1
|
Hou H, Yang J, Fu G, Liu X, Liu Y, Gong K, Qi R, Jiang X, Shao G. The decrease of GluN2B and its phosphorylation at Tyr-1336 in extrasynaptic subunits is associated with neuroprotection induced by hypoxia preconditioning. Brain Res Bull 2025; 227:111400. [PMID: 40414572 DOI: 10.1016/j.brainresbull.2025.111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Prior research has firmly established that the N-methyl-d-aspartate (NMDA) receptor subunit 2 B (GluN2B) and its phosphorylation contribute to ischemic/hypoxic brain injury. Hypoxic preconditioning (HPC) is an endogenous mechanism that protects the brain from both ischaemic and hypoxic damage. In this study, we explored the effects of HPC on GluN2B and its phosphorylation at two sites (tyrosine residues 1252 and 1336), catalysed by Fyn, in the hippocampus both in vivo and in vitro. Animal and cellular models of HPC were developed by subjecting mice and the mouse hippocampal neuronal cell line HT22 to repeated hypoxia. Levels of GluN2B and its phosphorylation at the tyrosine residues 1336 (pY1336 GluN2B) and 1252 (pY1252 GluN2B) were detected in HPC-treated hippocampi and HT22 cells using western blotting and immunofluorescence. The distributions of GluN2B, pY1336 GluN2B, and pY1252 GluN2B in the synaptic (TxP) and extrasynaptic components (TxS) were analysed by western blotting. Caspase-3 and spectrin, both markers of cellular injury, were further measured using western blotting. HPC downregulated GluN2B and pY1336 GluN2B levels in the hippocampus and HT22 cells. The changes in GluN2B and pY1336 GluN2B levels in the extrasynaptic components were similar to those in the hippocampus and HT22 cells, while the changes in the synaptic components showed the opposite trend which increased after HPC. The downregulation of GluN2B and pY1336 GluN2B may be associated with neuroprotection induced by HPC. Additionally, their localization at synaptic and extrasynaptic sites may play distinct roles in neuroprotection.
Collapse
Affiliation(s)
- Haidong Hou
- Department of Neurosurgery, Dongguan Qingxi Hospital, Dongguan, PR China
| | - Jing Yang
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, PR China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Gang Fu
- Longgang Institute of Medical Imaging, Shantou University Medical College & The Third People's Hospital of Longgang District, Shenzhen, PR China
| | - Xiaolei Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, PR China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - You Liu
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, PR China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China
| | - Kerui Gong
- Department of Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, USA
| | - Ruifang Qi
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, PR China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China.
| | - Xiangning Jiang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | - Guo Shao
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, PR China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Longgang Institute of Medical Imaging, Shantou University Medical College & The Third People's Hospital of Longgang District, Shenzhen, PR China.
| |
Collapse
|
2
|
Guo B, Song H, Fan J, Wang B, Chen L, Hu Q, Yin Y. The NR2B-targeted intervention alleviates the neuronal injuries at the sub-acute stage of cerebral ischemia: an exploration of stage-dependent strategy against ischemic insults. Exp Brain Res 2023; 241:2735-2750. [PMID: 37845379 DOI: 10.1007/s00221-023-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Stroke is reported to be the second leading cause of death worldwide, among which ischemic stroke has fourfold greater incidence than intracerebral hemorrhage. Excitotoxicity induced by NMDAR plays a central role in ischemic stroke-induced neuronal death. However, intervention targeted NMDARs against ischemic stroke has failed, which may result from the complex composition of NMDARs and the dynamic changes of their subunits. In this current study, the levels of NR1, NR2A and NR2B subunits of NMDARs were observed upon different time points during the reperfusion after 1 h ischemia with the western blot assay. It was found that the changes of NR1 subunit were only detected after ischemia 1 h/reperfusion 1 day (1 d). While, the changes of NR2A and NR2B subunits may last to ischemia 1 h/reperfusion 7 day(7 d), indicating that NR2subunits may be a potential target for ischemia-reperfusion injuries at the sub-acute stage of ischemic stroke. Simultaneously, mitochondrial injuries in neurons were investigated with transmission electron microscopy (TEM), and mitochondrial dysfunction was evaluated with mitochondrial membrane proteins oxidative respiratory chain complex and OCR. When the antagonist of NMDARs was used before ischemic exposure, the neuronal mitochondrial dysfunction was alleviated, suggesting that these aberrant deviations of NMDARs from basal levels led to mitochondrial dysfunction. Furthermore, when the antagonist of NR2B was administrated intracerebroventricularly at the sub-acute cerebral ischemia, the volume of cerebral infarct region was decreased and the neural functions were improved. To sum up, the ratio of NR2B-containing NMDARs is vital for mitochondrial homeostasis and then neuronal survival. NR2B-targeted intervention should be chosen at the sub-acute stage of cerebral ischemia.
Collapse
Affiliation(s)
- Bei Guo
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Huimeng Song
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Jiahui Fan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Bin Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Lingyi Chen
- John Bapst Memorial High School, Bangor, CA, USA
| | - Qiandai Hu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China
| | - Yanling Yin
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing, 100069, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Peng KZ, Xu SL, Wu MX, Sun HJ, Zhao J, Yang S, Liu SJ, Lia CY, Zhang XM. The GluN2B-Containing NMDA Receptor Alleviates Neuronal Apoptosis in Neonatal Hypoxic-Ischemic Encephalopathy by Activating PI3K-Akt-CREB Signaling Pathwa. Physiol Res 2023; 72:669-680. [PMID: 38015765 PMCID: PMC10751047 DOI: 10.33549/physiolres.935044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/18/2023] [Indexed: 01/05/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a disease caused by insufficient blood supply in the brain in newborns during the perinatal period. Severe HIE leads to patient death, and patients with mild HIE are at increased risk of cognitive deficits and behavioral abnormalities. The NMDA receptor is an important excitatory receptor in the central nervous system, and in adult hypoxic-ischemic injury both subtypes of the NMDA receptor play important but distinct roles. The GluN2A-containing NMDA receptor (GluN2A-NMDAR) could activate neuronal protective signaling pathway, while the GluN2B-NMDAR subtype is coupled to the apoptosis-inducing signaling pathway and leads to neuronal death. However, the expression level of GluN2B is higher in newborns than in adults, while the expression of GluN2A is lower. Therefore, it is not clear whether the roles of different NMDA receptor subtypes in HIE are consistent with those in adults. We investigated this issue in this study and found that in HIE, GluN2B plays a protective role by mediating the protective pathway through binding with PSD95, which is quite different to that in adults. The results of this study provided new theoretical support for the clinical treatment of neonatal hypoxic ischemia.
Collapse
Affiliation(s)
- X Zhang
- Department of Physiology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sarode LP, Ghatage T, Mardhekar V, Verma B, Prakash A, Ugale RR. Cerebrolysin reduces excitotoxicity by modulation of cell-death proteins in delayed hours of ischemic reperfusion injury. Metab Brain Dis 2023; 38:2401-2416. [PMID: 37273080 DOI: 10.1007/s11011-023-01240-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Recent preclinical and clinical reports suggest that cerebrolysin shows neuroprotective properties similar to endogenous neurotrophic factors in neurodegenerative disorders including ischemic stroke. However, little is known about its underlying antiexcitotoxic action. Adult male Wistar rats were intraperitoneally treated with cerebrolysin (0.15 or 0.30 mg/kg) or vehicle at 3, 6 and 12 h after ischemic reperfusion and were assessed 24 h after reperfusion in ischemic rats. We added cerebrolysin (2.5 or 5 mg/ml) or vehicle in primary cortical culture cells at 3, 6 and 12 h of post-glutamate exposure and performed cell viability assays at 24 h. Our in-vivo and in-vitro findings showed that cerebrolysin substantially reduced neuronal cell death in delayed hours of post ischemic- and glutamate-insult conditions respectively. Further, we have assessed the influence of NR-2 A/-2B receptor antagonism on neuroprotective action of cerebrolysin at 6 h in in-vivo as well as in-vitro conditions. Neuroprotective effect of cerebrolysin at 6 h of reperfusion was enhanced by pretreatment of NR2B antagonist RO25-6981.We found that cerebrolysin restrained upregulation of extrasynaptic NR2B responsible for triggering apoptotic pathways. Cerebrolysin reduced expression of important cell death proteins such as, JNK, PTEN, Calpain and Caspase-3 components. Importantly, we also found that cerebrolysin reduced SREBP1 expression, which gets activated only after 6 h of ischemia. These results demonstrate that cerebrolysin reduces excitotoxicity and protect neuronal cells in delayed hours of ischemic reperfusion injuries by decreasing cell death proteins.
