1
|
Hasegawa J, Nagata T, Ihara K, Tanihata J, Ebihara S, Yoshida-Tanaka K, Yanagidaira M, Ohara M, Sasaki A, Nakayama M, Yamamoto S, Ishii T, Iwata-Hara R, Naito M, Miyata K, Sakaue F, Yokota T. Heteroduplex oligonucleotide technology boosts oligonucleotide splice switching activity of morpholino oligomers in a Duchenne muscular dystrophy mouse model. Nat Commun 2024; 15:7530. [PMID: 39327422 PMCID: PMC11427662 DOI: 10.1038/s41467-024-48204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2024] [Indexed: 09/28/2024] Open
Abstract
The approval of splice-switching oligonucleotides with phosphorodiamidate morpholino oligomers (PMOs) for treating Duchenne muscular dystrophy (DMD) has advanced the field of oligonucleotide therapy. Despite this progress, PMOs encounter challenges such as poor tissue uptake, particularly in the heart, diaphragm, and central nervous system (CNS), thereby affecting patient's prognosis and quality of life. To address these limitations, we have developed a PMOs-based heteroduplex oligonucleotide (HDO) technology. This innovation involves a lipid-ligand-conjugated complementary strand hybridized with PMOs, significantly enhancing delivery to key tissues in mdx mice, normalizing motor functions, muscle pathology, and serum creatine kinase by restoring internal deleted dystrophin expression. Additionally, PMOs-based HDOs normalized cardiac and CNS abnormalities without adverse effects. Our technology increases serum albumin binding to PMOs and improves blood retention and cellular uptake. Here we show that PMOs-based HDOs address the limitations in oligonucleotide therapy for DMD and offer a promising approach for diseases amenable to exon-skipping therapy.
Collapse
Affiliation(s)
- Juri Hasegawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Jun Tanihata
- Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, 105-8461, Minato-ku, Tokyo, Japan
| | - Satoe Ebihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Mitsugu Yanagidaira
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Masahiro Ohara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Asuka Sasaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Miyu Nakayama
- COE for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 2-26-1, Fujisawa, Kanagawa, 251-8555, Japan
| | - Syunsuke Yamamoto
- COE for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, 2-26-1, Fujisawa, Kanagawa, 251-8555, Japan
| | - Takashi Ishii
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Rintaro Iwata-Hara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, Japan
| | - Fumika Sakaue
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Tokyo, Japan.
| |
Collapse
|
2
|
Wang W, Xu Z, Liu M, Cai M, Liu X. Prospective applications of extracellular vesicle-based therapies in regenerative medicine: implications for the use of dental stem cell-derived extracellular vesicles. Front Bioeng Biotechnol 2023; 11:1278124. [PMID: 37936823 PMCID: PMC10627172 DOI: 10.3389/fbioe.2023.1278124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
In the 21st century, research on extracellular vesicles (EVs) has made remarkable advancements. Recently, researchers have uncovered the exceptional biological features of EVs, highlighting their prospective use as therapeutic targets, biomarkers, innovative drug delivery systems, and standalone therapeutic agents. Currently, mesenchymal stem cells stand out as the most potent source of EVs for clinical applications in tissue engineering and regenerative medicine. Owing to their accessibility and capability of undergoing numerous differentiation inductions, dental stem cell-derived EVs (DSC-EVs) offer distinct advantages in the field of tissue regeneration. Nonetheless, it is essential to note that unmodified EVs are currently unsuitable for use in the majority of clinical therapeutic scenarios. Considering the high feasibility of engineering EVs, it is imperative to modify these EVs to facilitate the swift translation of theoretical knowledge into clinical practice. The review succinctly presents the known biotherapeutic effects of odontogenic EVs and the underlying mechanisms. Subsequently, the current state of functional cargo loading for engineered EVs is critically discussed. For enhancing EV targeting and in vivo circulation time, the review highlights cutting-edge engineering solutions that may help overcome key obstacles in the clinical application of EV therapeutics. By presenting innovative concepts and strategies, this review aims to pave the way for the adaptation of DSC-EVs in regenerative medicine within clinical settings.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zinan Xu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minyi Liu
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| | - Mingxiang Cai
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
A cell-penetrating peptide enhances delivery and efficacy of phosphorodiamidate morpholino oligomers in mdx mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:17-27. [PMID: 36189424 PMCID: PMC9483789 DOI: 10.1016/j.omtn.2022.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
|
4
|
Le BT, Paul S, Jastrzebska K, Langer H, Caruthers MH, Veedu RN. Thiomorpholino oligonucleotides as a robust class of next generation platforms for alternate mRNA splicing. Proc Natl Acad Sci U S A 2022; 119:e2207956119. [PMID: 36037350 PMCID: PMC9457326 DOI: 10.1073/pnas.2207956119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Recent advances in drug development have seen numerous successful clinical translations using synthetic antisense oligonucleotides (ASOs). However, major obstacles, such as challenging large-scale production, toxicity, localization of oligonucleotides in specific cellular compartments or tissues, and the high cost of treatment, need to be addressed. Thiomorpholino oligonucleotides (TMOs) are a recently developed novel nucleic acid analog that may potentially address these issues. TMOs are composed of a morpholino nucleoside joined by thiophosphoramidate internucleotide linkages. Unlike phosphorodiamidate morpholino oligomers (PMOs) that are currently used in various splice-switching ASO drugs, TMOs can be synthesized using solid-phase oligonucleotide synthesis methodologies. In this study, we synthesized various TMOs and evaluated their efficacy to induce exon skipping in a Duchenne muscular dystrophy (DMD) in vitro model using H2K mdx mouse myotubes. Our experiments demonstrated that TMOs can efficiently internalize and induce excellent exon 23 skipping potency compared with a conventional PMO control and other widely used nucleotide analogs, such as 2'-O-methyl and 2'-O-methoxyethyl ASOs. Notably, TMOs performed well at low concentrations (5-20 nM). Therefore, the dosages can be minimized, which may improve the drug safety profile. Based on the present study, we propose that TMOs represent a new, promising class of nucleic acid analogs for future oligonucleotide therapeutic development.
Collapse
Affiliation(s)
- Bao T. Le
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Perth, WA 6009, Australia
| | - Sibasish Paul
- Nucleic Acid Solutions Division, Agilent Technologies, Boulder, CO 80301
| | - Katarzyna Jastrzebska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-363 Lodz, Poland
| | - Heera Langer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309
| | | | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Lin C, Han G, Jia L, Zhao Y, Song J, Ran N, Yokota T, Seow Y, Yin H. Cardio-respiratory and phenotypic rescue of dystrophin/utrophin-deficient mice by combination therapy. EMBO Rep 2022; 23:e53955. [PMID: 35393769 PMCID: PMC9171417 DOI: 10.15252/embr.202153955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a systemic progressive muscular disease caused by frame-disrupting mutations in the DMD gene. Although exon-skipping antisense oligonucleotides (AOs) are clinically approved and can correct DMD, insufficient muscle delivery limits efficacy. If AO activity can be enhanced by safe dietary supplements, clinical trials for efficacy can be undertaken rapidly to benefit patients. We showed previously that intravenous glycine enhanced phosphorodiamidate morpholino oligomer (PMO) delivery to peripheral muscles in mdx mice. Here, we demonstrate that the combination of oral glycine and metformin with intravenous PMO enhances PMO activity, dystrophin restoration, extends lifespan, and improves body-wide function and phenotypic rescue of dystrophin /utrophin double knock-out (DKO) mice without any overt adverse effects. The DKO mice treated with the combination without altering the approved administration protocol of PMO show improved cardio-respiratory and behavioral functions. Metformin and glycine individually are ineffective in DMD patients, but the combination of PMO with clinically-approved oral glycine and metformin might improve the efficacy of the treatment also in DMD patients. Our data suggest that this combination therapy might be an attractive therapy for DMD and potentially other muscle diseases requiring systemic treatment with AOs.
