1
|
Dwyer GE, Johnsen E, Hugdahl K. NMDAR dysfunction and the regulation of dopaminergic transmission in schizophrenia. Schizophr Res 2024; 271:19-27. [PMID: 39002526 DOI: 10.1016/j.schres.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
A substantial body of evidence implicates dysfunction in N-methyl-d-aspartate receptors (NMDARs) in the pathophysiology of schizophrenia. This article illustrates how NMDAR dysfunction may give rise to many of the neurobiological phenomena frequently associated with schizophrenia with a particular focus on how NMDAR dysfunction affects the thalamic reticular nucleus (nRT) and pedunculopontine tegmental nucleus (PPTg). Furthermore, this article presents a model for schizophrenia illustrating how dysfunction in the nRT may interrupt prefrontal regulation of midbrain dopaminergic neurons, and how dysfunction in the PPTg may drive increased, irregular burst firing.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.
| | - Erik Johnsen
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Dong J, Chen W, Liu N, Chang S, Zhu W, Kang J. NRG1 knockdown rescues PV interneuron GABAergic maturation deficits and schizophrenia behaviors in fetal growth restriction mice. Cell Death Dis 2022; 8:476. [PMID: 36460658 PMCID: PMC9718849 DOI: 10.1038/s41420-022-01271-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Schizophrenia is a highly debilitating mental disorder, those who experienced fetal growth restriction (FGR) in the early stage of life have a greater probability of schizophrenia. In this study, FGR mice showed hyperactivity in locomotor activity test, sociability dysfunction in three chamber test and nesting social behavior tests, cognition decline in Morris water maze and impaired sensory motor gating function in prepulse inhibition test. Mechanistic studies indicated that the number of parvalbumin (PV) interneuron was significantly reduced in FGR mouse media prefrontal cortex (mPFC). And the mRNA and protein level of neuregulin 1(NRG1), which is a critical schizophrenia gene, increased significantly in FGR mouse mPFC. Furthermore, NRG1 knockdown in FGR mouse mPFC improved PV interneuron GABAergic maturation and rescued schizophrenia behaviors including hyperactivity, social novelty defects, cognition decline, and sensorimotor gating deficits in FGR mice. This study indicates that mPFC NRG1 upregulation is one of the main causes of FGR-induced schizophrenia, which leads to significant reduction of PV interneuron number in mPFC. NRG1 knockdown in mPFC significantly rescues schizophrenia behaviors in FGR mouse. This study thus provides a potential effective therapy target or strategy for schizophrenia patients induced by FGR.
Collapse
Affiliation(s)
- Jianfeng Dong
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| | - Wen Chen
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| | - Nana Liu
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| | - Shujuan Chang
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| | - Wei Zhu
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| | - Jiuhong Kang
- grid.24516.340000000123704535Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Institute for Advanced Study, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Nawwar DA, Zaki HF, Sayed RH. Role of the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in the anti-psychotic effects of aripiprazole and sertindole in ketamine-induced schizophrenia-like behaviors in rats. Inflammopharmacology 2022; 30:1891-1907. [PMID: 35876932 PMCID: PMC9499910 DOI: 10.1007/s10787-022-01031-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Schizophrenia is a common mental disorder affecting patients' thoughts, behavior, and cognition. Recently, the NRG1/ErbB4 signaling pathway emerged as a candidate therapeutic target for schizophrenia. This study investigates the effects of aripiprazole and sertindole on the NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways in ketamine-induced schizophrenia in rats. Young male Wistar rats received ketamine (30 mg/kg, intraperitoneally) for 5 consecutive days and aripiprazole (3 mg/kg, orally) or sertindole (2.5 mg/kg, orally) for 14 days. The proposed pathway was investigated by injecting LY294002 (a selective PI3K inhibitor) (25 μg/kg, intrahippocampal injection) 30 min before the drugs. Twenty-four hours after the last injection, animals were subjected to behavioral tests: the open field test, sucrose preference test, novel object recognition task, and social interaction test. Both aripiprazole and sertindole significantly ameliorated ketamine-induced schizophrenic-like behavior, as expected, because of their previously demonstrated antipsychotic activity. Besides, both drugs alleviated ketamine-induced oxidative stress and neurotransmitter level changes in the hippocampus. They also increased the gamma-aminobutyric acid and glutamate levels and glutamate decarboxylase 67 and parvalbumin mRNA expression in the hippocampus. Moreover, aripiprazole and sertindole increased the NRG1 and ErbB4 mRNA expression levels and PI3K, p-Akt, and mTOR protein expression levels. Interestingly, pre-injecting LY294002 abolished all the effects of the drugs. This study reveals that the antipsychotic effects of aripiprazole and sertindole are partly due to oxidative stress reduction as well as NRG1/ErbB4 and PI3K/AKT/mTOR signaling pathways activation. The NRG1/ErbB4 and PI3K signaling pathways may offer a new therapeutic approach for treating schizophrenia in humans.
Collapse
Affiliation(s)
- Dalia A Nawwar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Harbuzariu A, Nti A, Harp KO, Cespedes JC, Driss A, Stiles JK. Neuregulin-1/ErbB4 signaling modulates Plasmodium falciparum HRP2-induced damage to brain cortical organoids. iScience 2022; 25:104407. [PMID: 35663028 PMCID: PMC9157207 DOI: 10.1016/j.isci.2022.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Human cerebral malaria (HCM) is a severe complication of Plasmodium falciparum (P.f.) infection that is characterized by capillary occlusions, rupture of the blood-brain barrier (BBB), perivascular cellular injury, and brain swelling. P.f.histidine-rich protein 2 (HRP2), a byproduct of parasitized red blood cell (pRBC) lysis, crosses the BBB when compromised to cause brain injury. We hypothesized that HRP2-induced neuronal damage can be attenuated by Neuregulin-1 (NRG1), an anti-inflammatory neuroprotective factor. Using brain cortical organoids, we determined that HRP2 upregulated cell death and inflammatory markers and disorganized brain organoid tissue. We identified toll-like receptors (TLR1 and 2) as potential mediators of HRP2-induced cellular damage and inflammation. Exogenous acute treatment of organoids with NRG1 attenuated HRP2 effects. The results indicate that HRP2 mediates malaria-associated HRP2-induced brain injury and inflammation and that NRG1 may be an effective therapy against HRP2 effects in the brain.
Collapse
Affiliation(s)
- Adriana Harbuzariu
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Annette Nti
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Keri Oxendine Harp
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Juan C. Cespedes
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Adel Driss
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Jonathan K. Stiles
- Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
5
|
Furuta S, Aleksic B, Nawa Y, Kimura H, Kushima I, Ishizuka K, Kato H, Toyama M, Arioka Y, Mori D, Morikawa M, Inada T, Ozaki N. Investigation of OLIG2 as a candidate gene for schizophrenia and autism spectrum disorder. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:260-268. [PMID: 35967956 PMCID: PMC9350582 DOI: 10.18999/nagjms.84.2.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
A number of genomic mutations that are thought to be strongly involved in the development of schizophrenia (SCZ) and autism spectrum disorder (ASD) have been identified. Abnormalities involving oligodendrocytes have been reported in SCZ, and as a related gene, oligodendrocyte lineage transcription factor 2 (OLIG2) has been reported to be strongly associated with SCZ. In this study, based on the common disease-rare variant hypothesis, target sequencing of candidate genes was performed to identify rare mutations with a high effect size and the possibility that the identified mutations may increase the risks of SCZ and ASD in the Japanese population. In this study, the exon region of OLIG2 was targeted; 370 patients with SCZ and 192 with ASD were subjected to next-generation sequencing. As a result, one rare missense mutation (A33T) was detected. We used the Sanger method to validate this missense mutation with a low frequency (<1%), and then carried out a genetic association analysis involving 3299 unrelated individuals (1447 with SCZ, 380 with ASD, and 1472 healthy controls) to clarify whether A33T was associated with SCZ or ASD. A33T was not found in either case group, and in only one control. We did not find evidence that p.A33T is involved in the onset of ASD or SCZ; however, associations with this variant need to be evaluated in larger samples to confirm our results.
Collapse
Affiliation(s)
- Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho Toyama
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Institute for Advanced Research, Nagoya University, Nagoya, Japan
,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Yang H, Xiao W, Yang M, Wang Y, Zhang X. Decreased neuregulin1β1 in first episode and drug-naïve patients with schizophrenia: Negative correlation with cognitive impairment. Psychiatry Res 2021; 304:114164. [PMID: 34388510 DOI: 10.1016/j.psychres.2021.114164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Neuregulin1β1 (NRG1β1) is essential for neuronal migration during development and for the ongoing neural plasticity underlying cognitive function. This study investigated the relationship between cognitive impairment and serum NRG1β1 concentration in first-episode drug-naïve (FEDN) patients with schizophrenia. METHOD We measured serum NRG1β1 from 65 FEDN schizophrenia patients and 67 healthy matched controls. Cognitive function was evaluated using the Hopkins Vocabulary Learning Test-Revised (HVLT-R), Verbal Fluency Test (VFT), Trail Making Test (TMT), Digit Span Test (DST), and Stroop Test. RESULTS Serum NRG1β1 concentration was significantly lower in the FEDN patient group than the control group (7.25±0.49 vs. 12.52±0.77 ng/mL; F=23.716, P<0.0001, Cohen's d=1.00). Further, serum NRG1β1 concentration in FEDN schizophrenia patients was negatively correlated with TMT-part A score (r=-0.408, P=0.001) and positively correlated with Stroop color subtest score (r=0.246, P=0.048). Multiple regression analysis also revealed weak correlations among FEDN patients between TMT-part A score and both serum NRG1β1 concentration (R2=0.116, F=8.235, P=0.011) and duration of untreated psychosis (R2=0.193, F=5.969, P=0.017). CONCLUSION This preliminary study suggests that serum NRG1β1 levels are reduced in FEDN patients with schizophrenia and that NRG1β1 may be involved in the cognitive function.