Collapse
Affiliation(s)
- Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Trupti Ghatage
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Vishal Mardhekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Bhavesh Verma
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, District- East Champaran, Bihar, 845401, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
5
|
Escobar I, Xu J, Jackson CW, Stegelmann SD, Fagerli EA, Dave KR, Perez-Pinzon MA. Resveratrol Preconditioning Protects Against Ischemia-Induced Synaptic Dysfunction and Cofilin Hyperactivation in the Mouse Hippocampal Slice. Neurotherapeutics 2023; 20:1177-1197. [PMID: 37208551 PMCID: PMC10457274 DOI: 10.1007/s13311-023-01386-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Perturbations in synaptic function are major determinants of several neurological diseases and have been associated with cognitive impairments after cerebral ischemia (CI). Although the mechanisms underlying CI-induced synaptic dysfunction have not been well defined, evidence suggests that early hyperactivation of the actin-binding protein, cofilin, plays a role. Given that synaptic impairments manifest shortly after CI, prophylactic strategies may offer a better approach to prevent/mitigate synaptic damage following an ischemic event. Our laboratory has previously demonstrated that resveratrol preconditioning (RPC) promotes cerebral ischemic tolerance, with many groups highlighting beneficial effects of resveratrol treatment on synaptic and cognitive function in other neurological conditions. Herein, we hypothesized that RPC would mitigate hippocampal synaptic dysfunction and pathological cofilin hyperactivation in an ex vivo model of ischemia. Various electrophysiological parameters and synaptic-related protein expression changes were measured under normal and ischemic conditions utilizing acute hippocampal slices derived from adult male mice treated with resveratrol (10 mg/kg) or vehicle 48 h prior. Remarkably, RPC significantly increased the latency to anoxic depolarization, decreased cytosolic calcium accumulation, prevented aberrant increases in synaptic transmission, and rescued deficits in long-term potentiation following ischemia. Additionally, RPC upregulated the expression of the activity-regulated cytoskeleton associated protein, Arc, which was partially required for RPC-mediated attenuation of cofilin hyperactivation. Taken together, these findings support a role for RPC in mitigating CI-induced excitotoxicity, synaptic dysfunction, and pathological over-activation of cofilin. Our study provides further insight into mechanisms underlying RPC-mediated neuroprotection against CI and implicates RPC as a promising strategy to preserve synaptic function after ischemia.
Collapse
Affiliation(s)
- Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Eric A Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
6
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
7
|
Lu M, He X, Jiao Z, Hu Z, Guo Z, Dai S, Wang H, Xu D. The upregulation of glutamate decarboxylase 67 against hippocampal excitability damage in male fetal rats by prenatal caffeine exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2703-2717. [PMID: 35917217 DOI: 10.1002/tox.23630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
As a kind of xanthine alkaloid, caffeine is widely present in beverages, food, and analgesic drugs. Our previous studies have shown that prenatal caffeine exposure (PCE) can induce programmed hypersensitivity of the hypothalamic-pituitary-adrenal (HPA) axis in offspring rats, which is involved in developing many chronic adult diseases. The present study further examined the potential molecular mechanism and toxicity targets of hippocampal dysfunction, which might mediate the programmed hypersensitivity of the HPA axis in offspring. Pregnant rats were intragastrically administered with 0, 30, and 120 mg/kg/day caffeine from gestational days (GD) 9-20, and the fetal rats were extracted at GD20. Rat fetal hippocampal H19-7/IGF1R cell line was treated with caffeine, adenosine A2A receptor (A2AR) agonist (CGS-21680) or adenylate cyclase agonist (forskolin) plus caffeine. Compared with the control group, hippocampal neurons of male fetal rats by PCE displayed increased apoptosis and reduced synaptic plasticity, whereas glutamate decarboxylase 67 (GAD67) expression was increased. Moreover, the expression of A2AR was down-regulated, PCE inhibited the cAMP/PKA/CREB/BDNF/TrkB pathway. Furthermore, the results in vitro were consistent with the in vivo study. Both CGS21680 and forskolin could reverse the above alteration caused by caffeine. These results indicated that PCE inhibits the BDNF pathway and mediates the hippocampus's glutamate (Glu) excitotoxicity. The compensatory up-regulation of GAD67 unbalanced the Glu/gamma-aminobutyric acid (GABA)ergic output, leading to the impaired negative feedback to the hypothalamus and hypersensitivity of the HPA axis.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xia He
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zijing Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
8
|
Xie M, Leng T, Maysami S, Pearson A, Simon R, Xiong ZG, Meller R. Changes in NMDA Receptor Function in Rapid Ischemic Tolerance: A Potential Role for Tri-Heteromeric NMDA Receptors. Biomolecules 2022; 12:1214. [PMID: 36139053 PMCID: PMC9496625 DOI: 10.3390/biom12091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we characterize biophysical changes in NMDA receptor function in response to brief non-injurious ischemic stress (ischemic preconditioning). Electrophysiological studies show NMDA receptor function is reduced following preconditioning in cultured rat cortical neurons. This functional change is not due to changes in the reversal potential of the receptor, but an increase in desensitization. We performed concentration-response analysis of NMDA-evoked currents, and demonstrate that preconditioned neurons show a reduced potency of NMDA to evoke currents, an increase in Mg2+ sensitivity, but no change in glycine sensitivity. Antagonists studies show a reduced inhibition of GluN2B antagonists that have an allosteric mode of action (ifenprodil and R-25-6981), but competitive antagonists at the GluR2A and 2B receptor (NVP-AMM077 and conantokin-G) appear to have similar potency to block currents. Biochemical studies show a reduction in membrane surface GluN2B subunits, and an increased co-immunoprecipitation of GluN2A with GluN2B subunits, suggestive of tri-heteromeric receptor formation. Finally, we show that blocking actin remodeling with jasplakinolide, a mechanism of rapid ischemic tolerance, prevents NMDA receptor functional changes and co-immunoprecipitation of GluN2A and 2B subunits. Together, this study shows that alterations in NMDA receptor function following preconditioning ischemia are associated with neuroprotection in rapid ischemic tolerance.
Collapse
Affiliation(s)
- Mian Xie
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Samaneh Maysami
- Department of Neuroscience, School of Life Sciences, Keele University, Staffordshire, Keele ST5 5BG, UK
| | - Andrea Pearson
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Roger Simon
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| | - Robert Meller
- Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA
| |
Collapse
|
9
|
TUNCAR A, CANDER B, KÜÇÜKCERAN K, YERLİKAYA FH. NR-2 antikor peptid düzeyinin akut iskemik inmede tanı, prognoz ve koma skorları ile ilişkisi var mıdır? ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim: This study aimed to demonstrate the diagnostic and prognostic value of NR-2 peptides as a biomarker in acute ischemic stroke and to evaluate their correlation with the Glasgow Coma Scale (GCS) and the National Institutes of Health Stroke Scale (NIHSS).
Materials and Methods: This is a prospective study evaluating the value of NR-2 peptide levels in the diagnosis and prognosis of acute stroke. The study included 101 patients, who presented to a tertiary healthcare facility and were diagnosed with acute stroke, and 57 healthy controls. In the whole study population, serum NR-2 peptide levels were measured using the ELISA method.
Results: The NR-2 peptide level was 6.32 ± 8.30 in the patient group and 3.91 ± 1.64 in the study group. The NR-2 peptide level was significantly higher in the patient group (p = 0.006). No correlation was detected between NR-2 peptide levels and scores in the GCS or NIHSS. The results indicated that NR-2 was a potential biomarker elevated in the early phase of acute stroke, but had no correlation with the prognosis of acute stroke.
Conclusion: Although our data shed light on the use of the NR-2 peptide level as a biomarker in the acute phase in patients with stroke, data are insufficient to predict prognosis. We think that larger, multicentre studies with longer follow-up periods are needed.
Collapse
Affiliation(s)
- Alpay TUNCAR
- Republic of Turkey Ministry of Health, Department of Education Services
| | - Basar CANDER
- NECMETTIN ERBAKAN UNIVERSITY, MERAM SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF FIRST AID AND EMERGENCY
| | - Kadir KÜÇÜKCERAN
- NECMETTIN ERBAKAN UNIVERSITY, MERAM SCHOOL OF MEDICINE, DEPARTMENT OF INTERNAL MEDICINE, DEPARTMENT OF FIRST AID AND EMERGENCY
| | - Fatma Hümryra YERLİKAYA
- NECMETTİN ERBAKAN ÜNİVERSİTESİ, MERAM TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, TIBBİ BİYOKİMYA ANABİLİM DALI
| |
Collapse
|
10
|
The Role of the NMDA Receptor in the Anticonvulsant Effect of Ellagic Acid in Pentylenetetrazole-Induced Seizures in Male Mice. Behav Neurol 2022; 2022:9015842. [PMID: 35600241 PMCID: PMC9117013 DOI: 10.1155/2022/9015842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Methods In this experimental study, 64 mice were divided into 8 groups and received the following: normal saline; EA at doses of 6.25, 12.5, and 25 mg/kg; NMDA agonist at a dose of 75 mg/kg; NMDA antagonist (ketamine) at a dose of 0.5 mg/kg; an effective dose of EA plus NMDA agonist; and a subeffective dose of EA plus ketamine. We induced seizure using intravenous administration of PTZ. 60 minutes before induction of seizure, drugs were administrated. Duration lasts to seizure-induced was measured. Finally, the gene expression of NMDA receptor subunits (Nr2a and Nr2b) was assessed in the prefrontal cortex. Results Results showed that EA increased the seizure threshold and decreased the expression of Nr2a and Nr2b. We determined that ketamine potentiated and NMDA attenuated the effects of subeffective and effective doses of EA. Conclusion EA probably via attenuation of the NMDA-R pathway possesses an anticonvulsant effect in PTZ-induced seizure in mice.