Collapse
Affiliation(s)
- Caorui Lin
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Gang Han
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lulu Jia
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yiwen Zhao
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Song
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ning Ran
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Toshifumi Yokota
- Department of Medical GeneticsFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Yiqi Seow
- Institute of Bioengineering and BioimagingSingapore CitySingapore
- Institute of Molecular and Cell BiologySingapore CitySingapore
| | - HaiFang Yin
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Medical Technology & School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
- Department of Clinical LaboratoryTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
6
|
Bersani M, Rizzuti M, Pagliari E, Garbellini M, Saccomanno D, Moulton HM, Bresolin N, Comi GP, Corti S, Nizzardo M. Cell-penetrating peptide-conjugated Morpholino rescues SMA in a symptomatic preclinical model. Mol Ther 2022; 30:1288-1299. [PMID: 34808387 PMCID: PMC8899506 DOI: 10.1016/j.ymthe.2021.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/07/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. Recently approved SMA therapies have transformed a deadly disease into a survivable one, but these compounds show a wide spectrum of clinical response and effective rescue only in the early stages of the disease. Therefore, safe, symptomatic-suitable, non-invasive treatments with high clinical impact across different phenotypes are urgently needed. We conjugated antisense oligonucleotides with Morpholino (MO) chemistry, which increase SMN protein levels, to cell-penetrating peptides (CPPs) for better cellular distribution. Systemically administered MOs linked to r6 and (RXRRBR)2XB peptides crossed the blood-brain barrier and increased SMN protein levels remarkably, causing striking improvement of survival, neuromuscular function, and neuropathology, even in symptomatic SMA animals. Our study demonstrates that MO-CPP conjugates can significantly expand the therapeutic window through minimally invasive systemic administration, opening the path for clinical applications of this strategy.
Collapse
Affiliation(s)
- Margherita Bersani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Mafalda Rizzuti
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Elisa Pagliari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Manuela Garbellini
- Healthcare Professionals Department - Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Domenica Saccomanno
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy,Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Monica Nizzardo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.
| |
Collapse
|
7
|
Vázquez-Domínguez I, Garanto A. Considerations for Generating Humanized Mouse Models to Test Efficacy of Antisense Oligonucleotides. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:267-279. [PMID: 35213024 DOI: 10.1007/978-1-0716-2010-6_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decades, animal models have become increasingly important in therapeutic drug development and assessment. The use of these models, mainly mice and rats, allow evaluating drugs in the real-organism environment and context. However, several molecular therapeutic approaches are sequence-dependent, and therefore, the humanization of such models is required to assess the efficacy. The generation of genetically modified humanized mouse models is often an expensive and laborious process that may not always recapitulate the human molecular and/or physiological phenotype. In this chapter, we summarize basic aspects to consider before designing and generating humanized models, especially when they are aimed to test antisense-based therapies.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Intramuscular Evaluation of Chimeric Locked Nucleic Acid/2' OMethyl-Modified Antisense Oligonucleotides for Targeted Exon 23 Skipping in Mdx Mice. Pharmaceuticals (Basel) 2021; 14:ph14111113. [PMID: 34832896 PMCID: PMC8622172 DOI: 10.3390/ph14111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal disorder characterised by progressive muscle wasting. It is caused by mutations in the dystrophin gene, which disrupt the open reading frame leading to the loss of functional dystrophin protein in muscle fibres. Antisense oligonucleotide (AON)-mediated skipping of the mutated exon, which allows production of a truncated but partially functional dystrophin protein, has been at the forefront of DMD therapeutic research for over two decades. Nonetheless, novel nucleic acid modifications and AON designs are continuously being developed to improve the clinical benefit profile of current drugs in the DMD pipeline. We herein designed a series of 15mer and 20mer AONs, consisting of 2′O-Methyl (2′OMe)- and locked nucleic acid (LNA)-modified nucleotides in different percentage compositions, and assessed their efficiency in inducing exon 23 skipping and dystrophin restoration in locally injected muscles of mdx mice. We demonstrate that LNA/2′OMe AONs with a 30% LNA composition were significantly more potent in inducing exon skipping and dystrophin restoration in treated mdx muscles, compared to a previously tested 2′OMe AON and LNA/2′OMe chimeras with lower or higher LNA compositions. These results underscore the therapeutic potential of LNA/2′OMe AONs, paving the way for further experimentation to evaluate their benefit-toxicity profile following systemic delivery.
Collapse
|
9
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
10
|
Lidberg KA, Annalora AJ, Jozic M, Elson DJ, Wang L, Bammler TK, Ramm S, Monteiro MB, Himmelfarb J, Marcus CB, Iversen PL, Kelly EJ. Antisense oligonucleotide development for the selective modulation of CYP3A5 in renal disease. Sci Rep 2021; 11:4722. [PMID: 33633318 PMCID: PMC7907328 DOI: 10.1038/s41598-021-84194-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/10/2021] [Indexed: 11/09/2022] Open
Abstract
CYP3A5 is the primary CYP3A subfamily enzyme expressed in the human kidney and its aberrant expression may contribute to a broad spectrum of renal disorders. Pharmacogenetic studies have reported inconsistent linkages between CYP3A5 expression and hypertension, however, most investigators have considered CYP3A5*1 as active and CYP3A5*3 as an inactive allele. Observations of gender specific differences in CYP3A5*3/*3 protein expression suggest additional complexity in gene regulation that may underpin an environmentally responsive role for CYP3A5 in renal function. Reconciliation of the molecular mechanism driving conditional restoration of functional CYP3A5*3 expression from alternatively spliced transcripts, and validation of a morpholino-based approach for selectively suppressing renal CYP3A5 expression, is the focus of this work. Morpholinos targeting a cryptic splice acceptor created by the CYP3A5*3 mutation in intron 3 rescued functional CYP3A5 expression in vitro, and salt-sensitive cellular mechanisms regulating splicing and conditional expression of CYP3A5*3 transcripts are reported. The potential for a G-quadruplex (G4) in intron 3 to mediate restored splicing to exon 4 in CYP3A5*3 transcripts was also investigated. Finally, a proximal tubule microphysiological system (PT-MPS) was used to evaluate the safety profile of morpholinos in proximal tubule epithelial cells, highlighting their potential as a therapeutic platform for the treatment of renal disease.
Collapse
Affiliation(s)
- Kevin A Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| | - Marija Jozic
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Daniel J Elson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Susanne Ramm
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maria Beatriz Monteiro
- Depto Clinica Medica, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in the Dystrophin Protein. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:263-272. [PMID: 33230432 PMCID: PMC7516190 DOI: 10.1016/j.omtn.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Dystrophin plays a crucial role in maintaining sarcolemma stability during muscle contractions, and mutations that prevent the expression of a functional protein cause Duchenne muscular dystrophy (DMD). Antisense oligonucleotide-mediated manipulation of pre-messenger RNA splicing to bypass Duchenne-causing mutations and restore functional dystrophin expression has entered the clinic for the most common DMD mutations. The rationale of "exon skipping" is based upon genotype-phenotype correlations observed in Becker muscular dystrophy, a milder allelic disorder generally characterized by in-frame deletions and internally truncated but semi-functional dystrophin isoforms. However, there is a lack of genotype-phenotype correlations downstream of DMD exon 55, as deletions in this region are rare and most single exon deletions would disrupt the reading frame. Consequently, the amenability of mutations in this region of the DMD gene to exon skipping strategies remains unknown. Here, we induced "Becker muscular dystrophy-like" in-frame dystrophin isoforms in vivo by intraperitoneal injection of peptide-conjugated phosphorodiamidate morpholino oligomers targeting selected exons. The dystrophin isoform encoded by the transcript lacking exons 56+57 appears to be more functional than that encoded by the 58+59-deleted transcript, as determined by higher dystrophin expression, stabilized β-dystroglycan, and less severe dystrophic pathology, indicating some potential for the strategy to address Duchenne-causing mutations affecting these exons.
