1
|
Lord MN, Spaulding MO, Hoffman JR, Basma RK, Noble EE. Edible cannabinoids impact meal structure and food impulsivity in female rats. iScience 2025; 28:112415. [PMID: 40330886 PMCID: PMC12051634 DOI: 10.1016/j.isci.2025.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cannabinoid receptor agonists increase eating in a dose-dependent manner. However, the behavioral mechanisms by which cannabinoids modulate food intake control aren't clear, particularly in females. We utilized a rodent model of cannabinoid administration modeling a common route of cannabinoid consumption in humans: edibles. Herein, we administered the dual cannabinoid receptor agonist CP55940 in edible form to female rats and observed acute increases in standard chow intake due to an increase in meal size with no change in meal number. We further observed that the hyperphagic dose of edible CP55940 increases impulsive responding for sucrose, but this did not coincide with changes in motivation for sucrose. Finally, cannabinoids can affect anxiety-like behavior, but the acutely hyperphagic dose used in our studies had no effect on anxiety-like behavior. We conclude that edible cannabinoid administration delays satiation and increases impulsive eating behavior without impacting food motivation, potentially by reducing inhibitory control.
Collapse
Affiliation(s)
- Magen N. Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30606, USA
| | - Mai O. Spaulding
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30606, USA
| | - Jessica R. Hoffman
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30606, USA
| | - Rawad K. Basma
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30606, USA
| | - Emily E. Noble
- Department of Nutritional Sciences, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
2
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
3
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Lord MN, Noble EE. Hypothalamic cannabinoid signaling: Consequences for eating behavior. Pharmacol Res Perspect 2024; 12:e1251. [PMID: 39155548 PMCID: PMC11331011 DOI: 10.1002/prp2.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
In parallel to the legalization of cannabis for both medicinal and recreational purposes, cannabinoid use has steadily increased over the last decade in the United States. Cannabinoids, such as tetrahydrocannabinol and anandamide, bind to the central cannabinoid-1 (CB1) receptor to impact several physiological processes relevant for body weight regulation, including appetite and energy expenditure. The hypothalamus integrates peripheral signals related to energy balance, houses several nuclei that orchestrate eating, and expresses the CB1 receptor. Herein we review literature to date concerning cannabinergic action in the hypothalamus with a specific focus on eating behaviors. We highlight hypothalamic areas wherein researchers have focused their attention, including the lateral, arcuate, paraventricular, and ventromedial hypothalamic nuclei, and interactions with the hormone leptin. This review serves as a comprehensive analysis of what is known about cannabinoid signaling in the hypothalamus, highlights gaps in the literature, and suggests future directions.
Collapse
Affiliation(s)
- Magen N. Lord
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Emily E. Noble
- Department of Nutritional SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
5
|
Soler-Cedeño O, Alton H, Bi GH, Linz E, Ji L, Makriyannis A, Xi ZX. AM6527, a neutral CB1 receptor antagonist, suppresses opioid taking and seeking, as well as cocaine seeking in rodents without aversive effects. Neuropsychopharmacology 2024; 49:1678-1688. [PMID: 38600154 PMCID: PMC11399149 DOI: 10.1038/s41386-024-01861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Preclinical research has demonstrated the efficacy of CB1 receptor (CB1R) antagonists in reducing drug-taking behavior. However, clinical trials with rimonabant, a CB1R antagonist with inverse agonist profile, failed due to severe adverse effects, such as depression and suicidality. As a result, efforts have shifted towards developing novel neutral CB1R antagonists without an inverse agonist profile for treating substance use disorders. Here, we assessed AM6527, a CB1R neutral antagonist, in addiction animal models. Our findings revealed that AM6527 did not affect cocaine self-administration under fixed-ratio reinforcement schedules but dose-dependently inhibited it under progressive-ratio reinforcement schedules. Additionally, AM6527 dose-dependently inhibited heroin self-administration under both fixed-ratio and progressive-ratio reinforcement schedules and oral sucrose self-administration under a fixed-ratio reinforcement schedule, as well as cocaine- or heroin-triggered reinstatement of drug-seeking behavior in rats. However, chronic AM6527 administration for five consecutive days significantly inhibited heroin self-administration only during the initial two days, indicating tolerance development. Notably, AM6527 did not produce rewarding or aversive effects by itself in classical electrical intracranial self-stimulation and conditioned place preference tests. However, in optical intracranial self-stimulation (oICSS) maintained by optogenetic stimulation of midbrain dopamine neurons in DAT-cre mice, both AM6527 and rimonabant dose-dependently inhibited dopamine-dependent oICSS behavior. Together, these findings suggest that AM6527 effectively reduces drug-taking and seeking behaviors without rimonabant-like adverse effects. Thus, AM6527 warrants further investigation as a potential pharmacotherapy for opioid and cocaine use disorders.
