1
|
Yang CH, Huang H, Lee PY, Chuang YH, Chang WT, Huang CC. Increasing the Maximum Detectable Flow Velocity in High-Frequency Ultrasound Vector Doppler Imaging. IEEE Trans Biomed Eng 2024; 71:3181-3191. [PMID: 38949935 DOI: 10.1109/tbme.2024.3410244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
High-frequency ultrasound (HFUS; >30 MHz) Doppler imaging has been widely used in the imaging of small animals and humans because of its high resolution. Vector Doppler imaging (VDI) has certain advantages for visualizing complex flow patterns independent of the Doppler angle. However, no commercial HFUS VDI system is currently available; therefore, several studies have connected an ultrasound research platform (Verasonics Vantage 256) with an HFUS array transducer for HFUS VDI. Unfortunately, the maximum frame rate of this system is only 10 kHz at an operational frequency of 40 MHz because of limitations related to data transmission hardware, thereby restricting the maximum detectable velocity of Doppler measurements. To address this drawback, in the present study, an electrocardiography (ECG)-gating-based HFUS VDI system was developed to avoid Doppler flow aliasing in data acquisition by ultrasound research platform at its maximum frame rate of 10 kHz. The developed method aligns all tilted plane waves with the ECG R-wave, which avoids the trade-off between frame rate and tilted angles number in conventional VDI. The performance of the proposed data acquisition method in HFUS VDI was verified using a steady-flow phantom, for which estimation errors were less than 10% under different flow settings. In animal studies, peak flow velocities in the carotid artery, left ventricle, and aortic arch of wild-type mice were measured (approximately 55, 655, and 765 mm/s, respectively). Also, the HFUS VDI from the mitral regurgitation mice model was obtained to present the complex flow patterns through the proposed method. In contrast to the conventional method, no Doppler aliasing occurs in the proposed method because the frame rate is sufficient. The experimental results indicate the developed HFUS VDI has the potential to become a useful tool for vector flow visualization in small animals, even under a high flow velocity.
Collapse
|
2
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Beccari S, Mohamed E, Voong V, Hilz S, Lafontaine M, Shai A, Lim Y, Martinez J, Switzman B, Yu RL, Lupo JM, Chang EF, Hervey-Jumper SL, Berger MS, Costello JF, Phillips JJ. Quantitative Assessment of Preanalytic Variables on Clinical Evaluation of PI3/AKT/mTOR Signaling Activity in Diffuse Glioma. Mod Pathol 2024; 37:100488. [PMID: 38588881 DOI: 10.1016/j.modpat.2024.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024]
Abstract
Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.
Collapse
Affiliation(s)
- Sol Beccari
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Esraa Mohamed
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Viva Voong
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Marisa Lafontaine
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anny Shai
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Yunita Lim
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jerry Martinez
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Benjamin Switzman
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Ryon L Yu
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, California; Neuropathology Division, Department of Pathology, University of California, San Francisco, California.
| |
Collapse
|
4
|
Bausart M, Bozzato E, Joudiou N, Koutsoumpou X, Manshian B, Préat V, Gallez B. Mismatch between Bioluminescence Imaging (BLI) and MRI When Evaluating Glioblastoma Growth: Lessons from a Study Where BLI Suggested "Regression" while MRI Showed "Progression". Cancers (Basel) 2023; 15:cancers15061919. [PMID: 36980804 PMCID: PMC10047859 DOI: 10.3390/cancers15061919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.
Collapse
Affiliation(s)
- Mathilde Bausart
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Elia Bozzato
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Xanthippi Koutsoumpou
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Bella Manshian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
5
|
Liu Y, Zhu W, Zhu H, Zhang J, Zhang J, Shen N, Jiang J, Xue Y, Jiang R. Characterization of orthotopic xenograft tumor of glioma stem cells (GSCs) on MRI, PET and immunohistochemical staining. Front Oncol 2022; 12:1085015. [PMID: 36591483 PMCID: PMC9797975 DOI: 10.3389/fonc.2022.1085015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The orthotopic xenograft tumors of human glioma stem cells (GSCs) is a recent glioma model with genotype and phenotypic characteristics close to human gliomas. This study aimed to explore the imaging and immunohistochemical characteristics of GSCs gliomas. Methods The rats underwent MRI and 18F-FDG PET scan in 6th-8th weeks after GSCs implantation. The MRI morphologic, DWI and PET features of the tumor lesions were assessed. In addition, the immunohistochemical features of the tumor tissues were further analyzed. Results Twenty-five tumor lesions were identified in 20 tumor-bearing rats. On structural MRI, the average tumor size was 30.04±17.31mm2, and the intensity was inhomogeneous in 76.00% (19/25) of the lesions. The proportion of the lesions mainly presented as solid, cystic and patchy tumor were 60.00% (15/25), 16.00% (4/25) and 24.00% (6/25), respectively. The boundary was unclear in 88.00% (22/25), and peritumoral mass effect was observed in 92.00% (23/25) of the lesions. On DWI, 80.00% (20/25) of the lesions showed increased intensity. Of the 14 lesions in the 11 rats underwent PET scan, 57.14% (8/14) showed increased FDG uptake. On immunohistochemical staining, the expression of Ki-67 was strong in all the lesions (51.67%±11.82%). Positive EGFR and VEGF expression were observed in 64.71% (11/17) and 52.94% (9/17) of the rats, whereas MGMT and HIF-1α showed negative expression in all the lesions. Discussion GSC gliomas showed significant heterogeneity and invasiveness on imaging, and exhibited strong expression of Ki-67, partial expression of EGFR and VEGF, and weak expression of MGMT and HIF-1α on immunohistochemical staining.
Collapse
Affiliation(s)
- Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ju Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,*Correspondence: Rifeng Jiang,
| |
Collapse
|
6
|
Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res 2021; 406:112757. [PMID: 34331909 DOI: 10.1016/j.yexcr.2021.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.
Collapse
Affiliation(s)
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | |
Collapse
|
7
|
Recent advances in iron oxide nanoparticles for brain cancer theranostics: from in vitro to clinical applications. Expert Opin Drug Deliv 2021; 18:949-977. [PMID: 33567919 DOI: 10.1080/17425247.2021.1888926] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Today, the development of multifunctional nanoplatforms is more seriously considered in the field of cancer theranostics.Areas covered: In this respect, nanoparticles provide several advantages over the routine, conventional diagnostic methods, and treatments. Due to the expedient properties of iron oxide nanoparticles, such as being readily modified, great payload potential, intrinsic magnetic qualification, considerable biocompatibility, and overwhelming response to targeting strategies, these nanoparticles can be considered good candidates for application as diagnostic contrast agents and drug/gene delivery vehicles, while also being incorporated into hyperthermia-based approaches. Interestingly, these agents are detectable with routine imaging modalities such as magnetic resonance imaging.Expert opinion: Therefore, combining the traditional diagnostics and therapies with nanotechnological approaches may leave a positive impact on the survival rate of patients with cancer. This review summarizes the application of magnetic iron oxide nanoparticles in both in vitro and in vivo models of brain tumors.
Collapse
|
8
|
Molecular imaging of a fluorescent antibody against epidermal growth factor receptor detects high-grade glioma. Sci Rep 2021; 11:5710. [PMID: 33707521 PMCID: PMC7952570 DOI: 10.1038/s41598-021-84831-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
The prognosis for high-grade glioma (HGG) remains dismal and the extent of resection correlates with overall survival and progression free disease. Epidermal growth factor receptor (EGFR) is a biomarker heterogeneously expressed in HGG. We assessed the feasibility of detecting HGG using near-infrared fluorescent antibody targeting EGFR. Mice bearing orthotopic HGG xenografts with modest EGFR expression were imaged in vivo after systemic panitumumab-IRDye800 injection to assess its tumor-specific uptake macroscopically over 14 days, and microscopically ex vivo. EGFR immunohistochemical staining of 59 tumor specimens from 35 HGG patients was scored by pathologists and expression levels were compared to that of mouse xenografts. Intratumoral distribution of panitumumab-IRDye800 correlated with near-infrared fluorescence and EGFR expression. Fluorescence distinguished tumor cells with 90% specificity and 82.5% sensitivity. Target-to-background ratios peaked at 14 h post panitumumab-IRDye800 infusion, reaching 19.5 in vivo and 7.6 ex vivo, respectively. Equivalent or higher EGFR protein expression compared to the mouse xenografts was present in 77.1% HGG patients. Age, combined with IDH-wildtype cerebral tumor, was predictive of greater EGFR protein expression in human tumors. Tumor specific uptake of panitumumab-IRDye800 provided remarkable contrast and a flexible imaging window for fluorescence-guided identification of HGGs despite modest EGFR expression.