Collapse
|
12
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism. Drug Metab Dispos 2020; 48:272-287. [PMID: 31980501 DOI: 10.1124/dmd.119.089102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 02/13/2025] Open
Abstract
The human genome encodes 48 nuclear receptor (NR) genes, whose translated products transform chemical signals from endo-xenobiotics into pleotropic RNA transcriptional profiles that refine drug metabolism. This review describes the remarkable diversification of the 48 human NR genes, which are potentially processed into over 1000 distinct mRNA transcripts by alternative splicing (AS). The average human NR expresses ∼21 transcripts per gene and is associated with ∼7000 single nucleotide polymorphisms (SNPs). However, the rate of SNP accumulation does not appear to drive the AS process, highlighting the resilience of NR genes to mutation. Here we summarize the altered tissue distribution/function of well characterized NR splice variants associated with human disease. We also describe a cassette exon visualization pictograph methodology for illustrating the location of modular, cassette exons in genes, which can be skipped in-frame, to facilitate the study of their functional relevance to both drug metabolism and NR evolution. We find cassette exons associated with all of the functional domains of NR genes including the DNA and ligand binding domains. The matrix of inclusion or exclusion for functional domain-encoding cassette exons is extensive and capable of significant alterations in cellular phenotypes that modulate endo-xenobiotic metabolism. Exon inclusion options are differentially distributed across NR subfamilies, suggesting group-specific conservation of resilient functionalities. A deeper understanding of this transcriptional plasticity expands our understanding of how chemical signals are refined and mediated by NR genes. This expanded view of the NR transcriptome informs new models of chemical toxicity, disease diagnostics, and precision-based approaches to personalized medicine. SIGNIFICANCE STATEMENT: This review explores the impact of alternative splicing (AS) on the human nuclear receptor (NR) superfamily and highlights the dramatic expansion of more than 1000 potential transcript variants from 48 individual genes. Xenobiotics are increasingly recognized for their ability to perturb gene splicing events, and here we explore the differential sensitivity of NR genes to AS and chemical exposure. Using the cassette exon visualization pictograph methodology, we have documented the conservation of splice-sensitive, modular, cassette exon domains among the 48 human NR genes, and we discuss how their differential expression profiles may augment cellular resilience to oxidative stress and fine-tune adaptive, metabolic responses to endo-xenobiotic exposure.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.)
| |
Collapse
|
13
|
Forand A, Muchir A, Mougenot N, Sevoz-Couche C, Peccate C, Lemaitre M, Izabelle C, Wood M, Lorain S, Piétri-Rouxel F. Combined Treatment with Peptide-Conjugated Phosphorodiamidate Morpholino Oligomer-PPMO and AAV-U7 Rescues the Severe DMD Phenotype in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:695-708. [PMID: 32346547 PMCID: PMC7177166 DOI: 10.1016/j.omtm.2020.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease caused by an absence of the dystrophin protein, which is essential for muscle fiber integrity. Among the developed therapeutic strategies for DMD, the exon-skipping approach corrects the frameshift and partially restores dystrophin expression. It could be achieved through the use of antisense sequences, such as peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) or the small nuclear RNA-U7 carried by an adeno-associated virus (AAV) vector. AAV-based gene therapy approaches have potential for use in DMD treatment but are subject to a major limitation: loss of the AAV genome, necessitating readministration of the vector, which is not currently possible, due to the immunogenicity of the capsid. The PPMO approach requires repeated administrations and results in only weak cardiac dystrophin expression. Here, we evaluated a combination of PPMO- and AAV-based therapy in a mouse model of severe DMD. Striking benefits of this combined therapy were observed in striated muscles, with marked improvements in heart and diaphragm structure and function, with unrivalled extent of survival, opening novel therapeutic perspectives for patients.
Collapse
Affiliation(s)
- Anne Forand
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Antoine Muchir
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM UMS28, Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Caroline Sevoz-Couche
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Cécile Peccate
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, UPMC Paris 06, INSERM UMS28, Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75013 Paris, France
| | - Charlotte Izabelle
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - Matthew Wood
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Stéphanie Lorain
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| | - France Piétri-Rouxel
- Centre de Recherche en Myologie, Sorbonne Université, UMRS974, INSERM, Institut de Myologie-Faculté de Médecine de la Pitié Salpêtrière, 105 boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
14
|
Lin C, Han G, Ning H, Song J, Ran N, Yi X, Seow Y, Yin H. Glycine Enhances Satellite Cell Proliferation, Cell Transplantation, and Oligonucleotide Efficacy in Dystrophic Muscle. Mol Ther 2020; 28:1339-1358. [PMID: 32209436 DOI: 10.1016/j.ymthe.2020.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022] Open
Abstract
The need to distribute therapy evenly systemically throughout the large muscle volume within the body makes Duchenne muscular dystrophy (DMD) therapy a challenge. Cell and exon-skipping therapies are promising but have limited effects, and thus enhancing their therapeutic potency is of paramount importance to increase the accessibility of these therapies to DMD patients. In this study, we demonstrate that co-administered glycine improves phosphorodiamidate morpholino oligomer (PMO) potency in mdx mice with marked functional improvement and an up to 50-fold increase of dystrophin in abdominal muscles compared to PMO in saline. Glycine boosts satellite cell proliferation and muscle regeneration by increasing activation of mammalian target of rapamycin complex 1 (mTORC1) and replenishing the one-carbon unit pool. The expanded regenerating myofiber population then results in increased PMO uptake. Glycine also augments the transplantation efficiency of exogenous satellite cells and primary myoblasts in mdx mice. Our data provide evidence that glycine enhances satellite cell proliferation, cell transplantation, and oligonucleotide efficacy in mdx mice, and thus it has therapeutic utility for cell therapy and drug delivery in muscle-wasting diseases.
Collapse
Affiliation(s)
- Caorui Lin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Gang Han
- School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China
| | - Hanhan Ning
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jun Song
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ning Ran
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, Agency for Science Technology and Research, 61 Biopolis Way, Singapore 138668, Singapore
| | - HaiFang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
15
|
Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020; 154-155:236-244. [PMID: 32659255 DOI: 10.1016/j.addr.2020.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microbubbles with diagnostic ultrasound have had a long history of use in the medical field. In recent years, the therapeutic application of the combination of microbubbles and ultrasound, called sonoporation, has received increased attention as microbubble oscillation or collapse close to various barriers in the body was recognized to potentially open those barriers, increasing drug transport across them. In this review, we aimed to describe the development of lipid-stabilized microbubbles equipped with functions, such as long circulation and drug loading, and the therapeutic application of sonoporation for tumor-targeted therapy, brain-targeted therapy, and immunotherapy. We also attempted to discuss the current status of the field and potential future developments.
Collapse
|
16
|
Gao X, Ran N, Dong X, Zuo B, Yang R, Zhou Q, Moulton HM, Seow Y, Yin H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci Transl Med 2019; 10:10/444/eaat0195. [PMID: 29875202 DOI: 10.1126/scitranslmed.aat0195] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/16/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Exosomes are circulating nanovesicular carriers of macromolecules, increasingly used for diagnostics and therapeutics. The ability to load and target patient-derived exosomes without altering exosomal surfaces is key to unlocking their therapeutic potential. We demonstrate that a peptide (CP05) identified by phage display enables targeting, cargo loading, and capture of exosomes from diverse origins, including patient-derived exosomes, through binding to CD63-an exosomal surface protein. Systemic administration of exosomes loaded with CP05-modified, dystrophin splice-correcting phosphorodiamidate morpholino oligomer (EXOPMO) increased dystrophin protein 18-fold in quadriceps of dystrophin-deficient mdx mice compared to CP05-PMO. Loading CP05-muscle-targeting peptide on EXOPMO further increased dystrophin expression in muscle with functional improvement without any detectable toxicity. Our study demonstrates that an exosomal anchor peptide enables direct, effective functionalization and capture of exosomes, thus providing a tool for exosome engineering, probing gene function in vivo, and targeted therapeutic drug delivery.