Collapse
Affiliation(s)
- Omar Soler-Cedeño
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Postdoctoral Research Associate Training (PRAT) Fellow, National Institute of General Medical Sciences, Bethesda, MD, USA
| | - Hannah Alton
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Guo-Hua Bi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Emily Linz
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lipin Ji
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
6
|
Singh S, Sarroza D, English A, Whittington D, Dong A, Malamas M, Makriyannis A, van der Stelt M, Li Y, Zweifel L, Bruchas MR, Land BB, Stella N. P2X 7 receptor-dependent increase in endocannabinoid 2-arachidonoyl glycerol production by neuronal cells in culture: Dynamics and mechanism. Br J Pharmacol 2024; 181:2459-2477. [PMID: 38581262 PMCID: PMC11936313 DOI: 10.1111/bph.16348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND AND PURPOSE Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase β activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/β-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.
Collapse
Affiliation(s)
- Simar Singh
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dennis Sarroza
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Anthony English
- Department of Pharmacology, University of Washington, Seattle, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, USA
| | - Ao Dong
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Michael Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | | | - Yulong Li
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Larry Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Michael R. Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Benjamin B. Land
- Department of Pharmacology, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
- Center for Cannabis Research, University of Washington, Seattle, USA
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, USA
| |
Collapse
|
7
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
8
|
Heal DJ, Gosden J, Smith SL. A critical assessment of the abuse, dependence and associated safety risks of naturally occurring and synthetic cannabinoids. Front Psychiatry 2024; 15:1322434. [PMID: 38915848 PMCID: PMC11194422 DOI: 10.3389/fpsyt.2024.1322434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Various countries and US States have legalized cannabis, and the use of the psychoactive1 and non-psychoactive cannabinoids is steadily increasing. In this review, we have collated evidence from published non-clinical and clinical sources to evaluate the abuse, dependence and associated safety risks of the individual cannabinoids present in cannabis. As context, we also evaluated various synthetic cannabinoids. The evidence shows that delta-9 tetrahydrocannabinol (Δ9-THC) and other psychoactive cannabinoids in cannabis have moderate reinforcing effects. Although they rapidly induce pharmacological tolerance, the withdrawal syndrome produced by the psychoactive cannabinoids in cannabis is of moderate severity and lasts from 2 to 6 days. The evidence overwhelmingly shows that non-psychoactive cannabinoids do not produce intoxicating, cognitive or rewarding properties in humans. There has been much speculation whether cannabidiol (CBD) influences the psychoactive and potentially harmful effects of Δ9-THC. Although most non-clinical and clinical investigations have shown that CBD does not attenuate the CNS effects of Δ9-THC or synthetic psychoactive cannabinoids, there is sufficient uncertainty to warrant further research. Based on the analysis, our assessment is cannabis has moderate levels of abuse and dependence risk. While the risks and harms are substantially lower than those posed by many illegal and legal substances of abuse, including tobacco and alcohol, they are far from negligible. In contrast, potent synthetic cannabinoid (CB1/CB2) receptor agonists are more reinforcing and highly intoxicating and pose a substantial risk for abuse and harm. 1 "Psychoactive" is defined as a substance that when taken or administered affects mental processes, e.g., perception, consciousness, cognition or mood and emotions.