Collapse
|
9
|
Protti A, Jones KL, Bonal DM, Qin L, Politi LS, Kravets S, Nguyen QD, Van den Abbeele AD. Development and validation of a new MRI simulation technique that can reliably estimate optimal in vivo scanning parameters in a glioblastoma murine model. PLoS One 2018; 13:e0200611. [PMID: 30036367 PMCID: PMC6056046 DOI: 10.1371/journal.pone.0200611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) relies on optimal scanning parameters to achieve maximal signal-to-noise ratio (SNR) and high contrast-to-noise ratio (CNR) between tissues resulting in high quality images. The optimization of such parameters is often laborious, time consuming, and user-dependent, making harmonization of imaging parameters a difficult task. In this report, we aim to develop and validate a computer simulation technique that can reliably provide "optimal in vivo scanning parameters" ready to be used for in vivo evaluation of disease models. METHODS A glioblastoma murine model was investigated using several MRI imaging methods. Such MRI methods underwent a simulated and an in vivo scanning parameter optimization in pre- and post-contrast conditions that involved the investigation of tumor, brain parenchyma and cerebrospinal fluid (CSF) CNR values in addition to the time relaxation values of the related tissues. The CNR tissues information were analyzed and the derived scanning parameters compared in order to validate the simulated methodology as a reliable technique for "optimal in vivo scanning parameters" estimation. RESULTS The CNRs and the related scanning parameters were better correlated when spin-echo-based sequences were used rather than the gradient-echo-based sequences due to augmented inhomogeneity artifacts affecting the latter methods. "Optimal in vivo scanning parameters" were generated successfully by the simulations after initial scanning parameter adjustments that conformed to some of the parameters derived from the in vivo experiment. CONCLUSION Scanning parameter optimization using the computer simulation was shown to be a valid surrogate to the in vivo approach in a glioblastoma murine model yielding in a better delineation and differentiation of the tumor from the contralateral hemisphere. In addition to drastically reducing the time invested in choosing optimal scanning parameters when compared to an in vivo approach, this simulation program could also be used to harmonize MRI acquisition parameters across scanners from different vendors.
Collapse
Affiliation(s)
- Andrea Protti
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Kristen L. Jones
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis M. Bonal
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lei Qin
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Letterio S. Politi
- Neuroimaging Research, Radiology Department, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Radiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States of America
| | - Sasha Kravets
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Quang-Dé Nguyen
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annick D. Van den Abbeele
- Department of Imaging, Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Loskutov YV, Griffin CL, Marinak KM, Bobko A, Margaryan NV, Geldenhuys WJ, Sarkaria JN, Pugacheva EN. LPA signaling is regulated through the primary cilium: a novel target in glioblastoma. Oncogene 2018; 37:1457-1471. [PMID: 29321663 PMCID: PMC5854509 DOI: 10.1038/s41388-017-0049-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/06/2017] [Accepted: 09/24/2017] [Indexed: 01/23/2023]
Abstract
The primary cilium is a ubiquitous organelle presented on most human cells. It is a crucial signaling hub for multiple pathways including growth factor and G-protein coupled receptors. Loss of primary cilia, observed in various cancers, has been shown to affect cell proliferation. Primary cilia formation is drastically decreased in glioblastoma (GBM), however, the role of cilia in normal astrocyte or glioblastoma proliferation has not been explored. Here, we report that loss of primary cilia in human astrocytes stimulates growth rate in a lysophosphatidic acid (LPA)-dependent manner. We show that lysophosphatidic acid receptor 1 (LPAR1) is accumulated in primary cilia. LPAR1 signaling through Gα12/Gαq was previously reported to be responsible for cancer cell proliferation. We found that in ciliated cells, Gα12 and Gαq are excluded from the cilium, creating a barrier against unlimited proliferation, one of the hallmarks of cancer. Upon loss of primary cilia, LPAR1 redistributes to the plasma membrane with a concomitant increase in LPAR1 association with Gα12 and Gαq. Inhibition of LPA signaling with the small molecule compound Ki16425 in deciliated highly proliferative astrocytes or glioblastoma patient-derived cells/xenografts drastically suppresses their growth both in vitro and in vivo. Moreover, Ki16425 brain delivery via PEG-PLGA nanoparticles inhibited tumor progression in an intracranial glioblastoma PDX model. Overall, our findings establish a novel mechanism by which primary cilium restricts proliferation and indicate that loss of primary cilia is sufficient to increase mitogenic signaling, and is important for the maintenance of a highly proliferative phenotype. Clinical application of LPA inhibitors may prove beneficial to restrict glioblastoma growth and ensure local control of disease.
Collapse
Affiliation(s)
- Yuriy V Loskutov
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Caryn L Griffin
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kristina M Marinak
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrey Bobko
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Naira V Margaryan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Elena N Pugacheva
- WVU Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Radiation Oncology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
11
|
Herting CJ, Chen Z, Pitter KL, Szulzewsky F, Kaffes I, Kaluzova M, Park JC, Cimino PJ, Brennan C, Wang B, Hambardzumyan D. Genetic driver mutations define the expression signature and microenvironmental composition of high-grade gliomas. Glia 2017; 65:1914-1926. [PMID: 28836293 DOI: 10.1002/glia.23203] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/11/2022]
Abstract
High-grade gliomas (HGG), including glioblastomas, are characterized by invasive growth, resistance to therapy, and high inter- and intra-tumoral heterogeneity. The key histological hallmarks of glioblastoma are pseudopalisading necrosis and microvascular proliferation, which allow pathologists to distinguish glioblastoma from lower-grade gliomas. In addition to being genetically and molecularly heterogeneous, HGG are also heterogeneous with respect to the composition of their microenvironment. The question of whether this microenvironmental heterogeneity is driven by the molecular identity of the tumor remains controversial. However, this question is of utmost importance since microenvironmental, non-neoplastic cells are key components of the most radiotherapy- and chemotherapy-resistant niches of the tumor. Our work demonstrates a versatile, reliable, and reproducible adult HGG mouse model with NF1-silencing as a driver mutation. This model shows significant differences in tumor microenvironment, expression of subtype-specific markers, and response to standard therapy when compared to our established PDGFB-overexpressing HGG mouse model. PDGFB-overexpressing and NF1-silenced murine tumors closely cluster with human proneural and mesenchymal subtypes, as well as PDGFRA-amplified and NF1-deleted/mutant human tumors, respectively, at both the RNA and protein expression levels. These models can be generated in fully immunocompetent mixed or C57BL/6 genetic background mice, and therefore can easily be incorporated into preclinical studies for cancer cell-specific or immune cell-targeting drug discovery studies.
Collapse
Affiliation(s)
- C J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia.,Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia
| | - Z Chen
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - K L Pitter
- Department of Cancer Biology and Genetics, Memorial Sloan Cancer Kettering Center, New York
| | - F Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - I Kaffes
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - M Kaluzova
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - J C Park
- CSI Core, Emory University School of Medicine, Atlanta, Georgia
| | - P J Cimino
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Pathology, Division of Neuropathology, University of Washington, Seattle, Washington
| | - C Brennan
- Neurosurgery Department, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York
| | - B Wang
- Rammelkamp Center for Research, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Department of Pharmacology and Oncology, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - D Hambardzumyan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
12
|
Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model. Neoplasia 2016; 18:82-9. [PMID: 26936394 PMCID: PMC5005260 DOI: 10.1016/j.neo.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM.
