1
|
Hiranita T, Hong WC, Sharma A, Lopez JP, Mesangeau C, Whittaker DA, Alsharif W, Kopajtic TA, Jamalapuram S, Avery BA, Tanda G, McCurdy CR, Katz JL. Preclinical Profile of CM699 as a Medication Candidate for Stimulant Use Disorder. ACS Chem Neurosci 2025; 16:1454-1468. [PMID: 40132017 DOI: 10.1021/acschemneuro.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
There currently are no medications proven to be effective for the treatment of stimulant-use disorder (SUD). Sigma-receptor (σR) antagonists block many effects of stimulant drugs but not the reinforcing effects assessed with self-administration in rats. However, a recent study suggests that σR antagonism combined with a dopamine (DA) transporter (DAT) blockade selectively attenuates stimulant self-administration. A compound with potential for dual DAT/σR inhibition, CM699, was synthesized and had the necessary ex vivo affinities of 311 and 14.1 nM at DAT and σ1Rs, respectively. CM699 inhibited DA uptake ex vivo. Antagonist effects at σ1Rs by CM699 were confirmed with a recently reported pharmacological assay: CM699 increased, whereas the σ1R agonist, (+)-pentazocine, decreased σ1R multimers detected in nondenaturing protein gels, and CM699 blocked the effects of (+)-pentazocine. CM699 after intravenous administration (5.0 mg/kg) in rats had an elimination half-life of 4.4 h. In rats, CM699 after intraperitoneal administration blunted the stimulatory effects of cocaine on DA levels in the nucleus accumbens and insurmountably blocked cocaine self-administration, indicating efficacy as a cocaine antagonist in vivo. When given alone, CM699 was not self-administered nor had significant effects on nucleus accumbens DA, suggesting minimal, if any, abuse potential. Further, in a biochemical assay designed to probe the conformation of DAT, (+)-pentazocine potentiated cocaine-induced cysteine accessibility of DAT transmembrane domain 6a, suggesting a shift in the conformational equilibrium of DAT toward outward-facing, whereas CM699 blocked this effect. The results provide preclinical proof of concept for dual DAT/σR inhibition as a novel DAT-conformational approach for the development of medications to treat SUD.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Weimin C Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana 46208, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, University of Florida, Gainesville, Florida 32610, United States
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University Mississippi 38677, United States
| | - Jessica P Lopez
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Christophe Mesangeau
- Department Biomolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Daniel A Whittaker
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana 46208, United States
| | - Walid Alsharif
- Department Biomolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Theresa A Kopajtic
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Seshulatha Jamalapuram
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University Mississippi 38677, United States
| | - Bonnie A Avery
- Department of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, University of Florida, Gainesville, Florida 32610, United States
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University Mississippi 38677, United States
| | - Gianluigi Tanda
- Medication Development Program, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Christopher R McCurdy
- Department of Pharmaceutics, University of Florida, Gainesville, Florida 32610, United States
- Translational Drug Development Core, University of Florida, Gainesville, Florida 32610, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University Mississippi 38677, United States
| | - Jonathan L Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
2
|
Hiranita T, Li SM, Katz JL. Effects of Dual Inhibition at Dopamine Transporter and σ Receptors in the Discriminative-Stimulus Effects of Cocaine in Male Rats. J Pharmacol Exp Ther 2024; 391:308-316. [PMID: 39179413 PMCID: PMC11493437 DOI: 10.1124/jpet.124.002239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Previous studies demonstrated that sigma receptor (σR) antagonists alone fail to alter cocaine self-administration despite blocking various other effects of cocaine. However, σR antagonists when combined with dopamine transporter (DAT) inhibitors substantially decrease cocaine self-administration. To better understand the effects of this combination, the present study examined the effects of σR antagonist and DAT inhibitor combinations in male rats discriminating cocaine (10 mg/kg, i.p.) from saline injections. The DAT inhibitors alone [(-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate monohydrate (WIN 35,428) and methylphenidate] at low (0.1-mg/kg) doses that were minimally active failed to shift the dose-effect function for discriminative-stimulus effects of cocaine to the left more than 2-fold. At 0.32 mg/kg the DAT inhibitors alone shifted the cocaine dose-effect function leftward 24- or 6.6-fold, respectively. The σR antagonists (BD1008, BD1047, and BD1063) failed to fully substitute for cocaine, although BD1008 and BD1047 substituted partially. At 10 mg/kg, BD1008, BD1047, or BD1063 alone shifted the cocaine dose-effect function leftward less than 6.0-fold. In combination with 0.1 mg/kg WIN 35,428, the 10 mg/kg doses of σR antagonists shifted the cocaine dose-effect function from 12.3- to 36.7-fold leftward, and with 0.32 mg/kg WIN 35,428 from 14.3- to 440-fold leftward. In combination with 0.1 mg/kg methylphenidate, those σR antagonist doses shifted the cocaine dose-effect function from 5.5- to 55.0-fold leftward, and with 0.32 mg/kg methylphenidate from 10.5- to 48.1-fold leftward. The present results suggest that dual DAT/σR inhibition produces agonist-like subjective effects that may promote decreases in self-administration obtained in previous studies. SIGNIFICANCE STATEMENT: There is currently no approved medication for treating stimulant abuse, although dopamine uptake inhibitors in combination with sigma receptor (σR) antagonists decrease cocaine self-administration in laboratory animals. The present study assessed how this combination alters the discriminative-stimulus effects of cocaine in male rats. Results suggest that concurrent dopamine uptake inhibition and σR antagonism together may promote decreases in self-administration, possibly by mimicking the subjective effects extant when subjects cease continued cocaine self-administration.
Collapse
Affiliation(s)
- Takato Hiranita
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas (T.H.) and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (S.-M.L., J.L.K.)
| | - Su-Min Li
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas (T.H.) and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (S.-M.L., J.L.K.)
| | - Jonathan L Katz
- Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas (T.H.) and Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland (S.-M.L., J.L.K.)
| |
Collapse
|
3
|
Hersey M, Mereu M, Jones CS, Bartole MK, Chen AY, Cao J, Hiranita T, Chun LE, Lopez JP, Katz JL, Newman AH, Tanda G. Dual DAT and sigma receptor inhibitors attenuate cocaine effects on nucleus accumbens dopamine dynamics in rats. Eur J Neurosci 2024; 59:2436-2449. [PMID: 38444104 PMCID: PMC11108740 DOI: 10.1111/ejn.16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.
Collapse
Affiliation(s)
- Melinda Hersey
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Maddalena Mereu
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Claire S. Jones
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Andy Y. Chen
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Jianjing Cao
- Medicinal Chemistry Section, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Lauren E. Chun
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | - Jessica P. Lopez
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| | | | - Amy Hauck Newman
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
- Medicinal Chemistry Section, NIDA IRP, Baltimore, MD 21224, USA
| | - Gianluigi Tanda
- Medication Development Program, NIDA IRP, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Knowles LG, Armanious AJ, Peng Y, Welsh WJ, James MH. Recent advances in drug discovery efforts targeting the sigma 1 receptor system: Implications for novel medications designed to reduce excessive drug and food seeking. ADDICTION NEUROSCIENCE 2023; 8:100126. [PMID: 37753198 PMCID: PMC10519676 DOI: 10.1016/j.addicn.2023.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Psychiatric disorders characterized by uncontrolled reward seeking, such as substance use disorders (SUDs), alcohol use disorder (AUD) and some eating disorders, impose a significant burden on individuals and society. Despite their high prevalence and substantial morbidity and mortality rates, treatment options for these disorders remain limited. Over the past two decades, there has been a gradual accumulation of evidence pointing to the sigma-1 receptor (S1R) system as a promising target for therapeutic interventions designed to treat these disorders. S1R is a chaperone protein that resides in the endoplasmic reticulum, but under certain conditions translocates to the plasma membrane. In the brain, S1Rs are expressed in several regions important for reward, and following translocation, they physically associate with several reward-related GPCRs, including dopamine receptors 1 and 2 (D1R and D2R). Psychostimulants, alcohol, as well as palatable foods, all alter expression of S1R in regions important for motivated behavior, and S1R antagonists generally decrease behavioral responses to these rewards. Recent advances in structural modeling have permitted the development of highly-selective S1R antagonists with favorable pharmacokinetic profiles, thus providing a therapeutic avenue for S1R-based medications. Here, we provide an up-to-date overview of work linking S1R with motivated behavior for drugs of abuse and food, as well as evidence supporting the clinical utility of S1R antagonists to reduce their excessive consumption. We also highlight potential challenges associated with targeting the S1R system, including the need for a more comprehensive understanding of the underlying neurobiology and careful consideration of the pharmacological properties of S1R-based drugs.
Collapse
Affiliation(s)
- Liam G. Knowles
- Harpur School of Arts and Sciences, Binghamton University, Vestal, NY, USA
| | - Abanoub J. Armanious
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Youyi Peng
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - William J. Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H. James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
5
|
Bareli T, Ahdoot HL, Ben‐Moshe H, Barnea R, Warhaftig G, Maayan R, Roska P, Weizman A, Yadid G. Chronic opipramol treatment extinguishes cocaine craving through Rac1 in responders: A rat model study. Addict Biol 2021; 26:e13014. [PMID: 33508873 DOI: 10.1111/adb.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/28/2022]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1), of the Rho small GTPase family, is a key regulator of actin cytoskeleton rearrangement and plays an important role in dendritic morphogenesis. Cocaine produces neuronal alterations, including structural changes in dendritic number and morphology. Emerging data indicate sigma-1 receptors (σ-1Rs) as a promising candidate for the prevention of cocaine craving. Opipramol is a σ-1R agonist approved in some European countries for depression and anxiety. Here we report that opipramol, mediated by Rac1, attenuates cocaine-seeking behavior in a rat model of self-administration. The opipramol effect was shown in two phases. It decreased cocaine-seeking behavior throughout the withdrawal phase and, interestingly, showed a significant reduction of cocaine-primed reinstatement in 75% of the opipramol-treated group (termed 'responders'). All opipramol-treated rats showed a decrease in σ-1R mRNA expression levels in the nucleus accumbens (NAc) versus controls. Responders also exhibited significantly decreased NAc Rac1 mRNA expression levels, compared with non-responder rats. Hence, Rac1 differentiated responders from non-responders. Rac1 correlated positively with σ-1R mRNA levels in opipramol responders. In another experiment, Rac1 inhibitor injected directly into the NAc core decreased active lever presses on the first day of extinction, indicating the critical role of Rac1 in the opipramol effect on drug seeking. We postulate that chronic activation of σ-1R, through a dynamic interaction with Rac1, may suggest a new approach to treat substance use disorder (SUD). Rac1 inhibition is a prerequisite for decreasing drug seeking and rehabilitation, and this can be achieved by opipramol, a medication that can be given during detoxification.