Collapse
|
11
|
Nouri-Vaskeh M, Khalili N, Sadighi A, Yazdani Y, Zand R. Biomarkers for Transient Ischemic Attack: A Brief Perspective of Current Reports and Future Horizons. J Clin Med 2022; 11:jcm11041046. [PMID: 35207321 PMCID: PMC8877275 DOI: 10.3390/jcm11041046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Cerebrovascular disease is the leading cause of long-term disability in the world and the third-leading cause of death in the United States. The early diagnosis of transient ischemic attack (TIA) is of great importance for reducing the mortality and morbidity of cerebrovascular diseases. Patients with TIA have a high risk of early subsequent ischemic stroke and the development of permanent nervous system lesions. The diagnosis of TIA remains a clinical diagnosis that highly relies on the patient's medical history assessment. There is a growing list of biomarkers associated with different components of the ischemic cascade in the brain. In this review, we take a closer look at the biomarkers of TIA and their validity with a focus on the more clinically important ones using recent evidence of their reliability for practical usage.
Collapse
Affiliation(s)
- Masoud Nouri-Vaskeh
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network, Tehran 1419733151, Iran
| | - Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran;
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alireza Sadighi
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA 17822, USA;
- Neuroscience Institute, Pennsylvania State University, State College, PA 16801, USA
- Correspondence: or ; Tel.: +1-570-808-7330; Fax: +1-570-808-3209
| |
Collapse
|
12
|
Liu Y, Fu X, Liu Y, Zhang T, Cui P, Wang S, Liu L, Hou Z, Wang H, Zhao Y, Zhang Z, Zhang H, Wu C, Yang J. Neuroprotective effect of pseudoginsenoside-F11 on permanent cerebral ischemia in rats by regulating calpain activity and NR2A submit-mediated AKT-CREB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153847. [PMID: 34836744 DOI: 10.1016/j.phymed.2021.153847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptors (NMDARs) have been demonstrated to play central roles in stroke pathology and recovery, including dual roles in promoting either neuronal survival or death with their different subtypes and locations. PURPOSE We have previously demonstrated that pseudoginsenoside-F11 (PF11) can provide long-term neuroprotective effects on transient and permanent ischemic stroke-induced neuronal damage. However, it is still needed to clarify whether NMDAR-2A (NR2A)-mediated pro-survival signaling pathway is involved in the beneficial effect of PF11 on permanent ischemic stroke. MATERIAL AND METHODS PF11 was administrated in permanent middle cerebral artery occlusion (pMCAO)-operated rats. The effect of PF11 on oxygen-glucose deprivation (OGD)-exposed primary cultured neurons were further evaluated. The regulatory effect of PF11 on NR2A expression and the activation of its downstream AKT-CREB pathway were detected by Western blotting and immunofluorescence in the presence or absence of a specific NR2A antagonist NVP-AAM077 (NVP) both in vivo and in vitro. RESULTS PF11 dose- and time-dependently decreased calpain1 (CAPN1) activity and its specific breakdown product α-Fodrin expression, while the expression of Ca2+/calmodulin-dependent protein kinase II alpha (CaMKII-α) was significantly upregulated in the cortex and striatum of rats at 24 h after the onset of pMCAO operation. Moreover, PF11 prevented the downregulation of NR2A, p-AKT/AKT, and p-CREB/CREB in both in vivo and in vitro stroke models. Finally, the results indicated treatment with NVP can abolish the effects of PF11 on alleviating the ischemic injury and activating NR2A-mediated AKT-CREB signaling pathway. CONCLUSIONS Our results demonstrate that PF11 can exert neuroprotective effects on ischemic stroke by inhibiting the activation of CAPN1 and subsequently enhancing the NR2A-medicated activation of AKT-CREB pathway, which provides a mechanistic link between the neuroprotective effect of PF11 against cerebral ischemia and NR2A-associated pro-survival signaling pathway.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoxiao Fu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuhuan Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianyu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Peirui Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Saiqian Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Liting Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zongjuan Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zinv Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
13
|
Foschi M, Padroni M, Abu-Rumeileh S, Abdelhak A, Russo M, D'Anna L, Guarino M. Diagnostic and Prognostic Blood Biomarkers in Transient Ischemic Attack and Minor Ischemic Stroke: An Up-To-Date Narrative Review. J Stroke Cerebrovasc Dis 2022; 31:106292. [PMID: 35026496 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Early diagnosis and correct risk stratification in patients with transient ischemic attack (TIA) and minor ischemic stroke (MIS) is crucial for the high rate of subsequent disabling stroke. Although highly improved, diagnosis and prognostication of TIA/MIS patients remain still based on clinical and neuroimaging findings, with some inter-rater variability even among trained neurologists. OBJECTIVES To provide an up-to-date overview of diagnostic and prognostic blood biomarkers in TIA and MIS patients. MATERIAL AND METHODS We performed a bibliographic search on PubMed database with last access on July 10th 2021. More than 680 articles were screened and we finally included only primary studies on blood biomarkers. RESULTS In a narrative fashion, we discussed about blood biomarkers investigated in TIA/MIS patients, including inflammatory, thrombosis, neuronal injury and cardiac analytes, antibodies and microRNAs. Other soluble molecules have been demonstrated to predict the risk of recurrent cerebrovascular events or treatment response in these patients. A rapid point of care assay, combining the determination of different biomarkers, has been developed to improve triage recognition of acute cerebrovascular accidents. CONCLUSIONS The implementation of blood biomarkers in the clinical management of TIA/MIS could ameliorate urgent identification, risk stratification and individual treatment choice. Large prospective and longitudinal studies, adopting standardized sampling and analytic procedures, are needed to clarify blood biomarkers kinetic and their relationship with TIA and minor stroke etiology.
Collapse
Affiliation(s)
- Matteo Foschi
- Department of Neuroscience, Neurology Unit, S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Marina Padroni
- Neurology Unit, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Ferrara, Italy
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA; Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Michele Russo
- Department of Cardiovascular Diseases, Division of Cardiology - S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
15
|
Selvaraj P, Tanaka M, Wen J, Zhang Y. The Novel Monoacylglycerol Lipase Inhibitor MJN110 Suppresses Neuroinflammation, Normalizes Synaptic Composition and Improves Behavioral Performance in the Repetitive Traumatic Brain Injury Mouse Model. Cells 2021; 10:cells10123454. [PMID: 34943962 PMCID: PMC8700188 DOI: 10.3390/cells10123454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes. Spatial learning and memory deficits examined by Morris water maze between three and four weeks post-TBI were also reversed in the drug treated animals. Administration of MJN110 selectively elevated the levels of 2-AG and reduced the production of arachidonic acid (AA) and prostaglandin E2 (PGE2) in the TBI mouse brain. The increased production of proinflammatory cytokines, accumulation of astrocytes and microglia in the TBI mouse ipsilateral cerebral cortex and hippocampus were significantly reduced by MJN110 treatment. Neuronal cell death was also attenuated in the drug treated animals. MJN110 treatment normalized the expression of the NMDA receptor subunits NR2A and NR2B, the AMPA receptor subunits GluR1 and GluR2, and the GABAA receptor subunits α1, β2,3 and γ2, which were all reduced at 1, 2 and 4 weeks post-injury. The reduced inflammatory response and restored glutamate and GABA receptor expression likely contribute to the improved motor function, learning and memory in the MJN110 treated animals. The therapeutic effects of MJN110 were partially mediated by activation of CB1 and CB2 cannabinoid receptors and were eliminated when it was co-administered with DO34, a novel inhibitor of the 2-AG biosynthetic enzymes. Our results suggest that augmentation of the endogenous levels of 2-AG can be therapeutically useful in the treatment of TBI by suppressing neuroinflammation and maintaining the balance between excitatory and inhibitory neurotransmission.
Collapse
Affiliation(s)
- Prabhuanand Selvaraj
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Mikiei Tanaka
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; (P.S.); (M.T.); (J.W.)
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3212
| |
Collapse
|
16
|
PSD-95: An Effective Target for Stroke Therapy Using Neuroprotective Peptides. Int J Mol Sci 2021; 22:ijms222212585. [PMID: 34830481 PMCID: PMC8618101 DOI: 10.3390/ijms222212585] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Therapies for stroke have remained elusive in the past despite the great relevance of this pathology. However, recent results have provided strong evidence that postsynaptic density protein-95 (PSD-95) can be exploited as an efficient target for stroke neuroprotection by strategies able to counteract excitotoxicity, a major mechanism of neuronal death after ischemic stroke. This scaffold protein is key to the maintenance of a complex framework of protein interactions established at the postsynaptic density (PSD) of excitatory neurons, relevant to neuronal function and survival. Using cell penetrating peptides (CPPs) as therapeutic tools, two different approaches have been devised and advanced to different levels of clinical development. First, nerinetide (Phase 3) and AVLX-144 (Phase 1) were designed to interfere with the coupling of the ternary complex formed by PSD-95 with GluN2B subunits of the N-methyl-D-aspartate type of glutamate receptors (NMDARs) and neuronal nitric oxide synthase (nNOS). These peptides reduced neurotoxicity derived from NMDAR overactivation, decreased infarct volume and improved neurobehavioral results in different models of ischemic stroke. However, an important caveat to this approach was PSD-95 processing by calpain, a pathological mechanism specifically induced by excitotoxicity that results in a profound alteration of survival signaling. Thus, a third peptide (TP95414) has been recently developed to interfere with PSD-95 cleavage and reduce neuronal death, which also improves neurological outcome in a preclinical mouse model of permanent ischemia. Here, we review recent advancements in the development and characterization of PSD-95-targeted CPPs and propose the combination of these two approaches to improve treatment of stroke and other excitotoxicity-associated disorders.