Collapse
Affiliation(s)
- Haidong Yang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Wenhuan Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - Man Yang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Yili Wang
- Department of Clinical Laboratory, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang 222003, PR China
| | - Xiaobin Zhang
- Medical College of Yangzhou University, Yangzhou 225003, PR China; Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215137, PR China.
| |
Collapse
|
7
|
Chen P, Jing H, Xiong M, Zhang Q, Lin D, Ren D, Wang S, Yin D, Chen Y, Zhou T, Li B, Fei E, Pan BX. Spine impairment in mice high-expressing neuregulin 1 due to LIMK1 activation. Cell Death Dis 2021; 12:403. [PMID: 33854034 PMCID: PMC8047019 DOI: 10.1038/s41419-021-03687-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.
Collapse
Affiliation(s)
- Peng Chen
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hongyang Jing
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Mingtao Xiong
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Qian Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Dong Lin
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shunqi Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Dongmin Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Baoming Li
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Bing-Xing Pan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China. .,Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
8
|
Crittenden JR, Gipson TA, Smith AC, Bowden HA, Yildirim F, Fischer KB, Yim M, Housman DE, Graybiel AM. Striatal transcriptome changes linked to drug-induced repetitive behaviors. Eur J Neurosci 2021; 53:2450-2468. [PMID: 33759265 DOI: 10.1111/ejn.15116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
Disruptive or excessive repetitive motor patterns (stereotypies) are cardinal symptoms in numerous neuropsychiatric disorders. Stereotypies are also evoked by psychomotor stimulants such as amphetamine. The acquisition of motor sequences is paralleled by changes in activity patterns in the striatum, and stereotypies have been linked to abnormal plasticity in these reinforcement-related circuits. Here, we designed experiments in mice to identify transcriptomic changes that underlie striatal plasticity occurring alongside the development of drug-induced stereotypic behavior. We identified three schedules of amphetamine treatment inducing different degrees of stereotypy and used bulk RNAseq to compare striatal gene expression changes among groups of mice treated with the different drug-dose schedules and vehicle-treated, cage-mate controls. Mice were identified as naïve, sensitized, or tolerant to drug-induced stereotypy. All drug-treated groups exhibited expression changes in genes that encode members of the extracellular signal-regulated kinase (ERK) cascades known to regulate psychomotor stimulant responses. In the sensitized group with the most prolonged stereotypy, we found dysregulation of 20 genes that were not changed in other groups. Gene set enrichment analysis indicated highly significant overlap with genes regulated by neuregulin 1 (Nrg1). Nrg1 is known to be a schizophrenia and autism susceptibility gene that encodes a ligand for Erb-B receptors, which are involved in neuronal migration, myelination, and cell survival, including that of dopamine-containing neurons. Stimulant abuse is a risk factor for schizophrenia onset, and these two disorders share behavioral stereotypy phenotypes. Our results raise the possibility that drug-induced sensitization of the Nrg1 signaling pathway might underlie these links.
Collapse
Affiliation(s)
- Jill R Crittenden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theresa A Gipson
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Hilary A Bowden
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kyle B Fischer
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Yim
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David E Housman
- Institute for Integrative Cancer Research, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, The Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Zhang W, Cai S, Huang K, Lv Y, Kang Y, Wang Q, Huang L. Association between schizophrenia risk allele dosage of rs6994992 and whole-brain structural and functional characteristics. Psychiatry Res Neuroimaging 2019; 294:110956. [PMID: 31202487 DOI: 10.1016/j.pscychresns.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023]
Abstract
The rs6994992 polymorphism has been reported as a candidate variant associated with schizophrenia (SZ). Neuroimaging studies have revealed that SZ is associated with widespread structural and functional alterations in brain. However, whether the allele dosage of rs6994992 is associated with brain structural or functional features is unclear. We aimed to investigate the association between the risk allele dosage of rs6994992 and whole-brain structural and functional characteristics and to further explore the relationship between these characteristics and cognition. Magnetic resonance images and the rs6994992 genotype were obtained from 53 healthy participants. A general linear model was used to determine the effects of risk allele dosage of rs6994992 on brain characteristics. Spearman correlation analysis was employed to calculate the correlation between altered brain characteristics and cognitive scores. Our results demonstrated that regions with significant differences in structural characteristics between groups with different dosages of rs6994992 were mainly located in the frontal and temporal lobes, hippocampus and angular gyrus. Moreover, significant regions of functional connectivity (FC) partly overlapped with the structural results. Measurements in those significant regions and FCs were correlated with the cognition scales. This association can inform our understanding of the mechanisms through which rs6994992 variants increase the risk for SZ.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Qiang Wang
- The First Affiliated Hospital, Xi 'an Jiaotong university, Shaanxi 710048, PR China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
10
|
Wang D, Guo T, Guo Q, Zhang S, Zhang J, Luo J. The Association Between Schizophrenia Risk Variants and Creativity in Healthy Han Chinese Subjects. Front Psychol 2019; 10:2218. [PMID: 31649580 PMCID: PMC6792478 DOI: 10.3389/fpsyg.2019.02218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/17/2019] [Indexed: 11/14/2022] Open
Abstract
Although previous evidence has suggested that there is a genetic link between schizophrenia and creativity, the specific genetic variants that underlie the link are still largely unknown. To further explore the potential genetic link between schizophrenia and creativity, in a sample of 580 healthy Han Chinese subjects, this study aimed to (1) validate the role of Neuregulin 1 (NRG1) rs6994992 (one schizophrenia risk variant that has been previously linked to creativity in the European population) in the relationship between schizophrenia and creativity and (2) explore the associations between 10 other schizophrenia risk variants and creativity. For NRG1 rs6994992, the result validated its association with creativity measures. However, since NRG1 rs6994992 is not a schizophrenia risk variant in the Han Chinese population, the validated association suggested that ethnic difference may exist in the relationship between NRG1 rs6994992, schizophrenia and creativity. For other schizophrenia risk variants, the result only demonstrated a nominal association between ZNF536 rs2053079 and creativity measures which would not survive correction for multiple testing. No association between polygenic risk score for these 10 schizophrenia risk variants and creativity measures was observed. In conclusion, this study provides limited evidence for the associations between these schizophrenia risk variants and creativity in healthy Han Chinese subjects. Future studies are warranted to better understand the potential genetic link between schizophrenia and creativity.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Tingting Guo
- Beijing Gese Technology Co., Ltd., Beijing, China
| | - Qi Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, The Collaborative Innovation Center for Capital Education Development, Capital Normal University, Beijing, China
| | | |
Collapse
|
11
|
Uddin M, Ratanatharathorn A, Armstrong D, Kuan PF, Aiello AE, Bromet EJ, Galea S, Koenen KC, Luft B, Ressler KJ, Wildman DE, Nievergelt CM, Smith A. Epigenetic meta-analysis across three civilian cohorts identifies NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder. Epigenomics 2018; 10:1585-1601. [PMID: 30456986 DOI: 10.2217/epi-2018-0049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM Trauma exposure is a necessary, but not deterministic, contributor to post-traumatic stress disorder (PTSD). Epigenetic factors may distinguish between trauma-exposed individuals with versus without PTSD. MATERIALS & METHODS We conducted a meta-analysis of PTSD epigenome-wide association studies in trauma-exposed cohorts drawn from civilian contexts. Whole blood-derived DNA methylation levels were analyzed in 545 study participants, drawn from the three civilian cohorts participating in the PTSD working group of the Psychiatric Genomics Consortium. RESULTS Two CpG sites significantly associated with current PTSD in NRG1 (cg23637605) and in HGS (cg19577098). CONCLUSION PTSD is associated with differential methylation, measured in blood, within HGS and NRG1 across three civilian cohorts.
Collapse
Affiliation(s)
- Monica Uddin
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.,Department of Psychology, University of Illinois Urbana-Champaign, 603 East Daniel St, Champaign, IL 61820, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, NY 10032, USA
| | - Don Armstrong
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics & Statistics, Stony Brook University, John S Toll Drive, Stony Brook, NY 11794, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Stony Brook University School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Sandro Galea
- Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard TH Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Psychiatic & Neurodevelopmental Genetics Unit & Department of Psychiatry, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin Luft
- Department of Medicine, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Derek E Wildman
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.,Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA.,VA Center of Excellence for Stress & Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Alicia Smith
- Department of Psychiatry & Behavioral Sciences & Department of Obstetrics & Gynecology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Jagannath V, Gerstenberg M, Walitza S, Franscini M, Heekeren K, Rössler W, Theodoridou A, Grünblatt E. Neuregulin 1 (NRG1) gene expression predicts functional outcomes in individuals at clinical high-risk for psychosis. Psychiatry Res 2018; 266:143-146. [PMID: 29864613 DOI: 10.1016/j.psychres.2018.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/07/2018] [Accepted: 05/10/2018] [Indexed: 01/09/2023]
Abstract
Little is known about valid predictive markers for functional outcomes in an at-risk for psychosis population. In a cohort of 185 individuals (age: 13-35 years) at high risk (HR) and ultra-high risk (UHR), we assessed pan-NRG1 mRNA levels across good functional status (GFS) and poor functional status (PFS) at baseline, and good functional outcome (GFO) and poor functional outcome (PFO) at 12-month follow-up. NRG1 mRNA levels were significantly higher in individuals with PFO than individuals with GFO at 12-month follow-up. Our findings suggest that NRG1 might emerge as a predictive marker for functional outcomes in at-risk for psychosis population.