Collapse
Affiliation(s)
- Tzofnat Bareli
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Hadas Levi Ahdoot
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Hila Ben‐Moshe
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Royi Barnea
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Gal Warhaftig
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Rachel Maayan
- The Laboratory of Biological Psychiatry, Felsenstein Medical Research Center and Sackler Faculty of Medicine Tel Aviv University, Beilinson Campus Petah Tikva Israel
| | - Paola Roska
- Department for the Treatment of Substance Abuse and Mental Health Services, Israeli Ministry of Health Jerusalem Israel
- The Hebrew University of Jerusalem Jerusalem Israel
| | - Abraham Weizman
- The Laboratory of Biological Psychiatry, Felsenstein Medical Research Center and Sackler Faculty of Medicine Tel Aviv University, Beilinson Campus Petah Tikva Israel
- Research Unit Geha Mental Health Center Petah Tikva Israel
| | - Gal Yadid
- Leslie and Gonda (Goldschmied) Multidisciplinary Brain Research Center and the Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| |
Collapse
|
6
|
Yang H, Shen H, Li J, Stanford KI, Guo LW. Sigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts. Cell Signal 2020; 75:109732. [PMID: 32750415 PMCID: PMC7530065 DOI: 10.1016/j.cellsig.2020.109732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023]
Abstract
The sigma-1 receptor (Sig1R) is a unique ligand-operated endoplasmic reticulum (ER) protein without any mammalian homolog. It has long been a pharmacological target for intervention of psychiatric disorders, and recently garnered refreshed interest for its neuroprotective potential. Though reported to modulate various intracellular events, its influence on cell identity is little known. We explored a role for Sig1R in adipocyte differentiation. We induced adipogenic differentiation of mouse embryonic fibroblasts (MEFs) with a differentiation medium. MEFs were isolated from Sigmar1-/- and Sigmar1+/+ mice. The induced adipocyte-like phenotype was detected through Western blots of master transcription factors (PPARγ, CEBPA, SREBP1, SREBP2), lipogenic proteins (FABP4, ACC1, ACAT2), and Oil-Red-O staining of lipids. We found that the induced upregulation of these proteins and lipid accumulation were severely mitigated in Sigmar1-/- (vs Sigmar1+/+) MEFs. Sig1R activation with a selective agonist (PRE084) increased Sig1R protein and further enhanced the induced adipocyte-like phenotype in Sigmar1+/+ MEFs. We also determined mouse body weight gain induced by high-fat diet for 6 months, which was impeded in Sigmar1-/- (vs Sigmar1+/+) male mice. In summary, genetic ablation of Sig1R impairs, and agonist activation of Sig1R enhances adipocyte-like phenotype of induced MEFs. In vivo, Sig1R ablation impedes the body weight gain of male mice on high-fat diet. This study warrants further investigation of a previously unrecognized role for Sig1R in adipocyte differentiation.
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristin I Stanford
- Departments of Physiology & Cell Biology, College of Medicine; Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Sigma receptor-induced heavy drinking in rats: Modulation by the opioid receptor system. Pharmacol Biochem Behav 2020; 192:172914. [PMID: 32205151 DOI: 10.1016/j.pbb.2020.172914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/04/2023]
Abstract
Alcohol use disorder (AUD) is a major cause of morbidity and mortality worldwide, for which new efficacious treatments are necessary. The opioid receptor system is a mediator of the rewarding effects of alcohol; in particular, while activation of μ opioid receptors enhances ethanol intake in rodents, opioid-receptor antagonists, such as naloxone and naltrexone, reduce its pleasurable and reinforcing effects, thereby decreasing alcohol. Sigma receptors (Sig-Rs) have been proposed as modulators of the effects of alcohol and, therefore, as a potential new pharmacological target for AUD. Somewhat analogously to μ opioid ligands, SigR agonists increase, while SigR antagonists decrease alcohol intake in animal models of excessive alcohol drinking. However, a potential cross-talk between these two receptor systems in relation to alcohol consumption has so far not been investigated. Here, we addressed this question pharmacologically, by testing the effects of either activating or inhibiting opioid receptors on the heavy alcohol drinking induced by chronic stimulation of SigR in alcohol-preferring rats. We found that the opioid receptor agonist morphine, which per se increases ethanol intake, at a sub-threshold dose reduces the binge-like drinking induced by the repeated treatment with the SigR agonist 1,3-di-o-tolylguanidine (DTG); conversely, the opioid receptor antagonist naltrexone, which per se reduces ethanol intake, at a sub-threshold dose potentiates the DTG-induced binge-like drinking. Our data show a cross-talk between the opioid and SigR systems relevant to the modulation of alcohol drinking, which provides important insights into the neurobiology of AUD and may lead to the development of novel therapies, either standalone or in combination.
Collapse
|
8
|
Tapia MA, Sage AS, Fullerton EI, Judd JM, Hildebrant PC, Will MJ, Lever SZ, Lever JR, Miller DK. The sigma receptor ligand N-phenylpropyl-N'-(4-methoxyphenethyl)3piperazine (YZ-067) enhances the cocaine conditioned-rewarding properties while inhibiting the development of sensitization of cocaine in mice. Psychopharmacology (Berl) 2020; 237:723-734. [PMID: 31822924 DOI: 10.1007/s00213-019-05411-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/18/2019] [Indexed: 11/28/2022]
Abstract
RATIONALE The N-phenylpropyl-N'-substituted piperazines SA-4503 (N-phenylpropyl-N'-(3,4-dimethoxyphenethyl)piperazine) and YZ-185 (N-phenylpropyl-N'-(3-methoxyphenethyl)piperazine) bind to sigma (σ) receptors and block the development of cocaine-induced conditioned place preference at concentrations that inhibit cocaine-induced hyperactivity. YZ-067 (N-phenylpropyl-N'-(4-methoxyphenethyl)piperazine) also binds to sigma receptors and attenuates cocaine-induced hyperactivity in mice. OBJECTIVES The present study determined the effect of YZ-067 on the development and expression of cocaine (66 μmol/kg or 33 μmol/kg) conditioned place preference (CPP) and locomotor sensitization in mice. RESULTS YZ-067 (10 or 31.6 μmol/kg) did not have intrinsic effects on place preference or place aversion. Interestingly, the 31.6 μmol/kg YZ-067 dose enhanced the development of cocaine place preference, while 10 μmol/kg YZ-067 attenuated the development of cocaine-induced locomotor sensitization. However, YZ-067 did not alter the expression of cocaine place preference nor cocaine-induced locomotor sensitization. In follow-up studies, YZ-067 did not affect performance in the zero maze or rotarod, indicating that sigma receptors probed by this ligand do not regulate anxiety-like or coordinated motor skill behaviors, respectively. CONCLUSION Overall, these results are consistent with previous studies demonstrating a role for sigma receptors in the behavioral effects of cocaine. However, the present findings also indicate that N-phenylpropyl-N'-substituted piperazines do not strictly block cocaine's behavioral effects and that sigma receptor may differentially mediate cocaine-induced hyperactivity and place conditioning.
Collapse
Affiliation(s)
- Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Andrew S Sage
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Emma I Fullerton
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jessica M Judd
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Paige C Hildebrant
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.,Research Reactor Center, University of Missouri, Columbia, MO, 65212, USA
| | - John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65211, USA.,Departments of Radiology, and Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
9
|
Tapia MA, Lee JR, Bathe EL, Rivera LL, Mason KL, Cessac ME, Bodeen JL, Miller DK, Will MJ. Sigma-1 receptor antagonist, PD144418, selectively reduces female motivation for food during negative energy balance. Behav Brain Res 2019; 373:112087. [PMID: 31325519 DOI: 10.1016/j.bbr.2019.112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022]
Abstract
Sigma-1 (σ1) receptors have been investigated for their involvement in learning, rewarding and motivational processes. PD144418, a σ1 receptor antagonist, has been found to produce a dose-dependent attenuation of locomotor activity induced by cocaine, and by itself, does not suppress basal locomotor activity in mice. Moreover, PD144418 decreases the motivational effort of a food-reinforced behavior in male rats, without altering appetite or food palatability. It remains unknown whether the PD144418 can alter the motivational effort of a food-reinforced behavior in response to altered energy homeostasis, as is the case under 24 -h food deprivation. Additionally, while the previous experiments indicate effects in male rats, there has been no research examining the effects of PD144418, or any other σ1 receptor antagonist, on motivational aspects of feeding in females. The present study examined the effects of PD144418 on motivational aspects of feeding in male and female rats using an operant task under sated or food deprived conditions. Results indicated that when animals are sated, at the highest dose (10 μmol/kg), under a progressive ratio (PR) reinforcement schedule, PD144418 significantly attenuated the breakpoint and the number of active lever responses for sucrose pellets in both males and females. When animals are in a state of energy deficit, as is the case following 24-hr food deprivation, PD144418 does not alter motivationally driven operant responding as measured by the breakpoint in either sex but does alter the number of earned reinforcers responses in females.
Collapse
Affiliation(s)
- Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, 65211, USA
| | - Emily L Bathe
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Leticia L Rivera
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Kelsey L Mason
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA; Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Mikala E Cessac
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey L Bodeen
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA; Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
10
|
Tapia MA, Lever JR, Lever SZ, Will MJ, Park ES, Miller DK. Sigma-1 receptor ligand PD144418 and sigma-2 receptor ligand YUN-252 attenuate the stimulant effects of methamphetamine in mice. Psychopharmacology (Berl) 2019; 236:3147-3158. [PMID: 31139878 DOI: 10.1007/s00213-019-05268-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
RATIONALE Previous research indicates that the selective sigma-1 receptor ligand PD144418 and the selective sigma-2 ligands YUN-252 can inhibit cocaine-induced hyperactivity. The effects of these ligands on other stimulants, such as methamphetamine, have not been reported. OBJECTIVES The present study examined the effects of PD144418 and YUN-252 pretreatment on methamphetamine-induced hyperactivity after acute treatment. METHODS Mice (n = 8-14/group) were injected with PD144418 (3.16, 10, or 31.6 μmol/kg), YUN-252 (0.316, 3.16, 31.6 μmol/kg), or saline. After 15 min, mice injected with 2.69 μmol/kg methamphetamine or saline vehicle, where distance traveled during a 60-min period was recorded. Additionally, the effect of PD144418 on the initiation and expression of methamphetamine sensitization was determined by treating mice (n = 8-14/group) with PD144418, methamphetamine or saline repeatedly over a 5-day period, and testing said mice with a challenge dose after a 7-day withdrawal period. RESULTS Results indicate that both PD144418 and YUN-252, in a dose-dependent manner, attenuated hyperactivity induced by an acute methamphetamine injection. Specifically, 10 μmol/kg or 31.6 μmol/kg of PD144418 and 31 μmol/kg of YUN-252 suppressed methamphetamine-induced hyperactivity. In regard to methamphetamine sensitization, while 10 μmol/kg PD144418 prevented the initiation of methamphetamine sensitization, it did not have an effect on the expression. CONCLUSIONS Overall, the current results suggest an intriguing potential for this novel sigma receptor ligand as a treatment for the addictive properties of methamphetamine. Future analysis of this novel sigma receptor ligand in assays directly measuring reinforcement properties will be critical.