Collapse
|
13
|
Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, Beal K, Bishop AJ, Barker CA, Jones TS, Hentschel B, Gorlia T, Schlegel U, Stupp R, Weller M, Holland EC, Hambardzumyan D. Corticosteroids compromise survival in glioblastoma. Brain 2016; 139:1458-71. [PMID: 27020328 PMCID: PMC5006251 DOI: 10.1093/brain/aww046] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the most common and most aggressive primary brain tumour. Standard of care consists of surgical resection followed by radiotherapy and concomitant and maintenance temozolomide (temozolomide/radiotherapy→temozolomide). Corticosteroids are commonly used perioperatively to control cerebral oedema and are frequently continued throughout subsequent treatment, notably radiotherapy, for amelioration of side effects. The effects of corticosteroids such as dexamethasone on cell growth in glioma models and on patient survival have remained controversial. We performed a retrospective analysis of glioblastoma patient cohorts to determine the prognostic role of steroid administration. A disease-relevant mouse model of glioblastoma was used to characterize the effects of dexamethasone on tumour cell proliferation and death, and to identify gene signatures associated with these effects. A murine anti-VEGFA antibody was used in parallel as an alternative for oedema control. We applied the dexamethasone-induced gene signature to The Cancer Genome Atlas glioblastoma dataset to explore the association of dexamethasone exposure with outcome. Mouse experiments were used to validate the effects of dexamethasone on survival in vivo Retrospective clinical analyses identified corticosteroid use during radiotherapy as an independent indicator of shorter survival in three independent patient cohorts. A dexamethasone-associated gene expression signature correlated with shorter survival in The Cancer Genome Atlas patient dataset. In glioma-bearing mice, dexamethasone pretreatment decreased tumour cell proliferation without affecting tumour cell viability, but reduced survival when combined with radiotherapy. Conversely, anti-VEGFA antibody decreased proliferation and increased tumour cell death, but did not affect survival when combined with radiotherapy. Clinical and mouse experimental data suggest that corticosteroids may decrease the effectiveness of treatment and shorten survival in glioblastoma. Dexamethasone-induced anti-proliferative effects may confer protection from radiotherapy- and chemotherapy-induced genotoxic stress. This study highlights the importance of identifying alternative agents such as vascular endothelial growth factor antagonists for managing oedema in glioblastoma patients. Beyond the established adverse effect profile of protracted corticosteroid use, this analysis substantiates the request for prudent and restricted use of corticosteroids in glioblastoma.
Collapse
Affiliation(s)
- Kenneth L Pitter
- 1 Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Ilaria Tamagno
- 2 Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, 44195, USA
| | - Kristina Alikhanyan
- 3 Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Amira Hosni-Ahmed
- 4 University of Tennessee Health Science Center, Department of Clinical Pharmacy, Memphis, TN, 39103, USA
| | - Siobhan S Pattwell
- 5 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA (FH)
| | - Shannon Donnola
- 2 Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, 44195, USA
| | - Charles Dai
- 2 Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, 44195, USA
| | - Tatsuya Ozawa
- 5 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA (FH)
| | - Maria Chang
- 6 Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- 6 Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA 7 Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn Beal
- 6 Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA 7 Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew J Bishop
- 6 Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher A Barker
- 6 Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Terreia S Jones
- 4 University of Tennessee Health Science Center, Department of Clinical Pharmacy, Memphis, TN, 39103, USA
| | - Bettina Hentschel
- 8 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Thierry Gorlia
- 9 European Organisation for Research and Treatment of Cancer, Brussels, Belgium
| | - Uwe Schlegel
- 10 Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum-Langendreer, Bochum, Germany
| | - Roger Stupp
- 11 Department of Oncology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Michael Weller
- 12 Department of Neurology, University Hospital and University of Zurich, CH-8091 Zurich, Switzerland
| | - Eric C Holland
- 5 Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA (FH) 13 Alvord Brain Tumor Center and Department of Neurosurgery, University of Washington, Seattle, WA 98109, USA 14 Solid Tumor and Translational Research, University of Washington, Seattle, WA 98109, USA
| | - Dolores Hambardzumyan
- 2 Department of Neurosciences at the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, 44195, USA 3 Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
14
|
Suero-Abreu GA, Praveen Raju G, Aristizábal O, Volkova E, Wojcinski A, Houston EJ, Pham D, Szulc KU, Colon D, Joyner AL, Turnbull DH. In vivo Mn-enhanced MRI for early tumor detection and growth rate analysis in a mouse medulloblastoma model. Neoplasia 2015; 16:993-1006. [PMID: 25499213 PMCID: PMC4309249 DOI: 10.1016/j.neo.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/03/2022] Open
Abstract
Mouse models have increased our understanding of the pathogenesis of medulloblastoma (MB), the most common malignant pediatric brain tumor that often forms in the cerebellum. A major goal of ongoing research is to better understand the early stages of tumorigenesis and to establish the genetic and environmental changes that underlie MB initiation and growth. However, studies of MB progression in mouse models are difficult due to the heterogeneity of tumor onset times and growth patterns and the lack of clinical symptoms at early stages. Magnetic resonance imaging (MRI) is critical for noninvasive, longitudinal, three-dimensional (3D) brain tumor imaging in the clinic but is limited in resolution and sensitivity for imaging early MBs in mice. In this study, high-resolution (100 μm in 2 hours) and high-throughput (150 μm in 15 minutes) manganese-enhanced MRI (MEMRI) protocols were optimized for early detection and monitoring of MBs in a Patched-1 (Ptch1) conditional knockout (CKO) model. The high tissue contrast obtained with MEMRI revealed detailed cerebellar morphology and enabled detection of MBs over a wide range of stages including pretumoral lesions as early as 2 to 3 weeks postnatal with volumes close to 0.1 mm3. Furthermore, longitudinal MEMRI allowed noninvasive monitoring of tumors and demonstrated that lesions within and between individuals have different tumorigenic potentials. 3D volumetric studies allowed quantitative analysis of MB tumor morphology and growth rates in individual Ptch1-CKO mice. These results show that MEMRI provides a powerful method for early in vivo detection and longitudinal imaging of MB progression in the mouse brain.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - G Praveen Raju
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandre Wojcinski
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edward J Houston
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Diane Pham
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Kamila U Szulc
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Daniel Colon
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Alexandra L Joyner
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
15
|
PET, MRI, and simultaneous PET/MRI in the development of diagnostic and therapeutic strategies for glioma. Drug Discov Today 2014; 20:306-17. [PMID: 25448762 DOI: 10.1016/j.drudis.2014.10.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/15/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022]
Abstract
Glioma is the most aggressive brain tumour, resulting in death often within 1-2 years. Current treatment strategies involve surgical resection followed by chemoradiation therapy. Despite continuing improvements in the delivery of adjuvant therapies, there has not been a dramatic increase in survival for glioma. Molecular imaging techniques have become central in the development of new therapeutic strategies in recent years. The multimodal imaging technology of positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been realised on a preclinical scale and the effect of this technology is starting to be observed in preclinical drug development for glioma. Here, we propose that PET/MRI will play an integral part in the development of new diagnostic and therapeutic strategies for glioma.
Collapse
|
16
|
Kim B, Yang J, Hwang M, Choi J, Kim HO, Jang E, Lee JH, Ryu SH, Suh JS, Huh YM, Haam S. Aptamer-modified magnetic nanoprobe for molecular MR imaging of VEGFR2 on angiogenic vasculature. NANOSCALE RESEARCH LETTERS 2013; 8:399. [PMID: 24066922 PMCID: PMC3849016 DOI: 10.1186/1556-276x-8-399] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/09/2013] [Indexed: 05/17/2023]
Abstract
Nucleic acid-based aptamers have been developed for the specific delivery of diagnostic nanoprobes. Here, we introduce a new class of smart imaging nanoprobe, which is based on hybridization of a magnetic nanocrystal with a specific aptamer for specific detection of the angiogenic vasculature of glioblastoma via magnetic resonance (MR) imaging. The magnetic nanocrystal imaging core was synthesized using the thermal decomposition method and enveloped by carboxyl polysorbate 80 for water solubilization and conjugation of the targeting moiety. Subsequently, the surface of the carboxylated magnetic nanocrystal was modified with amine-functionalized aptamers that specifically bind to the vascular growth factor receptor 2 (VEGFR2) that is overexpressed on angiogenic vessels. To assess the targeted imaging potential of the aptamer-conjugated magnetic nanocrystal for VEGFR2 markers, the magnetic properties and MR imaging sensitivity were investigated using the orthotopic glioblastoma mouse model. In in vivo tests, the aptamer-conjugated magnetic nanocrystal effectively targeted VEGFR2 and demonstrated excellent MR imaging sensitivity with no cytotoxicity.