Collapse
Affiliation(s)
- Xianjun Gao
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ning Ran
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xue Dong
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Rong Yang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qibing Zhou
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong M Moulton
- Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, Agency for Science Technology and Research, 61 Biopolis Way, Singapore 138668, Singapore
| | - HaiFang Yin
- Department of Cell Biology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China.
| |
Collapse
|
17
|
Tsoumpra MK, Fukumoto S, Matsumoto T, Takeda S, Wood MJA, Aoki Y. Peptide-conjugate antisense based splice-correction for Duchenne muscular dystrophy and other neuromuscular diseases. EBioMedicine 2019; 45:630-645. [PMID: 31257147 PMCID: PMC6642283 DOI: 10.1016/j.ebiom.2019.06.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle degeneration, caused by the absence of dystrophin. Exon skipping by antisense oligonucleotides (ASOs) has recently gained recognition as therapeutic approach in DMD. Conjugation of a peptide to the phosphorodiamidate morpholino backbone (PMO) of ASOs generated the peptide-conjugated PMOs (PPMOs) that exhibit a dramatically improved pharmacokinetic profile. When tested in animal models, PPMOs demonstrate effective exon skipping in target muscles and prolonged duration of dystrophin restoration after a treatment regime. Herein we summarize the main pathophysiological features of DMD and the emergence of PPMOs as promising exon skipping agents aiming to rescue defective gene expression in DMD and other neuromuscular diseases. The listed PPMO laboratory findings correspond to latest trends in the field and highlight the obstacles that must be overcome prior to translating the animal-based research into clinical trials tailored to the needs of patients suffering from neuromuscular diseases.
Collapse
Key Words
- aso, antisense oligonucleotides
- cns, central nervous system
- cpp, cell penetrating peptide
- dgc, dystrophin glyco-protein complex
- dmd, duchenne muscular dystrophy
- fda, us food and drug administration
- pmo, phosphorodiamidate morpholino
- ppmo, peptide-conjugated pmos
- ps, phosphorothioate
- sma, spinal muscular atrophy
- 2ʹ-ome, 2ʹ-o-methyl
- 2ʹ-moe, 2ʹ-o-methoxyethyl
- 6mwt, 6-minute walk test
Collapse
Affiliation(s)
- Maria K Tsoumpra
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Kodaira-shi, Tokyo, Japan.
| |
Collapse
|
18
|
Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet 2019; 27:R163-R172. [PMID: 29771317 DOI: 10.1093/hmg/ddy171] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disorder characterized by progressive muscle wasting that has currently no cure. Exon-skipping strategy represents one of the most promising therapeutic approaches that aim to restore expression of a shorter but functional dystrophin protein. The antisense field has remarkably progress over the last years with recent accelerated approval of the first antisense oligonucleotide-based therapy for DMD, Exondys 51, though the therapeutic benefit remains to be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle remains the main hurdle for antisense drug therapy. This review describes the antisense-based exon-skipping approach for DMD, from proof-of-concept to first marketed drug. We discuss the main obstacles to achieve a successful exon-skipping therapy and the latest advances of the international community to develop more powerful chemistries and more sophisticated delivery systems in order to increase potency, bioavailability and safety. Finally, we highlight the importance of collaborative efforts and early dialogue between drug developers and regulatory agencies in order to overcome difficulties, find appropriate outcome markers and collect useful data.
Collapse
Affiliation(s)
- Lucía Echevarría
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France.,SQY Therapeutics, Université de Versailles St-Quentin, Montigny le Bretonneux, France
| | - Philippine Aupy
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| | - Aurélie Goyenvalle
- U1179 INSERM, UFR des Sciences de la Santé, Montigny le Bretonneux, France
| |
Collapse
|
19
|
Wu B, Wang M, Shah S, Lu QL. In Vivo Evaluation of Dystrophin Exon Skipping in mdx Mice. Methods Mol Biol 2019; 1828:231-247. [PMID: 30171545 DOI: 10.1007/978-1-4939-8651-4_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Dystrophin exon skipping in mdx mice has been the key model for the development of antisense therapy in vivo. Evaluation of exon skipping in this model involves the following two aspects: (1) efficiency and accuracy of exon skipping and levels of dystrophin expression determined by RT-PCR, immunochemistry, and western blotting; (2) therapeutic effects on muscle pathology and functions assessed by histology and functional assays including grip strength measurement, treadmill test, echocardiogram, and hemodynamics for cardiac functions. Here we describe some key considerations and the essential methodologies in detail for exon skipping in mdx mice.
Collapse
Affiliation(s)
- Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| | - Mingxing Wang
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Sapana Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Department of Neurology, Neuromuscular/ALS Center, Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
20
|
Wang L, Xu M, Li H, He R, Lin J, Zhang C, Zhu Y. Genotypes and Phenotypes of DMD Small Mutations in Chinese Patients With Dystrophinopathies. Front Genet 2019; 10:114. [PMID: 30833962 PMCID: PMC6388391 DOI: 10.3389/fgene.2019.00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 01/30/2019] [Indexed: 11/17/2022] Open
Abstract
Dystrophinopathies are a group of neuromuscular disorders resulting from mutations in DMD, including Duchenne muscular dystrophy (DMD), intermediate muscular dystrophy (IMD), and Becker muscular dystrophy (BMD). Herein, we present the characteristics of small mutations in Chinese patients with dystrophinopathies, and explore genotype–phenotype correlations. In our cohort, 115 patients with small mutations (18.49% of all patients) were included and DMD mutations were detected by either Sanger (53.91%) or next generation sequencing (46.09%). In total, 106 small mutations were detected, 28 of which (26.42%) had not been reported previously. The most common mutations were nonsense mutations (52.17%), followed by splicing (24.35%), frameshift (17.39%), and missense mutations (5.22%), in addition to a single untranslated region mutation (0.87%). We discovered distinct mutation characteristics in our patients, such as different positional distributions, indicating different exon skipping therapy strategies for small mutations in Chinese patients. Almost all patients (96.51%) with truncating or missense mutations, were covered by triple/double/single-exon skipping therapy; the most frequent single-exon skipping strategy was skipping exon 32, applicable for 8.51% of patients. Furthermore, splicing classification grades were correlated with phenotypes in nonsense mutations (P < 0.001), and serum creatinine levels differed significantly between DMD/IMD and BMD for patients ≤ 16 years old (P = 0.002). These observations can further aid prognostic judgment and guide treatment. In conclusion, the mutation characteristics and genotype–phenotype correlations in Chinese patients with dystrophinopathies and small mutations could provide insights into the molecular mechanisms of pathogenesis, diagnosis, and treatment designs.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Xu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinfu Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Zhang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuling Zhu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
van Putten M, Tanganyika-de Winter C, Bosgra S, Aartsma-Rus A. Nonclinical Exon Skipping Studies with 2'-O-Methyl Phosphorothioate Antisense Oligonucleotides in mdx and mdx-utrn-/- Mice Inspired by Clinical Trial Results. Nucleic Acid Ther 2019; 29:92-103. [PMID: 30672725 PMCID: PMC6461150 DOI: 10.1089/nat.2018.0759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy is a severe, progressive muscle-wasting disease that is caused by mutations that abolish the production of functional dystrophin protein. The exon skipping approach aims to restore the disrupted dystrophin reading frame, to allow the production of partially functional dystrophins, such as found in the less severe Becker muscular dystrophy. Exon skipping is achieved by antisense oligonucleotides (AONs). Several chemical modifications have been tested in nonclinical and clinical trials. The morpholino phosphorodiamidate oligomer eteplirsen has been approved by the Food and Drug Administration, whereas clinical development with the 2'-O-methyl phosphorothioate (2OMePS) AON drisapersen was recently stopped. In this study, we aimed to study various aspects of 2OMePS AONs in nonclinical animal studies. We show that while efficiency of exon skipping restoration is comparable in young and older C57BL/10ScSn-Dmdmdx/J (mdx/BL10) mice, functional improvement was only observed for younger treated mice. Muscle quality did not affect exon skipping efficiency as exon skip and dystrophin levels were similar between mdx/BL10 and more severely affected, age-matched D2-mdx mice. We further report that treadmill running increases AON uptake and dystrophin levels in mdx/BL10 mice. Finally, we show that even low levels of exon skipping and dystrophin restoration are sufficient to significantly increase the survival of mdx-utrn-/- mice from 70 to 97 days.
