9:239. [PMID: 20836852 PMCID: PMC2949798 DOI: 10.1186/1476-4598-9-239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 09/13/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Ceramide is an important second messenger that has diverse cellular and biological effect. It is a specific and potent inducer of apoptosis and suppressor of cell growth. In leukemia, chemoresistance generally developed due to deregulated ceramide metabolism. In combinatorial treatment strategies of leukemia, few components have the capability to increases ceramide production. Manipulation in ceramide production by physiological and pharmacological modulators therefore will give additive effect in leukemia chemotherapy. RESULTS Here, we show that Withanolide D (C4β-C5β,C6β-epoxy-1-oxo-,20β, dihydroxy-20S,22R-witha-2,24-dienolide; WithaD), a pure herbal compound isolated from Withania somnifera could effectively induces apoptosis in a dose and time dependant manner both in myeloid (K562) and lymphoid (MOLT-4) cells being nontoxic to normal lymphocytes and control proliferative cells. WithaD potentially augment ceramide production in these cells. Downstream of ceramide, WithaD acted on MKK group of proteins and significantly increased JNK and p38MAPK phosphorylation. Pharmacological inhibition of p38MAPK and JNK proves their cooperative action on WithaD-induced cell death. Dissecting the cause of ceramide production, we found activation of neutral sphingomyelinase and showed neutral-sphingomyelinase 2 (N-SMase 2) is a critical mediator of WithaD-induced apoptosis. Knockdown of N-SMase 2 by siRNA and inhibitor of N-SMase (GW4869) significantly reduced WithaD-induced ceramide generation and phosphorylation of MKK4 and MKK3/6, whereas phosphorylation of MKK7 was moderately regulated in leukemic cells. Also, both by silencing of N-SMase 2 and/or blocking by GW4869 protects these cells from WithaD-mediated death and suppressed apoptosis, whereas Fumonisin B1, an inhibitor of ceramide synthase, did not have any effect. Additionally, WithaD effectively induced apoptosis in freshly isolated lymphoblasts from patients and the potent cell killing activity was through JNK and p38MAPK activation. CONCLUSION Our results demonstrate that WithaD enhance the ceramide accumulation by activating N-SMase 2, modulate phosphorylation of the JNK and p38MAPK and induced apoptosis in both myeloid and lymphoid cells along with primary cells derived from leukemia patients. Taken together, this pure herbal compound (WithaD) may consider as a potential alternative tool with additive effects in conjunction with traditional chemotherapeutic treatment, thereby accelerate the process of conventional drug development.
Collapse
Affiliation(s)
- Susmita Mondal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
- Current Address: Department of Microbiology, Sammilani Mahavidyalaya, Baghajatin, E.M By Pass, Kolkata-700075, India
| | - Chandan Mandal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rajender Sangwan
- Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Sarmila Chandra
- Kothari Medical Center, 8/3, Alipore Road, Kolkata 700027, India
| | - Chitra Mandal
- Infectious diseases and immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt. of India; 4, Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
36
|
Dayon A, Brizuela L, Martin C, Mazerolles C, Pirot N, Doumerc N, Nogueira L, Golzio M, Teissié J, Serre G, Rischmann P, Malavaud B, Cuvillier O. Sphingosine kinase-1 is central to androgen-regulated prostate cancer growth and survival. PLoS One 2009; 4:e8048. [PMID: 19956567 PMCID: PMC2779655 DOI: 10.1371/journal.pone.0008048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/02/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Sphingosine kinase-1 (SphK1) is an oncogenic lipid kinase notably involved in response to anticancer therapies in prostate cancer. Androgens regulate prostate cancer cell proliferation, and androgen deprivation therapy is the standard of care in the management of patients with advanced disease. Here, we explored the role of SphK1 in the regulation of androgen-dependent prostate cancer cell growth and survival. METHODOLOGY/PRINCIPAL FINDINGS Short-term androgen removal induced a rapid and transient SphK1 inhibition associated with a reduced cell growth in vitro and in vivo, an event that was not observed in the hormono-insensitive PC-3 cells. Supporting the critical role of SphK1 inhibition in the rapid effect of androgen depletion, its overexpression could impair the cell growth