Collapse
Affiliation(s)
- Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO, 65211, USA.
| | - John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, and Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Susan Z Lever
- Department of Chemistry and MU Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO, 65211, USA
| | - Eric S Park
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, 210 McAlester Hall, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Tapia MA, Lee JR, Gereau GB, Moore JM, Weise VN, Mason KL, Cessac ME, Bodeen JL, Miller DK, Will MJ. Sigma-1 receptor antagonist PD144418 suppresses food reinforced operant responding in rats. Behav Brain Res 2019; 362:71-76. [PMID: 30639509 DOI: 10.1016/j.bbr.2019.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/20/2023]
Abstract
Sigma-1 (σ1) receptors have been investigated for their involvement in learning, rewarding and motivational processes, particularly as it relates to substances of abuse. Few studies have examined the effects of σ1 receptor agonists and antagonists on the rewarding and motivational properties of natural reinforcers, such as food. Studies that have investigated σ1 receptor agonists and antagonists has produced conflicting results. σ1 receptor antagonist PD144418 has been found to produce a dose-dependent attenuation of locomotor activity induced by cocaine, and by itself, does not suppress basal locomotor activity in mice. However, its effects on reward and motivation as it relates to food are unknown. The present study examined the involvement of σ1 receptors in mediating the rewarding and motivational properties of food using an operant task. The results indicated that at the highest dose (10 μmol/kg), PD144418 significantly attenuated the number of active lever responses for chow pellets but did not decrease the number of active lever responses for sucrose pellets under a fixed ratio (FR2) schedule of reinforcement. However, under a progressive ratio (PR) reinforcement schedule, 10 μmol/kg of PD14418 significantly reduced the breakpoint, a measure indicative of effort or motivation, for both chow and sucrose pellets. When ad libitum chow or sucrose pellets were made freely available (i.e. no lever press required) inside the operant chamber, 10 μmol/kg, PD144418 did not have an effect on number of pellets consumed. These findings indicate that PD144418 reduces the motivational effort of a food reinforced behavior.
Collapse
Affiliation(s)
- Melissa A Tapia
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| | - Graydon B Gereau
- Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Justin M Moore
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Valerie N Weise
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kelsey L Mason
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mikala E Cessac
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey L Bodeen
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Matthew J Will
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
12
|
Small molecule modulators of σ2R/Tmem97 reduce alcohol withdrawal-induced behaviors. Neuropsychopharmacology 2018; 43:1867-1875. [PMID: 29728649 PMCID: PMC6046036 DOI: 10.1038/s41386-018-0067-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Repeated cycles of intoxication and withdrawal enhance the negative reinforcing properties of alcohol and lead to neuroadaptations that underlie withdrawal symptoms driving alcohol dependence. Pharmacotherapies that target these neuroadaptations may help break the cycle of dependence. The sigma-1 receptor (σ1R) subtype has attracted interest as a possible modulator of the rewarding and reinforcing effects of alcohol. However, whether the sigma-2 receptor, recently cloned and identified as transmembrane protein 97 (σ2R/TMEM97), plays a role in alcohol-related behaviors is currently unknown. Using a Caenorhabditis elegans model, we identified two novel, selective σ2R/Tmem97 modulators that reduce alcohol withdrawal behavior via an ortholog of σ2R/TMEM97. We then show that one of these compounds blunted withdrawal-induced excessive alcohol drinking in a well-established rodent model of alcohol dependence. These discoveries provide the first evidence that σ2R/TMEM97 is involved in alcohol withdrawal behaviors and that this receptor is a potential new target for treating alcohol use disorder.
Collapse
|
13
|
Hiranita T, Hong WC, Kopajtic T, Katz JL. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration. J Pharmacol Exp Ther 2017; 362:2-13. [PMID: 28442581 PMCID: PMC5454590 DOI: 10.1124/jpet.117.241109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/20/2017] [Indexed: 11/22/2022] Open
Abstract
Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D2-like [R(-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health (T.H., T.K., J.L.K.), and Department of Pharmaceutical Sciences, Butler University (W.C.H.), Indianapolis, Indiana
| | - Weimin C Hong
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health (T.H., T.K., J.L.K.), and Department of Pharmaceutical Sciences, Butler University (W.C.H.), Indianapolis, Indiana
| | - Theresa Kopajtic
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health (T.H., T.K., J.L.K.), and Department of Pharmaceutical Sciences, Butler University (W.C.H.), Indianapolis, Indiana
| | - Jonathan L Katz
- Psychobiology Section, Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health (T.H., T.K., J.L.K.), and Department of Pharmaceutical Sciences, Butler University (W.C.H.), Indianapolis, Indiana
| |
Collapse
|
14
|
Hasebe S, Ago Y, Watabe Y, Oka S, Hiramatsu N, Tanaka T, Umehara C, Hashimoto H, Takuma K, Matsuda T. Anti-anhedonic effect of selective serotonin reuptake inhibitors with affinity for sigma-1 receptors in picrotoxin-treated mice. Br J Pharmacol 2017; 174:314-327. [PMID: 27987210 PMCID: PMC5289945 DOI: 10.1111/bph.13692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Prefrontal dopamine release by the combined activation of 5-HT1A and sigma-1 (σ1 ) receptors is enhanced by the GABAA receptor antagonist picrotoxin in mice. Here, we examined whether this neurochemical event was accompanied by behavioural changes. EXPERIMENTAL APPROACH Male mice were treated with picrotoxin to decrease GABAA receptor function. Their anhedonic behaviour was measured using the female encounter test. The expression of c-Fos was determined immunohistochemically. KEY RESULTS Picrotoxin caused an anxiogenic effect on three behavioural tests, but it did not affect the immobility time in the forced swim test. Picrotoxin decreased female preference in the female encounter test and attenuated the female encounter-induced increase in c-Fos expression in the nucleus accumbens. Picrotoxin-induced anhedonia was ameliorated by fluvoxamine and S-(+)-fluoxetine, selective serotonin reuptake inhibitors with high affinity for the σ1 receptor. The effect of fluvoxamine was blocked by a 5-HT1A or a σ1 receptor antagonist, and co-administration of the σ1 receptor agonist (+)-SKF-10047 and the 5-HT1A receptor agonist osemozotan mimicked the effect of fluvoxamine. By contrast, desipramine, duloxetine and paroxetine, which have little affinity for the σ1 receptor, did not affect picrotoxin-induced anhedonia. The effect of fluvoxamine was blocked by a dopamine D2/3 receptor antagonist. Methylphenidate, an activator of the prefrontal dopamine system, ameliorated picrotoxin-induced anhedonia. CONCLUSION AND IMPLICATIONS Picrotoxin-treated mice show anhedonic behaviour that is ameliorated by simultaneous activation of 5-HT1A and σ1 receptors. These findings suggest that the increased prefrontal dopamine release is associated with the anti-anhedonic effect observed in picrotoxin-treated mice.
Collapse
Affiliation(s)
- S Hasebe
- Department of Pharmacology, Graduate School of DentistryOsaka UniversityOsakaJapan
| | - Y Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - Y Watabe
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - S Oka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - N Hiramatsu
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - T Tanaka
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - C Umehara
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| | - H Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiOsakaJapan
- Division of Bioscience, Institute for Datability ScienceOsaka UniversityOsakaJapan
| | - K Takuma
- Department of Pharmacology, Graduate School of DentistryOsaka UniversityOsakaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiOsakaJapan
| | - T Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
| |
Collapse
|
15
|
Katz JL, Hiranita T, Hong WC, Job MO, McCurdy CR. A Role for Sigma Receptors in Stimulant Self-Administration and Addiction. Handb Exp Pharmacol 2017; 244:177-218. [PMID: 28110353 DOI: 10.1007/164_2016_94] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sigma receptors (σRs) are structurally unique proteins that function intracellularly as chaperones. Historically, σRs have been implicated as modulators of psychomotor stimulant effects and have at times been proposed as potential avenues for modifying stimulant abuse. However, the influence of ligands for σRs on the effects of stimulants, such as cocaine or methamphetamine, in various preclinical procedures related to drug abuse has been varied. The present paper reviews the effects of σR agonists and antagonists in three particularly relevant procedures: stimulant discrimination, place conditioning, and self-administration. The literature to date suggests limited σR involvement in the discriminative-stimulus effects of psychomotor stimulants, either with σR agonists substituting for the stimulant or with σR antagonists blocking stimulant effects. In contrast, studies of place conditioning suggest that administration of σR antagonists or down-regulation of σR protein can block the place conditioning induced by stimulants. Despite place conditioning results, selective σR antagonists are inactive in blocking the self-administration of stimulants. However, compounds binding to the dopamine transporter and blocking σRs can selectively decrease stimulant self-administration. Further, after self-administration of stimulants, σR agonists are self-administered, an effect not seen in subjects without that specific history. These findings suggest that stimulants induce unique changes in σR activity, and once established, the changes induced create redundant, and dopamine independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of those pathways, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.
Collapse
Affiliation(s)
- Jonathan L Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA.
| | - Takato Hiranita
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Weimin C Hong
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | - Martin O Job
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Christopher R McCurdy
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| |
Collapse
|
16
|
Abstract
Thanks to advances in neuroscience, addiction is now recognized as a chronic brain disease with genetic, developmental, and cultural components. Drugs of abuse, including alcohol, are able to produce significant neuroplastic changes responsible for the profound disturbances shown by drug addicted individuals. The current lack of efficacious pharmacological treatments for substance use disorders has encouraged the search for novel and more effective pharmacotherapies. Growing evidence strongly suggests that Sigma Receptors are involved in the addictive and neurotoxic properties of abused drugs, including cocaine , methamphetamine , and alcohol. The present chapter will review the current scientific knowledge on the role of the Sigma Receptor system in the effects of drugs and alcohol, and proposes that this receptor system may represent a novel therapeutic target for the treatment of substance use disorders and associated neurotoxicity.