Collapse
Affiliation(s)
- Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Maurizia Franscini
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Ryskalin L, Limanaqi F, Frati A, Busceti CL, Fornai F. mTOR-Related Brain Dysfunctions in Neuropsychiatric Disorders. Int J Mol Sci 2018; 19:ijms19082226. [PMID: 30061532 PMCID: PMC6121884 DOI: 10.3390/ijms19082226] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is an ubiquitously expressed serine-threonine kinase, which senses and integrates several intracellular and environmental cues to orchestrate major processes such as cell growth and metabolism. Altered mTOR signalling is associated with brain malformation and neurological disorders. Emerging evidence indicates that even subtle defects in the mTOR pathway may produce severe effects, which are evident as neurological and psychiatric disorders. On the other hand, administration of mTOR inhibitors may be beneficial for a variety of neuropsychiatric alterations encompassing neurodegeneration, brain tumors, brain ischemia, epilepsy, autism, mood disorders, drugs of abuse, and schizophrenia. mTOR has been widely implicated in synaptic plasticity and autophagy activation. This review addresses the role of mTOR-dependent autophagy dysfunction in a variety of neuropsychiatric disorders, to focus mainly on psychiatric syndromes including schizophrenia and drug addiction. For instance, amphetamines-induced addiction fairly overlaps with some neuropsychiatric disorders including neurodegeneration and schizophrenia. For this reason, in the present review, a special emphasis is placed on the role of mTOR on methamphetamine-induced brain alterations.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy.
| |
Collapse
|
14
|
Antibody-mediated stabilization of NRG1 induces behavioral and electrophysiological alterations in adult mice. Sci Rep 2018; 8:8239. [PMID: 29844389 PMCID: PMC5974084 DOI: 10.1038/s41598-018-26492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/08/2018] [Indexed: 01/14/2023] Open
Abstract
Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.
Collapse
|
15
|
Li C, Tao H, Yang X, Zhang X, Liu Y, Tang Y, Tang A. Assessment of a combination of Serum Proteins as potential biomarkers to clinically predict Schizophrenia. Int J Med Sci 2018; 15:900-906. [PMID: 30008602 PMCID: PMC6036096 DOI: 10.7150/ijms.24346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder. Validation of potential serum biomarkers during first-episode psychosis (FEP) is especially helpful to understand the onset and prognosis of this disorder. To address this question, we examined multiple blood biomarkers and assessed the efficacy to diagnose SZ. The expression levels of Neuregulin1 (NRG1), ErbB4, brain-derived neurotrophic factor (BDNF), DNA methyltransferases 1 (DNMT1) and ten-eleven translocation 1 (TET1) proteins in peripheral blood of 53 FEP patients and 57 healthy controls were determined by enzyme-linked immunosorbent assay (ELISA). Multivariable logistic regression including biomarker concentration as covariates was used to predict SZ. Differentiating performance of these five serum protein levels was analyzed by Receiver Operating Characteristic (ROC) curve analysis. We found that patients with SZ present a higher concentration of DNMT1, and TET1 in peripheral blood, but a lower concentration of NRG1, ErbB4 and BDNF than controls. Multivariable logistic regression showed that ErbB4, BDNF and TET1 were independent predictors of SZ, and when combined, provided high diagnostic accuracy for SZ. Together, our findings highlight that altered expression of NRG1, ErbB4, BDNF, DNMT1 and TET1 are involved in schizophrenia development and they may serve as potential biomarkers for the diagnosis of the schizophrenia. Therefore, our study provides evidence that combination of ErbB4, BDNF and TET1 biomarkers could greatly improve the diagnostic performance.
Collapse
Affiliation(s)
- Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, The first affiliated hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xianghui Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Mental Health Institute of Central South University & Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China
| | - Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
16
|
Mostaid MS, Lee TT, Chana G, Sundram S, Shannon Weickert C, Pantelis C, Everall I, Bousman C. Elevated peripheral expression of neuregulin-1 (NRG1) mRNA isoforms in clozapine-treated schizophrenia patients. Transl Psychiatry 2017; 7:1280. [PMID: 29225331 PMCID: PMC5802529 DOI: 10.1038/s41398-017-0041-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/13/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
Differential expression of neuregulin-1 (NRG1) mRNA isoforms and proteins has been reported in schizophrenia, primarily in post-mortem brain tissue. In this study, we examined 12 NRG1 SNPs, eight NRG1 mRNA isoforms (type I, type I(Ig2), type II, type III, type IV, EGFα, EGFβ, pan-NRG1) in whole blood, and NRG1-β1 protein in serum of clozapine-treated schizophrenia patients (N = 71) and healthy controls (N = 57). In addition, using cultured peripheral blood mononuclear cells (PBMC) from 15 healthy individuals, we examined the effect of clozapine on NRG1 mRNA isoform and protein expression. We found elevated levels of NRG1 mRNA, specifically the EGFα (P = 0.0175), EGFβ (P = 0.002) and type I(Ig2) (P = 0.023) containing transcripts, but lower NRG1-β1 serum protein levels (P = 0.019) in schizophrenia patients compared to healthy controls. However, adjusting for smoking status attenuated the difference in NRG1-β1 serum levels (P = 0.050). Examination of clinical factors showed NRG1 EGFα (P = 0.02) and EGFβ (P = 0.02) isoform expression was negatively correlated with age of onset. However, we found limited evidence that NRG1 mRNA isoform or protein expression was associated with current chlorpromazine equivalent dose or clozapine plasma levels, the latter corroborated by our PBMC clozapine exposure experiment. Our SNP analysis found no robust expression quantitative trait loci. Our results represent the first comprehensive investigation of NRG1 isoforms and protein expression in the blood of clozapine-treated schizophrenia patients and suggest levels of some NRG1 transcripts are upregulated in those with schizophrenia.
Collapse
Affiliation(s)
- Md Shaki Mostaid
- 0000 0004 0452 651Xgrid.429299.dMelbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC Australia ,The Cooperative Research Center (CRC) for Mental Health, Carlton, VIC Australia
| | - Ting Ting Lee
- 0000 0001 2179 088Xgrid.1008.9Center for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC Australia
| | - Gursharan Chana
- 0000 0001 2179 088Xgrid.1008.9Center for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC Australia ,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia ,0000 0004 0624 1200grid.416153.4Department of Medicine, Royal Melbourne Hospital, Parkville, VIC Australia
| | - Suresh Sundram
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia ,NorthWestern Mental Health, Melbourne, VIC Australia ,0000 0000 9295 3933grid.419789.aDepartment of Psychiatry, School of Clinical Sciences, Monash University and Monash Health, Clayton, VIC Australia
| | - Cynthia Shannon Weickert
- 0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia ,0000 0000 8900 8842grid.250407.4Schizophrenia Research Laboratory, Neuroscience Research Australia, Baker Street, Sydney, NSW Australia ,0000 0004 4902 0432grid.1005.4School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW Australia
| | - Christos Pantelis
- 0000 0004 0452 651Xgrid.429299.dMelbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC Australia ,The Cooperative Research Center (CRC) for Mental Health, Carlton, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Center for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC Australia ,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia ,NorthWestern Mental Health, Melbourne, VIC Australia
| | - Ian Everall
- 0000 0004 0452 651Xgrid.429299.dMelbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC Australia ,The Cooperative Research Center (CRC) for Mental Health, Carlton, VIC Australia ,0000 0001 2179 088Xgrid.1008.9Center for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC Australia ,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia ,NorthWestern Mental Health, Melbourne, VIC Australia ,0000 0000 8696 2171grid.419558.4Schizophrenia Research Institute, Sydney, NSW Australia
| | - Chad Bousman
- Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia. .,The Cooperative Research Center (CRC) for Mental Health, Carlton, VIC, Australia. .,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia. .,Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Marchisella E, Wijnands R, Koopmans B, Spijker S, Loos M. Constitutive loss and acute pharmacological manipulation of ErbB4 signaling do not affect attention and inhibitory control in mice. GENES BRAIN AND BEHAVIOR 2017; 17:56-69. [PMID: 28792672 DOI: 10.1111/gbb.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 02/03/2023]
Abstract
The receptor tyrosine kinase ErbB4 and its ligand trophic factors of the neuregulin (NRG) family have been associated with schizophrenia and other mental disorders in human genetic studies. In vivo studies in mice have shown how abnormal Nrg-ErbB4 signaling leads to deviant behaviors relevant to distinct aspects of schizophrenia, including hyperactivity, sensory gating deficits, working and spatial memory deficits and impaired social behavior. However, so far little is known on the role of ErbB4 in attention and inhibitory control, two aspects of executive functions that are impaired in schizophrenia. Here we investigated the effects of constitutive loss of ErbB4 in the central nervous system of mice on performance in a 5-choice serial reaction time task (5CSRTT) assessing attention and inhibitory control. In this task, ErbB4-/- mice did not show deficits in various parameters of attention, and premature responses as measure of inhibitory control. Nonetheless, ErbB4-/- mice recapitulated a specific set of behavioral phenotypes associated with schizophrenia, including a deficit in spatial learning and memory in the Barnes Maze and in contextual fear learning, and a trend for a deficit in sensorimotor gating. Furthermore, we investigated the effect of acute pharmacological inhibition of ErbB tyrosine kinase receptor using the pan-ErbB kinase inhibitor JNJ-28871063 (JNJ), in an automated version of the 5CSRTT. JNJ did not affect attention and inhibitory control. In conclusion, our data suggest no direct involvement of a classical Nrg-ErbB4 pathway in attention and inhibitory control in mice, while it confirms the involvement of this pathway in other domains relevant to schizophrenia.