decrease. Similarly, the addition of dihydrotestosterone (DHT) to androgen-deprived LNCaP cells re-established cell proliferation, through an androgen receptor/PI3K/Akt dependent stimulation of SphK1, and inhibition of SphK1 could markedly impede the effects of DHT. Conversely, long-term removal of androgen support in LNCaP and C4-2B cells resulted in a progressive increase in SphK1 expression and activity throughout the progression to androgen-independence state, which was characterized by the acquisition of a neuroendocrine (NE)-like cell phenotype. Importantly, inhibition of the PI3K/Akt pathway--by negatively impacting SphK1 activity--could prevent NE differentiation in both cell models, an event that could be mimicked by SphK1 inhibitors. Fascinatingly, the reversability of the NE phenotype by exposure to normal medium was linked with a pronounced inhibition of SphK1 activity. CONCLUSIONS/SIGNIFICANCE We report the first evidence that androgen deprivation induces a differential effect on SphK1 activity in hormone-sensitive prostate cancer cell models. These results also suggest that SphK1 activation upon chronic androgen deprivation may serve as a compensatory mechanism allowing prostate cancer cells to survive in androgen-depleted environment, giving support to its inhibition as a potential therapeutic strategy to delay/prevent the transition to androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Audrey Dayon
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Leyre Brizuela
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Claire Martin
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Catherine Mazerolles
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Laboratoire Anatomie Pathologique et Histologie-Cytologie, Toulouse, France
| | - Nelly Pirot
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Nicolas Doumerc
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Leonor Nogueira
- CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Toulouse, France
| | - Muriel Golzio
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Justin Teissié
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guy Serre
- CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Toulouse, France
| | - Pascal Rischmann
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Bernard Malavaud
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
| | - Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- CHU Toulouse, Hôpital Rangueil, Service d'Urologie et de Transplantation Rénale, Toulouse, France
- * E-mail:
| |
Collapse
|
37
|
Murakami M, Ito H, Hagiwara K, Yoshida K, Sobue S, Ichihara M, Takagi A, Kojima T, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Suzuki M, Banno Y, Nozawa Y, Murate T. ATRA inhibits ceramide kinase transcription in a human neuroblastoma cell line, SH-SY5Y cells: the role of COUP-TFI. J Neurochem 2009; 112:511-20. [PMID: 19903244 DOI: 10.1111/j.1471-4159.2009.06486.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ceramide is the central lipid in the sphingolipid metabolism. Ceramide kinase (CERK) and its product, ceramide 1-phosphate, have been implicated in various cellular functions. However, the regulatory mechanism of CERK gene expression remains to be determined. Here, we examined CERK mRNA level during all-trans retinoic acid (ATRA)-induced differentiation of a human neuroblastoma cell line, SH-SY5Y. ATRA reduced CERK mRNA and protein levels. Over-expression and small interfering RNA (siRNA) of CERK revealed that CERK is inhibitory against ATRA-induced neuronal differentiation and cell growth arrest. ATRA inhibited the transcriptional activity of 5'-promoter of CERK. Truncation and mutation study suggests that ATRA-responsible region was mainly located in the tandem retinoic acid responsive elements (RARE) between -40 bp and the first exon. The electrophoresis mobility shift assay revealed that ATRA produced two retarded bands, which were erased by antibody against chicken ovalbumin upstream promoter transcription factor I (COUP-TFI), RARalpha, and RXRalpha, respectively. DNA pull-down assay confirmed increased binding of these transcription factors to RARE. Transient expression of RAR, RXR, and COUP-TFI and siRNA transfection of these genes revealed that COUP-TFI inhibited CERK mRNA. Furthermore, chromatin immunoprecipitation assay showed the recruitment of co-repressors as well as three transcription factors. These results suggest that COUP-TFI was the ATRA-responsive suppressive transcription factor of CERK gene transcription.