Collapse
|
17
|
Aarde SM, Taffe MA. Predicting the Abuse Liability of Entactogen-Class, New and Emerging Psychoactive Substances via Preclinical Models of Drug Self-administration. Curr Top Behav Neurosci 2017; 32:145-164. [PMID: 27909988 DOI: 10.1007/7854_2016_54] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Animal models of drug self-administration are currently the gold standard for making predictions regarding the relative likelihood that a recreational drug substance will lead to continued use and addiction. Such models have been found to have high predictive accuracy and discriminative validity for a number of drug classes including ethanol, nicotine, opioids, and psychostimulants such as cocaine and methamphetamine. Members of the entactogen class of psychostimulants (drugs that produce an "open mind state" including feelings of interpersonal closeness, intimacy and empathy) have been less frequently studied in self-administration models. The prototypical entactogen 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") supports self-administration but not with the same consistency nor with the same efficacy as structurally related drugs amphetamine or methamphetamine. Consistent with these observations, MDMA use is more episodic in the majority of those who use it frequently. Nevertheless, substantial numbers of MDMA users will meet the criteria for substance dependence at some point in their use history. This review examines the currently available evidence from rodent self-administration studies of MDMA and two of the new and emerging psychoactive substances (NPS) that produce entactogen type neuropharmacological responses - mephedrone (4-methylmethcathinone; 4MMC; "meow meow") and methylone (3,4-methylenedioxymethcathinone). Overall, the current evidence predicts that these NPS entactogens have enhanced abuse liability compared with MDMA.
Collapse
Affiliation(s)
- Shawn M Aarde
- Committee on the Neurobiology of Addictive Disorders Mailcode SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders Mailcode SP30-2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Matzeu A, Cauvi G, Kerr TM, Weiss F, Martin-Fardon R. The paraventricular nucleus of the thalamus is differentially recruited by stimuli conditioned to the availability of cocaine versus palatable food. Addict Biol 2017; 22:70-77. [PMID: 26096647 PMCID: PMC4788574 DOI: 10.1111/adb.12280] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is not traditionally considered part of the brain addiction neurocircuitry but has received growing attention with regard to a role in the modulation of drug-seeking behavior. This study sought to establish the pattern of neural activation induced by a response-reinstating discriminative stimulus (SD ) conditioned to either cocaine (COC) or a conventional reinforcer using a palatable food substance, sweetened condensed milk (SCM). Male Wistar rats were trained to associate one SD (S+ ; COC or SCM availability) and a distinctly different SD (S- ; non-reward; i.e. the availability of saline or the absence of SCM). Following extinction of COC- and SCM-reinforced responding, rats were presented with the respective S+ or S- alone and tested for the reinstatement of reward seeking. The COC S+ and SCM S+ elicited identical reinstatement, whereas the non-reward S- was behaviorally ineffective. PVT sections were obtained following completion of the reinstatement tests and labeled for Fos. The number of Fos+ neurons was compared among rats that were presented with the COC S+ , SCM S+ or S- . Rats that were presented with the COC S+ exhibited a significant increase in Fos expression compared with rats that were presented with the S- . Moreover, Fos expression was significantly correlated with the number of reinstatement responses that were induced by the COC S+ . In contrast, the SCM S+ and S- produced identical increases in Fos expression, without behaviorally relevant correlations. The findings implicate the PVT as an important site that is selectively recruited during COC-seeking behavior.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabrielle Cauvi
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Tony M. Kerr
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Friedbert Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
19
|
Abstract
Sigma-1 receptors (σ1Rs) are structurally unique intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to other subcellular compartments, and can influence a host of targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Drugs binding to σRs can induce or block the actions of σRs. Studies indicate that stimulant self-administration induces the reinforcing effects of σR agonists, because of dopamine transporter actions. Once established, the reinforcing effects of σR agonists are independent of dopaminergic mechanisms traditionally thought to be critical to the reinforcing effects of stimulants. Self-administered doses of σR agonists do not increase dopamine concentrations in the nucleus accumbens shell, a transmitter and brain region considered important for the reinforcing effects of abused drugs. However, self-administration of σR agonists is blocked by σR antagonists. Several effects of stimulants have been blocked by σR antagonists, including the reinforcing effects, assessed by a place-conditioning procedure. However, the self-administration of stimulants is largely unaffected by σR antagonists, indicating fundamental differences in the mechanisms underlying these two procedures used to assess the reinforcing effects. When σR antagonists are administered in combination with dopamine uptake inhibitors, an effective and specific blockade of stimulant self-administration is obtained. Actions of stimulant drugs related to their abuse induce unique changes in σR activity and the changes induced potentially create redundant and, once established, independent reinforcement pathways. Concomitant targeting of both dopaminergic pathways and σR proteins produces a selective antagonism of stimulant self-administration, suggesting new avenues for combination chemotherapies to specifically combat stimulant abuse.
Collapse
|
20
|
Katz JL, Hiranita T, Kopajtic TA, Rice KC, Mesangeau C, Narayanan S, Abdelazeem AH, McCurdy CR. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists. J Pharmacol Exp Ther 2016; 358:109-24. [PMID: 27189970 PMCID: PMC4931880 DOI: 10.1124/jpet.116.232728] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022] Open
Abstract
The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists.
Collapse
Affiliation(s)
- Jonathan L Katz
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Takato Hiranita
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Theresa A Kopajtic
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Kenner C Rice
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Christophe Mesangeau
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Sanju Narayanan
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Ahmed H Abdelazeem
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| | - Christopher R McCurdy
- Psychobiology Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse, Baltimore, Maryland (J.L.K., T.H., T.A.K.); Drug Design and Synthesis Section, Intramural Research Program, National Institutes of Health National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Baltimore, Maryland (K.C.R.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., S.N., A.H.A., C.R.M.)
| |
Collapse
|
21
|
Valenza M, DiLeo A, Steardo L, Cottone P, Sabino V. Ethanol-related behaviors in mice lacking the sigma-1 receptor. Behav Brain Res 2016; 297:196-203. [PMID: 26462569 PMCID: PMC4679530 DOI: 10.1016/j.bbr.2015.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/01/2023]
Abstract
RATIONALE The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. OBJECTIVES The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. METHODS We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. RESULTS Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. CONCLUSIONS Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol.
Collapse
Affiliation(s)
- Marta Valenza
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States; Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Alyssa DiLeo
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Luca Steardo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University, Rome, Italy
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
22
|
Matzeu A, Weiss F, Martin-Fardon R. Transient inactivation of the posterior paraventricular nucleus of the thalamus blocks cocaine-seeking behavior. Neurosci Lett 2015; 608:34-9. [PMID: 26455867 PMCID: PMC4639449 DOI: 10.1016/j.neulet.2015.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Originally studied for its role in energy homeostasis, the paraventricular nucleus of the thalamus (PVT) has recently gained attention because of its involvement in the modulation of drug-directed behavior. The posterior part of the PVT (pPVT) is connected with brain structures that modulate motivated behavior, and we tested whether the pPVT plays a pivotal role in cocaine seeking. The aim of the present study was to investigate whether transient inactivation of the pPVT prevents cue-induced reinstatement of cocaine seeking but not natural reward seeking. Male Wistar rats were trained to associate a discriminative stimulus (S(+)) with the availability of cocaine or a highly palatable conventional reinforcer, sweetened condensed milk (SCM). Following extinction, the cocaine S(+) and SCM S(+) elicited comparable levels of reinstatement. Intra-pPVT administration of the γ-aminobutyric acid-A (GABAA) and GABAB receptor agonists muscimol and baclofen (0.06 and 0.6mM, respectively) prior to the presentation of the cocaine or SCM S(+) completely prevented the reinstatement of cocaine seeking, with no statistically significant effects on SCM seeking. These data show that the pPVT plays an important role in neuronal mechanisms that drive cocaine-seeking behavior.
Collapse
Affiliation(s)
- A Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA.
| | - F Weiss
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - R Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Blasio A, Valenza M, Iyer MR, Rice KC, Steardo L, Hayashi T, Cottone P, Sabino V. Sigma-1 receptor mediates acquisition of alcohol drinking and seeking behavior in alcohol-preferring rats. Behav Brain Res 2015; 287:315-22. [PMID: 25848705 PMCID: PMC4424067 DOI: 10.1016/j.bbr.2015.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 01/19/2023]
Abstract
Sigma-1 receptor (Sig-1R) has been proposed as a novel therapeutic target for drug and alcohol addiction. We have shown previously that Sig-1R agonists facilitate the reinforcing effects of ethanol and induce binge-like drinking, while Sig-1R antagonists on the other hand block excessive drinking in genetic and environmental models of alcoholism, without affecting intake in outbred non-dependent rats. Even though significant progress has been made in understanding the function of Sig-1R in alcohol reinforcement, its role in the early and late stage of alcohol addiction remains unclear. Administration of the selective Sig-1R antagonist BD-1063 dramatically reduced the acquisition of alcohol drinking behavior as well as the preference for alcohol in genetically selected TSRI Sardinian alcohol preferring (Scr:sP) rats; the treatment had instead no effect on total fluid intake, food intake or body weight gain, proving selectivity of action. Furthermore, BD-1063 dose-dependently decreased alcohol-seeking behavior in rats trained under a second-order schedule of reinforcement, in which responding is maintained by contingent presentation of a conditioned reinforcer. Finally, an innate elevation in Sig-1R protein levels was found in the nucleus accumbens of alcohol-preferring Scr:sP rats, compared to outbred Wistar rats, alteration which was normalized by chronic, voluntary alcohol drinking. Taken together these findings demonstrate that Sig-1R blockade reduces the propensity to both acquire alcohol drinking and to seek alcohol, and point to the nucleus accumbens as a potential key region for the effects observed. Our data suggest that Sig-1R antagonists may have therapeutic potential in multiple stages of alcohol addiction.