Collapse
Affiliation(s)
- Bongjune Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Myeonghwan Hwang
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Jihye Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eunji Jang
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jung Hwan Lee
- POSTECH Aptamer Initiative Program, Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung-Ho Ryu
- POSTECH Aptamer Initiative Program, Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
17
|
Huang R, Vider J, Kovar JL, Olive DM, Mellinghoff IK, Mayer-Kuckuk P, Kircher MF, Blasberg RG. Integrin αvβ3-targeted IRDye 800CW near-infrared imaging of glioblastoma. Clin Cancer Res 2012; 18:5731-40. [PMID: 22914772 DOI: 10.1158/1078-0432.ccr-12-0374] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Integrin α(v)β(3) plays an important role in tumor angiogenesis, growth, and metastasis. We have tested a targeted probe to visualize integrin receptor expression in glioblastomas using near-infrared fluorescent (NIRF) imaging. EXPERIMENTAL DESIGN A transgenic glioblastoma mouse model (RCAS-PDGF-driven/tv-a glioblastoma, which mimics the infiltrative growth pattern of human glioblastomas) and two human orthotopic glioblastoma models (U-87 MG with high integrin β(3) expression and TS543 with low integrin β(3) expression) were studied. An integrin-targeting NIRF probe, IRDye 800CW-cyclic-RGD peptide (IRDye 800CW-RGD), was tested by in vivo and ex vivo NIRF imaging. RESULTS We show that the IRDye 800CW-RGD peptide: (i) specifically binds to integrin receptors; (ii) is selectively localized to glioblastoma tissue with overexpressed integrin receptors and is retained over prolonged periods of time; (iii) is associated with minimal autofluorescence and photobleaching because of imaging at 800 nm; (iv) provides delineation of tumor tissue with high precision because of a high tumor-to-normal brain fluorescence ratio (79.7 ± 6.9, 31.2 ± 2.8, and 16.3 ± 1.3) in the U-87 MG, RCAS-PDGF, and TS543 models, respectively; P < 0.01); and (v) enables fluorescence-guided glioblastoma resection. Importantly, small foci of residual fluorescence were observed after resection was completed using white light imaging alone, and these fluorescent foci were shown to represent residual tumor tissue by histology. CONCLUSIONS NIRF imaging with the IRDye 800CW-RGD probe provides a simple, rapid, low-cost, nonradioactive, and highly translatable approach for improved intraoperative glioblastoma visualization and resection. It also has the potential to serve as an imaging platform for noninvasive cancer detection and drug efficacy evaluation studies.
Collapse
Affiliation(s)
- Ruimin Huang
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Galbán S, Lemasson B, Williams TM, Li F, Heist KA, Johnson TD, Leopold JS, Chenevert TL, Lawrence TS, Rehemtulla A, Mikkelsen T, Holland EC, Galbán CJ, Ross BD. DW-MRI as a biomarker to compare therapeutic outcomes in radiotherapy regimens incorporating temozolomide or gemcitabine in glioblastoma. PLoS One 2012; 7:e35857. [PMID: 22536446 PMCID: PMC3334987 DOI: 10.1371/journal.pone.0035857] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/23/2012] [Indexed: 01/22/2023] Open
Abstract
The effectiveness of the radiosensitizer gemcitabine (GEM) was evaluated in a mouse glioma along with the imaging biomarker diffusion-weighted magnetic resonance imaging (DW-MRI) for early detection of treatment effects. A genetically engineered murine GBM model [Ink4a-Arf−/− PtenloxP/loxP/Ntv-a RCAS/PDGF(+)/Cre(+)] was treated with gemcitabine (GEM), temozolomide (TMZ) +/− ionizing radiation (IR). Therapeutic efficacy was quantified by contrast-enhanced MRI and DW-MRI for growth rate and tumor cellularity, respectively. Mice treated with GEM, TMZ and radiation showed a significant reduction in growth rates as early as three days post-treatment initiation. Both combination treatments (GEM/IR and TMZ/IR) resulted in improved survival over single therapies. Tumor diffusion values increased prior to detectable changes in tumor volume growth rates following administration of therapies. Concomitant GEM/IR and TMZ/IR was active and well tolerated in this GBM model and similarly prolonged median survival of tumor bearing mice. DW-MRI provided early changes to radiosensitization treatment warranting evaluation of this imaging biomarker in clinical trials.
Collapse
Affiliation(s)
- Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin Lemasson
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Terence M. Williams
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fei Li
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kevin A. Heist
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Judith S. Leopold
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas L. Chenevert
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Theodore S. Lawrence
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tom Mikkelsen
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Eric C. Holland
- Departments of Cancer Biology and Genetics and Neurosurgery, and Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Craig J. Galbán
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian D. Ross
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Chung DS, Kim CH, Hong YK. Animal models for vaccine therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:143-50. [PMID: 22639165 DOI: 10.1007/978-1-4614-3146-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models are important for defining paradigms of tumor immunology and for evaluating therapeutic efficacy of immunotherapy. Many animal models have been used for evaluating in vivo characteristics of malignant gliomas and their responses to therapy. No animal model, however, is perfect because malignant glioma has a very heterogeneous biological behavior. There are so many parallels between mouse and human immunology, but there are significant discrepancies in immune system. Animal models for vaccine therapy can be classified as transplantable tumor models and models of spontaneous tumor in genetically engineered animals. Although transplantable tumor models have been used to test immunotherapeutic efficacy and remain a mainstay in study of brain tumor immunology, a lot of tumor vaccines that look promising in experimental animals have turned out to be ineffective clinically. Recent advances of laboratory techniques and understanding of genetic and molecular characteristics of gliomas allows for animal models of gliomas with similar biologic characteristics. Well-designed glioma models that accurately reflect the biology, pathology and clinical behaviors of human gliomas can provide more useful preclinical informations to predict clinical efficacy of novel immunotherapies and cancer vaccines.
Collapse
Affiliation(s)
- Dong-Sup Chung
- Department of Neurosurgery, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | |
Collapse
|
20
|
Borges AR, Lopez-Larrubia P, Marques JB, Cerdan SG. MR imaging features of high-grade gliomas in murine models: how they compare with human disease, reflect tumor biology, and play a role in preclinical trials. AJNR Am J Neuroradiol 2011; 33:24-36. [PMID: 22194368 DOI: 10.3174/ajnr.a2959] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Murine models are the most commonly used and best investigated among the animal models of HGG. They constitute an important weapon in the development and testing of new anticancer drugs and have long been used in preclinical trials. Neuroimaging methods, particularly MR imaging, offer important advantages for the evaluation of treatment response: shorter and more reliable treatment end points and insight on tumor biology and physiology through the use of functional imaging DWI, PWI, BOLD, and MR spectroscopy. This functional information has been progressively consolidated as a surrogate marker of tumor biology and genetics and may play a pivotal role in the assessment of specifically targeted drugs, both in clinical and preclinical trials. The purpose of this Research Perspectives was to compile, summarize, and critically assess the available information on the neuroimaging features of different murine models of HGGs, and explain how these correlate with human disease and reflect tumor biology.