Collapse
Affiliation(s)
- David J. Heal
- DevelRx Limited, Nottingham, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | | | | |
Collapse
|
9
|
Raghav JG, Kumar H, Ji L, Vemuri K, Makriyannis A, Suh J, Leonard MZ, Dang V, Ty C, Marandola S, Kane N, Witt AS, Shaqour S, Miczek KA. The neutral CB1 antagonist AM6527 reduces ethanol seeking, binge-like consumption, reinforcing, and withdrawal effects in male and female mice. Psychopharmacology (Berl) 2024; 241:427-443. [PMID: 38001264 DOI: 10.1007/s00213-023-06500-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Alcohol use disorder (AUD) is a debilitating physiological and psychiatric disorder which affects individuals globally. The current pharmacological interventions to treat AUD are limited, and hence there is an urgent need for a novel pharmacological therapy which can be effective and safe across the population. OBJECTIVE We aimed to investigate a novel neutral cannabinoid receptor-1 (CB1R) antagonist, AM6527, in several preclinical models of ethanol consumption using male and female C57BL6/J mice. METHODS Independent groups of male and female mice were subjected to repeated cycles of drinking in the dark (DID), or intermittent access to alcohol (IAA) procedures. Twenty minutes prior to ethanol access in each procedure, animals were treated with intraperitoneal injections of either 1, 3, and 10 mg/kg of AM6527 or its respective vehicle. Acamprosate (100, 200, 300, and 400 mg/kg) or its respective vehicle was used as a positive control. Separate groups of male mice were subjected to a chain schedule of ethanol reinforcement to gain access to ethanol wherein completion of a fixed interval (FI; 5 min) schedule (link 1: "Seeking") was reinforced with continuous access to ethanol (fixed ratio; FR1) for up to 1.8 g/kg (link 2: "consumption"). All the animals were treated with 1, 3, and 10 mg/kg of AM6527 or its respective vehicle 20 mins prior to the start of the FI chain of the procedure. Separately, AM6527 was also evaluated in male and female mice undergoing acute ethanol withdrawal following 8 weeks of intermittent or continuous access to 20% ethanol drinking. RESULTS In both DID and IAA procedures, AM6527 reduced ethanol consumption in a dose-related manner in both male and female mice. AM6527 produced no tolerance in the DID procedure; mice treated with 3 mg/kg of AM6527 for 3 weeks continuously drank significantly smaller amounts of ethanol as compared to vehicle-treated mice over a period of three DID cycles. Moreover, in the IAA procedure, AM6527 caused an increase in water intake over the 24-h period. Acamprosate transiently reduced ethanol intake in male mice in both the DID and the IAA procedures but failed to produce any significant effect in female mice. AM6527 also produced a decrease in the FI responding ("ethanol seeking") in animals trained to self-administer ethanol. Lastly, AM6527 mitigated neurological withdrawal signs, i.e., handling induced convulsions (HIC) in mice undergoing acute ethanol withdrawal. CONCLUSIONS Current findings support previous studies with CB1R neutral antagonist in reducing voluntary ethanol intake and seeking behavior. Based on results shown in this work, AM6527 can be developed as a first in class CB1R neutral antagonist to treat AUD in both males and females.
Collapse
Affiliation(s)
- Jimit Girish Raghav
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Hritik Kumar
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Lipin Ji
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, Department of Psychiatry, Harvard Medical School, Mclean Hospital, Belmont, MA, 02478, USA
| | - Michael Z Leonard
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Vivi Dang
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Chelsea Ty
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Stephen Marandola
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Natalie Kane
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Annika S Witt
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Samar Shaqour
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA
| | - Klaus A Miczek
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Dept. of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA, 02155, USA.