Collapse
Affiliation(s)
- Angelo Blasio
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Marta Valenza
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Malliga R Iyer
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Luca Steardo
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, Rome, Italy
| | - T Hayashi
- Department of Medicine, Nishikawa Hospital, Hamada, Shimane, Japan
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL. Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 2015; 147:1-19. [PMID: 25548026 PMCID: PMC4297708 DOI: 10.1016/j.drugalcdep.2014.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Treatment of stimulant-use disorders remains a formidable challenge, and the dopamine transporter (DAT) remains a potential target for antagonist or agonist-like substitution therapies. METHODS This review focuses on DAT ligands, such as benztropine, GBR 12909, modafinil, and DAT substrates derived from phenethylamine or cathinone that have atypical DAT-inhibitor effects, either in vitro or in vivo. The compounds are described from a molecular mechanistic, behavioral, and medicinal-chemical perspective. RESULTS Possible mechanisms for atypicality at the molecular level can be deduced from the conformational cycle for substrate translocation. For each conformation, a crystal structure of a bacterial homolog is available, with a possible role of cholesterol, which is also present in the crystal of Drosophila DAT. Although there is a direct relationship between behavioral potencies of most DAT inhibitors and their DAT affinities, a number of compounds bind to the DAT and inhibit dopamine uptake but do not share cocaine-like effects. Such atypical behavior, depending on the compound, may be related to slow DAT association, combined sigma-receptor actions, or bias for cytosol-facing DAT. Some structures are sterically small enough to serve as DAT substrates but large enough to also inhibit transport. Such compounds may display partial DA releasing effects, and may be combined with release or uptake inhibition at other monoamine transporters. CONCLUSIONS Mechanisms of atypical DAT inhibitors may serve as targets for the development of treatments for stimulant abuse. These mechanisms are novel and their further exploration may produce compounds with unique therapeutic potential as treatments for stimulant abuse.
Collapse
Affiliation(s)
- Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA,Corresponding author: Maarten E.A. Reith, Department of Psychiatry, Alexandria Center of Life Sciences, New York University School of Medicine, 450 E 29th Street, Room 803, New York, NY 10016. Tel.: 212 - 263 8267; Fax: 212 – 263 8183;
| | - Bruce E. Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Weimin C. Hong
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Kyle C. Schmitt
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Michael H. Baumann
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - John S. Partilla
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard B. Rothman
- Medicinal Chemistry Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jonathan L. Katz
- Psychobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Hiranita T. Cocaine Antagonists; Studies on Cocaine Self-Administration. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2015; 3. [PMID: 27398394 DOI: 10.4172/2329-6488.1000e125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takato Hiranita
- Division of Neurotoxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), USA
| |
Collapse
|
26
|
Blockade of hypocretin receptor-1 preferentially prevents cocaine seeking: comparison with natural reward seeking. Neuroreport 2014; 25:485-8. [PMID: 24407199 DOI: 10.1097/wnr.0000000000000120] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypothalamic orexin/hypocretin (Orx/Hcrt) peptides participate in the regulation of a wide range of physiological processes and are recruited by drugs of abuse. To advance our understanding of the potential of the Orx/Hcrt receptor-1 (Hcrt-r1) as a treatment target for cocaine addiction, the effect of SB334867 [N-(2-methyl-6-benzoxazolyl)-N'-1,5-n-aphthyridin-4-yl urea], a specific Hcrt-r1 antagonist, on reinstatement elicited by cocaine-associated stimuli versus stimuli associated with a highly palatable conventional reinforcer [sweetened condensed milk (SCM)] was tested. Two separate groups of male Wistar rats were trained to associate a discriminative stimulus (S⁺) with the response-contingent availability of cocaine (0.25 mg/0.1 ml/infusion) or SCM [2/1 (v/v)] and subjected to reinstatement tests following extinction of cocaine-reinforced or SCM-reinforced behavior, during which the reinforcers and S⁺ were withheld. Following extinction, presentation of the cocaine or SCM S⁺ produced comparable recovery of responding. Hcrt-r1 blockade by SB334867 (1-10 mg/kg, intraperitoneal) dose-dependently and selectively reversed conditioned reinstatement induced by cocaine-related stimuli, without interfering with reward seeking produced by the same stimulus when conditioned to SCM. The findings suggest an important role for Hcrt-r1 in appetitive behavior controlled by reward-related stimuli with selectivity for cocaine seeking and identify Hcrt-r1 as a potential treatment target for cocaine relapse prevention.
Collapse
|
27
|
Mori T, Rahmadi M, Yoshizawa K, Itoh T, Shibasaki M, Suzuki T. Inhibitory effects of SA4503 on the rewarding effects of abused drugs. Addict Biol 2014; 19:362-9. [PMID: 22934790 DOI: 10.1111/j.1369-1600.2012.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous findings have shown that sigma-1 receptors (Sig-1Rs) are upregulated by the self-administration of methamphetamine, whereas Sig-1R antisense can attenuate the behavioral effects of psychostimulants in rodents. Sig-1R is an endoplasmic reticulum chaperone protein. However, the effects of Sig-1R agonist on the rewarding effects of abused drugs are not fully understood. Therefore, we examined the effects of selective Sig-1R agonists, such as SA4503 and (+)-pentazocine, on the rewarding effects of abused drugs such as methamphetamine, cocaine and morphine in rats, as measured by the conditioned place preference. Methamphetamine, cocaine and morphine induced a significant place preference. SA4503, but not (+)-pentazocine, significantly attenuated the abused drug-induced place preference. We recently showed that (+)-pentazocine exerts U50,488H-like discriminative stimulus effects, which are related to its psychotomimetic/aversive effects. However, SA4503 did not generalize to the discriminative stimulus effects of U50,488H. These results suggest that SA4503 inhibits the rewarding effects of abused drugs, and that psychotomimetic/aversive effects may not play a role in the attenuating effects of SA4503 on the rewarding effects of abused drugs.
Collapse
Affiliation(s)
- Tomohisa Mori
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| | - Mahardian Rahmadi
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| | - Kazumi Yoshizawa
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| | - Toshimasa Itoh
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| | - Masahiro Shibasaki
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| | - Tsutomu Suzuki
- Department of Toxicology; School of Pharmacy and Pharmaceutical Sciences; Hoshi University; Tokyo Japan
| |
Collapse
|
28
|
Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014; 8:117. [PMID: 24765071 PMCID: PMC3982054 DOI: 10.3389/fnbeh.2014.00117] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/20/2014] [Indexed: 01/12/2023] Open
Abstract
A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT), a region that has been identified as a "way-station" that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the "drug addiction circuitry", recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.
Collapse
Affiliation(s)
- Alessandra Matzeu
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Eva R. Zamora-Martinez
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| | - Rémi Martin-Fardon
- Molecular and Cellular Neuroscience Department, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
29
|
Gear RW, Bogen O, Ferrari LF, Green PG, Levine JD. NOP receptor mediates anti-analgesia induced by agonist-antagonist opioids. Neuroscience 2014; 257:139-48. [PMID: 24188792 PMCID: PMC3947912 DOI: 10.1016/j.neuroscience.2013.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/25/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
Abstract
Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ∼90min after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J-113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia.
Collapse
Affiliation(s)
- R W Gear
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, United States
| | - O Bogen
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, United States
| | - L F Ferrari
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, United States
| | - P G Green
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, United States
| | - J D Levine
- Department of Oral and Maxillofacial Surgery, University of California, San Francisco, CA 94143-0440, United States; Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0120, United States.
| |
Collapse
|
30
|
Effects of blockade of α4β2 and α7 nicotinic acetylcholine receptors on cue-induced reinstatement of nicotine-seeking behaviour in rats. Int J Neuropsychopharmacol 2014; 17:105-16. [PMID: 23953129 PMCID: PMC3844113 DOI: 10.1017/s1461145713000874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Exposure to environmental stimuli conditioned to nicotine consumption critically contributes to the high relapse rates of tobacco smoking. Our previous work demonstrated that non-selective blockade of nicotinic acetylcholine receptors (nAChRs) reversed the cue-induced reinstatement of nicotine seeking, indicating a role for cholinergic neurotransmission in the mediation of the conditioned incentive properties of nicotine cues. The present study further examined the relative roles of the two major nAChR subtypes, α4β2 and α7, in the cue-induced reinstatement of nicotine seeking. Male Sprague-Dawley rats were trained to intravenously self-administer nicotine (0.03 mg/kg/infusion, free base) on a fixed-ratio 5 schedule of reinforcement. A nicotine-conditioned cue was established by associating a sensory stimulus with each nicotine infusion. After nicotine-maintained responding was extinguished by withholding the nicotine infusion and its paired cue, reinstatement test sessions were conducted with re-presentation of the cue but without the availability of nicotine. Thirty minutes before the tests, the rats were administered the α4β2-selective antagonist dihydro-β-erythroidine (DHβE) and α7-selective antagonist methyllycaconitine (MLA). Pretreatment with MLA, but not DHβE, significantly reduced the magnitude of the cue-induced reinstatement of responses on the active, previously nicotine-reinforced lever. In different sets of rats, MLA altered neither nicotine self-administration nor cue-induced reinstatement of food seeking. These results demonstrate that activation of α7 nAChRs participates in the mediation of the conditioned incentive properties of nicotine cues and suggest that α7 nAChRs may be a promising target for the development of medications for the prevention of cue-induced smoking relapse.
Collapse
|
31
|
Motel WC, Healy JR, Viard E, Pouw B, Martin K, Matsumoto RR, Coop A. Chlorophenylpiperazine analogues as high affinity dopamine transporter ligands. Bioorg Med Chem Lett 2013; 23:6920-6922. [PMID: 24211020 DOI: 10.1016/j.bmcl.2013.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022]
Abstract
Selective σ2 ligands continue to be an active target for medications to attenuate the effects of psychostimulants. In the course of our studies to determine the optimal substituents in the σ2-selective phenyl piperazines analogues with reduced activity at other neurotransmitter systems, we discovered that 1-(3-chlorophenyl)-4-phenethylpiperazine actually had preferentially increased affinity for dopamine transporters (DAT), yielding a highly selective DAT ligand.