Collapse
Affiliation(s)
- A R Borges
- Radiology Department, Instituto Português de Oncologia de Lisboa, Portugal.
| | | | | | | |
Collapse
|
21
|
Fernández-Trillo F, Pacheco-Torres J, Correa J, Ballesteros P, Lopez-Larrubia P, Cerdán S, Riguera R, Fernandez-Megia E. Dendritic MRI Contrast Agents: An Efficient Prelabeling Approach Based on CuAAC. Biomacromolecules 2011; 12:2902-7. [DOI: 10.1021/bm2004466] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Francisco Fernández-Trillo
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | | | - Juan Correa
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | | | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Madrid, Spain
| | - Ricardo Riguera
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Modeling Adult Gliomas Using RCAS/t-va Technology. Transl Oncol 2011; 2:89-95. [PMID: 19412424 DOI: 10.1593/tlo.09100] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 01/05/2023] Open
Abstract
Malignant gliomas remain the most devastating childhood and adult tumors of the central nervous system. Although adult and pediatric gliomas are histologically indistinguishable, they differ in location, behavior, and molecular characteristics. This implies that the molecular pathways and pathophysiology of malignant gliomagenesis in these two populations are distinct. Such differences between adult and pediatric gliomas may predict different therapeutic responses. Therefore, accurate genetically engineered models of adult and pediatric gliomas may help understand the biology of these tumors and evaluate therapeutic agents in preclinical studies. It has been proposed that gliomas arise from the subventricular zone in mice during development. Here, we demonstrate that, in adult mice, gliomas may arise not only when injected in the subventricular zone but also when injected in the cortex and cerebellum. Our work demonstrates a versatile and highly reproducible adult mouse model of glioma, which can be easily incorporated into preclinical studies.
Collapse
|
23
|
Genetically engineered mouse models of diffuse gliomas. Brain Res Bull 2011; 88:72-9. [PMID: 21684324 DOI: 10.1016/j.brainresbull.2011.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/05/2011] [Indexed: 01/06/2023]
Abstract
Over the last decade, genetically engineered mouse models have been extensively used to dissect the genetic requirements for neoplastic initiation and progression of diffuse gliomas. While these models faithfully recapitulate the histopathological features of human gliomas, comparative genomic analyses are increasingly being utilized to comprehensively assess their fidelity to recently identified molecular subtypes of these tumors. Future progress with these models will rely on incorporating insights not only from oncogenomics studies of cancer, but also from the developmental neuroscience and stem cell biology fields to design accurate and experimentally tractable models for use in translational cancer research, particularly for experimental therapeutics studies of molecularly defined subtypes of gliomas.
Collapse
|
24
|
Characterization of a human tumorsphere glioma orthotopic model using magnetic resonance imaging. J Neurooncol 2011; 104:473-81. [PMID: 21240539 PMCID: PMC3161186 DOI: 10.1007/s11060-010-0517-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/20/2010] [Indexed: 02/03/2023]
Abstract
Magnetic resonance imaging (MRI) is the imaging modality of choice by which to monitor patient gliomas and treatment effects, and has been applied to murine models of glioma. However, a major obstacle to the development of effective glioma therapeutics has been that widely used animal models of glioma have not accurately recapitulated the morphological heterogeneity and invasive nature of this very lethal human cancer. This deficiency is being alleviated somewhat as more representative models are being developed, but there is still a clear need for relevant yet practical models that are well-characterized in terms of their MRI features. Hence we sought to chronicle the MRI profile of a recently developed, comparatively straightforward human tumor stem cell (hTSC) derived glioma model in mice using conventional MRI methods. This model reproduces the salient features of gliomas in humans, including florid neoangiogenesis and aggressive invasion of normal brain. Accordingly, the variable, invasive morphology of hTSC gliomas visualized on MRI duplicated that seen in patients, and it differed considerably from the widely used U87 glioma model that does not invade normal brain. After several weeks of tumor growth the hTSC model exhibited an MRI contrast enhancing phenotype having variable intensity and an irregular shape, which mimicked the heterogeneous appearance observed with human glioma patients. The MRI findings reported here support the use of the hTSC glioma xenograft model combined with MRI, as a test platform for assessing candidate therapeutics for glioma, and for developing novel MR methods.
Collapse
|
25
|
Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathol 2011; 28:13-24. [PMID: 21221826 DOI: 10.1007/s10014-010-0007-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
Abstract
Despite advances in surgical and medical therapy, glioblastoma consistently remains a fatal disease. Over the last 20 years, no significant increase in survival has been achieved for patients with this disease. The formation of abnormal tumor vasculature and glioma cell invasion along white matter tracts are believed to be the major factors responsible for the resistance of these tumors to treatment. Therefore, investigation of angiogenesis and invasion in glioblastoma is essential for the development of a curative therapy. In our report, we first reviewed certain histopathological studies that focus on angiogenesis and invasion of human malignant gliomas. Second, we considered several animal models of glioma available for studying angiogenesis and invasion, including our novel animal models. Third, we focused on the molecular aspects of glioma angiogenesis and invasion, and the key mediators of these processes. Finally, we discussed the recent and ongoing clinical trials targeting tumor angiogenesis and invasion in glioma patients. A better understanding of the mechanism of glioma angiogenesis and invasion will lead to the development of new treatment methods.
Collapse
Affiliation(s)
- Manabu Onishi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | | | | | |
Collapse
|
26
|
Ramirez MS, Esparza-Coss E, Bankson JA. Multiple-mouse MRI with multiple arrays of receive coils. Magn Reson Med 2010; 63:803-10. [PMID: 20146352 DOI: 10.1002/mrm.22236] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compared to traditional single-animal imaging methods, multiple-mouse MRI has been shown to dramatically improve imaging throughput and reduce the potentially prohibitive cost for instrument access. To date, up to a single radiofrequency coil has been dedicated to each animal being simultaneously scanned, thus limiting the sensitivity, flexibility, and ultimate throughput. The purpose of this study was to investigate the feasibility of multiple-mouse MRI with a phased-array coil dedicated to each animal. A dual-mouse imaging system, consisting of a pair of two-element phased-array coils, was developed and used to achieve acceleration factors greater than the number of animals scanned at once. By simultaneously scanning two mice with a retrospectively gated cardiac cine MRI sequence, a 3-fold acceleration was achieved with signal-to-noise ratio in the heart that is equivalent to that achieved with an unaccelerated scan using a commercial mouse birdcage coil.
Collapse
Affiliation(s)
- Marc S Ramirez
- Department of Imaging Physics, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | |
Collapse
|
27
|
de Vries NA, Beijnen JH, van Tellingen O. High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev 2009; 35:714-23. [PMID: 19767151 DOI: 10.1016/j.ctrv.2009.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/15/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
Abstract
High-grade gliomas (WHO grade III anaplastic astrocytoma and grade IV glioblastoma multiforme) are the most common primary tumors in the central nervous system in adults. Unfortunately, despite great efforts in finding better therapies, high-grade glioma remains among the most devastating and deadliest of all human cancers. During recent years, genetic and molecular alterations that underlie this disease have been identified and advanced our basic knowledge about gliomagenesis. Moreover, understanding the molecular biology has also led to the development of genetically engineered mouse models that resemble many of the features of human gliomas. Ideally, such "patient-like" models should be instrumental for preclinical testing of novel therapeutics, but thus far they have not yet been widely implemented for this purpose. This review will discuss the advantages and shortcomings of the established high-grade glioma mouse models with emphasis on their potential applicability for preclinical testing of novel drugs and treatment regimens.