Collapse
Affiliation(s)
- Maaike van Putten
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Sieto Bosgra
- 2 Biomarin Nederland BV, Leiden, the Netherlands
| | - Annemieke Aartsma-Rus
- 1 Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
22
|
Haddix SG, Lee YI, Kornegay JN, Thompson WJ. Cycles of myofiber degeneration and regeneration lead to remodeling of the neuromuscular junction in two mammalian models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0205926. [PMID: 30379896 PMCID: PMC6209224 DOI: 10.1371/journal.pone.0205926] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 12/02/2022] Open
Abstract
Mice lacking the sarcolemmal protein dystrophin, designated mdx, have been widely used as a model of Duchenne muscular dystrophy. Dystrophic mdx mice as they mature develop notable morphological abnormalities to their neuromuscular junctions, the peripheral cholinergic synapses responsible for activating muscle fibers. Most obviously the acetylcholine receptor aggregates are fragmented into small non-continuous, islands. This contrasts with wild type mice whose acetylcholine receptor aggregates are continuous and pretzel-shaped in appearance. We show here that these abnormalities in mdx mice are also present in a canine model of Duchenne muscular dystrophy and provide additional evidence to support the hypothesis that NMJ remodeling occurs due to myofiber degeneration and regeneration. Using a method to investigate synaptic AChR replacement, we show that neuromuscular junction remodeling in mdx animals is caused by muscle fiber degeneration and regeneration at the synaptic site and is mimicked by deliberate myofiber injury in wild type mice. Importantly, the innervating motor axon plays a crucial role in directing the remodeling of the neuromuscular junction in dystrophy, as has been recorded in aging and deliberate muscle fiber injury in wild type mice. The remodeling occurs repetitively through the life of the animal and the changes in junctions become greater with age.
Collapse
Affiliation(s)
- Seth G. Haddix
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Young il Lee
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Joe N. Kornegay
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Wesley J. Thompson
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
23
|
Shahnoor N, Siebers EM, Brown KJ, Lawlor MW. Pathological Issues in Dystrophinopathy in the Age of Genetic Therapies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:105-126. [PMID: 30148687 DOI: 10.1146/annurev-pathmechdis-012418-012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophinopathy is a class of genetic skeletal muscle disease characterized by myofiber degeneration and regeneration due to insufficient levels or functioning of dystrophin. Pathological evaluation for dystrophinopathy includes the identification of dystrophic skeletal muscle pathology and the immunohistochemical evaluation of dystrophin epitopes, but biopsies have become rare in recent years. However, the evaluation of dystrophin expression in the research setting has become critically important due to recent advances in genetic therapies, including exon skipping and gene therapy. Given the number of these therapies under evaluation in patients, it is likely that the traditional methods of evaluating dystrophinopathy will need to evolve in the near future. This review discusses current muscle biopsy diagnostic practices in dystrophinopathy and further focuses on how these practices have evolved in the context of therapeutic interventions for dystrophinopathy.
Collapse
Affiliation(s)
- Nazima Shahnoor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Emily M Siebers
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Kristy J Brown
- Solid Biosciences, Inc., Cambridge, Massachusetts 02139, USA;
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| |
Collapse
|
24
|
A platform for discovery of functional cell-penetrating peptides for efficient multi-cargo intracellular delivery. Sci Rep 2018; 8:12538. [PMID: 30135446 PMCID: PMC6105642 DOI: 10.1038/s41598-018-30790-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Cell penetrating peptides (CPPs) offer great potential to deliver therapeutic molecules to previously inaccessible intracellular targets. However, many CPPs are inefficient and often leave their attached cargo stranded in the cell’s endosome. We report a versatile platform for the isolation of peptides delivering a wide range of cargos into the cytoplasm of cells. We used this screening platform to identify multiple “Phylomer” CPPs, derived from bacterial and viral genomes. These peptides are amenable to conventional sequence optimization and engineering approaches for cell targeting and half-life extension. We demonstrate potent, functional delivery of protein, peptide, and nucleic acid analog cargos into cells using Phylomer CPPs. We validate in vivo activity in the cytoplasm, through successful transport of an oligonucleotide therapeutic fused to a Phylomer CPP in a disease model for Duchenne’s muscular dystrophy. This report thus establishes a discovery platform for identifying novel, functional CPPs to expand the delivery landscape of druggable intracellular targets for biological therapeutics.
Collapse
|
25
|
Blain AM, Greally E, McClorey G, Manzano R, Betts CA, Godfrey C, O’Donovan L, Coursindel T, Gait MJ, Wood MJ, MacGowan GA, Straub VW. Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS One 2018; 13:e0198897. [PMID: 29912990 PMCID: PMC6005479 DOI: 10.1371/journal.pone.0198897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022] Open
Abstract
Cardiac failure is a major cause of mortality in patients with Duchenne muscular dystrophy (DMD). Antisense-mediated exon skipping has the ability to correct out-of-frame mutations in DMD to produce truncated but functional dystrophin. Traditional antisense approaches have however been limited by their poor uptake into cardiac muscle. The addition of cell-penetrating peptides to antisense molecules has increased their potency and improved their uptake into all muscles, including the heart. We have investigated the efficacy of the Peptide-conjugated phosphodiamidate morpholino oligomer (P-PMO) Pip6a-PMO, for restoration of cardiac dystrophin and functional rescue in DMD mice- the mdx mouse and the less well characterised Cmah-/-mdx mouse (which carry a human-like mutation in the mouse Cmah gene as well as a mutation in DMD). In our first study male mdx mice were administered Pip6a-PMO, i.v, fortnightly from 12 to 30 weeks of age alongside mock-injected age-matched mdx and C57BL10 controls. Mice received 4 doses of 18 mg/kg followed by 8 doses of 12.5 mg/kg. The cardiac function of the mice was analysed 2 weeks after their final injection by MRI followed by conductance catheter and their muscles were harvested for dystrophin quantification. In the second study, male Cmah-/-mdx mice, received 12.5 mg/kg Pip6a-PMO, i.v fortnightly from 8 to 26 weeks and assessed by MRI at 3 time points (12, 18 and 28 weeks) alongside mock-injected age-matched mdx, C57BL10 and Cmah-/-mdx controls. The mice also underwent MEMRI and conductance catheter at 28 weeks. This allowed us to characterise the cardiac phenotype of Cmah-/-mdx mice as well as assess the effects of P-PMO on cardiac function. Pip6a-PMO treatment resulted in significant restoration of dystrophin in mdx and Cmah-/-mdx mice (37.5% and 51.6%, respectively), which was sufficient to significantly improve cardiac function, ameliorating both right and left ventricular dysfunction. Cmah-/-mdx mice showed an abnormal response to dobutamine stress test and this was completely ameliorated by PIP6a-PMO treatment. These encouraging data suggest that total restoration of dystrophin may not be required to significantly improve cardiac outcome in DMD patients and that it may be realistic to expect functional improvements with modest levels of dystrophin restoration which may be very achievable in future clinical trials.