Collapse
Affiliation(s)
- William C Motel
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Jason R Healy
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV, 26506, USA
| | - Eddy Viard
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV, 26506, USA
| | - Buddy Pouw
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, College of Pharmacy, Oklahoma City, OK, 73190, USA
| | - Kelly Martin
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Rae R Matsumoto
- Department of Basic Pharmaceutical Sciences, West Virginia University, School of Pharmacy, One Medical Center Drive, Morgantown, WV, 26506, USA
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, College of Pharmacy, Oklahoma City, OK, 73190, USA
| | - Andrew Coop
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, 20 North Pine Street, Baltimore, MD, 21201, USA
| |
Collapse
|
32
|
Hiranita T, Soto PL, Tanda G, Kopajtic TA, Katz JL. Stimulants as specific inducers of dopamine-independent σ agonist self-administration in rats. J Pharmacol Exp Ther 2013; 347:20-9. [PMID: 23908387 PMCID: PMC3781409 DOI: 10.1124/jpet.113.207522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/30/2013] [Indexed: 12/19/2022] Open
Abstract
A previous study showed that cocaine self-administration induced dopamine-independent reinforcing effects of σ agonists mediated by their selective actions at σ1 receptors (σ1Rs), which are intracellularly mobile chaperone proteins implicated in abuse-related effects of stimulants. The present study assessed whether the induction was specific to self-administration of cocaine. Rats were trained to self-administer the dopamine releaser, d-methamphetamine (0.01-0.32 mg/kg per injection), the μ-opioid receptor agonist, heroin (0.001-0.032 mg/kg per injection), and the noncompetitive N-methyl-d-aspartate receptor/channel antagonist ketamine (0.032-1.0 mg/kg per injection). As with cocaine, self-administration of d-methamphetamine induced reinforcing effects of the selective σ1R agonists PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate hydrochloride] and (+)-pentazocine (0.032-1.0 mg/kg per injection, each). In contrast, neither self-administration of heroin nor ketamine induced PRE-084 or (+)-pentazocine (0.032-10 mg/kg per injection, each) self-administration. Although the σ1R agonists did not maintain responding in subjects with histories of heroin or ketamine self-administration, substitution for those drugs was obtained with appropriate agonists (e.g., remifentanil, 0.1-3.2 µg/kg per injection, for heroin and (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ((+)-MK 801; dizocilpine), 0.32-10.0 µg/kg per injection, for ketamine). The σR antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008; 1.0-10 mg/kg) dose-dependently blocked PRE-084 self-administration but was inactive against d-methamphetamine, heroin, and ketamine. In contrast, PRE-084 self-administration was affected neither by the dopamine receptor antagonist (+)-butaclamol (10-100 μg/kg) nor by the opioid antagonist (-)-naltrexone (1.0-10 mg/kg), whereas these antagonists were active against d-methamphetamine and heroin self-administration, respectively. The results indicate that experience specifically with indirect-acting dopamine agonists induces reinforcing effects of previously inactive σ1R agonists. It is further suggested that induced σ1R reinforcing mechanisms may play an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for its treatment.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (T.H., G.T., T.A.K., J.L.K.); and Behavioral Biology Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (P.L.S.)
| | | | | | | | | |
Collapse
|
33
|
N-Phenylpropyl-N'-(3-methoxyphenethyl)piperazine (YZ-185) Attenuates the Conditioned-Rewarding Properties of Cocaine in Mice. ISRN PHARMACOLOGY 2013; 2013:546314. [PMID: 24089641 PMCID: PMC3780704 DOI: 10.1155/2013/546314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
Abstract
Sigma receptor antagonists diminish the effects of cocaine in behavioral assays, including conditioned place preference. Previous locomotor activity experiments in mice determined that the sigma receptor ligand YZ-185 (N-phenylpropyl-N′-(3-methoxyphenethyl)piperazine) enhanced cocaine-induced hyperactivity at a lower (0.1 μmol/kg) dose and dose-dependently attenuated cocaine-induced hyperactivity at higher (3.16–31.6 μmol/kg) doses. The present study investigated the effect of YZ-185 on cocaine's conditioned-rewarding properties in mice. YZ-185 (0.1, 0.316, 3.16, and 31.6 μmol/kg) did not have intrinsic activity to produce conditioned place preference or aversion. A higher (31.6 μmol/kg) YZ-185 dose, but not lower (0.1–3.16 μmol/kg) YZ-185 doses, prevented the development of place preference to cocaine (66 μmol/kg). YZ-185 did not alter the expression of cocaine place preference. To further characterize YZ-185's behavioral profile, its effects in the elevated zero maze and rotarod procedures were also determined; YZ-185 produced no significant change from baseline in either assay, indicating that the sigma receptors probed by YZ-185 do not regulate anxiety-like or coordinated motor skill behaviors. Overall, these results suggest that YZ-185 is a sigma receptor antagonist at the 31.6 μmol/kg dose and demonstrate that sigma receptors can mediate the development of the conditioned-rewarding properties of cocaine.
Collapse
|
34
|
Hiranita T, Mereu M, Soto PL, Tanda G, Katz JL. Self-administration of cocaine induces dopamine-independent self-administration of sigma agonists. Neuropsychopharmacology 2013; 38:605-15. [PMID: 23187725 PMCID: PMC3572457 DOI: 10.1038/npp.2012.224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/11/2012] [Accepted: 10/14/2012] [Indexed: 11/09/2022]
Abstract
Sigma(1) receptors (σ(1)Rs) are intracellularly mobile chaperone proteins implicated in several disease processes, as well as psychiatric disorders and substance abuse. Here we report that although selective σ(1)R agonists (PRE-084, (+)-pentazocine) lacked reinforcing effects in drug-naive rats, over the course of 28 experimental sessions, which was more than sufficient for acquisition of cocaine self-administration, responding was not maintained by either σ(1)R agonist. In contrast, after subjects self-administered cocaine σ(1)R agonists were readily self-administered. The induced reinforcing effects were long lasting; a response for which subjects had no history of reinforcement was newly conditioned with both σ(1)R agonists, extinguished when injections were discontinued, and reconditioned when σ(1)R agonists again followed responses. Experience with food reinforcement was ineffective as an inducer of σ(1)R agonist reinforcement. Although a variety of dopamine receptor antagonists blocked cocaine self-administration, consistent with its dopaminergic mechanism, PRE-084 self-administration was entirely insensitive to these drugs. Conversely, the σR antagonist, BD1063, blocked PRE-084 self-administration but was inactive against cocaine. In microdialysis studies i.v. PRE-084 did not significantly stimulate dopamine at doses that were self-administered in rats either with or without a cocaine self-administration experience. The results indicate that cocaine experience induces reinforcing effects of previously inactive σ(1)R agonists, and that the mechanism underlying these reinforcing effects is dopamine independent. It is further suggested that induced σ(1)R mechanisms may have an essential role in treatment-resistant stimulant abuse, suggesting new approaches for the development of effective medications for stimulant abuse.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Maddalena Mereu
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Paul L Soto
- Behavioral Biology Research Center, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Gianluigi Tanda
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan L Katz
- Psychobiology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
35
|
Evidences for the involvement of sigma receptors in antidepressant like effect of quetiapine in mice. Eur J Pharmacol 2013; 702:180-6. [PMID: 23399765 DOI: 10.1016/j.ejphar.2013.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 01/22/2023]
Abstract
Although quetiapine is routinely used in the treatment of schizophrenia and bipolar disorders, the precise mechanism of its antidepressant activity is poorly understood. Since quetiapine binds with sigma receptor, the possibility exists that antidepressant action of quetiapine may be mediated through interaction with sigma receptors. In the present study, quetiapine [40-80 μg/mouse, intracerebroventricular (i.c.v.) and 40 mg/kg, intraperitoneal (i.p.)], sigma1 receptor agonist, (+)-pentazocine (120 μg/mouse, i.c.v.) and sigma2 receptor agonist, PB-28 [1-Cyclohexyl-4-[3-(1,2,3,4-tetrahydro-5-methoxy-1-naphthalenyl)propyl]piperazine] (20 μg/mouse, i.c.v.) significantly decreased immobility time in forced swim test. In combination studies, the antiimmobility effect of quetiapine (20 μg/mouse, i.c.v.) was significantly potentiated by pretreatment with (+)-pentazocine (30 and 60 μg/mouse, i.c.v.) or PB-28 (5 and 10 μg/mouse, i.c.v.). Conversely, prior administration of sigma1 receptor antagonist, BD-1063 [1-[2-(3,4-Dichlorophenyl)ethyl]-4-methylpiperazine] and sigma2 receptor antagonists, SM-21 [(±)-Tropanyl 2-(4-chlorophenoxy)butanoate] antagonized the antiimmobility effect induced by quetiapine and its synergistic combination with sigma receptor agonists. These results demonstrated the involvement of sigma receptors in the antidepressant like effect of quetiapine and suggest that sigma receptors can be explored as a potential therapeutic target for the treatment of depressive disorders.
Collapse
|
36
|
Cottone P, Wang X, Park JW, Valenza M, Blasio A, Kwak J, Iyer MR, Steardo L, Rice KC, Hayashi T, Sabino V. Antagonism of sigma-1 receptors blocks compulsive-like eating. Neuropsychopharmacology 2012; 37:2593-604. [PMID: 22713906 PMCID: PMC3473342 DOI: 10.1038/npp.2012.89] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 11/08/2022]
Abstract
Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder.
Collapse
Affiliation(s)
- Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Xiaofan Wang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jin Won Park
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Marta Valenza
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Pharmacology and Human Physiology, School of Medicine, University of Bari, Bari, Italy
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Jina Kwak
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Malliga R Iyer
- Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Luca Steardo
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Teruo Hayashi
- Cellular Stress Signaling Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Martin-Fardon R, Strong EM, Weiss F. Effect of σ1 receptor antagonism on ethanol and natural reward seeking. Neuroreport 2012; 23:809-13. [DOI: 10.1097/wnr.0b013e32835717c8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Matsumoto RR. Targeting sigma receptors: novel medication development for drug abuse and addiction. Expert Rev Clin Pharmacol 2012; 2:351-8. [PMID: 22112179 DOI: 10.1586/ecp.09.18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychostimulant abuse is a serious health and societal problem in industrialized and developing countries. However, the identification of an effective pharmacotherapy to treat it has remained elusive. It has long been known that many psychostimulant drugs, including cocaine and methamphetamine, interact with sigma receptors in the brain and heart, offering a logical target for medication development efforts. However, selective pharmacological agents and molecular biological tools have only recently become available to rigorously evaluate these receptors as viable medication development targets. The current review will summarize provocative preclinical data, demonstrating the ability of sigma receptor antagonists and antisense oligonucleotides to ameliorate cocaine-induced convulsions, lethality, locomotor activity and sensitization, and conditioned place-preference in rodents. Recent studies suggest that the protective effects of sigma receptor antagonists also extend to actions produced by methamphetamine, 3,4-methylenedioxymethamphetamine, ethanol and other abused substances. Together, the data indicate that targeting sigma receptors, particularly the σ(1)-subtype, may offer an innovative approach for combating the effects of cocaine, and perhaps other abused substances.