Collapse
Affiliation(s)
- Nienke A de Vries
- Department of Clinical Chemistry, The Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | |
Collapse
|
28
|
Annabi B, Rojas-Sutterlin S, Laflamme C, Lachambre MP, Rolland Y, Sartelet H, Béliveau R. Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res 2008; 6:907-916. [PMID: 18567795 DOI: 10.1158/1541-7786.mcr-07-2184] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neural precursor surface marker CD133 is thought to be enriched in brain cancer stem cells and in radioresistant DAOY medulloblastoma-derived tumor cells. Given that membrane type-1 matrix metalloproteinase (MT1-MMP) expression is a hallmark of highly invasive, radioresistant, and hypoxic brain tumor cells, we sought to determine whether MT1-MMP and other MMPs could regulate the invasive phenotype of CD133(+) DAOY cells. We found that when DAOY medulloblastoma or U87 glioblastoma cells were implanted in nude mice, only those cells specifically implanted in the brain environment generated CD133(+) brain tumors. Vascular endothelial growth factor and basic fibroblast growth factor gene expression increases in correlation with CD133 expression in those tumors. When DAOY cultures were induced to generate in vitro neurosphere-like cells, gene expression of CD133, MT1-MMP, MMP-9, and MDR-1 was induced and correlated with an increase in neurosphere invasiveness. Specific small interfering RNA gene silencing of either MT1-MMP or MMP-9 reduced the capacity of the DAOY monolayers to generate neurospheres and concomitantly abrogated their invasive capacity. On the other hand, overexpression of MT1-MMP in DAOY triggered neurosphere-like formation which was further amplified when cells were cultured in neurosphere medium. Collectively, we show that both MT1-MMP and MMP-9 contribute to the invasive phenotype during CD133(+) neurosphere-like formation in medulloblastoma cells. Increases in MMP-9 may contribute to the opening of the blood-brain barrier, whereas increased MT1-MMP would promote brain tumor infiltration. Our study suggests that MMP-9 or MT1-MMP targeting may reduce the formation of brain tumor stem cells.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, CP 8888, Succursale Centre-ville, Montreal, Quebec, Canada H3C 3P8
| | | | | | | | | | | | | |
Collapse
|
29
|
Sonabend AM, Ulasov IV, Lesniak MS. Emerging role of new transgenic mouse models in glioma research. Expert Rev Anticancer Ther 2008; 7:S7-13. [PMID: 18076321 DOI: 10.1586/14737140.7.12s.s7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our understanding of glioma biology has relied heavily on the use of cell lines and xenograft animal models. However, the recent development of transgenic mouse models offers a unique opportunity to examine the pathophysiology of these tumors in immunocompetent models in vivo. Transgenic models are highly informative for a number of reasons. First, the resulting tumors are genetically and histologically similar to human gliomas. Second, transgenic models allow the study of causality of genetic/pathway alterations reminiscent of human gliomas. Third, new therapies can be tested in established tumors to truly evaluate their potential efficacy. This review describes the available technologies involved in transgenic and knockout mouse modeling, including the generation of cell-type-specific genetic alterations. Finally, genetics are discussed with a focus on how transgenic murine gliomas recapitulate alterations found in human counterparts.
Collapse
Affiliation(s)
- Adam M Sonabend
- The University of Chicago Brain Tumor Center, The University of Chicago Section of Neurosurgery, Chicago, IL, USA.
| | | | | |
Collapse
|
30
|
Bulnes S, Lafuente JV. VEGF immunopositivity related to malignancy degree, proliferative activity and angiogenesis in ENU-induced gliomas. J Mol Neurosci 2008; 33:163-72. [PMID: 17917075 DOI: 10.1007/s12031-007-0061-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/30/1999] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Growth of solid tumors is highly dependent on angiogenesis. During tumor development, neoplastic cells switch to an angiogenic phenotype, playing a significant role in the expression of the vascular endothelial growth factor (VEGF). Seventy-two brain gliomas were induced in Sprague Dawley rats by prenatal exposure to ethylnitrosourea (ENU). Screening and location of tumors was carried out using magnetic resonance imaging (MRI). Conventional histology and immunocytochemistry for antibodies against glial fibrillary acidic protein (GFAP), S-100, NF, oligodendrocyte Ab-2, Ki-67, and VEGF165 were performed. The proliferation index (PI) was calculated from the Ki-67 labeling index, and the concentration of VEGF165 was quantified by enzyme-linked immunosorbent assay (ELISA). In vivo identification of macro- and microtumor appears to be useful to lead morphological and biochemical studies. Histopathology allows us to identify microtumors as classic oligodendrogliomas (CO; mean PI of 6.01 +/- 2.8%) and macrotumors as anaplastic oligodendrogliomas (AO; mean PI of 14.06 +/- 5%). Classic oligodendrogliomas show scarce VEGF165 expression whereas anaplastic ones display VEGF165 protein level 100-fold increased respect to CO. Astrocytes, neoplastic, and endothelial cells show differential immunostaining patterns from the border to the core of neoplasm. Positive structures for VEGF and their distribution vary according to PI increase. Anaplastic gliomas displaying VEGF-positive intratumor capillaries correspond to the highest PI values. To identify the "angiogenic switch," we propose the glioma stage characterized by VEGF immunopositive neoplastic cells inside the tumor and positive endothelial cells surrounding it.
Collapse
Affiliation(s)
- S Bulnes
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, University of the Basque Country, Leioa, Spain.
| | | |
Collapse
|
31
|
Hambardzumyan D, Lyustikman Y, Holland EC. An update on mouse brain tumor models in cancer drug discovery. Expert Opin Drug Discov 2007; 2:1435-51. [PMID: 23484596 DOI: 10.1517/17460441.2.11.1435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gliomas and medulloblastomas are the most common primary brain tumors in adults and children, respectively. Although the standard of care for gliomas may have evolved slightly over the last 50 years, the clinical outcome of this disease remains unchanged. Therefore, further research to improve the treatment modalities is urgently needed. An important step forward is the use of genetically and histologically accurate mouse glioma models that mimic the human tumors in their native microenvironment in order to fully understand the biology and mechanistic causes of this disease. Such strategy will help us to identify novel targets for therapies and use these models for preclinical testing.
Collapse
Affiliation(s)
- Dolores Hambardzumyan
- Memorial Sloan-Kettering Cancer Center, Department of Cancer Biology and Genetics, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
32
|
McConville P, Hambardzumyan D, Moody JB, Leopold WR, Kreger AR, Woolliscroft MJ, Rehemtulla A, Ross BD, Holland EC. Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. Clin Cancer Res 2007; 13:2897-904. [PMID: 17504989 DOI: 10.1158/1078-0432.ccr-06-3058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The median survival for patients diagnosed with glioblastoma multiforme, the most common type of brain tumor, is less than 1 year. Animal glioma models that are more predictive of therapeutic response in human patients than traditional models and that are genetically and histologically accurate are an unmet need. The nestin tv-a (Ntv-a) genetically engineered mouse spontaneously develops glioma when infected with ALV-A expressing platelet-derived growth factor, resulting in autocrine platelet-derived growth factor signaling. EXPERIMENTAL DESIGN In the Ntv-a genetically engineered mouse model, T2-weighted and T1-weighted, contrast-enhanced magnetic resonance images were correlated with histology, glioma grade (high or low), and survival. Magnetic resonance imaging (MRI) was therefore used to enroll mice with high-grade gliomas into a second study that tested efficacy of the current standard of care for glioma, temozolomide (100 mg/kg qdx5 i.p., n=13). RESULTS The Ntv-a model generated a heterogeneous group of gliomas, some with high-grade growth rate and histologic characteristics and others with characteristics of lower-grade gliomas. We showed that MRI could be used to predict tumor grade and survival. Temozolomide treatment of high-grade tv-a gliomas provided a 14-day growth delay compared with vehicle controls. Diffusion MRI measurement of the apparent diffusion coefficient showed an early decrease in cellularity with temozolomide, similar to that observed in humans. CONCLUSIONS The use of MRI in the Ntv-a model allows determination of glioma grade and survival prediction, distribution of mice with specific tumor types into preclinical trials, and efficacy determination both by tumor growth and early apparent diffusion coefficient response.
Collapse
|
33
|
Abstract
MRI has contributed to significant advances in the understanding of neurological diseases in humans. It has also been used to evaluate the spectrum of mouse models spanning from developmental abnormalities during embryogenesis, evaluation of transgenic and knockout models, through various neurological diseases such as stroke, tumors, degenerative and inflammatory diseases. The MRI techniques used clinically are technically more challenging in the mouse because of the size of the brain; however, mouse imaging provides researchers with the ability to explore cellular and molecular imaging that one day may translate into clinical practice. This article presents an overview of the use of MRI in mouse models of a variety of neurological disorders and a brief review of cellular imaging using magnetically tagged cells in the mouse central nervous system.