Collapse
Affiliation(s)
- Alison M. Blain
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, United Kingdom
| | - Elizabeth Greally
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, United Kingdom
| | - Graham McClorey
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Raquel Manzano
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corinne A. Betts
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Caroline Godfrey
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Liz O’Donovan
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Thibault Coursindel
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mike J. Gait
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Matthew J. Wood
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Guy A. MacGowan
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, United Kingdom
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Volker W. Straub
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Times Square, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Goyenvalle A, Leumann C, Garcia L. Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides. J Neuromuscul Dis 2018; 3:157-167. [PMID: 27854216 PMCID: PMC5271482 DOI: 10.3233/jnd-160146] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Oligonucleotide therapeutics hold great promise for the treatment of various diseases and the antisense field is constantly gaining interest due to the development of more potent and nuclease resistant chemistries. Despite a rather low success rate with only three antisense drugs being clinically approved, the frontiers of AON therapeutic applications have increased over the past three decades and continue to expand thanks to a steady increase in understanding the mechanisms of action of these molecules, progress in chemical modification and delivery. In this review, we will examine the recent advances obtained with the tricyclo-DNA chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will review their specific properties and their therapeutic applications mainly for neuromuscular disorders, including exon-skipping for Duchenne muscular dystrophy and exon-inclusion for spinal muscular atrophy, but also aberrant splicing correction for Pompe disease. Finally, we will discuss their advantages and potential limitations, with a focus on the need for careful toxicological screen early in the process of AON drug development.
Collapse
Affiliation(s)
- Aurelie Goyenvalle
- Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé - LIA BAHN CSM, France
| | - Christian Leumann
- Department of Chemistry & Biochemistry, University of Bern, Switzerland
| | - Luis Garcia
- Université de Versailles St- Quentin, U1179 INSERM, UFR des Sciences de la Santé - LIA BAHN CSM, France
| |
Collapse
|
27
|
Le BT, Chen S, Abramov M, Herdewijn P, Veedu RN. Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2'-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro. Chem Commun (Camb) 2018; 52:13467-13470. [PMID: 27790668 DOI: 10.1039/c6cc07447b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time, in this study we designed and synthesised HNA, CeNA and ANA-modified 2'-O-methyl (2'-OMe) mixmer AOs on a phosphorothioate (PS) backbone, and evaluated their potential to induce exon 23 skipping in mdx mouse myotubes, as a model system. Our results clearly showed that all three AO candidates modified with HNA, CeNA and ANA could efficiently induce Dmd exon 23 skipping in vitro in parallel to the fully modified 2'-OMePS AO with reduced dual exon 22/23 skipping. In addition, they showed high nuclease resistance and no cytotoxicity compared to the 2'-OMePS AO, demonstrating the applicability of HNA, CeNA and ANA nucleotide-modified AOs in exon skipping.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Perth - 6150, Australia. and Western Australian Neuroscience Research Institute, Perth - 6150, Australia
| | - Suxiang Chen
- Centre for Comparative Genomics, Murdoch University, Perth - 6150, Australia. and Western Australian Neuroscience Research Institute, Perth - 6150, Australia
| | - Mikhail Abramov
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Inderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Inderbroedersstraat 10, 3000 Leuven, Belgium
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth - 6150, Australia. and Western Australian Neuroscience Research Institute, Perth - 6150, Australia
| |
Collapse
|
28
|
Aupy P, Echevarría L, Relizani K, Goyenvalle A. The Use of Tricyclo-DNA Oligomers for the Treatment of Genetic Disorders. Biomedicines 2017; 6:E2. [PMID: 29271929 PMCID: PMC5874659 DOI: 10.3390/biomedicines6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023] Open
Abstract
Antisense Oligonucleotides (ASOs) represent very attractive therapeutic compounds for the treatment of numerous diseases. The antisense field has remarkably progressed over the last few years with the approval of the first antisense drugs and with promising developments of more potent and nuclease resistant chemistries. Despite these recent clinical successes and advances in chemistry and design, effective delivery of ASOs to their target tissues remains a major issue. This review will describe the latest advances obtained with the tricyclo-DNA (tcDNA) chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will examine the variety of therapeutic approaches using both fully modified tcDNA-ASOs and gapmers, including splice switching applications, correction of aberrant splicing, steric blocking strategies and targeted gene knock-down mediated by RNase H recruitment. We will then discuss the merits and potential liabilities of the tcDNA chemistry in the context of ASO drug development.
Collapse
Affiliation(s)
- Philippine Aupy
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Lucía Echevarría
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Karima Relizani
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
- SQY Therapeutics, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| | - Aurélie Goyenvalle
- INSERM U1179, UFR des Sciences de la Santé, University of Versailles St-Quentin, 78180 Montigny le Bretonneux, France.
| |
Collapse
|
29
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos 2017; 45:375-389. [PMID: 28188297 DOI: 10.1124/dmd.116.073254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/06/2017] [Indexed: 02/13/2025] Open
Abstract
The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
30
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
31
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
32
|
Patil KM, Chen G. Recognition of RNA Sequence and Structure by Duplex and Triplex Formation: Targeting miRNA and Pre-miRNA. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-34175-0_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Toh ZYC, Thandar Aung-Htut M, Pinniger G, Adams AM, Krishnaswarmy S, Wong BL, Fletcher S, Wilton SD. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies. PLoS One 2016; 11:e0145620. [PMID: 26745801 PMCID: PMC4706350 DOI: 10.1371/journal.pone.0145620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/07/2015] [Indexed: 12/03/2022] Open
Abstract
Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes.
Collapse
Affiliation(s)
- Zhi Yon Charles Toh
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
| | | | - Gavin Pinniger
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Abbie M. Adams
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | | | - Brenda L. Wong
- Department of Paediatrics, Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sue Fletcher
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
| | - Steve D. Wilton
- Western Australian Neuroscience Research Institute, Perth, Australia
- University of Western Australia, Perth, Australia
- Centre for Comparative Genomics, Murdoch University, Perth, Australia
- * E-mail:
| |
Collapse
|
34
|
Lehto T, Wagner E. Sequence-defined polymers for the delivery of oligonucleotides. Nanomedicine (Lond) 2015; 9:2843-59. [PMID: 25535686 DOI: 10.2217/nnm.14.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Short synthetic oligonucleotides (ONs) are a group of therapeutic molecules with enormous clinical potential owing to their high specificity and ability to target the expression of virtually any single or group of genes. Clinical translation of ONs is hampered by the inadequate bioavailability in the target cells due to the substantial extracellular and intracellular barriers exposed to these molecules. Different cationic polymers have been successfully deployed for the delivery of ONs. However, heterogeneous nature of these classical polymers is not suitable for clinical applications and hence vectors with completely defined structure are required. In this review, we discuss recent advances with sequence-defined polymers and their application for the delivery of short ONs.
Collapse
Affiliation(s)
- Taavi Lehto
- Pharmaceutical Biotechnology, Department of Pharmacy and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|
35
|
Implications for Cardiac Function Following Rescue of the Dystrophic Diaphragm in a Mouse Model of Duchenne Muscular Dystrophy. Sci Rep 2015; 5:11632. [PMID: 26113184 PMCID: PMC4586900 DOI: 10.1038/srep11632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/27/2015] [Indexed: 01/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by absence of the integral structural protein, dystrophin, which renders muscle fibres susceptible to injury and degeneration. This ultimately results in cardiorespiratory dysfunction, which is the predominant cause of death in DMD patients, and highlights the importance of therapeutic targeting of the cardiorespiratory system. While there is some evidence to suggest that restoring dystrophin in the diaphragm improves both respiratory and cardiac function, the role of the diaphragm is not well understood. Here using exon skipping oligonucleotides we predominantly restored dystrophin in the diaphragm and assessed cardiac function by MRI. This approach reduced diaphragmatic pathophysiology and markedly improved diaphragm function but did not improve cardiac function or pathophysiology, with or without exercise. Interestingly, exercise resulted in a reduction of dystrophin protein and exon skipping in the diaphragm. This suggests that treatment regimens may require modification in more active patients. In conclusion, whilst the diaphragm is an important respiratory muscle, it is likely that dystrophin needs to be restored in other tissues, including multiple accessory respiratory muscles, and of course the heart itself for appropriate therapeutic outcomes. This supports the requirement of a body-wide therapy to treat DMD.