Collapse
Affiliation(s)
- Rae R Matsumoto
- School of Pharmacy, West Virginia University, PO Box 9500, Morgantown, WV 26506, USA.
| |
Collapse
|
39
|
Hayes DJ, Hoang J, Greenshaw AJ. The role of nucleus accumbens shell GABA receptors on ventral tegmental area intracranial self-stimulation and a potential role for the 5-HT(2C) receptor. J Psychopharmacol 2011; 25:1661-75. [PMID: 21169393 DOI: 10.1177/0269881110389212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Brain γ-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT)(2C) receptors are implicated in the neuronal regulation of reward- and aversion-related behaviour. Within the mesocorticolimbic pathways of the brain, relationships between GABA containing neurons and 5-HT(2C) receptor activity may be important in this context. The primary aim of this study was to investigate the role of NAc shell GABA receptors on ventral tegmental area intracranial self-stimulation (ICSS) and to examine the systemic effects of GABAergic ligands in this context. The second aim was to investigate the relationship between GABA receptor- and 5-HT(2C) receptor-related ICSS behaviour, using systemic administration of the selective agonist WAY 161503. Locomotor activity was assessed to compare the potential motor effects of drugs; feeding behaviour and intra-NAc injections of amphetamine (1.0 µg/side) were used as positive controls. When administered systemically the GABA(A) receptor agonist muscimol and antagonist picrotoxin did not selectively change ICSS reward thresholds, although the 5-HT(2C) receptor agonist WAY 161503 (1.0 mg/kg) decreased reward measures. Intra-NAc shell administration of muscimol (225 ng/side) and picrotoxin (125 ng/side), respectively, decreased and increased measures of reward. Intra-NAc shell baclofen (0-225 ng/side; GABA(B) receptor agonist) did not affect any ICSS measures although it increased feeding. Combining picrotoxin and WAY 161503 attenuated the effects of each. These results suggest that a 5-HT(2C) and GABA(A) receptor-mediated neuronal relationship in the NAc shell may be relevant for the regulation of brain reward pathways.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada.
| | | | | |
Collapse
|
40
|
Hiranita T, Soto PL, Kohut SJ, Kopajtic T, Cao J, Newman AH, Tanda G, Katz JL. Decreases in cocaine self-administration with dual inhibition of the dopamine transporter and σ receptors. J Pharmacol Exp Ther 2011; 339:662-77. [PMID: 21859929 PMCID: PMC3199989 DOI: 10.1124/jpet.111.185025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/19/2011] [Indexed: 12/29/2022] Open
Abstract
Sigma receptor (σR) antagonists attenuate many behavioral effects of cocaine but typically not its reinforcing effects in self-administration procedures. However, the σR antagonist rimcazole and its N-propylphenyl analogs, [3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]diphenylamine hydrochloride (SH 3-24) and 9-[3-(cis-3,5-dimethyl-4-[3-phenylpropyl]-1-piperazinyl)-propyl]carbazole hydrobromide (SH 3-28), dose-dependently decreased the maximal rates of cocaine self-administration without affecting comparable responding maintained by food reinforcement. In contrast, a variety of σR antagonists [N-phenethylpiperidine oxalate (AC927), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine dihydrobromide (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine dihydrobromide (BD 1047), N-[2-(3,4-dichlorophenyl) ethyl]-4-methylpiperazine dihydrochloride (BD 1063), and N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100)] had no effect on cocaine self-administration across the range of doses that decreased rates of food-maintained responding. Rimcazole analogs differed from selective σR antagonists in their dual affinities for σRs and the dopamine transporter (DAT) assessed with radioligand binding. Selective DAT inhibitors and σR antagonists were studied alone and in combination on cocaine self-administration to determine whether actions at both σRs and the DAT were sufficient to reproduce the effects of rimcazole analogs. Typical DAT inhibitors [2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), methylphenidate, and nomifensine] dose-dependently shifted the cocaine dose-effect curve leftward. Combinations of DAT inhibitor and σR antagonist doses that were behaviorally inactive alone decreased cocaine self-administration without effects on food-maintained responding. In addition, whereas the DAT inhibitors were self-administered at rates similar to those of cocaine, neither rimcazole analogs nor typical σR antagonists (NE-100 and AC927) maintained responding above control levels across a wide range of doses. These findings suggest that the unique effects of rimcazole analogs are due to dual actions at the DAT and σRs and that a combined target approach may have utility in development of medical treatments for cocaine abuse.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Medications Discovery Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Suite 200, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hiranita T, Soto PL, Tanda G, Katz JL. Lack of cocaine-like discriminative-stimulus effects of σ-receptor agonists in rats. Behav Pharmacol 2011; 22:525-30. [PMID: 21808192 PMCID: PMC3666342 DOI: 10.1097/fbp.0b013e328349ab22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies demonstrated the effectiveness of selective σ-receptor (σR) agonists [1,3-di-o-tolylguanidine (DTG), PRE-084] as reinforcers in rats trained to self-administer cocaine. Similar to cocaine, these drugs increased nucleus accumbens shell dopamine levels, and effects of DTG, but not PRE-084, on dopamine seemed to be mediated by σRs. In addition, σR antagonists blocked self-administration of σR agonists, but were inactive against reinforcing and neurochemical effects of cocaine. Thus, pharmacologically distinct mechanisms likely underlie the reinforcing and neurochemical effects of σR agonists and cocaine. This study further examined the cocaine-like effects of σR agonists in rats trained to discriminate injections of cocaine from saline to assess the similarity of their subjective effects. Standard dopamine-uptake inhibitors (WIN 35,428, methylphenidate), but neither σR agonist (PRE-084, DTG), produced full cocaine-like discriminative-stimulus effects. The lack of effects of σR agonists was obtained regardless of route of administration (intraperitoneal, subcutaneous, or intravenous) or pretreatment time (5 or 30 min before sessions). The present results demonstrate differences in the discriminative-stimulus effects of cocaine and selective σR agonists, indicating that an overlap of subjective effects is not necessary for σR agonist self-administration. The previously found differences in neurochemical effects of cocaine and σR agonists may contribute to their different subjective effects.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224
- JSPS Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH
| | - Paul L. Soto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224
| | - Jonathan L. Katz
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, Department of Health and Human Services, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224
| |
Collapse
|
42
|
Galuska CM, Banna KM, Willse LV, Yahyavi-Firouz-Abadi N, See RE. A comparison of economic demand and conditioned-cued reinstatement of methamphetamine-seeking or food-seeking in rats. Behav Pharmacol 2011; 22:312-23. [PMID: 21597363 PMCID: PMC3135689 DOI: 10.1097/fbp.0b013e3283473be4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study examined whether continued access to methamphetamine or food reinforcement changed economic demand for both. The relationship between demand elasticity and cue-induced reinstatement was also determined. Male Long-Evans rats were lever pressed under increasing fixed-ratio requirements for either food pellets or methamphetamine (20 μg/50 μl infusion). For two groups, demand curves were obtained before and after continued access (12 days, 2-h sessions) to the reinforcer under a fixed-ratio 3 schedule. A third group was given continued access to methamphetamine between determinations of food demand and a fourth group abstained from methamphetamine between determinations. All groups underwent extinction sessions, followed by a cue-induced reinstatement test. Although food demand was less elastic than methamphetamine demand, continued access to methamphetamine shifted the methamphetamine demand curve upward and the food demand curve downward. In some rats, methamphetamine demand also became less elastic. Continued access to food had no effect on food demand. Reinstatement was higher after continued access to methamphetamine relative to food. For methamphetamine, elasticity and reinstatement measures were correlated. Continued access to methamphetamine, but not food, alters demand in ways suggestive of methamphetamine accruing reinforcing strength. Demand elasticity thus provides a useful measure of abuse liability that may predict future relapse to renewed drug-seeking and drug use.
Collapse
Affiliation(s)
- Chad M Galuska
- Department of Psychology, College of Charleston, Charleston, South Carolina 29424, USA.
| | | | | | | | | |
Collapse
|
43
|
Katz JL, Su TP, Hiranita T, Hayashi T, Tanda G, Kopajtic T, Tsai SY. A Role for Sigma Receptors in Stimulant Self Administration and Addiction. Pharmaceuticals (Basel) 2011; 4:880-914. [PMID: 21904468 PMCID: PMC3167211 DOI: 10.3390/ph4060880] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sigma1 receptors (σ1Rs) represent a structurally unique class of intracellular proteins that function as chaperones. σ1Rs translocate from the mitochondria-associated membrane to the cell nucleus or cell membrane, and through protein-protein interactions influence several targets, including ion channels, G-protein-coupled receptors, lipids, and other signaling proteins. Several studies have demonstrated that σR antagonists block stimulant-induced behavioral effects, including ambulatory activity, sensitization, and acute toxicities. Curiously, the effects of stimulants have been blocked by σR antagonists tested under place-conditioning but not self-administration procedures, indicating fundamental differences in the mechanisms underlying these two effects. The self administration of σR agonists has been found in subjects previously trained to self administer cocaine. The reinforcing effects of the σR agonists were blocked by σR antagonists. Additionally, σR agonists were found to increase dopamine concentrations in the nucleus accumbens shell, a brain region considered important for the reinforcing effects of abused drugs. Although the effects of the σR agonist, DTG, on dopamine were obtained at doses that approximated those that maintained self administration behavior those of another agonist, PRE-084 required higher doses. The effects of DTG were antagonized by non-selective or a preferential σ2R antagonist but not by a preferential σ1R antagonist. The effects of PRE-084 on dopamine were insensitive to σR antagonists. The data suggest that the self administration of σR agonists is independent of dopamine and the findings are discussed in light of a hypothesis that cocaine has both intracellular actions mediated by σRs, as well as extracellular actions mediated through conventionally studied mechanisms. The co-activation and potential interactions among these mechanisms, in particular those involving the intracellular chaperone σRs, may lead to the pernicious addictive effects of stimulant drugs.