Collapse
Affiliation(s)
| | | | | | - S Spijker
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| | - M Loos
- Sylics (Synaptologics B.V.), Amsterdam.,Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive research, Neuroscience Campus Amsterdam, VU University, De Boelelaan, The Netherlands
| |
Collapse
|
18
|
Mostaid MS, Lee TT, Chana G, Sundram S, Shannon Weickert C, Pantelis C, Everall I, Bousman C. Peripheral Transcription of NRG-ErbB Pathway Genes Are Upregulated in Treatment-Resistant Schizophrenia. Front Psychiatry 2017; 8:225. [PMID: 29163244 PMCID: PMC5681734 DOI: 10.3389/fpsyt.2017.00225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Investigation of peripheral gene expression patterns of transcripts within the NRG-ErbB signaling pathway, other than neuregulin-1 (NRG1), among patients with schizophrenia and more specifically treatment-resistant schizophrenia (TRS) is limited. The present study built on our previous work demonstrating elevated levels of NRG1 EGFα, EGFβ, and type I(Ig2) containing transcripts in TRS by investigating 11 NRG-ErbB signaling pathway mRNA transcripts (NRG2, ErbB1, ErbB2, ErbB3, ErbB4, PIK3CD, PIK3R3, AKT1, mTOR, P70S6K, eIF4EBP1) in whole blood of TRS patients (N = 71) and healthy controls (N = 57). We also examined the effect of clozapine exposure on transcript levels using cultured peripheral blood mononuclear cells (PBMCs) from 15 healthy individuals. Five transcripts (ErbB3, PIK3CD, AKT1, P70S6K, eIF4EBP1) were significantly elevated in TRS patients compared to healthy controls but only expression of P70S6K (Pcorrected = 0.018), a protein kinase linked to protein synthesis, cell growth, and cell proliferation, survived correction for multiple testing using the Benjamini-Hochberg method. Investigation of clinical factors revealed that ErbB2, PIK3CD, PIK3R3, AKT1, mTOR, and P70S6K expression were negatively correlated with duration of illness. However, no transcript was associated with chlorpromazine equivalent dose or clozapine plasma levels, the latter supported by our in vitro PBMC clozapine exposure experiment. Taken together with previously published NRG1 results, our findings suggest an overall upregulation of transcripts within the NRG-ErbB signaling pathway among individuals with schizophrenia some of which attenuate over duration of illness. Follow-up studies are needed to determine if the observed peripheral upregulation of transcripts within the NRG-ErbB signaling pathway are specific to TRS or are a general blood-based marker of schizophrenia.
Collapse
Affiliation(s)
- Md Shaki Mostaid
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia
| | - Ting Ting Lee
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
| | - Gursharan Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Suresh Sundram
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,NorthWestern Mental Health, Melbourne, VIC, Australia.,Department of Psychiatry, School of Clinical Sciences, Monash University and Monash Health, Clayton, VIC, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia.,Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.,Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,NorthWestern Mental Health, Melbourne, VIC, Australia
| | - Ian Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.,Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,NorthWestern Mental Health, Melbourne, VIC, Australia.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chad Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.,The Cooperative Research Centre (CRC) for Mental Health, Melbourne, VIC, Australia.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
20
|
Abstract
The etiology and pathophysiology of schizophrenia and related mental disorders such as bipolar disorder and major depression remain largely unclear. Recent advances in mRNA profiling techniques made it possible to perform genome-wide gene expression analysis in a hypothesis-free manner. It was thought that this large-scale data mining approach would reveal unknown molecular cascades involved in mental disorders. Contrary to this initial expectation, however, DNA microarray results in psychiatric fields have been notoriously discordant. Here the authors review the findings of DNA microarray analysis, focusing on systematic gene expression changes in schizophrenia, as well as alterations in the expression of specific genes, that have been reported and replicated. The authors also address the probable causes for the discordance among studies, possible ways to solve the problem, and their preferred approach for data interpretation.
Collapse
Affiliation(s)
- Kazuya Iwamoto
- Laboratory for Molecular Dynamics of Mental Disorders, Brain Science Institute, RIKEN, Saitama, Japan.
| | | |
Collapse
|
21
|
Tian J, Geng F, Gao F, Chen YH, Liu JH, Wu JL, Lan YJ, Zeng YN, Li XW, Yang JM, Gao TM. Down-Regulation of Neuregulin1/ErbB4 Signaling in the Hippocampus Is Critical for Learning and Memory. Mol Neurobiol 2016; 54:3976-3987. [DOI: 10.1007/s12035-016-9956-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
22
|
Engel M, Snikeris P, Matosin N, Newell KA, Huang XF, Frank E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology (Berl) 2016; 233:1349-59. [PMID: 26861891 DOI: 10.1007/s00213-016-4230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. OBJECTIVES We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. METHODS Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. RESULTS In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. CONCLUSIONS We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.
Collapse
Affiliation(s)
- Martin Engel
- Schizophrenia Research Institute, Sydney, Australia. .,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Peta Snikeris
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Natalie Matosin
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Kelly Anne Newell
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Xu-Feng Huang
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elisabeth Frank
- Schizophrenia Research Institute, Sydney, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
23
|
Wen Z, Chen J, Khan RAW, Song Z, Wang M, Li Z, Shen J, Li W, Shi Y. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:468-78. [PMID: 26888291 DOI: 10.1002/ajmg.b.32428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye = 0.015) and rs4512342 (Pallele = 0.03, Pgenotye = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population.
Collapse
Affiliation(s)
- Zujia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Meng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wenjin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P.R. China.,Shanghai Changning Mental Health Center, Shanghai, P.R. China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
24
|
Wu JQ, Green MJ, Gardiner EJ, Tooney PA, Scott RJ, Carr VJ, Cairns MJ. Altered neural signaling and immune pathways in peripheral blood mononuclear cells of schizophrenia patients with cognitive impairment: A transcriptome analysis. Brain Behav Immun 2016; 53:194-206. [PMID: 26697997 DOI: 10.1016/j.bbi.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/26/2015] [Accepted: 12/13/2015] [Indexed: 12/20/2022] Open
Abstract
Cognitive deficits are a core feature of schizophrenia and contribute significantly to functional disability. We investigated the molecular pathways associated with schizophrenia (SZ; n=47) cases representing both 'cognitive deficit' (CD; n=22) and 'cognitively spared' (CS; n=25) subtypes of schizophrenia (based on latent class analysis of 9 cognitive performance indicators), compared with 49 healthy controls displaying 'normal' cognition. This was accomplished using gene-set analysis of transcriptome data derived from peripheral blood mononuclear cells (PBMCs). We detected 27 significantly altered pathways (19 pathways up-regulated and 8 down-regulated) in the combined SZ group and a further 6 pathways up-regulated in the CS group and 5 altered pathways (4 down-regulated and 1 up-regulated) in the CD group. The transcriptome profiling in SZ and cognitive subtypes were characterized by the up-regulated pathways involved in immune dysfunction (e.g., antigen presentation in SZ), energy metabolism (e.g., oxidative phosphorylation), and down-regulation of the pathways involved in neuronal signaling (e.g., WNT in SZ/CD and ERBB in SZ). When we looked for pathways that differentiated the two cognitive subtypes we found that the WNT signaling was significantly down-regulated (FDR<0.05) in the CD group in accordance with the combined SZ cohort, whereas it was unaffected in the CS group. This suggested suppression of WNT signaling was a defining feature of cognitive decline in schizophrenia. The WNT pathway plays a role in both the development/function of the central nervous system and peripheral tissues, therefore its alteration in PBMCs may be indicative of an important genomic axis relevant to cognition in the neuropathology of schizophrenia.
Collapse
Affiliation(s)
- Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Melissa J Green
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Erin J Gardiner
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Vaughan J Carr
- Schizophrenia Research Institute, Sydney, Australia; School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, Australia; Centre for Translational Neuroscience and Mental Health, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia.
| |
Collapse
|
25
|
Wang R, Wang Y, Hu R, Chen X, Song M, Wang X. Decreased plasma levels of neureglin-1 in drug naïve patients and chronic patients with schizophrenia. Neurosci Lett 2015; 606:220-4. [PMID: 26365407 DOI: 10.1016/j.neulet.2015.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Although the neuregulin-1 (NRG1) gene is one of the susceptibility genes for schizophrenia and various other psychiatric diseases, it remains unclear how individual psychiatric diseases affect the expression of the NRG1 protein in patients. A previous study reported a schizophrenia-linked decrease in serum NRG1 levels. The present study aimed to replicate this initial finding and to assess its disease specificity for schizophrenia. We collected plasma samples from drug-naïve patients with first-episode schizophrenia (n=80), patients with chronic schizophrenia (n=86), patients with bipolar I disorder (n=60), patients with bipolar II disorder (n=60) and patients with major depressive disorder (n=60), we measured the plasma levels of NRG1β1 and compared the levels with those of age- and sex-matched healthy volunteers (n=82). One-way ANOVA and post hoc analyses detected specific NRG1β1 decreases in the participants with first-episode and chronic schizophrenia but not in those with bipolar I disorder, bipolar II disorder or major depressive disorder. The mean plasma levels of NRG1β1 immunoreactivity were 4.27±0.71 ng/mL in the participants with first-episode schizophrenia, 4.08±0.64 ng/mL in the participants with chronic schizophrenia and 7.21±0.91 ng/mL in the healthy controls. Although we analyzed the pathological correlations of NRG1β1 immunoreactivity in terms of the clinical parameters of the sample, we observed only weak positive correlations with the age of the participants with chronic schizophrenia and the disease onset times of the participants with bipolar II disorder. We failed to identify correlations between other clinical parameters and plasma NRG1β1 immunoreactivity among all patient subjects. These findings suggest that NRG1 may serve as a relatively specific disease marker for schizophrenia. However, the pathological role of this decrease must be explored further.