Collapse
Affiliation(s)
- Stasia A Anderson
- Animal MRI/Imaging Core, National Heart Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Abstract
Primary brain tumors, including gliomas and medulloblastomas, often represent the most devastating and difficult-to-treat tumors, and are thought to arise from glial cells and/or their precursors or the external granule cell layer, respectively. The majority of genetic alterations characteristic of the human brain tumors are thought to occur in genes encoding proteins involved in signal transduction or cell cycle regulation. Accurate recapitulation of these genetic alterations using genetically engineered mouse models allows for in vivo modeling of brain tumors with similar histopathology, etiology, and biology. These mouse models, in turn, increase our understanding of brain tumor initiation, formation, progression, and metastasis, providing an experimental system to discover novel therapeutic targets and test various therapeutic agents.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | |
Collapse
|
35
|
Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res 2006; 66:3355-8, discussion 3358-9. [PMID: 16585152 DOI: 10.1158/0008-5472.can-05-3827] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mouse models of human cancer are valuable tools for cancer research. Although xenografts and genetically engineered models (GEMs) possess limitations as well as advantages, each system plays a significant role in preclinical testing. Tumor xenografts are easy to use, relatively inexpensive, and reproducible. The main drawback of xenografts is that the genetics and histology of the tumors are frequently not representative of the respective human tumor and, thus far, these models have not been as predictive of therapeutic success as one would like. By contrast, GEMs are histologically and genetically accurate models of human cancer but have disadvantages of heterogeneity with regard to frequency, latency, and growth. These disadvantages are reminiscent of the variable behavior of actual human tumors. Recently, these shortcomings have been partly overcome with the development of anatomic and molecular in vivo imaging techniques such as magnetic resonance imaging and bioluminescence imaging. These new technologies will hopefully support the use of GEMs in preclinical trials and help determine if trials in GEMs are more predicative than xenografts of human responses.
Collapse
Affiliation(s)
- Oren J Becher
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Hu X, Pandolfi PP, Li Y, Koutcher JA, Rosenblum M, Holland EC. mTOR promotes survival and astrocytic characteristics induced by Pten/AKT signaling in glioblastoma. Neoplasia 2005; 7:356-68. [PMID: 15967113 PMCID: PMC1501155 DOI: 10.1593/neo.04595] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 09/03/2004] [Accepted: 09/18/2004] [Indexed: 11/18/2022]
Abstract
Combined activation of Ras and AKT leads to the formation of astrocytic glioblastoma multiforme (GBM) in mice. In human GBMs, AKT is not mutated but is activated in approximately 70% of these tumors, in association with loss of PTEN and/or activation of receptor tyrosine kinases. Mechanistic justification for the therapeutic blockade of targets downstream of AKT, such as mTOR, in these cancers requires demonstration that the oncogenic effect of PTEN loss is through elevated AKT activity. We demonstrate here that loss of Pten is similar to AKT activation in the context of glioma formation in mice. We further delineate the role of mTOR activity downstream of AKT in the maintenance of AKT+KRas-induced GBMs. Blockade of mTOR results in regional apoptosis in these tumors and conversion in the character of surviving tumor cells from astrocytoma to oligodendroglioma. These data suggest that mTOR activity is required for the survival of some cells within these GBMs, and mTOR appears required for the maintenance of astrocytic character in the surviving cells. Furthermore, our study provides the first example of conversion between two distinct tumor types usually thought of as belonging to specific lineages, and provides evidence for signal transduction-mediated transdifferentiation between glioma subtypes.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hu X, Holland EC. Applications of mouse glioma models in preclinical trials. Mutat Res 2005; 576:54-65. [PMID: 16011838 DOI: 10.1016/j.mrfmmm.2004.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/11/2004] [Accepted: 08/12/2004] [Indexed: 10/25/2022]
Abstract
Gliomas are the most common primary tumors that arise from glial cells and their precursors in the central nervous system. Most of the genetic alterations identified in human gliomas result in signal transduction abnormalities or disruption of cell cycle arrest pathways. Over the past years, several mouse glioma models have been generated based on human genetic abnormalities and the induced gliomas exhibit histological similarities to their human counterparts. There is emerging evidence suggesting that an oncogenic signaling initiating tumorigenesis is also required for tumor maintenance, these glioma models can be used to further characterize the mechanisms of oncogenic signaling in tumor formation, as well as identify molecular targets in preclinical trials.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cell Biology and Genetics, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Abstract
Imaging in patients with brain tumors aims toward the determination of the localization, extend, type, and malignancy of the tumor. Imaging is being used for primary diagnosis, planning of treatment including placement of stereotaxic biopsy, resection, radiation, guided application of experimental therapeutics, and delineation of tumor from functionally important neuronal tissue. After treatment, imaging is being used to quantify the treatment response and the extent of residual tumor. At follow-up, imaging helps to determine tumor progression and to differentiate recurrent tumor growth from treatment-induced tissue changes, such as radiation necrosis. A variety of complementary imaging methods are currently being used to obtain all the information necessary to achieve the above mentioned goals. Computed tomography and magnetic resonance imaging (MRI) reveal mostly anatomical information on the tumor, whereas magnetic resonance spectroscopy and positron emission tomography (PET) give important information on the metabolic state and molecular events within the tumor. Functional MRI and functional PET, in combination with electrophysiological methods like transcranial magnetic stimulation, are being used to delineate functionally important neuronal tissue, which has to be preserved from treatment-induced damage, as well as to gather information on tumor-induced brain plasticity. In addition, optical imaging devices have been implemented in the past few years for the development of new therapeutics, especially in experimental glioma models. In summary, imaging in patients with brain tumors plays a central role in the management of the disease and in the development of improved imaging-guided therapies.
Collapse
Affiliation(s)
- Andreas H Jacobs
- Max Planck-Institute for Neurological Research, Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
McConville P, Moody JB, Moffat BA. High-throughput magnetic resonance imaging in mice for phenotyping and therapeutic evaluation. Curr Opin Chem Biol 2005; 9:413-20. [PMID: 16002325 DOI: 10.1016/j.cbpa.2005.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 06/21/2005] [Indexed: 01/04/2023]
Abstract
High-throughput mouse magnetic resonance imaging (MRI) is seeing rapidly increasing demand in development of therapeutics. Recent advances including higher-field systems, new gradient and radio frequency coils and new pulse sequences, coupled with efficient animal preparation and data handling, allow high-throughput MRI under certain protocols. However, with current shifts from anatomic to functional and molecular imaging, innovative technology is required to meet new throughput demands. The first multiple mouse imaging strategies have provided a glimpse of the future state-of-the-art. However, the successful translation of standard clinical MRI technology to preclinical MRI is required to facilitate next-generation high-throughput MRI.
Collapse
|
40
|
Abstract
Astrocytic gliomas are the most common primary brain tumours. Here we summarize the characteristic neuropathological features of the different types of astrocytic neoplasms according to the World Health Organization classification of tumours of the nervous system. In addition, we report on the present state of the art concerning the molecular genetics of these tumours. Over the past 20 years a number of recurrent chromosomal,genetic and epigenetic alterations have been found to be associated with the different histological types and malignancy grades of astrocytic tumours. However, we are still far from understanding the complex mechanisms that underly tumour initiation and progression in the individual case. Furthermore, the clinical significance of molecular parameters for the diagnostic and prognostic assessment of astrocytic gliomas is still limited. Therefore further investigation of the molecular mechanisms underlying oncogenesis and progression of these most common brain tumours is necessary to improve their diagnostic assessment and to devise novel, individually tailored treatment strategies.
Collapse
Affiliation(s)
- Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | |
Collapse
|
41
|
Coming of Age in the Life of Neoplasia. Neoplasia 2004. [DOI: 10.1593/neo.6-6ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Shih AH, Dai C, Hu X, Rosenblum MK, Koutcher JA, Holland EC. Dose-Dependent Effects of Platelet-Derived Growth Factor-B on Glial Tumorigenesis. Cancer Res 2004; 64:4783-9. [PMID: 15256447 DOI: 10.1158/0008-5472.can-03-3831] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor (PDGF) is expressed in many different tumors, but its precise roles in tumorigenesis remain to be fully defined. Here, we report on a mouse model that demonstrates dose-dependent effects of PDGF-B on glial tumorigenesis. By removing inhibitory regulatory elements in the PDGFB mRNA, we are able to substantially elevate its expression in tumor cells using a retroviral delivery system. This elevation in PDGF-B production results in tumors with shortened latency, increased cellularity, regions of necrosis, and general high-grade character. In addition, elevated PDGF-B in these tumors also mediates vascular smooth muscle cell recruitment that supports tumor angiogenesis. PDGF receptor (PDGFR) signaling appears to be required for the maintenance of these high-grade characteristics, because treatment of high-grade tumors with a small molecule inhibitor of PDGFR results in reversion to a lower grade tumor histology. Our data show that PDGFR signaling quantitatively regulates tumor grade and is required to sustain high-grade oligodendrogliomas.