Collapse
|
44
|
Sabino V, Cottone P, Blasio A, Iyer MR, Steardo L, Rice KC, Conti B, Koob GF, Zorrilla EP. Activation of σ-receptors induces binge-like drinking in Sardinian alcohol-preferring rats. Neuropsychopharmacology 2011; 36:1207-18. [PMID: 21346735 PMCID: PMC3079320 DOI: 10.1038/npp.2011.5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/26/2010] [Accepted: 01/05/2011] [Indexed: 12/11/2022]
Abstract
Sigma (σ) receptors have been implicated in the behavioral and motivational effects of alcohol and psychostimulants. Sigma receptor antagonists reduce the reinforcing effects of alcohol and excessive alcohol intake in both genetic (alcohol-preferring rats) and environmental (chronic alcohol-induced) models of alcoholism. The present study tested the hypothesis that pharmacological activation of σ-receptors facilitates ethanol reinforcement and induces excessive, binge-like ethanol intake. The effects of repeated subcutaneous treatment with the selective σ-receptor agonist 1,3-di-(2-tolyl)guanidine (DTG; 15 mg/kg, twice a day for 7 days) on operant ethanol (10%) self-administration were studied in Sardinian alcohol-preferring (sP) rats. To confirm that the effect of DTG was mediated by σ-receptors, the effects of pretreatment with the selective σ-receptor antagonist BD-1063 (7 mg/kg, subcutaneously) were determined. To assess the specificity of action, the effects of DTG on the self-administration of equally reinforcing solutions of saccharin or sucrose were also determined. Finally, gene expression of opioid receptors in brain areas implicated in ethanol reinforcement was analyzed in ethanol-naive sP rats treated acutely or repeatedly with DTG, because of the well-established role of the opioid system in alcohol reinforcement and addiction. Repeatedly administered DTG progressively and dramatically increased ethanol self-administration in sP rats and increased blood alcohol levels, which reached mean values close to 100 mg% in 1 h drinking sessions. Repeated DTG treatment also increased the rats' motivation to work for alcohol under a progressive-ratio schedule of reinforcement. BD-1063 prevented the effects of DTG, confirming that σ-receptors mediate the effects of DTG. Repeated DTG treatment also increased the self-administration of the non-drug reinforcers saccharin and sucrose. Naive sP rats repeatedly treated with DTG showed increased mRNA expression of μ- and δ-opioid receptors in the ventral tegmental area. These results suggest a key facilitatory role for σ-receptors in the reinforcing effects of alcohol and identify a potential mechanism that contributes to binge-like and excessive drinking.
Collapse
Affiliation(s)
- Valentina Sabino
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Angelo Blasio
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Malliga R Iyer
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Luca Steardo
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Rome, Italy
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Bruno Conti
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
45
|
Garcés-Ramírez L, Green JL, Hiranita T, Kopajtic TA, Mereu M, Thomas A, Mesangeau C, Narayanan S, McCurdy CR, Katz JL, Tanda G. Sigma receptor agonists: receptor binding and effects on mesolimbic dopamine neurotransmission assessed by microdialysis. Biol Psychiatry 2011; 69:208-17. [PMID: 20950794 PMCID: PMC3015019 DOI: 10.1016/j.biopsych.2010.07.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/22/2022]
Abstract
BACKGROUND Subtypes of sigma (σ) receptors, σ₁ and σ₂, can be pharmacologically distinguished, and each may be involved in substance-abuse disorders. σ-Receptor antagonists block cocaine place conditioning and σ-receptor agonists are self-administered in rats that previously self-administered cocaine. Self-administration of abused drugs has been related to increased dopamine (DA) neurotransmission, however, σ-receptor agonist effects on mesolimbic DA are not fully characterized. METHODS Receptor-binding studies assessed affinities of σ-receptor ligands for σ-receptor subtypes and the DA transporter; effects on DA transmission in the rat nucleus accumbens shell were assessed using in vivo microdialysis. RESULTS Cocaine (.1-1.0 mg/kg intravenous [IV]), the nonselective σ(½)-receptor agonist DTG (1.0-5.6 mg/kg IV), and the selective σ₁-receptor agonist PRE-084 (.32-10 mg/kg IV) dose-dependently increased DA to ∼275%, ∼150%, and ∼160% maxima, respectively. DTG-induced stimulation of DA was antagonized by the nonselective σ(½)-receptor antagonist BD 1008 (10 mg/kg intraperitoneal [IP]) and the preferential σ₂-receptor antagonist SN 79 (1-3 mg/kg IP), but not by the preferential σ₁-receptor antagonist, BD 1063 (10-30 mg/kg IP). Neither PRE-084 nor cocaine was antagonized by BD 1063 or BD 1008. CONCLUSIONS σ-Receptor agonists stimulated DA in a brain area critical for reinforcing effects of cocaine. DTG effects on DA appear to be mediated by σ₂-receptors rather than σ₁-receptors. However, DA stimulation by cocaine or PRE-084 does not likely involve σ-receptors. The relatively low potency on DA transmission of the selective σ₁-receptor agonist, PRE-084, and its previously reported potent reinforcing effects, suggest a dopamine-independent reinforcing pathway that may contribute to substance-abuse disorders.
Collapse
Affiliation(s)
- Linda Garcés-Ramírez
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Jennifer L. Green
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| | - Takato Hiranita
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
- Japanese Society for the Promotion of Science, Research Fellowship for Japanese Biomedical and Behavioral Researchers at NIH
| | - Theresa A. Kopajtic
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| | - Maddalena Mereu
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| | - Alexandra Thomas
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| | - Christophe Mesangeau
- Department of Medicinal Chemistry, University of Mississippi, Oxford, Mississippi
| | - Sanju Narayanan
- Department of Medicinal Chemistry, University of Mississippi, Oxford, Mississippi
| | | | - Jonathan L. Katz
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| | - Gianluigi Tanda
- Psychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD
| |
Collapse
|
46
|
Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2010; 6:344-66. [PMID: 19587856 PMCID: PMC2701284 DOI: 10.2174/157015908787386113] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 07/18/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022] Open
Abstract
Sigma (σ) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of σ receptors, termed σ1 and σ2. Of these two subtypes, the σ1 receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for σ1 receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates σ1 receptors. Certain neurosteroids are known to interact with σ1 receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca2+ signaling. Sigma1 receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, σ1 receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of σ1 receptors, focussing on σ1 ligand neuropharmacology and the role of σ1 receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of σ1 ligands.
Collapse
Affiliation(s)
- E J Cobos
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
47
|
Hayashi T, Justinova Z, Hayashi E, Cormaci G, Mori T, Tsai SY, Barnes C, Goldberg SR, Su TP. Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J Pharmacol Exp Ther 2010; 332:1054-63. [PMID: 19940104 PMCID: PMC2835445 DOI: 10.1124/jpet.109.159244] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 11/23/2009] [Indexed: 12/14/2022] Open
Abstract
sigma-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of sigma-1 receptors in the brain of drug-naive rats and then examined the dynamics of sigma-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. sigma-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the sigma-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the sigma-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in sigma-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. sigma-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and sigma-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat.
Collapse
Affiliation(s)
- Teruo Hayashi
- Cellular Pathobiology Section, IRP, NIDA, NIH Triad Suite 3304, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sershen H, Hashim A, Lajtha A. Differences between nicotine and cocaine-induced conditioned place preferences. Brain Res Bull 2010; 81:120-4. [PMID: 19665529 DOI: 10.1016/j.brainresbull.2009.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 02/05/2023]
Abstract
In previous studies, we found differences between nicotine and cocaine-induced changes in the levels of neurotransmitters in various brain areas, which suggested differences in their reward - preference mechanisms. The present study was based on the idea that drug preference is modulated by a number of different factors, among them several neurotransmitters and their receptors, and antagonists of specific receptors will influence preference. We also assumed that the factors (components of reward mechanisms) involved are different in the case of different drugs. We compared the inhibition of nicotine preference with cocaine preference. We assayed preference as conditioned place preference (CPP) and measured CPP inhibition by receptor subtype antagonists using mice. In general, induced CPP of cocaine was stronger than of nicotine as shown by more time spent in the nonpreferred area after conditioning with cocaine. We measured inhibition by four antagonists: mecamylamine, atropine, SCH23390, and phentolamine: antagonists respectively of nicotinic, and muscarinic acetylcholine, dopamine D1, and alpha noradrenergic receptors. The inhibition by the antagonists of cocaine CPP was lower in most instances than that of nicotine CPP. Atropine and SCH23390 inhibited nicotine and cocaine CPP approximately to the same degree, while the inhibition by mecamylamine and phentolamine of nicotine CPP was 100%; that of cocaine was 20% and 0, respectively. We conclude that several receptor systems and transmitters play a role in drug preference, some represent essential elements or circuits, some may be only required partially or their role can be partially substituted. The composition of such systems is different for different drugs - in the present study, some of the components influencing CPP are different for nicotine as opposed to cocaine.
Collapse
Affiliation(s)
- H Sershen
- Nathan Kline Institute, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
49
|
Hiranita T, Soto PL, Tanda G, Katz JL. Reinforcing effects of sigma-receptor agonists in rats trained to self-administer cocaine. J Pharmacol Exp Ther 2010; 332:515-24. [PMID: 19892920 PMCID: PMC2812106 DOI: 10.1124/jpet.109.159236] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 11/03/2009] [Indexed: 11/22/2022] Open
Abstract
sigma-Receptor (sigmaR) antagonists have been reported to block certain effects of psychostimulant drugs. The present study examined the effects of sigmaR ligands in rats trained to self-administer cocaine (0.032-1.0 mg/kg/inj i.v.) under fixed-ratio 5-response schedules of reinforcement. Maximal rates of responding were maintained by 0.32 mg/kg/inj cocaine, or by the sigmaR agonists, 1,3-di-(2-tolyl)guanidine (DTG; 1.0 mg/kg/inj) or 2-(4-morpholinethyl) 1-phenylcyclohexane-1-carboxylate hydrochloride (PRE-084; 0.32 mg/kg/inj), when substituted for cocaine. Lower response rates were maintained at higher and lower doses of the compounds. No dose of the sigmaR antagonists [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD 1047), N-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine (BD 1063)] maintained responding appreciably above levels obtained when responding had no consequences. Presession treatment with sigmaR agonists dose-dependently shifted the cocaine self-administration dose-effect curve leftward. The dopamine-uptake inhibitor, (-)-2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (WIN 35,428), dose-dependently shifted the DTG and PRE-084 self-administration dose-effect curves leftward. Treatment with the sigmaR antagonists dose-dependently decreased response rates maintained by DTG or PRE-084, but did not affect cocaine self-administration. Response rates maintained by maximally effective DTG or PRE-084 doses were decreased by sigmaR antagonists at lower doses than those that decreased response rates maintained by food reinforcement. Although sigmaR antagonists block some cocaine-induced effects, the lack of effect on cocaine self-administration suggests that the primary reinforcing effects of cocaine do not involve direct effects at sigmaRs. However, the self-administration of sigmaR agonists in cocaine-trained subjects, facilitation of cocaine self-administration by sigmaR-agonist pretreatment, and the facilitation of sigmaR-agonist self-administration by WIN 35,428, together suggest enhanced abuse-related effects resulting from concomitant dopaminergically mediated actions and sigmaR-mediated actions of the drugs.
Collapse
Affiliation(s)
- Takato Hiranita
- Psychobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
50
|
Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51:381-98. [PMID: 20213551 PMCID: PMC3155710 DOI: 10.1007/978-90-481-8622-8_13] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against beta-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|