Collapse
|
36
|
Wilton SD, Veedu RN, Fletcher S. The emperor's new dystrophin: finding sense in the noise. Trends Mol Med 2015; 21:417-26. [PMID: 26051381 DOI: 10.1016/j.molmed.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/16/2023]
Abstract
Targeted dystrophin exon removal is a promising therapy for Duchenne muscular dystrophy (DMD); however, dystrophin expression in some reports is not supported by the associated data. As in the account of 'The Emperor's New Clothes', the validity of such claims must be questioned, with critical re-evaluation of available data. Is it appropriate to report clinical benefit and induction of dystrophin as dose dependent when the baseline is unclear? The inability to induce meaningful levels of dystrophin does not mean that dystrophin expression as an end point is irrelevant, nor that induced exon skipping as a strategy is flawed, but demands that drug safety and efficacy, and study parameters be addressed, rather than questioning the strategy or the validity of dystrophin as a biomarker.
Collapse
Affiliation(s)
- S D Wilton
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia.
| | - R N Veedu
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| | - S Fletcher
- Centre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia; West Australian Neuroscience Research Institute, Murdoch University, 90 South Street, Murdoch, WA 6009, Australia
| |
Collapse
|
37
|
van Westering TLE, Betts CA, Wood MJA. Current understanding of molecular pathology and treatment of cardiomyopathy in duchenne muscular dystrophy. Molecules 2015; 20:8823-55. [PMID: 25988613 PMCID: PMC6272314 DOI: 10.3390/molecules20058823] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
38
|
Nancy MM, Nora RM, Rebeca MC. Peptidic tools applied to redirect alternative splicing events. Peptides 2015; 67:1-11. [PMID: 25748022 DOI: 10.1016/j.peptides.2015.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 01/25/2023]
Abstract
Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases.
Collapse
Affiliation(s)
- Martínez-Montiel Nancy
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Rosas-Murrieta Nora
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Martínez-Contreras Rebeca
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico.
| |
Collapse
|
39
|
Brolin C, Shiraishi T. Antisense mediated exon skipping therapy for duchenne muscular dystrophy (DMD). ARTIFICIAL DNA, PNA & XNA 2014; 2:6-15. [PMID: 21686247 DOI: 10.4161/adna.2.1.15425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/19/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal disease caused by mutations in the dystrophin gene (DMD) that result in the absence of essential muscle protein dystrophin. Among many different approaches for DMD treatment, exon skipping, mediated by antisense oligonucleotides, is one of the most promising methods for restoration of dystrophin expression. This approach has been tested extensively targeting different exons in numerous models both in vitro and in vivo. During the past 10 years, there has been a considerable progress by using DMD animal models involving three types of antisense oligonucleotides (2'-O-methyl phosphorothioate (2OME-PS), phosphorodiamidate morpholino oligomer (PMO)) and peptide nucleic acid (PNA).
Collapse
Affiliation(s)
- Camilla Brolin
- Center for Experimental Drug and Gene Electrotransfer (CEDGE); Department of Oncology 54B1; Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | | |
Collapse
|
40
|
Mourich DV, Oda SK, Schnell FJ, Crumley SL, Hauck LL, Moentenich CA, Marshall NB, Hinrichs DJ, Iversen PL. Alternative splice forms of CTLA-4 induced by antisense mediated splice-switching influences autoimmune diabetes susceptibility in NOD mice. Nucleic Acid Ther 2014; 24:114-26. [PMID: 24494586 DOI: 10.1089/nat.2013.0449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Activated and regulatory T cells express the negative co-stimulatory molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) that binds B7 on antigen-presenting cells to mediate cellular responses. Single nucleotide polymorphisms in the CTLA-4 gene have been found to affect alternative splicing and are linked to autoimmune disease susceptibility or resistance. Increased expression of a soluble splice form (sCTLA-4), lacking the transmembrane domain encoded by exon 3, has been shown to accelerate autoimmune pathology. In contrast, an exon 2-deficient form lacking the B7 ligand binding domain (liCTLA-4), expressed by diabetes resistant mouse strains has been shown to be protective when expressed as a transgene in diabetes susceptible non-obese diabetic (NOD) mice. We sought to employ an antisense-targeted splice-switching approach to independently produce these CTLA-4 splice forms in NOD mouse T cells and observe their relative impact on spontaneous autoimmune diabetes susceptibility. In vitro antisense targeting of the splice acceptor site for exon 2 produced liCTLA-4 while targeting exon 3 produced the sCTLA-4 form in NOD T cells. The liCTLA-4 expressing T cells exhibited reduced activation, proliferation and increased adhesion to intercellular adhesion molecule-1 (ICAM-1) similar to treatment with agonist α-CTLA-4. Mice treated to produce liCTLA-4 at the time of elevated blood glucose levels exhibited a significant reduction in the incidence of insulitis and diabetes, whereas a marked increase in the incidence of both was observed in animals treated to produce sCTLA-4. These findings provide further support that alternative splice forms of CTLA-4 affects diabetes susceptibility in NOD mice and demonstrates the therapeutic utility of antisense mediated splice-switching for modulating immune responses.
Collapse
|
41
|
Echigoya Y, Yokota T. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 2013; 24:57-68. [PMID: 24380394 DOI: 10.1089/nat.2013.0451] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein. One major challenge has been its limited applicability. Multiple exon skipping has recently emerged as a potential solution. Indeed, many DMD patients need exon skipping of multiple exons in order to restore the reading frame, depending on how many base pairs the mutated exon(s) and adjacent exons have. Theoretically, multiple exon skipping could be used to treat approximately 90%, 80%, and 98% of DMD patients with deletion, duplication, and nonsense mutations, respectively. In addition, multiple exon skipping could be used to select deletions that optimize the functionality of the truncated dystrophin protein. The proof of concept of systemic multiple exon skipping using a cocktail of AOs has been demonstrated in dystrophic dog and mouse models. Remaining challenges include the insufficient efficacy of systemic treatment, especially for therapies that target the heart, and limited long-term safety data. Here we review recent preclinical developments in AO-mediated multiple exon skipping and discuss the remaining challenges.
Collapse
Affiliation(s)
- Yusuke Echigoya
- 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
42
|
Oral corticosteroids and onset of cardiomyopathy in Duchenne muscular dystrophy. J Pediatr 2013; 163:1080-4.e1. [PMID: 23866715 DOI: 10.1016/j.jpeds.2013.05.060] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To estimate the age when cardiomyopathy develops in boys with Duchenne muscular dystrophy (DMD) and to analyze the effect of corticosteroid treatment on the age of cardiomyopathy onset. STUDY DESIGN We identified a population-based sample of 462 boys with DMD, born between 1982 and 2005, in 5 surveillance sites in the US. Echocardiographic and corticosteroid treatment data were collected. Cardiomyopathy was defined by a reduced fractional shortening (<28%) or ejection fraction (<55%). The age of cardiomyopathy onset was determined. Survival analysis was performed to determine the effects of corticosteroid treatment on cardiomyopathy onset. RESULTS The mean (SD) age of cardiomyopathy onset was 14.3 (4.2) years for the entire population and 15.2 (3.4) years in corticosteroid-treated vs 13.1 (4.8) in non-treated boys. Survival analysis described a significant delay of cardiomyopathy onset for boys treated with corticosteroids (P < .02). By 14.3 years of age, 63% of non-treated boys had developed cardiomyopathy vs only 36% of those treated. Among boys treated with corticosteroids, there is a significant positive effect of duration of corticosteroid treatment on cardiomyopathy onset (P < .0001). For every year of corticosteroid treatment, the probability of developing cardiomyopathy decreased by 4%. CONCLUSIONS Oral corticosteroid treatment was associated with delayed cardiomyopathy onset. The duration of corticosteroid treatment also correlated positively with delayed cardiomyopathy onset. Our analysis suggests that a boy with DMD treated for 5 years with corticosteroids might experience a 20% decrease in the likelihood of developing cardiomyopathy compared with untreated boys.