- Dept. of Neuroscience, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
10
|
Eid BG, Neamatallah T, Binmahfouz LS, Bagher AM, Alamoudi AJ, Aldawsari HM, Hanafy A, Hasan A, El-Bassossy HM, Abdel-Naim AB, Vemuri K, Makriyannis A. Effects of the CB1 receptor antagonists AM6545 and AM4113 on metabolic syndrome-induced prostatic hyperplasia in rats. BIOMOLECULES & BIOMEDICINE 2023; 23:1069-1078. [PMID: 37212036 PMCID: PMC10655885 DOI: 10.17305/bb.2023.9173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that can predispose individuals to benign prostatic hyperplasia (BPH). The inhibition of the cannabinoid 1 (CB1) receptor has been used to treat metabolic disorders in animal models. This study reports the use of a peripherally restricted CB1 antagonist (AM6545) and a neutral CB1 antagonist (AM4113) to improve MetS-related BPH in rats. Animals were divided into three control groups to receive either a normal rodent diet, AM6545, or AM4113. MetS was induced in the fourth, fifth, and sixth groups using a concentrated fructose solution and high-salt diet delivered as food pellets for eight weeks. The fifth and sixth groups were further given AM6545 or AM4113 for additional four weeks. Body and prostate weights were measured and prostate sections were stained with hematoxylin eosin. Cyclin D1, markers of oxidative stress and inflammation, and levels of the endocannabinoids were recorded. BPH in rats with MetS was confirmed through increased prostate weight and index, as well as histopathology. Treatment with either AM6545 or AM4113 significantly decreased prostate weight, improved prostate histology, and reduced cyclin D1 expression compared with the MetS group. Groups treated with CB1 antagonists experienced reduced lipid peroxidation, recovered glutathione depletion, restored catalase activity, and had lower inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). MetS rats treated with either AM6545 or AM4113 showed reduced concentrations of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the prostate compared with the MetS group. In conclusion, the CB1 antagonists AM6545 and AM4113 protect against MetS-induced BPH through their anti-proliferative, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lenah S Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer Hanafy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
11
|
Varma MM, Zhen S, Yu R. Not all discounts are created equal: Regional activity and brain networks in temporal and effort discounting. Neuroimage 2023; 280:120363. [PMID: 37673412 DOI: 10.1016/j.neuroimage.2023.120363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023] Open
Abstract
Reward outcomes associated with costs like time delay and effort investment are generally discounted in decision-making. Standard economic models predict rewards associated with different types of costs are devalued in a similar manner. However, our review of rodent lesion studies indicated partial dissociations between brain regions supporting temporal- and effort-based decision-making. Another debate is whether options involving low and high costs are processed in different brain substrates (dual-system) or in the same regions (single-system). This research addressed these issues using coordinate-based, connectivity-based, and activation network-based meta-analyses to identify overlapping and separable neural systems supporting temporal (39 studies) and effort (20 studies) discounting. Coordinate-based activation likelihood estimation and resting-state connectivity analyses showed immediate-small reward and delayed-large reward choices engaged distinct regions with unique connectivity profiles, but their activation network mapping was found to engage the default mode network. For effort discounting, salience and sensorimotor networks supported low-effort choices, while the frontoparietal network supported high-effort choices. There was little overlap between the temporal and effort networks. Our findings underscore the importance of differentiating different types of costs in decision-making and understanding discounting at both regional and network levels.
Collapse
Affiliation(s)
- Mohith M Varma
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Zhen
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, China.
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
13
|
Scott-Dennis M, Rafani FA, Yi Y, Perera T, Harwood CR, Guba W, Rufer AC, Grether U, Veprintsev DB, Sykes DA. Development of a membrane-based Gi-CASE biosensor assay for profiling compounds at cannabinoid receptors. Front Pharmacol 2023; 14:1158091. [PMID: 37637423 PMCID: PMC10450933 DOI: 10.3389/fphar.2023.1158091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: The cannabinoid receptor (CBR) subtypes 1 (CB1R) and 2 (CB2R) are key components of the endocannabinoid system (ECS), playing a central role in the control of peripheral pain, inflammation and the immune response, with further roles in the endocrine regulation of food intake and energy balance. So far, few medicines targeting these receptors have reached the clinic, suggesting that a better understanding of the receptor signalling properties of existing tool compounds and clinical candidates may open the door to the development of more effective and safer treatments. Both CB1R and CB2R are Gαi protein-coupled receptors but detecting Gαi protein signalling activity reliably and reproducibly is challenging. This is due to the inherent variability in live cell-based assays and restrictions around the use of radioactive [35S]-GTPγS, a favoured technology for developing higher-throughput membrane-based Gαi protein activity assays. Methods: Here, we describe the development of a membrane-based Gαi signalling system, produced from membrane preparations of HEK293TR cells, stably overexpressing CB1R or CB2R, and components of the Gαi-CASE biosensor. This BRET-based system allows direct detection of Gαi signalling in both cells and membranes by monitoring bioluminescence resonance energy transfer (BRET) between the α and the βγ subunits. Cells and membranes were subject to increasing concentrations of reference cannabinoid compounds, with 10 μM furimazine added to generate RET signals, which were detected on a PHERAstar FSX plate reader, then processed using MARS software and analysed in GraphPad PRISM 9.2. Results: In membranes expressing the Gi-CASE biosensor, the cannabinoid ligands profiled were found to show agonist and inverse agonist activity. Agonist activity elicited a decrease in the BRET signal, indicative of receptor activation and G protein dissociation. Inverse agonist activity caused an increase in BRET signal, indicative of receptor inactivation, and the accumulation of inactive G protein. Our membrane-based Gi-CASE NanoBRET system successfully characterised the potency (pEC50) and efficacy (Emax) of CBR agonists and inverse agonists in a 384-well screening format. Values obtained were in-line with whole-cell Gi-CASE assays and consistent with literature values obtained in the GTPγS screening format. Discussion: This novel, membrane-based Gαi protein activation assay is applicable to other Gαi-coupled GPCRs, including orphan receptors, allowing real-time higher-throughput measurements of receptor activation.