Collapse
Affiliation(s)
- Ran Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Yumei Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Rui Hu
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Xingshi Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | - Mei Song
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China
| | - Xueyi Wang
- Department of Psychiatry, First Hospital of Hebei Medical University, 89 Donggang Lu, Shijiazhuang, Hebei 050031, China; Institute of Mental Health of Hebei Medical University, China.
| |
Collapse
|
26
|
Jajodia A, Kaur H, Kumari K, Kanojia N, Gupta M, Baghel R, Sood M, Jain S, Chadda RK, Kukreti R. Evaluation of genetic association of neurodevelopment and neuroimmunological genes with antipsychotic treatment response in schizophrenia in Indian populations. Mol Genet Genomic Med 2015; 4:18-27. [PMID: 26788534 PMCID: PMC4707035 DOI: 10.1002/mgg3.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/10/2015] [Indexed: 12/14/2022] Open
Abstract
Neurodevelopmental and neuroimmunological genes critically regulate antipsychotic treatment outcome. We report genetic associations of antipsychotic response in 742 schizophrenia patients from Indian populations of Indo‐European and Dravidian ancestry, segregated by disease severity. Meta‐analysis comparing the two populations identified CCL2 [rs4795893: OR (95% CI) = 1.79 (1.27–2.52), P = 7.62 × 10−4; rs4586: OR (95% CI) = 1.74 (1.24–2.43), P = 1.13 × 10−3] and GRIA4 [rs2513265: OR (95% CI) = 0.53 (0.36–0.78), P = 1.44 × 10−3] in low severity group; and, ADCY2 [rs1544938: OR (95% CI) = 0.36 (0.19–0.65), P = 7.68 × 10−4] and NRG1 [rs13250975, OR (95% CI) = 0.42 (0.23–0.79), P = 6.81 × 10−3; rs17716295, OR (95% CI) = 1.78 (1.15–2.75), P = 8.71 × 10−3] in high severity group, with incomplete response toward antipsychotics. To our knowledge, this is the first study to identify genetic polymorphisms associated with the efficacy of antipsychotic treatment of schizophrenia patients from two major India populations.
Collapse
Affiliation(s)
- Ajay Jajodia
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Harpreet Kaur
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Kalpana Kumari
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Neha Kanojia
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Meenal Gupta
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Ruchi Baghel
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| | - Mamta Sood
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Sanjeev Jain
- Molecular Genetic Laboratory Department of Psychiatry National Institute of Mental Health and Neuro Sciences Hosur Road Bengaluru 560029 India
| | - Rakesh K Chadda
- Department of Psychiatry All India Institute of Medical Sciences Ansari Nagar New Delhi 110029 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine CSIR-Institute of Genomics and Integrative Biology Mall Road Delhi 110007 India
| |
Collapse
|
27
|
Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry 2015; 20:959-73. [PMID: 25266126 DOI: 10.1038/mp.2014.109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has an essential role in the nervous system by modulating neurodevelopment, neurotransmission and synaptic plasticity. Despite the evidence that NRG1 and its receptors, ErbB tyrosine kinases, are expressed in mesencephalic dopaminergic nuclei and their functional alterations are reported in schizophrenia and Parkinson's disease, the role of NRG1/ErbB signalling in dopaminergic neurons remains unclear. Here we found that NRG1 selectively increases the metabotropic glutamate receptor 1 (mGluR1)-activated currents by inducing synthesis and trafficking to membrane of functional receptors and stimulates phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which is required for mGluR1 function. Notably, an endogenous NRG1/ErbB tone is necessary to maintain mGluR1 function, by preserving its surface membrane expression in dopaminergic neurons. Consequently, it enables striatal mGluR1-induced dopamine outflow in in vivo conditions. Our results identify a novel role of NRG1 in the dopaminergic neurons, whose functional alteration might contribute to devastating diseases, such as schizophrenia and Parkinson's disease.
Collapse
|
28
|
Paredes RM, Piccart E, Navaira E, Cruz D, Javors MA, Koek W, Beckstead MJ, Walss-Bass C. Physiological and behavioral effects of amphetamine in BACE1(-/-) mice. GENES BRAIN AND BEHAVIOR 2015; 14:411-8. [PMID: 25912880 DOI: 10.1111/gbb.12222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023]
Abstract
β-Site APP-cleaving Enzyme 1 (BACE1) is a protease that has been linked to schizophrenia, a severe mental illness that is potentially characterized by enhanced dopamine (DA) release in the striatum. Here, we used acute amphetamine administration to stimulate neuronal activity and investigated the neurophysiological and locomotor-activity response in BACE1-deficient (BACE1(-/-) ) mice. We measured locomotor activity at baseline and after treatment with amphetamine (3.2 and 10 mg/kg). While baseline locomotor activity did not vary between groups, BACE1(-/-) mice exhibited reduced sensitivity to the locomotor-enhancing effects of amphetamine. Using high-performance liquid chromatography (HPLC) to measure DA and DA metabolites in the striatum, we found no significant differences in BACE1(-/-) compared with wild-type mice. To determine if DA neuron excitability is altered in BACE1(-/-) mice, we performed patch-clamp electrophysiology in putative DA neurons from brain slices that contained the substantia nigra. Pacemaker firing rate was slightly increased in slices from BACE1(-/-) mice. We next measured G protein-coupled potassium currents produced by activation of D2 autoreceptors, which strongly inhibit firing of these neurons. The maximal amplitude and decay times of D2 autoreceptor currents were not altered in BACE1(-/-) mice, indicating no change in D2 autoreceptor-sensitivity and DA transporter-mediated reuptake. However, amphetamine (30 µm)-induced potassium currents produced by efflux of DA were enhanced in BACE1(-/-) mice, perhaps indicating increased vesicular DA content in the midbrain. This suggests a plausible mechanism to explain the decreased sensitivity to amphetamine-induced locomotion, and provides evidence that decreased availability of BACE1 can produce persistent adaptations in the dopaminergic system.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - E Piccart
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - E Navaira
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - D Cruz
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - M A Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - W Koek
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - M J Beckstead
- Department of Psychiatry, University of Texas Health Science Center, San Antonio
| | - C Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
29
|
Engel M, Snikeris P, Jenner A, Karl T, Huang XF, Frank E. Neuregulin 1 Prevents Phencyclidine-Induced Behavioral Impairments and Disruptions to GABAergic Signaling in Mice. Int J Neuropsychopharmacol 2015; 18:pyu114. [PMID: 26478928 PMCID: PMC4540095 DOI: 10.1093/ijnp/pyu114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Substantial evidence from human post-mortem and genetic studies has linked the neurotrophic factor neuregulin 1 (NRG1) to the pathophysiology of schizophrenia. Genetic animal models and in vitro experiments have suggested that altered NRG1 signaling, rather than protein changes, contributes to the symptomatology of schizophrenia. However, little is known about the effect of NRG1 on schizophrenia-relevant behavior and neurotransmission (particularly GABAergic and glutamatergic) in adult animals. METHOD To address this question, we treated adult mice with the extracellular signaling domain of NRG1 and assessed spontaneous locomotor activity and acoustic startle response, as well as extracellular GABA, glutamate, and glycine levels in the prefrontal cortex and hippocampus via microdialysis. Furthermore, we asked whether the effect of NRG1 would differ under schizophrenia-relevant impairments in mice and therefore co-treated mice with NRG1 and phencyclidine (PCP) (3 mg/kg). RESULTS Acute intraventricularly- or systemically-injected NRG1 did not affect spontaneous behavior, but prevented PCP induced hyperlocomotion and deficits of prepulse inhibition. NRG1 retrodialysis (10 nM) reduced extracellular glutamate and glycine levels in the prefrontal cortex and hippocampus, and prevented PCP-induced increase in extracellular GABA levels in the hippocampus. CONCLUSION With these results, we provide the first compelling in vivo evidence for the involvement of NRG1 signaling in schizophrenia-relevant behavior and neurotransmission in the adult nervous system, which highlight its treatment potential. Furthermore, the ability of NRG1 treatment to alter GABA, glutamate, and glycine levels in the presence of PCP also suggests that NRG1 signaling has the potential to alter disrupted neurotransmission in patients with schizophrenia.