Collapse
|
17
|
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6:2854-2869. [PMID: 33718667 PMCID: PMC7905263 DOI: 10.1016/j.bioactmat.2021.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is still a serious threat to human life and health, but there are few therapeutic options available to treat stroke because of limited blood-brain penetration. The development of nanotechnology may overcome some of the problems related to traditional drug development. In this review, we focus on the potential applications of nanotechnology in stroke. First, we will discuss the main molecular pathological mechanisms of ischemic stroke to develop a targeted strategy. Second, considering the important role of the blood-brain barrier in stroke treatment, we also delve mechanisms by which the blood-brain barrier protects the brain, and the reasons why the therapeutics must pass through the blood-brain barrier to achieve efficacy. Lastly, we provide a comprehensive review related to the application of nanomaterials to treat stroke, including liposomes, polymers, metal nanoparticles, carbon nanotubes, graphene, black phosphorus, hydrogels and dendrimers. To conclude, we will summarize the challenges and future prospects of nanomedicine-based stroke treatments.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wentian Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Nan Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Ning Liu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, 518116, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
19
|
Ding F, Bai Y, Cheng Q, Yu S, Cheng M, Wu Y, Zhang X, Liang X, Gu X. Bidentatide, a Novel Plant Peptide Derived from Achyranthes bidentata Blume: Isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. Int J Mol Sci 2021; 22:ijms22157977. [PMID: 34360755 PMCID: PMC8348887 DOI: 10.3390/ijms22157977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Increasing attention is being focused on the use of polypeptide-based N-methyl-d-aspartate (NMDA) receptor antagonists for the treatment of nervous system disorders. In our study on Achyranthes bidentata Blume, we identified an NMDA receptor subtype 2B (NR2B) antagonist that exerts distinct neuroprotective actions. This antagonist is a 33 amino acid peptide, named bidentatide, which contains three disulfide bridges that form a cysteine knot motif. We determined the neuroactive potential of bidentatide by evaluating its in vitro effects against NMDA-mediated excitotoxicity. The results showed that pretreating primary cultured hippocampal neurons with bidentatide prevented NMDA-induced cell death and apoptosis via multiple mechanisms that involved intracellular Ca2+ inhibition, NMDA current inhibition, and apoptosis-related protein expression regulation. These mechanisms were all dependent on bidentatide-induced inhibitory regulation of NR2B-containing NMDA receptors; thus, bidentatide may contribute to the development of neuroprotective agents that would likely possess the high selectivity and safety profiles inherent in peptide drugs.
Collapse
Affiliation(s)
- Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Yunpeng Bai
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- School of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road 156, Zhengzhou 450046, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- Partner Group of Max Planck Society, Dalian 116023, China
- Correspondence: (X.Z.); (X.L.); (X.G.)
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Sciences of Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; (Y.B.); (M.C.); (Y.W.)
- Correspondence: (X.Z.); (X.L.); (X.G.)
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China; (F.D.); (Q.C.); (S.Y.)
- Correspondence: (X.Z.); (X.L.); (X.G.)
| |
Collapse
|
20
|
Back MK, Ruggieri S, Jacobi E, von Engelhardt J. Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors. Int J Mol Sci 2021; 22:ijms22126298. [PMID: 34208315 PMCID: PMC8231237 DOI: 10.3390/ijms22126298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Onset and progression of Alzheimer's disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD mice, extrasynaptic NMDARs seem to contain GluN1/GluN2A and GluN1/GluN2A/GluN2B. We used conditional GluN1 and GluN2B knockout mice to investigate whether NMDARs contribute to Aβ-toxicity. Spine number was decreased in pyramidal cells of 5xFAD mice and increased in neurons with 3-week virus-mediated Aβ-overexpression. NMDARs were required for both Aβ-mediated changes in spine number and functional synapses. Thus, our study gives novel insights into the Aβ-mediated regulation of NMDAR expression and the role of NMDARs in Aβ pathophysiology in the somatosensory cortex.
Collapse
|
21
|
Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics 2021; 11:6746-6765. [PMID: 34093851 PMCID: PMC8171078 DOI: 10.7150/thno.60701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a multidomain protein critical to the assembly of signaling complexes at excitatory synapses, required for neuronal survival and function. However, calpain-processing challenges PSD-95 function after overactivation of excitatory glutamate receptors (excitotoxicity) in stroke, a leading cause of death, disability and dementia in need of efficient pharmacological treatments. A promising strategy is neuroprotection of the infarct penumbra, a potentially recoverable area, by promotion of survival signaling. Interference of PSD-95 processing induced by excitotoxicity might thus be a therapeutic target for stroke and other excitotoxicity-associated pathologies. Methods: The nature and stability of PSD-95 calpain-fragments was analyzed using in vitro assays or excitotoxic conditions induced in rat primary neuronal cultures or a mouse model of stroke. We then sequenced PSD-95 cleavage-sites and rationally designed three cell-penetrating peptides (CPPs) containing these sequences. The peptides effects on PSD-95 stability and neuronal viability were investigated in the cultured neurons, subjected to acute or chronic excitotoxicity. We also analyzed the effect of one of these peptides in the mouse model of stroke by measuring infarct size and evaluating motor coordination and balance. Results: Calpain cleaves three interdomain linker regions in PSD-95 and produces stable fragments corresponding to previously described PSD-95 supramodules (PDZ1-2 and P-S-G) as well as a truncated form SH3-GK. Peptide TP95414, containing the cleavage site in the PDZ3-SH3 linker, is able to interfere PSD-95 downregulation and reduces neuronal death by excitotoxicity. Additionally, TP95414 is delivered to mice cortex and, in a severe model of permanent ischemia, significantly improves the neurological outcome after brain damage. Conclusions: Interference of excitotoxicity-induced PSD-95-processing with specific CPPs constitutes a novel and promising therapeutic approach for stroke treatment.
Collapse
|
22
|
eNOS-dependent S-nitrosylation of the NF-κB subunit p65 has neuroprotective effects. Cell Death Dis 2021; 12:4. [PMID: 33414434 PMCID: PMC7790835 DOI: 10.1038/s41419-020-03338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.
Collapse
|
23
|
Comparative Proteomics Unveils LRRFIP1 as a New Player in the DAPK1 Interactome of Neurons Exposed to Oxygen and Glucose Deprivation. Antioxidants (Basel) 2020; 9:antiox9121202. [PMID: 33265962 PMCID: PMC7761126 DOI: 10.3390/antiox9121202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Death-associated protein kinase 1 (DAPK1) is a pleiotropic hub of a number of networked distributed intracellular processes. Among them, DAPK1 is known to interact with the excitotoxicity driver NMDA receptor (NMDAR), and in sudden pathophysiological conditions of the brain, e.g., stroke, several lines of evidence link DAPK1 with the transduction of glutamate-induced events that determine neuronal fate. In turn, DAPK1 expression and activity are known to be affected by the redox status of the cell. To delineate specific and differential neuronal DAPK1 interactors in stroke-like conditions in vitro, we exposed primary cultures of rat cortical neurons to oxygen/glucose deprivation (OGD), a condition that increases reactive oxygen species (ROS) and lipid peroxides. OGD or control samples were co-immunoprecipitated separately, trypsin-digested, and proteins in the interactome identified by high-resolution LC-MS/MS. Data were processed and curated using bioinformatics tools. OGD increased total DAPK1 protein levels, cleavage into shorter isoforms, and dephosphorylation to render the active DAPK1 form. The DAPK1 interactome comprises some 600 proteins, mostly involving binding, catalytic and structural molecular functions. OGD up-regulated 190 and down-regulated 192 candidate DAPK1-interacting proteins. Some differentially up-regulated interactors related to NMDAR were validated by WB. In addition, a novel differential DAPK1 partner, LRRFIP1, was further confirmed by reverse Co-IP. Furthermore, LRRFIP1 levels were increased by pro-oxidant conditions such as ODG or the ferroptosis inducer erastin. The present study identifies novel partners of DAPK1, such as LRRFIP1, which are suitable as targets for neuroprotection.
Collapse
|
24
|
Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a Novel Mouse Model of Parkinson's Disease via Targeted Knockdown of Glutamate Transporter GLT-1 in the Substantia Nigra. ACS Chem Neurosci 2020; 11:406-417. [PMID: 31909584 DOI: 10.1021/acschemneuro.9b00609] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by pathological dopaminergic (DA) neuronal death and α-synuclein aggregation. Glutamate excitotoxicity is a well-established pathogenesis of PD that involves dysfunctional expression of glutamate transporters. Glutamate transporter-1 (GLT-1) is mainly responsible for clearance of glutamate at synapses, including DA synapses. However, the role of GLT-1 in the aberrant synaptic transmission in PD remains elusive. In the present study, we generated small-interfering RNAs (siRNAs) to knockdown GLT-1 expression in primary astrocytes, and we report that siRNA knockdown of astrocytic GLT-1 decreased postsynaptic density-95 (PSD-95) expression in neuron-astrocyte cocultures in vitro. Using adeno-associated viruses (AAVs) targeting GLT-1 short-hairpin RNA (shRNA) sequences with a glial fibrillary acidic protein (GFAP) promoter, we abolished astrocytic GLT-1 expression in the substantia nigra pars compacta (SNpc) of mice. We found that GLT-1 deficiency in the SNpc induced parkinsonian phenotypes in terms of progressive motor deficits and nigral DA neuronal death in mice. We also found that there were reactive astrocytes and microglia in the SNpc upon GLT-1 knockdown. Furthermore, we used RNA sequencing to determine altered gene expression patterns upon GLT-1 knockdown in the SNpc, which revealed that disrupted calcium signaling pathways may be responsible for GLT-1 deficiency-mediated DA neuronal death in the SNpc. Taken together, our findings provide evidence for a novel role of GLT-1 in parkinsonian phenotypes in mice, which may contribute to further elucidation of the mechanisms of PD pathogenesis.