Collapse
Affiliation(s)
- Morgan Scott-Dennis
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Fikri A. Rafani
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Yicheng Yi
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Themiya Perera
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Clare R. Harwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| | - David A. Sykes
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Midlands, United Kingdom
- Z7 Biotech Limited, London, United Kingdom
| |
Collapse
|
14
|
Karimi-Haghighi S, Mahmoudi M, Sayehmiri F, Mozafari R, Haghparast A. Endocannabinoid system as a therapeutic target for psychostimulants relapse: A systematic review of preclinical studies. Eur J Pharmacol 2023; 951:175669. [PMID: 36965745 DOI: 10.1016/j.ejphar.2023.175669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
The mechanism behind the reinstament of psychostimulant, as a major obstacle in addiction treatment is not fully understood. Controversial data are available in the literature concerning the role of the endocannabinoid (eCB) system in regulating the relapse to psychostimulant addiction in preclinical studies. The current systematic review aims to evaluate eCB modulators' effect in the reinstatement of commonly abused psychostimulants, including cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. By searching the PubMed, Web of Science, and Scopus databases, studies were selected. Then the studies, quality was evaluated by the SYRCLE risk of bias tool. The results have still been limited to preclinical studies. Thirty-nine articles that employed self-administration and CPP as the most prevalent animal models of addiction were selected. This data indicates that cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists could suppress the reinstatement of cocaine and methamphetamine addiction in a dose-dependent manner. However, only AM251 was efficient to block the reinstatement of 3,4-methylenedioxymethamphetamine. In conclusion, cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists may have curative potential in the relapse of psychostimulant abuse. However, time, dose, and route of administration are crucial factors in their inhibitory impacts.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Mahmoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Bilska-Markowska M, Kaźmierczak M. Horner-Wadsworth-Emmons reaction as an excellent tool in the synthesis of fluoro-containing biologically important compounds. Org Biomol Chem 2023; 21:1095-1120. [PMID: 36632995 DOI: 10.1039/d2ob01969h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective introduction of a double bond motif into a multifunctional organic compound is always a big challenge. The Horner-Wadsworth-Emmons reaction is one of the most reliable, simple, and stereoselective olefination methods, widely used in organic chemistry. To the best of our knowledge, no review article on the application of HWE reaction in the synthesis of fluoroorganic compounds with direct biological interest has been published in recent years. The importance of the HWE reaction should be emphasised due to its simplicity and stereoselectivity. Under mild conditions and in one step, valuable compounds can be obtained. The HWE reaction is primarily a great tool in the synthesis of fluoroolefins that are, among others, peptide bond mimetics. Therefore, it can serve as an indispensable approach to access peptide bioisosteres and, consequently, analogues of numerous enzyme inhibitors. The protocol may be utilized to obtain florinated vinylphosphonate, vinylsulfone or sulfonate derivatives, which exhibit biological activity. In this review article, we would like to summarize the HWE reaction output of the last 12 years (since 2010).