Collapse
Affiliation(s)
- Masashi Murakami
- Research Fellow of the Japanese Society for the Promotion of Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T. Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:681-90. [DOI: 10.1016/j.bbagrm.2009.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 08/08/2009] [Accepted: 08/10/2009] [Indexed: 11/29/2022]
|
39
|
Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y, Murate T, Hara A, Ueda H, Nozawa Y, Banno Y. Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 2009; 284:10422-32. [PMID: 19240026 PMCID: PMC2667729 DOI: 10.1074/jbc.m900735200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/23/2009] [Indexed: 11/06/2022] Open
Abstract
The relationship between sphingosine kinase (SPHK), cellular ceramide concentration and chemosensitivity was investigated in human colon cancer cell lines. Among nine colon cancer cell lines, SPHK1 and SPHK2 activity and protein expression was highest in RKO cells and lowest in HCT116 cells. A viability assay revealed that HCT116 cells were sensitive to the effects of oxaliplatin (l-OHP), whereas RKO cells were resistant to those of l-OHP. Treatment with 5microg/ml l-OHP induced a marked time-dependent increase in various ceramides (C16, C24, C24:1) in HCT116 cells but not in RKO cells, as indicated by liquid chromatography/mass spectrometry. The increase in ceramide and caspase activation induced by l-OHP in the sensitive HCT116 cells was abolished by pretreatment with a neutral sphingomyelinase inhibitor, suggesting that the ceramide formation was due to the activation of neutral, rather than acid, sphingomyelinase. In contrast, in l-OHP-resistant RKO cells, treatment with an SPHK inhibitor or SPHK1 and SPHK2 silencing by RNA interference suppressed cell viability and increased caspase activity and cellular ceramide formation after l-OHP treatment. The elevated ceramide formation induced by SPHK inhibition and l-OHP was inhibited by fumonisin B1 but not myriocin, suggesting that ceramide formation was through the salvage pathway. Endogenous phosphorylated Akt levels were much higher in the resistant RKO cells than in the sensitive HCT116 cells. Either SPHK1 or SPHK2 silencing in RKO cells decreased phosphorylated Akt levels and increased p53 and p21 protein levels as well as poly(ADP-ribose) polymerase cleavage in response to l-OHP treatment. These findings indicate that SPHK isoforms and neutral sphingomyelinase contribute to the regulation of chemosensitivity by controlling ceramide formation and the downstream Akt pathway in human colon cancer cells.
Collapse
Affiliation(s)
- Satoshi Nemoto
- Department of Cell Signaling, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
GATA-1 and GATA-2 binding to 3' enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 2009; 23:1270-7. [PMID: 19212333 DOI: 10.1038/leu.2009.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although oncogenic functions and the clinical significance of Wilms tumor 1 (WT1) have been extensively studied in acute leukemia, the regulatory mechanism of its transcription still remains to be determined. We found a significant correlation among the amounts of WT1, GATA-1 and GATA-2 mRNAs from leukemia and solid tumor cell lines. Overexpression and small interfering RNA (siRNA) transfection experiments of GATA-1 and GATA-2 showed that these GATA transcription factors could induce WT1 expression. Promoter analysis showed that the 5' promoter did not explain the different WT1 mRNA levels between cell lines. The 3' enhancer, especially the distal sites out of six putative GATA binding sites located within the region, but not the intron 3 enhancer, were essential for the WT1 mRNA level. Electrophoretic mobility shift assay (EMSA) showed both GATA-1 and GATA-2 bound to these GATA sites. Besides acute leukemia cell lines, solid tumor cell lines including, TYK-nu-cPr also showed a high level of WT1 mRNA. We showed that GATA-2 expression is a determinant of WT1 mRNA expression in both TYK-nu-cPr cells and HL60 cells without GATA-1 expression. Taken together, these results suggest that GATA-1 and/or GATA-2 binding to a GATA site of the 3' enhancer of WT1 played an important role in WT1 gene expression.
Collapse
|
41
|
Czuchlewski DR, Csernus B, Bubman D, Hyjek E, Martin P, Chadburn A, Knowles DM, Cesarman E. Expression of the follicular lymphoma variant translocation 1 gene in diffuse large B-cell lymphoma correlates with subtype and clinical outcome. Am J Clin Pathol 2008; 130:957-62. [PMID: 19019774 DOI: 10.1309/ajcp12hirwsrqlan] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sphingolipids serve an important role as effector molecules in signaling pathways bearing on apoptosis and cell survival. The balance between proapoptotic ceramide and prosurvival sphingosine-1-phosphate, sometimes termed the "sphingolipid rheostat," has received particular attention. Less well studied is the role of the follicular lymphoma variant translocation 1 (FVT1) gene, which was identified through its involvement in an atypical follicular lymphoma translocation and which encodes an enzyme in the synthetic pathway of ceramide. We investigated the expression of FVT1 in a variety of B-cell non-Hodgkin lymphomas and found that FVT1 is significantly underexpressed by germinal center-type diffuse large B-cell lymphoma (DLBCL) when compared with non-germinal center-type DLBCL, follicular lymphoma, and normal tonsil control samples. Increased expression of FVT1 correlated with decreased survival, suggesting that changes in the expression of FVT1 and in the concentrations of bioactive sphingolipids may be important in the pathogenesis and treatment of some types of DLBCL.