Collapse
Affiliation(s)
- Yunlong Zhang
- Institute of Neuroscience
and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Zhigang Jiao
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen 361102, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| |
Collapse
|
25
|
Bhatia R, Warrier A, Sreenivas V, Bali P, Sisodia P, Gupta A, Singh N, Padma Srivastava MV, Prasad K. Role of Blood Biomarkers in Differentiating Ischemic Stroke and Intracerebral Hemorrhage. Neurol India 2020; 68:824-829. [DOI: 10.4103/0028-3886.293467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Shah FA, Li T, Kury LTA, Zeb A, Khatoon S, Liu G, Yang X, Liu F, Yao H, Khan AU, Koh PO, Jiang Y, Li S. Pathological Comparisons of the Hippocampal Changes in the Transient and Permanent Middle Cerebral Artery Occlusion Rat Models. Front Neurol 2019; 10:1178. [PMID: 31798514 PMCID: PMC6868119 DOI: 10.3389/fneur.2019.01178] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
Ischemic strokes are categorized by permanent or transient obstruction of blood flow, which impedes delivery of oxygen and essential nutrients to brain. In the last decade, the therapeutic window for tPA has increased from 3 to 5-6 h, and a new technique, involving the mechanical removal of the clot (endovascular thrombectomy) to allow reperfusion of the injured area, is being used more often. This last therapeutic approach can be done until 24 h after stroke onset. Due to this fact, more acute ischemic stroke patients are now being recanalized, and so tMCAO is probably the "best" model to address these patients that have a potential good outcome in terms of survival and functional recovery. However, permanent occlusion patients are also important, not only to increase survival rate but also to improve functional outcomes, although these are more difficult to achieve. So, both models are important, and which target different stroke patients in the clinical scenario. Hippocampus has a vital role in memory and cognition, is prone to ischemic induced neurodegeneration. This study was designed to delineate the molecular, pathological, and neurological changes in rat models of t-MCAO, permanent MCAO (pMCAO), and pMCAO with diabetic conditions in hippocampal tissue. Our results showed that these three models showed distinct discrepancies at numerous pathological process, including key signaling molecules involved in neuronal apoptosis, glutamate induced excitotoxicity, neuroinflammation, oxidative stress, and neurotrophic changes. Our result suggests that the two commonly used MCAO models exhibited tremendous differences in terms of neuronal cell loss, glutamate excitotoxic related signaling, synaptic transmission markers, neuron inflammatory and oxidative stress molecules. These differences may reflect the variations in different models, which may provide valuable information for mechanistic and therapeutic inconsistences as experienced in both preclinical models and clinical trials.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lina Tariq Al Kury
- College of Natural and Health Sciences, Zayed University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alam Zeb
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Shehla Khatoon
- Department of Anatomy, Khyber Medical College, Khyber Medical University, Peshawar, Pakistan
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fang Liu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| | - Huo Yao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Arif-Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, International University, Islamabad, Pakistan
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju-si, South Korea
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| |
Collapse
|
27
|
López-Menéndez C, Simón-García A, Gamir-Morralla A, Pose-Utrilla J, Luján R, Mochizuki N, Díaz-Guerra M, Iglesias T. Excitotoxic targeting of Kidins220 to the Golgi apparatus precedes calpain cleavage of Rap1-activation complexes. Cell Death Dis 2019; 10:535. [PMID: 31296845 PMCID: PMC6624258 DOI: 10.1038/s41419-019-1766-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
Excitotoxic neuronal death induced by high concentrations of glutamate is a pathological event common to multiple acute or chronic neurodegenerative diseases. Excitotoxicity is mediated through overactivation of the N-Methyl-D-aspartate type of ionotropic glutamate receptors (NMDARs). Physiological stimulation of NMDARs triggers their endocytosis from the neuronal surface, inducing synaptic activity and survival. However almost nothing is known about the internalization of overactivated NMDARs and their interacting proteins, and how this endocytic process is connected with neuronal death has been poorly explored. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is a component of NMDAR complexes essential for neuronal viability by the control of ERK activation. Here we have investigated Kidins220 endocytosis induced by NMDAR overstimulation and the participation of this internalization step in the molecular mechanisms of excitotoxicity. We show that excitotoxicity induces Kidins220 and GluN1 traffic to the Golgi apparatus (GA) before Kidins220 is degraded by the protease calpain. We also find that excitotoxicity triggers an early activation of Rap1-GTPase followed by its inactivation. Kidins220 excitotoxic endocytosis and subsequent calpain-mediated downregulation governs this late inactivation of Rap1 that is associated to decreases in ERK activity preceding neuronal death. Furthermore, we identify the molecular mechanisms involved in the excitotoxic shutoff of Kidins220/Rap1/ERK prosurvival cascade that depends on calpain processing of Rap1-activation complexes. Our data fit in a model where Kidins220 targeting to the GA during early excitotoxicity would facilitate Rap1 activation and subsequent stimulation of ERK. At later times, activation of Golgi-associated calpain, would promote the degradation of GA-targeted Kidins220 and two additional components of the specific Rap1 activation complex, PDZ-GEF1, and S-SCAM. In this way, late excitotoxicity would turn off Rap1/ERK cascade and compromise neuronal survival.
Collapse
Affiliation(s)
- Celia López-Menéndez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Ana Simón-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Andrea Gamir-Morralla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.,Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Julia Pose-Utrilla
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Dept. Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/ Almansa 14, 02008, Albacete, Spain
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, 565-8565, Osaka, Japan
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), C/ Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, C/ Valderrebollo, 5, 28031, Madrid, Spain.
| |
Collapse
|
28
|
Tejeda GS, Esteban‐Ortega GM, San Antonio E, Vidaurre ÓG, Díaz‐Guerra M. Prevention of excitotoxicity-induced processing of BDNF receptor TrkB-FL leads to stroke neuroprotection. EMBO Mol Med 2019; 11:e9950. [PMID: 31273936 PMCID: PMC6609917 DOI: 10.15252/emmm.201809950] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroprotective strategies aimed to pharmacologically treat stroke, a prominent cause of death, disability, and dementia, have remained elusive. A promising approach is restriction of excitotoxic neuronal death in the infarct penumbra through enhancement of survival pathways initiated by brain-derived neurotrophic factor (BDNF). However, boosting of neurotrophic signaling after ischemia is challenged by downregulation of BDNF high-affinity receptor, full-length tropomyosin-related kinase B (TrkB-FL), due to calpain-degradation, and, secondarily, regulated intramembrane proteolysis. Here, we have designed a blood-brain barrier (BBB) permeable peptide containing TrkB-FL sequences (TFL457 ) which prevents receptor disappearance from the neuronal surface, early induced after excitotoxicity. In this way, TFL457 interferes TrkB-FL cleavage by both proteolytic systems and increases neuronal viability via a PLCγ-dependent mechanism. By preserving downstream CREB and MEF2 promoter activities, TFL457 initiates a feedback mechanism favoring increased levels in excitotoxic neurons of critical prosurvival mRNAs and proteins. This neuroprotective peptide could be highly relevant for stroke therapy since, in a mouse ischemia model, it counteracts TrkB-FL downregulation in the infarcted brain, efficiently decreases infarct size, and improves neurological outcome.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
- Present address:
Gardiner LaboratoryInstitute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Gema M Esteban‐Ortega
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Esther San Antonio
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Óscar G Vidaurre
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| | - Margarita Díaz‐Guerra
- Instituto de Investigaciones Biomédicas “Alberto Sols”Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
| |
Collapse
|
29
|
On the cause of sleep: Protein fragments, the concept of sentinels, and links to epilepsy. Proc Natl Acad Sci U S A 2019; 116:10773-10782. [PMID: 31085645 DOI: 10.1073/pnas.1904709116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular-level cause of sleep is unknown. In 2012, we suggested that the cause of sleep stems from cumulative effects of numerous intracellular and extracellular protein fragments. According to the fragment generation (FG) hypothesis, protein fragments (which are continually produced through nonprocessive cleavages by intracellular, intramembrane, and extracellular proteases) can be beneficial but toxic as well, and some fragments are eliminated slowly during wakefulness. We consider the FG hypothesis and propose that, during wakefulness, the degradation of accumulating fragments is delayed within natural protein aggregates such as postsynaptic densities (PSDs) in excitatory synapses and in other dense protein meshworks, owing to an impeded diffusion of the ∼3,000-kDa 26S proteasome. We also propose that a major function of sleep involves a partial and reversible expansion of PSDs, allowing an accelerated destruction of PSD-localized fragments by the ubiquitin/proteasome system. Expansion of PSDs would alter electrochemistry of synapses, thereby contributing to a decreased neuronal firing during sleep. If so, the loss of consciousness, a feature of sleep, would be the consequence of molecular processes (expansions of protein meshworks) that are required for degradation of protein fragments. We consider the concept of FG sentinels, which signal to sleep-regulating circuits that the levels of fragments are going up. Also discussed is the possibility that protein fragments, which are known to be overproduced during an epileptic seizure, may contribute to postictal sleep and termination of seizures. These and related suggestions, described in the paper, are compatible with current evidence about sleep and lead to testable predictions.