Collapse
Affiliation(s)
- Alan H Shih
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bock NA, Zadeh G, Davidson LM, Qian B, Sled JG, Guha A, Henkelman RM. High-resolution longitudinal screening with magnetic resonance imaging in a murine brain cancer model. Neoplasia 2004; 5:546-54. [PMID: 14965447 PMCID: PMC1502570 DOI: 10.1016/s1476-5586(03)80038-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
One of the main limitations of intracranial models of diseases is our present inability to monitor and evaluate the intracranial compartment noninvasively over time. Therefore, there is a growing need for imaging modalities that provide thorough neuropathological evaluations of xenograft and transgenic models of intracranial pathology. In this study, we have established protocols for multiple-mouse magnetic resonance imaging (MRI) to follow the growth and behavior of intracranial xenografts of gliomas longitudinally. We successfully obtained weekly images on 16 mice for a total of 5 weeks on a 7-T multiple-mouse MRI. T2- and T1-weighted imaging with gadolinium enhancement of vascularity was used to detect tumor margins, tumor size, and growth. These experiments, using 3D whole brain images obtained in four mice at once, demonstrate the feasibility of obtaining repeat radiological images in intracranial tumor models and suggest that MRI should be incorporated as a research modality for the investigation of intracranial pathobiology.
Collapse
Affiliation(s)
- Nicholas A Bock
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
44
|
van Furth WR, Laughlin S, Taylor MD, Salhia B, Mainprize T, Henkelman M, Cusimano MD, Ackerley C, Rutka JT. Imaging of murine brain tumors using a 1.5 Tesla clinical MRI system. Can J Neurol Sci 2004; 30:326-32. [PMID: 14672264 DOI: 10.1017/s0317167100003036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this study, we investigated the feasibility of using a 1.5 Tesla (T) clinical magnetic resonance imaging (MRI) system for in vivo assessment of three histopathologically different brain tumor models in mice. METHODS We selected mouse models in which tumor growth was observed in different intracranial compartments: Patched+/- heterozygous knock-out mice for tumor growth in the cerebellum (n = 5); U87 MG human astrocytoma cells xenografted to the frontal lobe of athymic mice (n = 15); and F5 (n = 15) or IOMM Lee (n = 15) human malignant meningioma cells xenotransplanted to the athymic mouse skull base or convexity. Mice were imaged using a small receiver surface coil and a clinical 1.5 T MRI system. T1- and fast spin echo T2-weighted image sequences were obtained in all animals. Gadolinium was injected via tail vein to better delineate the intracranial tumors. Twenty mice were followed by serial MRI to study tumor growth over time. In these mice, images were typically performed after tumor implantation, and at two week intervals. Mice were euthanized following their last imaging procedure, and their tumors were examined by histopathology. The histopathological preparations were then compared to the last MR images to correlate the imaging features with the pathology. RESULTS Magnetic resonance imaging delineated th tumors in the cerebellum, frontal lobes and skull base in all mouse models. The detection of intracranial tumors was enhanced with prio administration of gadolinium, and the limit of resolution of brain tumors in the mice was 1-2 mm3. Sequential images performed at different time intervals showed progressive tumor growth in all animals. The MR images of tumor size and location correlated accurately with th results of the histopathological analysis. CONCLUSION Magnetic resonance imaging of murine brain tumors in different intracrania compartments is feasible with a 1.5 T clinical MR system and a specially designed surface coil. Tumors as small as 1-2 mm3 can be detecte with good image resolution. Mice harbouring nascent brain tumors can be followed sequentially by serial MR imaging. This may allow for a noninvasive means by which tumor growth can be measured, and novel therapies tested without resorting to sacrifice of the mice.
Collapse
Affiliation(s)
- Wouter R van Furth
- Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rehemtulla A, Taneja N, Ross BD. Bioluminescence Detection of Cells Having Stabilized p53 in Response to a Genotoxic Event. Mol Imaging 2004; 3:63-8. [PMID: 15142413 DOI: 10.1162/15353500200403175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Inactivation of p53 is one of the most frequent molecular events in neoplastic transformation. Approximately 60% of all human tumors have mutations in both p53 alleles. Wild-type p53 activity is regulated in large part by the proteosome-dependent degradation of p53, resulting in a short p53 half-life in unstressed and untransformed cells. Activation of p53 by a variety of stimuli, including DNA damage induced by genotoxic drugs or radiation, is accomplished by stabilization of wild-type p53. The stabilized and active p53 can result in either cell-cycle arrest or apoptosis. Surprisingly, the majority of tumor-associated, inactivating p53 mutations also result in p53 accumulation. Thus, constitutive elevation of p53 levels in cells is a reliable measure of p53 inactivation, whereas transiently increased p53 levels reflect a recent genotoxic stress. In order to facilitate noninvasive imaging of p53 accumulation, we here describe the construction of a p53-luciferase fusion protein. Induction of DNA damage in cells expressing the fusion protein resulted in a time-dependent accumulation of the fusion that was noninvasively detected using bioluminescence imaging and validated by Western blot analysis. The p53-Luc protein retains p53 function because its expression in HCT116 cells lacking functional p53 resulted in activation of p21 expression as well as induction of apoptosis in response to a DNA damaging event. Employed in a transgenic animal model, the proposed p53-reporter fusion protein will be useful for studying p53 activation in response to exposure to DNA-damaging carcinogenic agents. It could also be used to study p53 stabilization as a result of inactivating p53 mutations. Such studies will further our understanding of p53's role as the "guardian of the genome" and its function in tumorigenesis.
Collapse
Affiliation(s)
- Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor 48109, USA.
| | | | | |
Collapse
|
46
|
Moffat BA, Reddy GR, McConville P, Hall DE, Chenevert TL, Kopelman RR, Philbert M, Weissleder R, Rehemtulla A, Ross BD. A Novel Polyacrylamide Magnetic Nanoparticle Contrast Agent for Molecular Imaging using MRI. Mol Imaging 2003; 2:324-32. [PMID: 14717331 DOI: 10.1162/15353500200303163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A novel polyacrylamide superparamagnetic iron oxide nanoparticle platform is described which has been synthetically prepared such that multiple crystals of iron oxide are encapsulated within a single polyacrylamide matrix (PolyAcrylamide Magnetic [PAM] nanoparticles). This formulation provides for an extremely large T2 and T2* relaxivity of between 620 and 1140 sec(-1) mM(-1). Administration of PAM nanoparticles into rats bearing orthotopic 9L gliomas allowed quantitative pharmacokinetic analysis of the uptake of nanoparticles in the vasculature, brain, and glioma. Addition of polyethylene glycol of varying sizes (0.6, 2, and 10 kDa) to the surface of the PAM nanoparticles resulted in an increase in plasma half-life and affected tumor uptake and retention of the nanoparticles as quantified by changes in tissue contrast using MRI. The flexible formulation of these nanoparticles suggests that future modifications could be accomplished allowing for their use as a targeted molecular imaging contrast agent and/or therapeutic platform for multiple indications.
Collapse
|
47
|
Hesselager G, Holland EC. Using mice to decipher the molecular genetics of brain tumors. Neurosurgery 2003; 53:685-94; discussion 695. [PMID: 12943584 DOI: 10.1227/01.neu.0000081304.57547.b5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2002] [Accepted: 05/14/2003] [Indexed: 11/19/2022] Open
Abstract
The past decade has dramatically increased our knowledge of genetic and molecular alterations in human central nervous system tumors. Important as these alterations are for the molecular classification of tumors, their actual roles in tumorigenesis and tumor progression have long remained obscure. Lately, several mouse brain tumor models have been developed that use different gene modification strategies to replicate mutations seen in the human counterpart. These genetic models will allow discrimination between mutations that are causally related to tumor formation and mutations that are a result of tumor progression. These models also provide histologically and genetically accurate models for preclinical testing and will perhaps help us identify novel targets for therapies aimed at the mechanistic cause of the disease. We present here a review of current models, with a focus on gliomas and medulloblastomas.
Collapse
Affiliation(s)
- Göran Hesselager
- Departments of Neurosciences (Division of Neurosurgery) and Genetics and Pathology, University Hospital, Uppsala, Sweden
| | | |
Collapse
|