Collapse
|
42
|
Ricci C, Onida F, Servida F, Radaelli F, Saporiti G, Todoerti K, Deliliers GL, Ghidoni R. In vitro anti-leukaemia activity of sphingosine kinase inhibitor. Br J Haematol 2008; 144:350-7. [PMID: 19036099 DOI: 10.1111/j.1365-2141.2008.07474.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Compelling evidence indicates the role of sphingosine kinase 1 (SPHK1) deregulation in the processes of carcinogenesis and acquisition of drug resistance, providing the rationale for an effective anti-cancer therapy. However, no highly selective inhibitors of SPHK1 are available for in vitro and in vivo studies, except for the newly discovered 'SK inhibitor' (SKI). The present study showed that, in a panel of myeloid leukaemia cell lines, basal level of SPHK1 correlated with the degree of kinase inhibition by SKI. Exposure to SKI caused variable anti-proliferative, cytotoxic effects in all cell lines. In particular, SKI induced an early, significant inhibition of SPHK1 activity, impaired cell cycle progression and triggered apoptosis in K562 cells. Moreover, SKI acted synergistically with imatinib mesylate (IM) to inhibit cell growth and survival. Finally, the inhibitor affected the clonogenic potential and viability of primary cells from chronic myeloid leukaemia (CML) patients, including one harbouring the IM-insensitive Abl kinase domain mutation T315I. Due to the fact that the phenomenon of resistance to IM remains a major issue in the treatment of patients with CML, the identification of alternative targets and new drugs may be of clinical relevance.
Collapse
Affiliation(s)
- Clara Ricci
- Laboratory of Biochemistry & Molecular Biology, San Paolo University Hospital and University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
BACKGROUND The sphingolipids ceramide and sphingosine 1-phosphate (S1P) are key regulators of cell death and proliferation. The subtle balance between their intracellular levels is governed mainly by sphingosine kinase-1, which produces the pro-survival S1P. Sphingosine kinase-1 is an oncogene; is overexpressed in many tumors; protects cancer cells from apoptosis in vitro and in vivo; and its activity is decreased by anticancer therapies. Hence, sphingosine kinase-1 appears to be a target of interest for therapeutic manipulation. OBJECTIVE This review considers recent developments regarding the involvement of sphingosine kinase-1 as a therapeutic target for cancer, and describes the pharmacological tools currently available. RESULTS/CONCLUSION The studies described provide strong evidence that strategies to kill cancer cells via sphingosine kinase-1 inhibition are valid and could have a favorable therapeutic index.
Collapse
Affiliation(s)
- Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse Cedex 4, France.
| |
Collapse
|
44
|
Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M, Claxton DF, Yun JK. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 2008; 49:948-54. [PMID: 18452097 DOI: 10.1080/10428190801911654] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sphingosine kinase 1 (SphK1) is an oncoprotein capable of directly transforming cells and is associated with resistance to chemotherapy and radiotherapy. SphK1 is increased in various human cancers; whereas, blockade restores sensitivity to therapeutic killing in chemotherapy resistant cancer cell lines. We investigated SphK1 expression in clinical tissue samples from patients with non-Hodgkin lymphomas (NHL). Tissues from 69 patients with either NHL (n = 44) or reactive lymphoid hyperplasias (RH) (n = 25) were examined for expression of SphK1 protein by Western blot and immunohistochemistry (IHC), and SphK1 and SphK2 mRNA by quantitative real-time reverse transcriptase polymerase chain reaction. SphK1 protein (p = 0.008) and mRNA (p = 0.035) levels were higher in NHL than RH, with a clear trend toward increasing levels with increasing clinical grade (p = 0.005 for SphK1 protein, p = 0.035 for IHC score and p = 0.002 for SphK1 mRNA). IHC generally confirmed protein signal in neoplastic cells, but some lymphomas exhibited staining in non-neoplastic cells. SphK1 is overexpressed in NHL and increases with increasing clinical grade. These results, combined with prior mechanistic studies suggest that SphK1 is an attractive novel target for pharmacological interventions for NHL.