Collapse
|
30
|
Sun Y, Feng X, Ding Y, Li M, Yao J, Wang L, Gao Z. Phased Treatment Strategies for Cerebral Ischemia Based on Glutamate Receptors. Front Cell Neurosci 2019; 13:168. [PMID: 31105534 PMCID: PMC6499003 DOI: 10.3389/fncel.2019.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 11/23/2022] Open
Abstract
Extracellular glutamate accumulation following cerebral ischemia leads to overactivation of glutamate receptors, thereby resulting in intracellular Ca2+ overload and excitotoxic neuronal injury. Multiple attempts have been made to counteract such effects by reducing glutamate receptor function, but none have been successful. In this minireview, we present the available evidence regarding the role of all types of ionotropic and metabotropic glutamate receptors in cerebral ischemia and propose phased treatment strategies based on glutamate receptors in both the acute and post-acute phases of cerebral ischemia, which may help realize the clinical application of glutamate receptor antagonists.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Yue Ding
- Shijiazhuang Vocational College of Technology and Information, Shijiazhuang, China
| | - Mengting Li
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Jun Yao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, United States
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
31
|
Shah FA, Liu G, Al Kury LT, Zeb A, Abbas M, Li T, Yang X, Liu F, Jiang Y, Li S, Koh PO. Melatonin Protects MCAO-Induced Neuronal Loss via NR2A Mediated Prosurvival Pathways. Front Pharmacol 2019; 10:297. [PMID: 31024297 PMCID: PMC6461025 DOI: 10.3389/fphar.2019.00297] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Stroke is the significant cause of human mortality and sufferings depending upon race and demographic location. Melatonin is a potent antioxidant that exerts protective effects in differential experimental stroke models. Several mechanisms have been previously suggested for the neuroprotective effects of melatonin in ischemic brain injury. The aim of this study is to investigate whether melatonin treatment affects the glutamate N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor signaling in cerebral cortex and striatum 24 h after permanent middle cerebral artery occlusion (MCAO). Melatonin (5 mg/kg) attenuated ischemia-induced down regulation of NMDA receptor 2 (NR2a), postsynaptic density-95 (PSD95) and increases NR2a/PSD95 complex association, which further activates the pro-survival PI3K/Akt/GSK3β pathway with mitigated collapsin response mediator protein 2 (CRMP2) phosphorylation. Furthermore, melatonin increases the expression of γ-enolase, a neurotrophic factor in ischemic cortex and striatum, and preserve the expression of presynaptic (synaptophysin and SNAP25) and postsynaptic (p-GluR1845) protein. Our study demonstrated a novel neuroprotective mechanism for melatonin in ischemic brain injury which could be a promising neuroprotective agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Gongping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lina T Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xifei Yang
- Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| | - Fang Liu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | | |
Collapse
|
32
|
Seyedsaadat SM, F. Kallmes D. Memantine for the treatment of ischemic stroke: experimental benefits and clinical lack of studies. Rev Neurosci 2019; 30:203-220. [DOI: 10.1515/revneuro-2018-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023]
Abstract
AbstractStroke is an important cause of mortality and disability worldwide. Immediately after stroke onset, the ischemic cascade initiates and deleteriously affects neural cells. Time to reperfusion therapy is a critical determinant of functional recovery in stroke patients. Although recent trials have shown the significant efficacy of endovascular thrombectomy, either alone or with intravenous tissue plasminogen activator, in improving the functional outcomes of stroke patients with large vessel occlusion, hours can pass before patients receive reperfusion therapy. Moreover, many patients do not meet the eligibility criteria to receive reperfusion treatments. Therefore, an adjunct and alternative agent that can protect ischemic neuronal tissue during the hyperacute phase until reperfusion therapy can be administered may prevent further brain damage and enhance functional recovery. Memantine is a US Food and Drug Administration approved drug for the treatment of Alzheimer’s disease. Memantine blocks overstimulated N-methyl-d-aspartate receptors and prevents neurotoxicity caused by massive glutamate release. Preclinical studies show that memantine decreases infarction volume and improves neurologic outcomes. However, few clinical studies have evaluated the safety and efficacy of memantine in stroke patients. This review article summarizes the current evidence for the role of memantine in the treatment of ischemic stroke and highlights areas for future research.
Collapse
|
33
|
Gonçalves LV, Herlinger AL, Ferreira TAA, Coitinho JB, Pires RGW, Martins-Silva C. Environmental enrichment cognitive neuroprotection in an experimental model of cerebral ischemia: biochemical and molecular aspects. Behav Brain Res 2018; 348:171-183. [DOI: 10.1016/j.bbr.2018.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023]
|
34
|
Yeboah F, Guo H, Bill A. A High-throughput Calcium-flux Assay to Study NMDA-receptors with Sensitivity to Glycine/D-serine and Glutamate. J Vis Exp 2018. [PMID: 30059041 DOI: 10.3791/58160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors (NMDAR) are classified as ionotropic glutamate receptors and have critical roles in learning and memory. NMDAR malfunction, expressed as either over- or under-activity caused by mutations, altered expression, trafficking, or localization, can contribute to numerous diseases, especially in the central nervous system. Therefore, understanding the receptor's biology as well as facilitating the discovery of compounds and small molecules is crucial in ongoing efforts to combat neurological diseases. Current approaches to studying the receptor have limitations including low throughput, high cost, and the inability to study its functional abilities due to the necessary presence of channel blockers to prevent NMDAR-mediated excitotoxicity. Additionally, the existing assay systems are sensitive to stimulation by glutamate only and lack sensitivity to stimulation by glycine, the other co-ligand of the NMDAR. Here, we present the first plate-based assay with high-throughput power to study an NMDA receptor with sensitivity to both co-ligands, glutamate and D-serine/glycine. This approach allows the study of different NMDAR subunit compositions and allows functional studies of the receptor in glycine- and/or glutamate-sensitive modes. Additionally, the method does not require the presence of inhibitors during measurements. The effects of positive and negative allosteric modulators can be detected with this assay and the known pharmacology of NMDAR has been replicated in our system. This technique overcomes the limitations of existing methods and is cost-effective. We believe that this novel technique will accelerate the discovery of therapies for NMDAR-mediated pathologies.
Collapse
Affiliation(s)
- Fred Yeboah
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research
| | - Hongqiu Guo
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research
| | - Anke Bill
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research;
| |
Collapse
|
35
|
Zaric M, Drakulic D, Stojanovic IG, Mitrovic N, Grkovic I, Martinovic J. Regional-specific effects of cerebral ischemia/reperfusion and dehydroepiandrosterone on synaptic NMDAR/PSD-95 complex in male Wistar rats. Brain Res 2018; 1688:73-80. [PMID: 29577884 DOI: 10.1016/j.brainres.2018.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
Excessive glutamate efflux and N-methyl-D-aspartate receptor (NMDAR) over-activation represent well-known hallmarks of cerebral ischemia/reperfusion (I/R) injury, still, expression of proteins involved in this aspect of I/R pathophysiology show inconsistent data. Neurosteroid dehydroepiandrosterone (DHEA) has been proposed as potent NMDAR modulator, but its influence on I/R-induced changes up to date remains questionable. Therefore, I/R-governed alteration of vesicular glutamate transporter 1 (vGluT1), synaptic NMDAR subunit composition, postsynaptic density protein 95 (PSD-95) and neuronal morphology alone or following DHEA treatment were examined. For that purpose, adult male Wistar rats were treated with a single dose of vehicle or DHEA (20 mg/kg i.p.) 4 h following sham operation or 15 min bilateral common carotid artery occlusion. Western blot was used for analyses of synaptic protein expressions in hippocampus and prefrontal cortex, while neuronal morphology was assessed using Nissl staining. Regional-specific postischemic changes were detected on protein level i.e. signs of neuronal damage in CA1 area was accompanied with hippocampal vGluT1, NR1, NR2B enhancement and PSD-95 decrement, while histological changes observed in layer III were associated with decreased NR1 subunit in prefrontal cortex. Under physiological conditions DHEA had no effect on protein and histological appearance, while in ischemic milieu it restored hippocampal PSD-95 and NR1 in prefrontal cortex to the control level. Along with intact neurons, ones characterized by morphology observed in I/R group were also present. Future studies involving NMDAR-related intracellular signaling and immunohistochemical analysis will reveal precise effects of I/R and DHEA treatment in selected brain regions.