Collapse
Affiliation(s)
- Monika Bilska-Markowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Marcin Kaźmierczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Gasperi V, Savini I, Catani MV. Assay of CB 1 Receptor Binding. Methods Mol Biol 2023; 2576:95-109. [PMID: 36152179 DOI: 10.1007/978-1-0716-2728-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Type-1 cannabinoid receptor (CB1), one of the main targets of endocannabinoids, plays a key role in several pathophysiological conditions that affect both the central nervous system and peripheral tissues. Today, its biochemical identification and pharmacological characterization, as well as the screening of thousands of novel ligands that might be useful for developing CB1-based therapies, are the subject of intense research. Among available techniques that allow the analysis of CB1 binding activity, radioligand-based assays represent one of the best, fast, and reliable methods.Here, we describe radioligand binding methods standardized in our laboratory to assess CB1 binding in both tissues and cultured cells. We also report a high-throughput radioligand binding assay that allows to evaluate efficacy and potency of different compounds, which might represent the basis for the development of new drugs that target CB1-dependent human diseases.
Collapse
Affiliation(s)
- Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Isabella Savini
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - M Valeria Catani
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
17
|
AlKhelb D, Kirunda A, Ho TC, Makriyannis A, Desai RI. Effects of the cannabinoid CB 1-receptor neutral antagonist AM4113 and antagonist/inverse agonist rimonabant on fentanyl discrimination in male rats. Drug Alcohol Depend 2022; 240:109646. [PMID: 36191533 DOI: 10.1016/j.drugalcdep.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Andre Kirunda
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Rajeev I Desai
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Neutral CB1 Receptor Antagonists as Pharmacotherapies for Substance Use Disorders: Rationale, Evidence, and Challenge. Cells 2022; 11:cells11203262. [PMID: 36291128 PMCID: PMC9600259 DOI: 10.3390/cells11203262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cannabinoid receptor 1 (CB1R) has been one of the major targets in medication development for treating substance use disorders (SUDs). Early studies indicated that rimonabant, a selective CB1R antagonist with an inverse agonist profile, was highly promising as a therapeutic for SUDs. However, its adverse side effects, such as depression and suicidality, led to its withdrawal from clinical trials worldwide in 2008. Consequently, much research interest shifted to developing neutral CB1R antagonists based on the recognition that rimonabant’s side effects may be related to its inverse agonist profile. In this article, we first review rimonabant’s research background as a potential pharmacotherapy for SUDs. Then, we discuss the possible mechanisms underlying its therapeutic anti-addictive effects versus its adverse effects. Lastly, we discuss the rationale for developing neutral CB1R antagonists as potential treatments for SUDs, the supporting evidence in recent research, and the challenges of this strategy. We conclude that developing neutral CB1R antagonists without inverse agonist profile may represent attractive strategies for the treatment of SUDs.
Collapse
|
19
|
Sepulveda DE, Morris DP, Raup-Konsavage WM, Sun D, Vrana KE, Graziane NM. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. Eur J Pain 2022; 26:1950-1966. [PMID: 35899583 DOI: 10.1002/ejp.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabigerol (CBG) is a non-psychoactive phytocannabinoid produced by the plant Cannabis sativa with affinity to various receptors involved in nociception. As a result, CBG is marketed as an over-the-counter treatment for many forms of pain. However, there is very little research-based evidence for the efficacy of CBG as an anti-nociceptive agent. METHODS To begin to fill this knowledge gap, we assessed the anti-nociceptive effects of CBG in C57BL/6 mice using three different models of pain; cisplatin-induced peripheral neuropathy, the formalin test, and the tail-flick assay. RESULTS Using the von Frey test, we found that CBG-attenuated mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy in both male and female mice. Additionally, we observed that this CBG-induced reduction in mechanical hypersensitivity was attenuated by the α2 -adrenergic receptor antagonist atipamezole (3 mg/kg, i.p.) and the CB1 R antagonist, AM4113 (3 mg/kg, i.p.), and blocked by the CB2 R antagonist/inverse agonist, SR144528 (10 mg/kg, i.p.). We found that the TRPV1 antagonist, SB705498 (20 mg/kg, i.p.) was unable to prevent CBG actions. Furthermore, we show that CBG:CBD oil (10 mg/kg, i.p.) was more effective than pure CBG (10 mg/kg) at reducing mechanical hypersensitivity in neuropathic mice. Lastly, we show that pure CBG and CBG:CBD oil were ineffective at reducing nociception in other models of pain, including the formalin and tail flick assays. CONCLUSIONS Our findings support the role of CBG in alleviating mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy, but highlight that these effects may be limited to specific types of pain. SIGNIFICANCE There are few effective treatments for neuropathic pain and neuropathic pain is projected to increase with the aging population. We demonstrate that CBG (cannabigerol) and CBG:CBD oil attenuate neuropathy-induced mechanical hypersensitivity mice. Second, we identify receptor targets that mediate CBG-induced reduction in mechanical hypersensitivity in neuropathic mice. Third, we demonstrate that an acute injection of CBG is anti-nociceptive specifically for neuropathic pain rather than other forms of pain, including persistent pain and thermal pain.