Collapse
|
43
|
Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, Malik V, Shontz K, Walker CM, Flanigan KM, Corridore M, Kean JR, Allen HD, Shilling C, Melia KR, Sazani P, Saoud JB, Kaye EM. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 2013; 74:637-47. [PMID: 23907995 DOI: 10.1002/ana.23982] [Citation(s) in RCA: 559] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In prior open-label studies, eteplirsen, a phosphorodiamidate morpholino oligomer, enabled dystrophin production in Duchenne muscular dystrophy (DMD) with genetic mutations amenable to skipping exon 51. The present study used a double-blind placebo-controlled protocol to test eteplirsen's ability to induce dystrophin production and improve distance walked on the 6-minute walk test (6MWT). METHODS DMD boys aged 7 to 13 years, with confirmed deletions correctable by skipping exon 51 and ability to walk 200 to 400 m on 6 MWT, were randomized to weekly intravenous infusions of 30 or 50 mg/kg/wk eteplirsen or placebo for 24 weeks (n = 4/group). Placebo patients switched to 30 or 50 mg/kg eteplirsen (n=2/group) at week 25; treatment was open label thereafter. All patients had muscle biopsies at baseline and week 48. Efficacy included dystrophin-positive fibers and distance walked on the 6MWT. RESULTS At week 24, the 30 mg/kg eteplirsen patients were biopsied, and percentage of dystrophin-positive fibers was increased to 23% of normal; no increases were detected in placebo-treated patients (p≤0.002). Even greater increases occurred at week 48 (52% and 43% in the 30 and 50 mg/kg cohorts, respectively), suggesting that dystrophin increases with longer treatment. Restoration of functional dystrophin was confirmed by detection of sarcoglycans and neuronal nitric oxide synthase at the sarcolemma. Ambulation-evaluable eteplirsen-treated patients experienced a 67.3 m benefit compared to placebo/delayed patients (p≤0.001). INTERPRETATION Eteplirsen restored dystrophin in the 30 and 50 mg/kg/wk cohorts, and in subsequently treated, placebo-controlled subjects. Duration, more than dose, accounted for dystrophin production, also resulting in ambulation stability. No severe adverse events were encountered.
Collapse
Affiliation(s)
- Jerry R Mendell
- Departments of Pediatrics, Ohio State University, Columbus, OH; Neurology the Ohio State University, Ohio State University, Columbus, OH; Gene Therapy Center, Nationwide Children's Hospital Ohio State University, Columbus, OH; Paul D. Wellstone Center, Nationwide Children's Hospital Ohio State University, Columbus, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm 2013; 85:5-11. [DOI: 10.1016/j.ejpb.2013.03.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
45
|
Antisense therapy in neurology. J Pers Med 2013; 3:144-76. [PMID: 25562650 PMCID: PMC4251390 DOI: 10.3390/jpm3030144] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology.
Collapse
|
46
|
Koo T, Wood MJ. Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. Hum Gene Ther 2013; 24:479-88. [PMID: 23521559 DOI: 10.1089/hum.2012.234] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the DMD gene, affecting 1 in 3500 newborn males. Complete loss of muscle dystrophin protein causes progressive muscle weakness and heart and respiratory failure, leading to premature death. Antisense oligonucleotides (AONs) that bind to complementary sequences of the dystrophin pre-mRNA to induce skipping of the targeted exon by modulating pre-mRNA splicing are promising therapeutic agents for DMD. Such AONs can restore the open reading frame of the DMD gene and produce internally deleted, yet partially functional dystrophin protein isoforms in skeletal muscle. Within the last few years, clinical trials using AONs have made considerable progress demonstrating the restoration of functional dystrophin protein and acceptable safety profiles following both local and systemic delivery in DMD patients. However, improvement of AON delivery and efficacy, along with the development of multiple AONs to treat as many DMD patients as possible needs to be addressed for this approach to fulfill its potential. Here, we review the recent progress made in clinical trials using AONs to treat DMD and discuss the current challenges to the development of AON-based therapy for DMD.
Collapse
Affiliation(s)
- Taeyoung Koo
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
47
|
Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol Cell Neurosci 2013; 56:169-85. [PMID: 23631896 PMCID: PMC3793868 DOI: 10.1016/j.mcn.2013.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision.
Collapse
Affiliation(s)
- Andrew G L Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | | |
Collapse
|
48
|
Leger AJ, Mosquea LM, Clayton NP, Wu IH, Weeden T, Nelson CA, Phillips L, Roberts E, Piepenhagen PA, Cheng SH, Wentworth BM. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy. Nucleic Acid Ther 2013; 23:109-17. [PMID: 23308382 DOI: 10.1089/nat.2012.0404] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Expansions of CUG trinucleotide sequences in RNA transcripts provide the basis for toxic RNA gain-of-function that leads to detrimental changes in RNA metabolism. A CTG repeat element normally resides in the 3' untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, but when expanded it is the genetic lesion of myotonic dystrophy type 1 (DM1), a hereditary neuromuscular disease. The pathogenic DMPK transcript containing the CUG expansion is retained in ribonuclear foci as part of a complex with RNA-binding proteins such as muscleblind-like 1 (MBNL1), resulting in aberrant splicing of numerous RNA transcripts and consequent physiological abnormalities including myotonia. Herein, we demonstrate molecular and physiological amelioration of the toxic effects of mutant RNA in the HSA(LR) mouse model of DM1 by systemic administration of peptide-linked morpholino (PPMO) antisense oligonucleotides bearing a CAG repeat sequence. Intravenous administration of PPMO conjugates to HSA(LR) mice led to redistribution of Mbnl1 protein in myonuclei and corrections in abnormal RNA splicing. Additionally, myotonia was completely eliminated in PPMO-treated HSA(LR) mice. These studies provide proof of concept that neutralization of RNA toxicity by systemic delivery of antisense oligonucleotides that target the CUG repeat is an effective therapeutic approach for treating the skeletal muscle aspects of DM1 pathology.
Collapse
|
49
|
Persistent dystrophin protein restoration 90 days after a course of intraperitoneally administered naked 2'OMePS AON and ZM2 NP-AON complexes in mdx mice. J Biomed Biotechnol 2012; 2012:897076. [PMID: 23091362 PMCID: PMC3471065 DOI: 10.1155/2012/897076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 11/18/2022] Open
Abstract
In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of 2′-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules.
Collapse
|
50
|
Lehto T, Kurrikoff K, Langel Ü. Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 2012; 9:823-36. [PMID: 22594635 DOI: 10.1517/17425247.2012.689285] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Different gene therapy approaches have gained extensive interest lately and, after many initial hurdles, several promising approaches have reached to the clinics. Successful implementation of gene therapy is heavily relying on finding efficient measures to deliver genetic material to cells. Recently, non-viral delivery of nucleic acids and their analogs has gained significant interest. Among non-viral vectors, cell-penetrating peptides (CPPs) have been extensively used for the delivery of nucleic acids both in vitro and in vivo. AREAS COVERED In this review we will discuss recent advances of CPP-mediated delivery of nucleic acid-based cargo, concentrating on the delivery of plasmid DNA, splice-correcting ONs, and small-interfering RNAs. EXPERT OPINION CPPs have proved their potential as carriers for nucleic acids. However, similarly to other non-viral vectors, CPPs require further development, as efficient systemic delivery is still seldom achieved. To achieve this, CPPs should be modified with entities that would allow better endosomal escape, targeting of specific tissues and cells, and shielding agents that increase the half-life of the vehicles. Finally, to understand the clinical potential of CPPs, they require more thorough investigations in clinically relevant disease models and in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Taavi Lehto
- University of Tartu, Institute of Technology, Laboratory of Molecular Biotechnology, Tartu, Estonia.
| | | | | |
Collapse
|