Collapse
Affiliation(s)
- Marina Zaric
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Dunja Drakulic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ivana Gusevac Stojanovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Natasa Mitrovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jelena Martinovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
36
|
Abstract
INTRODUCTION Calpains represent a family of neutral, calcium-dependent proteases, which modify the function of their target proteins by partial truncation. These proteases have been implicated in numerous cell functions, including cell division, proliferation, migration, and death. In the CNS, where calpain-1 and calpain-2 are the main calpain isoforms, their activation has been linked to synaptic plasticity as well as to neurodegeneration. This review will focus on the role of calpain-2 in acute neuronal injury and discuss the possibility of developing selective calpain-2 inhibitors for therapeutic purposes. Areas covered: This review covers the literature showing how calpain-2 is implicated in neuronal death in a number of pathological conditions. The possibility of developing new selective calpain-2 inhibitors for treating these conditions is discussed. Expert opinion: As evidence accumulates that calpain-2 activation participates in acute neuronal injury, there is interest in developing therapeutic approaches using selective calpain-2 inhibitors. Recent data indicate the potential use of such inhibitors in various pathologies associated with acute neuronal death. The possibility of extending the use of such inhibitors to more chronic forms of neurodegeneration is discussed.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Xiaoning Bi
- Department of Basic Science, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| | - Michel Baudry
- Graduate College of Biomedical Sciences, COMP Western University of Health Sciences 309 E. 2 St., Pomona, CA 91766
| |
Collapse
|
37
|
Raza MZ, Allegrini S, Dumontet C, Jordheim LP. Functions of the multi-interacting protein KIDINS220/ARMS in cancer and other pathologies. Genes Chromosomes Cancer 2017; 57:114-122. [PMID: 29181864 DOI: 10.1002/gcc.22514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
Development of an organ and subsequently the whole system from an embryo is a highly integrated process. Although there is evidence that different systems are interconnected during developmental stages, the molecular understanding of this relationship is either not known or only to a limited extent. Nervous system development, amongst all, is maybe the most crucial and complex process. It relies on the correct distribution of specific neuronal growth factors and hormones to the specific receptors. Among the plethora of proteins that are involved in downstream signalling of neuronal growth factors, we find the kinase-D interacting substrate of 220 kDa (KIDINS220), also known as ankyrin-rich repeat membrane spanning (ARMS) protein. KIDINS220 has been shown to play a substantial role in the nervous system and vascular system development as well as in neuronal survival and differentiation. It serves as a downstream regulator for many important neuronal and vascular growth factors such as vascular endothelial growth factor (VEGF), the neurotrophin family, glutamate receptors and ephrin receptors. Moreover, activation and differentiation of B- and T-cells, as well as tumour cell proliferation has also shown to be related to KIDINS220. This review comprehensively summarises the existing research data on this protein, with a particular interest in its role in cancer and in other pathologies.
Collapse
Affiliation(s)
- Muhammad-Zawwad Raza
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Simone Allegrini
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Charles Dumontet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Lars Petter Jordheim
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| |
Collapse
|
38
|
McQueen J, Ryan TJ, McKay S, Marwick K, Baxter P, Carpanini SM, Wishart TM, Gillingwater TH, Manson JC, Wyllie DJA, Grant SGN, McColl BW, Komiyama NH, Hardingham GE. Pro-death NMDA receptor signaling is promoted by the GluN2B C-terminus independently of Dapk1. eLife 2017; 6:e17161. [PMID: 28731405 PMCID: PMC5544426 DOI: 10.7554/elife.17161] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/17/2017] [Indexed: 01/09/2023] Open
Abstract
Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.
Collapse
Affiliation(s)
- Jamie McQueen
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Australia
| | - Sean McKay
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Marwick
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Baxter
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah M Carpanini
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas M Wishart
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - Jean C Manson
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Seth G N Grant
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Barry W McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Noboru H Komiyama
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E Hardingham
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- nPAD MRC Mouse consortium, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Barad Z, Grattan DR, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep 2017; 7:42926. [PMID: 28220891 PMCID: PMC5318904 DOI: 10.1038/srep42926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
In the stargazer mouse model of absence epilepsy, altered corticothalamic excitation of reticular thalamic nucleus (RTN) neurons has been suggested to contribute to abnormal synchronicity in the corticothalamic-thalamocortical circuit, leading to spike-wave discharges, the hallmark of absence seizures. AMPA receptor expression and function are decreased in stargazer RTN, due to a mutation of AMPAR auxiliary subunit stargazin. It is unresolved and debated, however, if decreased excitation of RTN is compatible with epileptogenesis. We tested the hypothesis that relative NMDAR expression may be increased in RTN and/or thalamic synapses in stargazers using Western blot on dissected thalamic nuclei and biochemically isolated synapses, as well as immunogold cytochemistry in RTN. Expression of main NMDAR subunits was variable in stargazer RTN and relay thalamus; however, mean expression values were not statistically significantly different compared to controls. Furthermore, no systematic changes in synaptic NMDAR levels could be detected in stargazer thalamus. In contrast, AMPAR subunits were markedly decreased in both nucleus-specific and synaptic preparations. Thus, defective AMPAR trafficking in stargazer thalamus does not appear to lead to a ubiquitous compensatory increase in total and synaptic NMDAR expression, suggesting that elevated NMDAR function is not mediated by changes in protein expression in stargazer mice.
Collapse
Affiliation(s)
- Z Barad
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Dunedin, New Zealand
| | - B Leitch
- Department of Anatomy, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Chen BH, Park JH, Ahn JH, Cho JH, Kim IH, Lee JC, Won MH, Lee CH, Hwang IK, Kim JD, Kang IJ, Cho JH, Shin BN, Kim YH, Lee YL, Park SM. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neural Regen Res 2017; 12:220-227. [PMID: 28400803 PMCID: PMC5361505 DOI: 10.4103/1673-5374.200805] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea
| |
Collapse
|
41
|
Clonidine preconditioning alleviated focal cerebral ischemic insult in rats via up-regulating p-NMDAR1 and down-regulating NMDAR2A / p-NMDAR2B. Eur J Pharmacol 2016; 793:89-94. [PMID: 27806917 DOI: 10.1016/j.ejphar.2016.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
Abstract
A brain ischemia rat model was established by middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 4h to investigate the underlying mechanism of the neuroprotection action of clonidine, a classical alpha-2 adrenergic agonist, on cerebral ischemia. Clonidine and yohimbine were intraperitoneally given to the rats each day for a week before ischemia. Neurological deficits evaluations were carried out at 6h after operation. TTC staining method was used to measure the volume of brain infarction. Expression levels of NMDAR1, NMDAR2A, NMDAR2B were assayed by western blotting. Our data demonstrated that clonidine pretreatment significantly improved the neurological deficit scores and reduced the brain infarct volumes of the rats. Furthermore, protein expression level of p-NMDAR2B in cortex was significantly up-regulated whereas that of p-NMDAR1 was decreased when compared with the sham-operated rats. Remarkably, clonidine treatment led to significant down-regulation of p-NMDAR2B and NMDAR2A in addition to enhancement of the expression level of p-NMDAR1 in cortex. This is the first report illustrating the neuroprotective role of clonidine may be mediated through modulation of the expression levels of p-NMDAR2B, NMDAR2A and p-NMDAR1 during cerebral ischemia.
Collapse
|
42
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
43
|
Chen ZZ, Yang DD, Zhao Z, Yan H, Ji J, Sun XL. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia. Life Sci 2016; 150:8-14. [PMID: 26920629 DOI: 10.1016/j.lfs.2016.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023]
Abstract
AIMS Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. MAIN METHODS We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. KEY FINDINGS Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. SIGNIFICANCE These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke.
Collapse
Affiliation(s)
- Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Dan-Dan Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Zhan Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Hui Yan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
44
|
Yang X, Zhang X, Li Y, Han S, Howells DW, Li S, Li J. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice. J Neurochem 2016; 137:446-59. [PMID: 26788931 DOI: 10.1111/jnc.13538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
We previously reported that conventional protein kinase C (cPKC)β participated in hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury, and collapsin response-mediated protein 2 (CRMP2) was identified as a cPKCβ interacting protein. In this study, we explored the regulation of CRMP2 phosphorylation and proteolysis by cPKCβ, and their role in ischemic injury of oxygen-glucose deprivation (OGD)-treated cortical neurons and brains of mice with middle cerebral artery occlusion-induced ischemic stroke. The results demonstrated that cPKCβ-mediated CRMP2 phosphorylation via the cPKCβ-selective activator 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and inhibition of calpain-mediated CRMP2 proteolysis by calpeptin and a fusing peptide containing TAT peptide and the calpain cleavage site of CRMP2 (TAT-CRMP2) protected neurons against OGD-induced cell death through inhibiting CRMP2 proteolysis in cultured cortical neurons. The OGD-induced nuclear translocation of the CRMP2 breakdown product was inhibited by DOPPA, calpeptin, and TAT-CRMP2 in cortical neurons. In addition, both cPKCβ activation and CRMP2 proteolysis inhibition by hypoxic preconditioning and intracerebroventricular injections of DOPPA, calpeptin, and TAT-CRMP2 improved the neurological deficit in addition to reducing the infarct volume and proportions of cells with pyknotic nuclei in the peri-infact region of mice with ischemic stroke. These results suggested that cPKCβ modulates CRMP2 phosphorylation and proteolysis, and cPKCβ activation alleviates ischemic injury in the cultured cortical neurons and brains of mice with ischemic stroke through inhibiting CRMP2 proteolysis by phosphorylation. Focal cerebral ischemia induces a large flux of Ca(2+) to activate calpain which cleaves collapsin response mediator (CRMP) 2 into breakdown product (BDP). Inhibition of CRMP2 cleavage by calpeptin and TAT-CRMP2 alleviates ischemic injury. Conventional protein kinase C (cPKC)β-mediated phosphorylation could inhibit CRMP2 proteolysis and alleviate ischemic injury in cultured cortical neurons and ischemic stroke-induced mice.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Shujuan Li
- Department of Neurology, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Glushakova OY, Glushakov AV, Miller ER, Valadka AB, Hayes RL. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ 2016; 2:28-47. [PMID: 30276272 PMCID: PMC6126247 DOI: 10.4103/2394-8108.178546] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of current management of critically ill stroke patients depends on rapid assessment of the type of stroke, ischemic or hemorrhagic, and on a patient's general clinical status. Thrombolytic therapy with recombinant tissue plasminogen activator (r-tPA) is the only effective treatment for ischemic stroke approved by the Food and Drug Administration (FDA), whereas no treatment has been shown to be effective for hemorrhagic stroke. Furthermore, a narrow therapeutic window and fear of precipitating intracranial hemorrhage by administering r-tPA cause many clinicians to avoid using this treatment. Thus, rapid and objective assessments of stroke type at admission would increase the number of patients with ischemic stroke receiving r-tPA treatment and thereby, improve outcome for many additional stroke patients. Considerable literature suggests that brain-specific protein biomarkers of glial [i.e. S100 calcium-binding protein B (S100B), glial fibrillary acidic protein (GFAP)] and neuronal cells [e.g., ubiquitin C-terminal hydrolase-L1 (UCH-L1), neuron-specific enolase (NSE), αII-spectrin breakdown products SBDP120, SBDP145, and SBDP150, myelin basic protein (MBP), neurofilament light chain (NF-L), tau protein, visinin-like protein-1 (VLP 1), NR2 peptide] injury that could be detected in the cerebrospinal fluid (CSF) and peripheral blood might provide valuable and timely diagnostic information for stroke necessary to make prompt management and decisions, especially when the time of stroke onset cannot be determined. This information could include injury severity, prognosis of short-term and long-term outcomes, and discrimination of ischemic or hemorrhagic stroke. This chapter reviews the current status of the development of biomarker-based diagnosis of stroke and its potential application to improve stroke care.