Collapse
|
30
|
Puhl MD, Mintzopoulos D, Jensen JE, Gillis TE, Konopaske GT, Kaufman MJ, Coyle JT. In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiol Dis 2015; 73:269-74. [PMID: 25461193 PMCID: PMC4408217 DOI: 10.1016/j.nbd.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/26/2014] [Accepted: 10/12/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Decreased availability of the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is thought to promote NMDAR hypofunction and contribute to the pathophysiology of schizophrenia, including neuroanatomical abnormalities, such as cortical atrophy and ventricular enlargement, and neurochemical abnormalities, such as aberrant glutamate and γ-aminobutyric acid (GABA) signaling. It is thought that these abnormalities directly relate to the negative symptoms and cognitive impairments that are hallmarks of the disorder. Because of the genetic complexity of schizophrenia, animal models of the disorder are extremely valuable for the study of genetically predisposing factors. Our laboratory developed a transgenic mouse model lacking serine racemase (SR), the synthetic enzyme of d-serine, polymorphisms of which are associated with schizophrenia. Null mutants (SR-/-) exhibit NMDAR hypofunction and cognitive impairments. We used 9.4 T magnetic resonance imaging (MRI) and proton spectroscopy (MRS) to compare in vivo brain structure and neurochemistry in wildtype (WT) and SR-/- mice. METHODS Mice were anesthetized with isoflurane for MRI and MRS scans. RESULTS Compared to WT controls, SR-/- mice exhibited 23% larger ventricular volumes (p<0.05). Additionally, in a medial frontal cortex voxel (15 μl), SR-/- mice exhibited significantly higher glutamate/water (12%, t=1.83, p<0.05) and GABA/water (72%, t=4.10, p<0.001) ratios. CONCLUSIONS Collectively, these data demonstrate in vivo neuroanatomical and neurochemical abnormalities in the SR-/- mouse comparable to those previously reported in humans with schizophrenia.
Collapse
Affiliation(s)
- Matthew D Puhl
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, Belmont, MA 02478, USA
| | - Dionyssios Mintzopoulos
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; McLean Imaging Center, Belmont, MA 02478, USA
| | - J Eric Jensen
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; McLean Imaging Center, Belmont, MA 02478, USA
| | - Timothy E Gillis
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; McLean Imaging Center, Belmont, MA 02478, USA
| | - Glenn T Konopaske
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; Laboratory for Psychiatric and Molecular Neuroscience, Belmont, MA 02478, USA
| | - Marc J Kaufman
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; McLean Imaging Center, Belmont, MA 02478, USA
| | - Joseph T Coyle
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA; Harvard Medical School, Department of Psychiatry, McLean Hospital, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 2014; 6:28. [PMID: 25505409 PMCID: PMC4243504 DOI: 10.3389/fnsyn.2014.00028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| |
Collapse
|
32
|
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 2014; 83:27-49. [PMID: 24991953 DOI: 10.1016/j.neuron.2014.06.007] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuregulins (NRGs) comprise a large family of growth factors that stimulate ERBB receptor tyrosine kinases. NRGs and their receptors, ERBBs, have been identified as susceptibility genes for diseases such as schizophrenia (SZ) and bipolar disorder. Recent studies have revealed complex Nrg/Erbb signaling networks that regulate the assembly of neural circuitry, myelination, neurotransmission, and synaptic plasticity. Evidence indicates there is an optimal level of NRG/ERBB signaling in the brain and deviation from it impairs brain functions. NRGs/ERBBs and downstream signaling pathways may provide therapeutic targets for specific neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany.
| |
Collapse
|
33
|
Hayashi-Takagi A, Vawter MP, Iwamoto K. Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry 2014; 75:920-8. [PMID: 24286759 PMCID: PMC4964959 DOI: 10.1016/j.biopsych.2013.09.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 09/17/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Peripheral samples, such as blood and skin, have been used for decades in psychiatric research as surrogates for central nervous system samples. Although the validity of the data obtained from peripheral samples has been questioned and other state-of-the-art techniques, such as human brain imaging, genomics, and induced pluripotent stem cells, seem to reduce the value of peripheral cells, accumulating evidence has suggested that revisiting peripheral samples is worthwhile. Here, we re-evaluate the utility of peripheral samples and argue that establishing an understanding of the common signaling and biological processes in the brain and peripheral samples is required for the validity of such models. First, we present an overview of the available types of peripheral cells and describe their advantages and disadvantages. We then briefly summarize the main achievements of omics studies, including epigenome, transcriptome, proteome, and metabolome analyses, as well as the main findings of functional cellular assays, the results of which imply that alterations in neurotransmission, metabolism, the cell cycle, and the immune system may be partially responsible for the pathophysiology of major psychiatric disorders such as schizophrenia. Finally, we discuss the future utility of peripheral samples for the development of biomarkers and tailor-made therapies, such as multimodal assays that are used as a battery of disease and trait pathways and that might be potent and complimentary tools for use in psychiatric research.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan.
| | | | | |
Collapse
|
34
|
Neuregulin-1 impairs the long-term depression of hippocampal inhibitory synapses by facilitating the degradation of endocannabinoid 2-AG. J Neurosci 2013; 33:15022-31. [PMID: 24048832 DOI: 10.1523/jneurosci.5833-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endocannabinoids play essential roles in synaptic plasticity; thus, their dysfunction often causes impairments in memory or cognition. However, it is not well understood whether deficits in the endocannabinoid system account for the cognitive symptoms of schizophrenia. Here, we show that endocannabinoid-mediated synaptic regulation is impaired by the prolonged elevation of neuregulin-1, the abnormality of which is a hallmark in many patients with schizophrenia. When rat hippocampal slices were chronically treated with neuregulin-1, the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids, was enhanced due to the increased expression of its degradative enzyme, monoacylglycerol lipase. As a result, the time course of depolarization-induced 2-AG signaling was shortened, and the magnitude of 2-AG-dependent long-term depression of inhibitory synapses was reduced. Our study reveals that an alteration in the signaling of 2-AG contributes to hippocampal synaptic dysfunction in a hyper-neuregulin-1 condition and thus provides novel insights into potential schizophrenic therapeutics that target the endocannabinoid system.
Collapse
|
35
|
Yin DM, Chen YJ, Lu YS, Bean JC, Sathyamurthy A, Shen C, Liu X, Lin TW, Smith CA, Xiong WC, Mei L. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1. Neuron 2013; 78:644-57. [PMID: 23719163 DOI: 10.1016/j.neuron.2013.03.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/16/2022]
Abstract
Neuregulin 1 (Nrg1) is a susceptibility gene of schizophrenia, a disabling mental illness that affects 1% of the general population. Here, we show that ctoNrg1 mice, which mimic high levels of NRG1 observed in forebrain regions of schizophrenic patients, exhibit behavioral deficits and hypofunction of glutamatergic and GABAergic pathways. Intriguingly, these deficits were diminished when NRG1 expression returned to normal in adult mice, suggesting that damage which occurred during development is recoverable. Conversely, increase of NRG1 in adulthood was sufficient to cause glutamatergic impairment and behavioral deficits. We found that the glutamatergic impairment by NRG1 overexpression required LIM domain kinase 1 (LIMK1), which was activated in mutant mice, identifying a pathological mechanism. These observations demonstrate that synaptic dysfunction and behavioral deficits in ctoNrg1 mice require continuous NRG1 abnormality in adulthood, suggesting that relevant schizophrenia may benefit from therapeutic intervention to restore NRG1 signaling.
Collapse
Affiliation(s)
- Dong-Min Yin
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marín O, Rico B. A new beginning for a broken mind: balancing neuregulin 1 reverses synaptic dysfunction. Neuron 2013; 78:577-9. [PMID: 23719157 DOI: 10.1016/j.neuron.2013.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Oscar Marín
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
37
|
Chana G, Bousman CA, Money TT, Gibbons A, Gillett P, Dean B, Everall IP. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front Cell Neurosci 2013; 7:95. [PMID: 23805071 PMCID: PMC3693064 DOI: 10.3389/fncel.2013.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/03/2013] [Indexed: 12/28/2022] Open
Abstract
Post-mortem brain investigations of schizophrenia have generated swathes of data in the last few decades implicating candidate genes and protein. However, the relation of these findings to peripheral biomarker indicators and symptomatology remain to be elucidated. While biomarkers for disease do not have to be involved with underlying pathophysiology and may be largely indicative of diagnosis or prognosis, the ideal may be a biomarker that is involved in underlying disease processes and which is therefore more likely to change with progression of the illness as well as potentially being more responsive to treatment. One of the main difficulties in conducting biomarker investigations for major psychiatric disorders is the relative inconsistency in clinical diagnoses between disorders such as bipolar and schizophrenia. This has led some researchers to investigate biomarkers associated with core symptoms of these disorders, such as psychosis. The aim of this review is to evaluate the contribution of post-mortem brain investigations to elucidating the pathophysiology pathways involved in schizophrenia and psychosis, with an emphasis on major neurotransmitter systems that have been implicated. This data will then be compared to functional neuroimaging findings as well as findings from blood based gene expression investigations in schizophrenia in order to highlight the relative overlap in pathological processes between these different modalities used to elucidate pathogenesis of schizophrenia. In addition we will cover some recent and exciting findings demonstrating microRNA (miRNA) dysregulation in both the blood and the brain in patients with schizophrenia. These changes are pertinent to the topic due to their known role in post-transcriptional modification of gene expression with the potential to contribute or underlie gene expression changes observed in schizophrenia. Finally, we will discuss how post-mortem studies may aid future biomarker investigations.