Collapse
Affiliation(s)
- Diana E Sepulveda
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas M Graziane
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
20
|
Angelidi AM, Belanger MJ, Kokkinos A, Koliaki CC, Mantzoros CS. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr Rev 2022; 43:507-557. [PMID: 35552683 PMCID: PMC9113190 DOI: 10.1210/endrev/bnab034] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
Recent insights into the pathophysiologic underlying mechanisms of obesity have led to the discovery of several promising drug targets and novel therapeutic strategies to address the global obesity epidemic and its comorbidities. Current pharmacologic options for obesity management are largely limited in number and of modest efficacy/safety profile. Therefore, the need for safe and more efficacious new agents is urgent. Drugs that are currently under investigation modulate targets across a broad range of systems and tissues, including the central nervous system, gastrointestinal hormones, adipose tissue, kidney, liver, and skeletal muscle. Beyond pharmacotherapeutics, other potential antiobesity strategies are being explored, including novel drug delivery systems, vaccines, modulation of the gut microbiome, and gene therapy. The present review summarizes the pathophysiology of energy homeostasis and highlights pathways being explored in the effort to develop novel antiobesity medications and interventions but does not cover devices and bariatric methods. Emerging pharmacologic agents and alternative approaches targeting these pathways and relevant research in both animals and humans are presented in detail. Special emphasis is given to treatment options at the end of the development pipeline and closer to the clinic (ie, compounds that have a higher chance to be added to our therapeutic armamentarium in the near future). Ultimately, advancements in our understanding of the pathophysiology and interindividual variation of obesity may lead to multimodal and personalized approaches to obesity treatment that will result in safe, effective, and sustainable weight loss until the root causes of the problem are identified and addressed.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew J Belanger
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Chrysi C Koliaki
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Finlay DB, Nguyen T, Gamage TF, Chen S, Barrus DG, Patel PR, Thomas BF, Wiley JL, Zhang Y, Glass M. Exploring determinants of agonist efficacy at the CB1 cannabinoid receptor: Analogues of the synthetic cannabinoid receptor agonist EG-018. Pharmacol Res Perspect 2022; 10:e00901. [PMID: 35041297 PMCID: PMC8929370 DOI: 10.1002/prp2.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
Neutral antagonists of GPCRs remain relatively rare—indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG‐018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG‐018 and 13 analogues along with extant putative neutral antagonists of CB1. In HEK cells stably expressing human CB1, assays for inhibition of cAMP were performed by real‐time BRET biosensor (CAMYEL), G protein cycling was quantified by [35S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG‐018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG‐018‐based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long‐standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1.
Collapse
Affiliation(s)
- David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Thuy Nguyen
- RTI International, Research Triangle Park, North Carolina, USA
| | - Thomas F Gamage
- RTI International, Research Triangle Park, North Carolina, USA
| | - Shuli Chen
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel G Barrus
- RTI International, Research Triangle Park, North Carolina, USA
| | - Purvi R Patel
- RTI International, Research Triangle Park, North Carolina, USA
| | - Brian F Thomas
- RTI International, Research Triangle Park, North Carolina, USA
| | - Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina, USA
| | - Yanan Zhang
- RTI International, Research Triangle Park, North Carolina, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Lowe H, Toyang N, Steele B, Bryant J, Ngwa W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int J Mol Sci 2021; 22:9472. [PMID: 34502379 PMCID: PMC8430969 DOI: 10.3390/ijms22179472] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems. In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development. The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development. The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases. This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as "C. sativa L." or "medical cannabis"), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.