Collapse
Affiliation(s)
- Michael G Bayerl
- Division of Anatomic Pathology, Department of Pathology, Penn State College of Medicine and Milton S. Hershey Medical Centre, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Sphingolipid metabolites have emerged as critical players in a number of fundamental biological processes. Among them, sphingosine-1-phosphate (S1P) promotes cell survival and proliferation, in contrast to ceramide and sphingosine, which induce cell growth arrest and apoptosis. These sphingolipids with opposing functions are interconvertible inside cells, suggesting that a finely tuned balance between them can determine cell fate. Sphingosine kinases (SphKs), which catalyze the phosphorylation of sphingosine to S1P, are critical regulators of this balance. Of the two identified SphKs, sphingosine kinase type 1 (SphK1) has been shown to regulate various processes important for cancer progression and will be the focus of this review, since much less is known of biological functions of SphK2, especially in cancer. SphK1 is overexpressed in various types of cancers and upregulation of SphK1 has been associated with tumor angiogenesis and resistance to radiation and chemotherapy. Many growth factors, through their tyrosine kinase receptors (RTKs), stimulate SphK1 leading to a rapid increase in S1P. This S1P in turn can activate S1P receptors and their downstream signaling. Conversely, activation of S1P receptors can induce transactivation of various RTKs. Thus, SphK1 may play important roles in S1P receptor RTK amplification loops. Here we review the role of SphK1 in tumorigenesis, hormonal therapy, chemotherapy resistance, and as a prognostic marker. We will also review studies on the effects of SphK inhibitors in cells in vitro and in animals in vivo and in some clinical trials and highlight the potential of SphK1 as a new target for cancer therapeutics.
Collapse
Affiliation(s)
- Dai Shida
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, 2011 Sanger Hall, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
46
|
v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins. Oncogene 2008; 27:6023-33. [PMID: 18574469 DOI: 10.1038/onc.2008.198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Collapse
|
47
|
A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 2008; 112:1382-91. [PMID: 18511810 DOI: 10.1182/blood-2008-02-138958] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4'-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I-induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I-induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia.
Collapse
|
48
|
Banno Y, Nemoto S, Murakami M, Kimura M, Ueno Y, Ohguchi K, Hara A, Okano Y, Kitade Y, Onozuka M, Murate T, Nozawa Y. Depolarization-induced differentiation of PC12 cells is mediated by phospholipase D2 through the transcription factor CREB pathway. J Neurochem 2008; 104:1372-86. [DOI: 10.1111/j.1471-4159.2007.05085.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J Hematol 2008; 87:266-75. [DOI: 10.1007/s12185-008-0052-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/26/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
50
|
Iwasaki T, Sugisaki C, Nagata K, Takagi K, Takagi A, Kojima T, Ito M, Nakamura S, Naoe T, Murate T. Wilms' tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol Int 2007; 57:645-51. [PMID: 17803653 DOI: 10.1111/j.1440-1827.2007.02153.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wilms' tumor 1 (WT1) is a useful marker for the diagnosis of acute leukemia and myelodysplastic syndromes (MDS). In the current study quantitative reverse transcription-polymerase chain reaction and immunostaining were used simultaneously to examine the relationship between WT1 RNA and protein level and also to evaluate WT1 as a tool to differentiate aplastic anemia (AA) and MDS refractory anemia (RA). Three types of WT1 messages (total, exon 5(+) and KTS(+)) and WT1 immunostaining of these diseases were analyzed. An increase of all three WT1 messages in high-grade MDS and acute leukemia was observed as compared with the normal control, whereas there was no significant difference in WT1 message between AA and RA, suggesting that WT1 message is not a good tool to discriminate AA and RA. No significant difference was observed between normal and RA, except for exon 5 message. Three WT1 message levels had a significant correlation, suggesting that the total WT1 message is sufficient for clinical practice. Positive immunostaining of WT1 was observed only in the portion of acute leukemia and overt leukemia (OL) transformed from MDS with a high WT1 message level, suggesting the relatively high detection threshold of WT1 protein with the immunostaining method.
Collapse
MESH Headings
- Adult
- Aged
- Anemia, Aplastic/genetics
- Anemia, Aplastic/metabolism
- Anemia, Aplastic/pathology
- Anemia, Refractory, with Excess of Blasts/genetics
- Anemia, Refractory, with Excess of Blasts/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Diagnosis, Differential
- Female
- Gene Expression Regulation
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- RNA, Messenger/metabolism
- RNA, Neoplasm/analysis
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- Takashi Iwasaki
- Department of Laboratory Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|