Collapse
Affiliation(s)
- Gursharan Chana
- Department of Psychiatry, Melbourne Brain Centre, The University of Melbourne Parkville, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Deng C, Pan B, Engel M, Huang XF. Neuregulin-1 signalling and antipsychotic treatment: potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berl) 2013; 226:201-15. [PMID: 23389757 DOI: 10.1007/s00213-013-3003-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 01/22/2013] [Indexed: 02/08/2023]
Abstract
Identifying the signalling pathways underlying the pathophysiology of schizophrenia is an essential step in the rational development of new antipsychotic drugs for this devastating disease. Evidence from genetic, transgenic and post-mortem studies have strongly supported neuregulin-1 (NRG1)-ErbB4 signalling as a schizophrenia susceptibility pathway. NRG1-ErbB4 signalling plays crucial roles in regulating neurodevelopment and neurotransmission, with implications for the pathophysiology of schizophrenia. Post-mortem studies have demonstrated altered NRG1-ErbB4 signalling in the brain of schizophrenia patients. Antipsychotic drugs have different effects on NRG1-ErbB4 signalling depending on treatment duration. Abnormal behaviours relevant to certain features of schizophrenia are displayed in NRG1/ErbB4 knockout mice or those with NRG1/ErbB4 over-expression, some of these abnormalities can be improved by antipsychotic treatment. NRG1-ErbB4 signalling has extensive interactions with the GABAergic, glutamatergic and dopaminergic neurotransmission systems that are involved in the pathophysiology of schizophrenia. These interactions provide a number of targets for the development of new antipsychotic drugs. Furthermore, the key interaction points between NRG1-ErbB4 signalling and other schizophrenia susceptibility genes may also potentially provide specific targets for new antipsychotic drugs. In general, identification of these targets in NRG1-ErbB4 signalling and interacting pathways will provide unique opportunities for the development of new generation antipsychotics with specific efficacy and fewer side effects.
Collapse
Affiliation(s)
- Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | | | | |
Collapse
|
39
|
Agim ZS, Esendal M, Briollais L, Uyan O, Meschian M, Martinez LAM, Ding Y, Basak AN, Ozcelik H. Discovery, validation and characterization of Erbb4 and Nrg1 haplotypes using data from three genome-wide association studies of schizophrenia. PLoS One 2013; 8:e53042. [PMID: 23301017 PMCID: PMC3536812 DOI: 10.1371/journal.pone.0053042] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/23/2012] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is one of the most common and complex neuropsychiatric disorders, which is contributed both by genetic and environmental exposures. Recently, it is shown that NRG1-mediated ErbB4 signalling regulates many important cellular and molecular processes such as cellular growth, differentiation and death, particularly in myelin-producing cells, glia and neurons. Recent association studies have revealed genomic regions of NRG1 and ERBB4, which are significantly associated with risk of developing schizophrenia; however, inconsistencies exist in terms of validation of findings between distinct populations. In this study, we aim to validate the previously identified regions and to discover novel haplotypes of NRG1 and ERBB4 using logistic regression models and Haploview analyses in three independent datasets from GWAS conducted on European subjects, namely, CATIE, GAIN and nonGAIN. We identified a significant 6-kb block in ERBB4 between chromosome locations 212,156,823 and 212,162,848 in CATIE and GAIN datasets (p = 0.0206 and 0.0095, respectively). In NRG1, a significant 25-kb block, between 32,291,552 and 32,317,192, was associated with risk of schizophrenia in all CATIE, GAIN, and nonGAIN datasets (p = 0.0005, 0.0589, and 0.0143, respectively). Fine mapping and FastSNP analysis of genetic variation located within significantly associated regions proved the presence of binding sites for several transcription factors such as SRY, SOX5, CEPB, and ETS1. In this study, we have discovered and validated haplotypes of ERBB4 and NRG1 in three independent European populations. These findings suggest that these haplotypes play an important role in the development of schizophrenia by affecting transcription factor binding affinity.
Collapse
Affiliation(s)
- Zeynep Sena Agim
- Neurodegeneration Research Laboratory, Molecular Biology and Genetics Department, Bogazici University, Istanbul, Turkey
| | - Melda Esendal
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Laurent Briollais
- Prosserman Centre for Health Research, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ozgun Uyan
- Neurodegeneration Research Laboratory, Molecular Biology and Genetics Department, Bogazici University, Istanbul, Turkey
| | - Mehran Meschian
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Luis Antonio Mendoza Martinez
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yongmei Ding
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - A. Nazli Basak
- Neurodegeneration Research Laboratory, Molecular Biology and Genetics Department, Bogazici University, Istanbul, Turkey
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Girard SL, Dion PA, Rouleau GA. Schizophrenia genetics: putting all the pieces together. Curr Neurol Neurosci Rep 2012; 12:261-6. [PMID: 22456906 DOI: 10.1007/s11910-012-0266-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a major mental disorder characterized by a deep disruption of the thinking process and of emotional response. For many decades, genetics studies have yielded little success in identifying genetic factors responsible for the disease. However, with the recent breakthroughs in genome analysis technologies, the field of the genetics of schizophrenia has progressed a lot in the last years. Both common and rare variants have been successfully associated with the disease and a particular emphasis has been made on rare copy number variations. Recently, a new paradigm linking de novo mutations to the genetic mechanism of schizophrenia has been unravelled. The aim of this review is to discuss the most important genetic studies made in the field to give a general perspective of where to go in the future.
Collapse
Affiliation(s)
- Simon L Girard
- Centre of Excellence in Neuromics of Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montréal, Québec, Canada
| | | | | |
Collapse
|
41
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
42
|
Tosato S, Bellani M, Bonetto C, Ruggeri M, Perlini C, Lasalvia A, Marinelli V, Rambaldelli G, Cristofalo D, Bertani M, Zanoni M, Lazzarotto L, Cerini R, Pozzi Mucelli R, Tansella M, Dazzan P, Di Forti M, Murray RM, Collier DA, Brambilla P. Is neuregulin 1 involved in determining cerebral volumes in schizophrenia? Preliminary results showing a decrease in superior temporal gyrus volume. Neuropsychobiology 2012; 65:119-25. [PMID: 22378022 DOI: 10.1159/000330584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 07/05/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Reduced left superior temporal gyrus (STG) volume is one of the most replicated imaging findings in schizophrenia. However, it remains unclear whether genes play any role in our understanding of such structural alteration. It has been proposed that Neuregulin 1 (NRG1) might be a promising gene involved in schizophrenia, because of its role in neurodevelopment and neuroplasticity. In this study, the association between NRG1 and STG anatomy in patients with schizophrenia was explored for the first time. METHODS We investigated a 1-year treated prevalence cohort of patients with schizophrenia in contact with the South Verona Community-Based Mental Health Service. A blood sample was collected for DNA extraction and brain structure was assessed with an MRI scan. A total of 27 subjects with schizophrenia underwent both assessments and were included in the study. RESULTS We investigated the association between the polymorphism SNP8NRG222662 (rs4623364) of NRG1 and volume of the STG. We found that patients homozygous for the C allele had reduced left STG gray and white matter volumes in comparison to those homozygous for the G allele (p < 0.01 and p < 0.001, respectively). CONCLUSIONS This exploratory study suggests that NRG1 may be involved in determining STG size in schizophrenia, and may play a role in the neurogenetic basis of the language disturbances seen in this disorder. However, due to our small sample size, the results should be regarded as preliminary and replicated in a larger sample.
Collapse
Affiliation(s)
- Sarah Tosato
- Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy. sarah.tosato @ univr.it
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Genetic associations between neuregulin-1 SNPs and neurocognitive function in multigenerational, multiplex schizophrenia families. Psychiatr Genet 2012; 22:70-81. [PMID: 22183611 DOI: 10.1097/ypg.0b013e32834f352c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent work shows promising associations between schizophrenia and polymorphisms in neuregulin-1 (NRG1) and a large literature also finds strong familial relationships between schizophrenia and cognitive deficits. Given the role of NRG1 in glutamate regulation and glutamate's effect on cognition, we hypothesized that cognitive deficits may be related to variation within NRG1, providing a possible mechanism to increase risk for schizophrenia. METHODS This study examined the associations between NRG1, cognition, and schizophrenia using a multigenerational multiplex family sample (total N=419, 40 families), including 58 affected participants (schizophrenia or schizoaffective disorder-depressed type) and their 361 unaffected relatives. Participants were genotyped for 40 NRG1 single nucleotide polymorphisms (SNPs), chosen largely based on previous associations with schizophrenia. All participants completed structured diagnostic interviews and a computerized neurocognitive battery assessing eight cognitive domains. Variance component quantitative trait analyses tested for associations between individual NRG1 SNPs and cognitive performance in the total sample, a subsample of healthy participants with no Diagnostic and Statistical Manual of Mental Disorders diagnosis, and using general intelligence as a covariate. RESULTS Effect sizes (within-family β coefficients) ranged from 0.08 to 0.73, and 61 of these associations were nominally significant (P≤0.05), with 12 associations at P≤0.01, although none achieved the modified Bonferroni significance threshold of P<0.0003. Attention was the most frequently nominally associated domain and rs10503929, a nonsynonymous SNP, was the most frequently nominally associated SNP. CONCLUSION Although not significant experiment-wise, these findings suggest that further study of the associations between variation in NRG1 and cognition may be productive.