Collapse
Affiliation(s)
- Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Alexander V Glushakov
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Emmy R Miller
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Alex B Valadka
- Department of Neurosurgery, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|
46
|
Lai Q, Hu P, Li Q, Li X, Yuan R, Tang X, Wang W, Li X, Fan H, Yin X. NMDA receptors promote neurogenesis in the neonatal rat subventricular zone following hypoxic‑ischemic injury. Mol Med Rep 2015; 13:206-12. [PMID: 26548659 PMCID: PMC4686072 DOI: 10.3892/mmr.2015.4501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Evidence suggests the involvement of N-methyl-D-aspartate receptors (NMDAR) in the regulation of neurogenesis. Functional properties of NMDAR are strongly influenced by the type of NR2 subunits in the receptor complex. NR2A- and NR2B-containing receptors are expressed in neonatal fore-brain regions, such as the subventricular zone (SVZ). The aim of the present study was to examine the effect of the protein expression of hypoxic-ischemic injury NMDAR subunits 2A and 2B in the SVZ of neonatal rats. Expression of these and other proteins of interest was performed using immunohistochemistry. The results showed that NR2A expression was decreased at 6 h after hypoxic-ischemic injury. By contrast, a significant increase in NR2B expression was observed at 24 h after hypoxic-ischemic injury, induced by the clamping of the right common carotid artery. The functional effect of NMDAR subunits on neurogenesis was also examined by quantifying Nestin and doublecortin (DCX), the microtubule-associated protein expressed only in immature neurons. In addition, the effects of selective non-competitive NMDAR antagonist MK-801 (0.5 mg/kg), NR2B antagonist Ro25-6981 (5 mg/kg), and NR2A antagonist NVP-AAM077 (5 mg/kg) administered 30 min prior to the hypoxic-ischemic injury were examined. The number of Nestin- and DCX-positive cells increased significantly 48 h after hypoxic-ischemic injury, which was reverted by the MK-801 and Ro25-6981 antagonists. Notably, NVP-AAM077 had no significant effect on the expression of Nestin and DCX. In conclusion, the results of the present study demonstrate that hypoxia-ischemia inhibited the expression of NR2A, but promoted the expression of NR2B. Furthermore, NMDAR promoted neurogenesis in the SVZ of neonatal brains.
Collapse
Affiliation(s)
- Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Rui Yuan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaohong Tang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoquan Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoxing Yin
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
47
|
Development of a neuroprotective peptide that preserves survival pathways by preventing Kidins220/ARMS calpain processing induced by excitotoxicity. Cell Death Dis 2015; 6:e1939. [PMID: 26492372 PMCID: PMC4632323 DOI: 10.1038/cddis.2015.307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), has a central role in the coordination of receptor crosstalk and the integration of signaling pathways essential for neuronal differentiation, survival and function. This protein is a shared downstream effector for neurotrophin- and ephrin-receptors signaling that also interacts with the N-methyl-d-aspartate type of glutamate receptors (NMDARs). Failures in neurotrophic support and glutamate signaling are involved in pathologies related to excitotoxicity and/or neurodegeneration, where different components of these dynamic protein complexes result altered by a combination of mechanisms. In the case of Kidins220/ARMS, overactivation of NMDARs in excitotoxicity and cerebral ischemia triggers its downregulation, which contributes to neuronal death. This key role in neuronal life/death decisions encouraged us to investigate Kidins220/ARMS as a novel therapeutic target for neuroprotection. As the main mechanism of Kidins220/ARMS downregulation in excitotoxicity is proteolysis by calpain, we decided to develop cell-penetrating peptides (CPPs) that could result in neuroprotection by interference of this processing. To this aim, we first analyzed in detail Kidins220/ARMS cleavage produced in vitro and in vivo, identifying a major calpain processing site in its C-terminal region (between amino acids 1669 and 1670) within a sequence motif highly conserved in vertebrates. Then, we designed a 25-amino acids CPP (Tat-K) containing a short Kidins220/ARMS sequence enclosing the identified calpain site (amino acids 1668–1681) fused to the HIV-1 Tat protein basic domain, able to confer membrane permeability to attached cargoes. Transduction of cortical neurons with Tat-K reduced Kidins220/ARMS calpain processing in a dose- and time-dependent manner upon excitotoxic damage and allowed preservation of the activity of pERK1/2 and pCREB, signaling molecules central to neuronal survival and functioning. Importantly, these effects were associated to a significant increase in neuronal viability. This Kidins220/ARMS-derived peptide merits further research to develop novel neuroprotective therapies for excitotoxicity-associated pathologies.
Collapse
|
48
|
Physiological Roles of Calpain 1 Associated to Multiprotein NMDA Receptor Complex. PLoS One 2015; 10:e0139750. [PMID: 26431040 PMCID: PMC4592069 DOI: 10.1371/journal.pone.0139750] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/15/2015] [Indexed: 01/10/2023] Open
Abstract
We have recently demonstrated that in resting conditions calpain 1, but not calpain 2, is specifically associated to the N-Methyl-D-Aspartate receptor (NMDAR) multiprotein complex. We are here reporting that in SKNBE neuroblastoma cells or in freshly isolated nerve terminals from adult rat hippocampus, the proteolytic activity of calpain 1 resident at the NMDAR is very low under basal conditions and greatly increases following NMDAR stimulation. Since the protease resides at the NMDAR in saturating amounts, variations in Ca2+ influx promote an increase in calpain 1 activity without affecting the amount of the protease originally associated to NMDAR. In all the conditions examined, resident calpain 1 specifically cleaves NR2B at the C-terminal region, leading to its internalization together with NR1 subunit. While in basal conditions intracellular membranes include small amounts of NMDAR containing the calpain-digested NR2B, upon NMDAR stimulation nearly all the receptor molecules are internalized. We here propose that resident calpain 1 is involved in NMDAR turnover, and following an increase in Ca2+ influx, the activated protease, by promoting the removal of NMDAR from the plasma membranes, can decrease Ca2+ entrance through this channel. Due to the absence of calpastatin in such cluster, the activity of resident calpain 1 may be under the control of HSP90, whose levels are directly related to the activation of this protease. Observations of different HSP90/calpain 1 ratios in different ultrasynaptic compartments support this conclusion.
Collapse
|
49
|
Cook C, Kang SS, Carlomagno Y, Lin WL, Yue M, Kurti A, Shinohara M, Jansen-West K, Perkerson E, Castanedes-Casey M, Rousseau L, Phillips V, Bu G, Dickson DW, Petrucelli L, Fryer JD. Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model. Hum Mol Genet 2015; 24:6198-212. [PMID: 26276810 PMCID: PMC4599677 DOI: 10.1093/hmg/ddv336] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/10/2015] [Indexed: 11/15/2022] Open
Abstract
Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-TauP301L mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets.
Collapse
Affiliation(s)
- Casey Cook
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Silvia S Kang
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mitsuru Shinohara
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Emilie Perkerson
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Monica Castanedes-Casey
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Linda Rousseau
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Virginia Phillips
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - John D Fryer
- Neurobiology of Disease Graduate Program, Mayo Graduate School, Jacksonville, FL 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
50
|
Activation of NMDA receptors thickens the postsynaptic density via proteolysis. Neurosci Res 2015; 101:6-14. [PMID: 26188126 DOI: 10.1016/j.neures.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 01/25/2023]
Abstract
The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.
Collapse
|