Collapse
|
44
|
Kiss I, Kelemen O, Kéri S. Decreased peripheral expression of neuregulin 1 in high-risk individuals who later converted to psychosis. Schizophr Res 2012; 135:198-9. [PMID: 22226548 DOI: 10.1016/j.schres.2011.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/23/2011] [Accepted: 12/19/2011] [Indexed: 11/25/2022]
|
45
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
46
|
Smyrnis N, Kattoulas E, Stefanis NC, Avramopoulos D, Stefanis CN, Evdokimidis I. Schizophrenia-related neuregulin-1 single-nucleotide polymorphisms lead to deficient smooth eye pursuit in a large sample of young men. Schizophr Bull 2011; 37:822-31. [PMID: 19965935 PMCID: PMC3122292 DOI: 10.1093/schbul/sbp150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neuregulin-1 (NRG1) variations have been shown to modulate schizophrenia candidate endophenotypes related to brain structure and function. The aim of this study was to determine the effect of NRG1 on several oculomotor schizophrenia endophenotypes. The effects of 5 core single-nucleotide polymorphisms (SNPs) within the NRG1 gene to oculomotor parameters in a battery of oculomotor tasks (saccade, antisaccade, smooth eye pursuit, fixation) were investigated in a sample of 2243 young male military conscripts. Additive regression models, bootstrap and permutation techniques, were used as well as structural equation modeling and haplotype analysis. A deficit in global smooth eye pursuit performance measured using the root-mean-square error (RMSE) was related to the risk allele of SNP8NRG243177, and a deficit in global smooth eye pursuit performance measured using the saccade frequency was related with the risk allele of SNP8NRG433E1006. Structural equation modeling confirmed a global effect of NRG1 genotype on smooth eye pursuit performance using the RMSE, while the effect on saccade frequency was not confirmed. Haplotype analysis further confirmed the prediction from the structural equation modeling that a combination of alleles corresponding to the Icelandic high-risk haplotype was related to a deficit in global pursuit performance. NRG1 genotype variations were related to smooth eye pursuit variations both at the SNP level and at the haplotype level adding to the validation of this gene as a candidate gene for the disorder.
Collapse
Affiliation(s)
- Nikolaos Smyrnis
- Psychiatry Department, National and Kapodistrian University of Athens Medical School, Eginition Hospital, 72 Vas. Sofias Avenue, Athens, Greece.
| | | | - Nicholas C. Stefanis
- University Mental Health Research Institute, Athens, Greece,Psychiatry Department
| | - Dimitrios Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, MD
| | | | - Ioannis Evdokimidis
- Neurology Department, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
47
|
Karsten SL, Kudo L, Bragin AJ. Use of peripheral blood transcriptome biomarkers for epilepsy prediction. Neurosci Lett 2011; 497:213-7. [PMID: 21419828 PMCID: PMC3109096 DOI: 10.1016/j.neulet.2011.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/13/2022]
Abstract
There are currently no predictive methods to identify patients who suffered an initial brain injury and are at high risk of developing chronic epilepsy. Consequently, treatments aimed at epilepsy prevention that would target the underlying epileptogenic process are neither available nor being developed. After a brain injury or any other initial precipitating event (IPE) to the development of epilepsy, pathological changes may occur in forms of inflammation, damage in the blood brain barrier, neuron loss, gliosis, axon sprouting, etc., in multiple brain areas. Recent studies provide connections between various kinds of brain pathology and alterations in the peripheral blood transcriptome. In this review we discuss the possibility of using peripheral blood transcriptome biomarkers for the detection of epileptogenesis and consequently, subjects at high risk of developing epilepsy.
Collapse
Affiliation(s)
- Stanislav L. Karsten
- Division of Neuroscience, Department of Neurology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90504
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
- NeuroInDx Inc., 1655 East 28th Street, Signal Hill, CA 90755, USA
| | - Lili Kudo
- NeuroInDx Inc., 1655 East 28th Street, Signal Hill, CA 90755, USA
| | - Anatol J. Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, 710 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Liu X, Bates R, Yin DM, Shen C, Wang F, Su N, Kirov SA, Luo Y, Wang JZ, Xiong WC, Mei L. Specific regulation of NRG1 isoform expression by neuronal activity. J Neurosci 2011; 31:8491-501. [PMID: 21653853 PMCID: PMC3154699 DOI: 10.1523/jneurosci.5317-10.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 01/18/2023] Open
Abstract
Neuregulin 1 (NRG1) is a trophic factor that has been implicated in neural development, neurotransmission, and synaptic plasticity. NRG1 has multiple isoforms that are generated by usage of different promoters and alternative splicing of a single gene. However, little is known about NRG1 isoform composition profile, whether it changes during development, or the underlying mechanisms. We found that each of the six types of NRG1 has a distinct expression pattern in the brain at different ages, resulting in a change in NRG1 isoform composition. In both human and rat, the most dominant are types III and II, followed by either type I or type V, while types IV and VI are the least abundant. The expression of NRG1 isoforms is higher in rat brains at ages of E13 and P5 (in particular type V), suggesting roles in early neural development and in the neonatal critical period. At the cellular level, the majority of NRG1 isoforms (types I, II, and III) are expressed in excitatory neurons, although they are also present in GABAergic neurons and astrocytes. Finally, the expression of each NRG1 isoform is distinctly regulated by neuronal activity, which causes significant increase in type I and IV NRG1 levels. Neuronal activity regulation of type IV expression requires a CRE cis-element in the 5' untranslated region (UTR) that binds to CREB. These results indicate that expression of NRG1 isoforms is regulated by distinct mechanisms, which may contribute to versatile functions of NRG1 and pathologic mechanisms of brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- Xihui Liu
- Institute of Molecular Medicine and Genetics and
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ryan Bates
- Institute of Molecular Medicine and Genetics and
| | - Dong-Min Yin
- Institute of Molecular Medicine and Genetics and
| | | | - Fay Wang
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Nan Su
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Sergei A. Kirov
- Department of Neurosurgery, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Yuling Luo
- Advanced Cell Diagnostics, Inc., Hayward, California 94545, and
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Wen-Cheng Xiong
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| | - Lin Mei
- Institute of Molecular Medicine and Genetics and
- Department of Neurology, Georgia Health Sciences University, Augusta, Georgia 30912
| |
Collapse
|
49
|
Increased expression of receptor phosphotyrosine phosphatase-β/ζ is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes. Transl Psychiatry 2011; 1:e8. [PMID: 22832403 PMCID: PMC3309478 DOI: 10.1038/tp.2011.8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a serious and chronic mental disorder, in which both genetic and environmental factors have a role in the development of the disease. Neuregulin-1 (NRG1) is one of the most established genetic risk factors for schizophrenia, and disruption of NRG1 signaling has been reported in this disorder. We reported previously that NRG1/ErbB4 signaling is inhibited by receptor phosphotyrosine phosphatase-β/ζ (RPTP β/ζ) and that the gene encoding RPTPβ/ζ (PTPRZ1) is genetically associated with schizophrenia. In this study, we examined the expression of RPTPβ/ζ in the brains of patients with schizophrenia and observed increased expression of this gene. We developed mice overexpressing RPTPβ/ζ (PTPRZ1-transgenic mice), which showed reduced NRG1 signaling, and molecular and cellular changes implicated in the pathogenesis of schizophrenia, including altered glutamatergic, GABAergic and dopaminergic activity, as well as delayed oligodendrocyte development. Behavioral analyses also demonstrated schizophrenia-like changes in the PTPRZ1-transgenic mice, including reduced sensory motor gating, hyperactivity and working memory deficits. Our results indicate that enhanced RPTPβ/ζ signaling can contribute to schizophrenia phenotypes, and support both construct and face validity for PTPRZ1-transgenic mice as a model for multiple schizophrenia phenotypes. Furthermore, our results implicate RPTPβ/ζ as a therapeutic target in schizophrenia.
Collapse
|
50
|
Leicht G, Karch S, Karamatskos E, Giegling I, Möller HJ, Hegerl U, Pogarell O, Rujescu D, Mulert C. Alterations of the early auditory evoked gamma-band response in first-degree relatives of patients with schizophrenia: hints to a new intermediate phenotype. J Psychiatr Res 2011; 45:699-705. [PMID: 21067772 DOI: 10.1016/j.jpsychires.2010.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/14/2010] [Accepted: 10/06/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND There is growing evidence of abnormalities of high-frequency oscillations in the gamma-range of the electroencephalography in schizophrenia. The generation of neural activity in the gamma-band was shown to be critically related to a glutamatergic and GABAergic microcircuit which is also known to be involved in the pathophysiology of schizophrenia. Recently, a reduction of the early auditory evoked gamma-band response (eGBR) in schizophrenic patients was reported. In order to investigate the possible applicability of this neurophysiological marker as an intermediate phenotype for schizophrenia, this is the main question of our investigation: Is the early eGBR decreased regarding evoked power and phase locking in first-degree relatives of patients with schizophrenia? METHODS We investigated the early eGBR in 17 unaffected first-degree relatives of patients with schizophrenia and in age-, gender- and education-matched groups of schizophrenic patients and healthy controls using an auditory reaction task. RESULTS First-degree relatives of patients with schizophrenia and schizophrenic patients showed a significant reduction of evoked power and phase locking of the early eGBR compared to healthy controls. CONCLUSION This study shows significantly reduced evoked power and phase locking of the early auditory eGBR in first-degree relatives of patients with schizophrenia pointing to the applicability of this marker as a heritable intermediate phenotype for schizophrenia. The findings are in line with the hypothesis of a disturbed GABAergic interneural modulation of pyramidal cells in schizophrenia and findings of different schizophrenia risk genes associated with transmission at glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
- Gregor Leicht
- University Medical Center Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch (PNB), Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|