Collapse
Affiliation(s)
- Henry Lowe
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
- Department of Medicine, University of Maryland Medical School, Baltimore, MD 21202, USA
| | - Ngeh Toyang
- Vilotos Pharmaceuticals Inc., Baltimore, MD 21202, USA;
- Flavocure Biotech Inc., Baltimore, MD 21202, USA
| | - Blair Steele
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Joseph Bryant
- Biotech R & D Institute, University of the West Indies, Mona 99999, Jamaica; (H.L.); (J.B.)
| | - Wilfred Ngwa
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
23
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Parihar VK, Syage A, Flores L, Lilagan A, Allen BD, Angulo MC, Song J, Smith SM, Arechavala RJ, Giedzinski E, Limoli CL. The Cannabinoid Receptor 1 Reverse Agonist AM251 Ameliorates Radiation-Induced Cognitive Decrements. Front Cell Neurosci 2021; 15:668286. [PMID: 34262437 PMCID: PMC8273551 DOI: 10.3389/fncel.2021.668286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Despite advancements in the radiotherapeutic management of brain malignancies, resultant sequelae include persistent cognitive dysfunction in the majority of survivors. Defining the precise causes of normal tissue toxicity has proven challenging, but the use of preclinical rodent models has suggested that reductions in neurogenesis and microvascular integrity, impaired synaptic plasticity, increased inflammation, and alterations in neuronal structure are contributory if not causal. As such, strategies to reverse these persistent radiotherapy-induced neurological disorders represent an unmet medical need. AM251, a cannabinoid receptor 1 reverse agonist known to facilitate adult neurogenesis and synaptic plasticity, may help to ameliorate radiation-induced CNS impairments. To test this hypothesis, three treatment paradigms were used to evaluate the efficacy of AM251 to ameliorate radiation-induced learning and memory deficits along with disruptions in mood at 4 and 12 weeks postirradiation. Results demonstrated that acute (four weekly injections) and chronic (16 weekly injections) AM251 treatments (1 mg/kg) effectively alleviated cognitive and mood dysfunction in cranially irradiated mice. The beneficial effects of AM251 were exemplified by improved hippocampal- and cortical-dependent memory function on the novel object recognition and object in place tasks, while similar benefits on mood were shown by reductions in depressive- and anxiety-like behaviors on the forced swim test and elevated plus maze. The foregoing neurocognitive benefits were associated with significant increases in newly born (doublecortin+) neurons (1.7-fold), hippocampal neurogenesis (BrdU+/NeuN+mature neurons, 2.5-fold), and reduced expression of the inflammatory mediator HMGB (1.2-fold) in the hippocampus of irradiated mice. Collectively, these findings indicate that AM251 ameliorates the effects of clinically relevant cranial irradiation where overall neurological benefits in memory and mood coincided with increased hippocampal cell proliferation, neurogenesis, and reduced expression of proinflammatory markers.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Amber Syage
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Lidia Flores
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Angelica Lilagan
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Joseph Song
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Sarah M Smith
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Rebecca J Arechavala
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
25
|
Eid BG, Neamatallah T, Hanafy A, El-Bassossy HM, Binmahfouz L, Aldawsari HM, Hasan A, El-Aziz GA, Vemuri K, Makriyannis A. Interference with TGFβ1-Mediated Inflammation and Fibrosis Underlies Reno-Protective Effects of the CB1 Receptor Neutral Antagonists AM6545 and AM4113 in a Rat Model of Metabolic Syndrome. Molecules 2021; 26:866. [PMID: 33562080 PMCID: PMC7914730 DOI: 10.3390/molecules26040866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
The role of cannabinoid receptors in nephropathy is gaining much attention. This study investigated the effects of two neutral CB1 receptor antagonists, AM6545 and AM4113, on nephropathy associated with metabolic syndrome (MetS). MetS was induced in rats by high-fructose high-salt feeding for 12 weeks. AM6545, the peripheral silent antagonist and AM4113, the central neutral antagonist were administered in the last 4 weeks. At the end of study, blood and urine samples were collected for biochemical analyses while the kidneys were excised for histopathological investigation and transforming growth factor beta 1 (TGFβ1) measurement. MetS was associated with deteriorated kidney function as indicated by the elevated proteinuria and albumin excretion rate. Both compounds equally inhibited the elevated proteinuria and albumin excretion rate while having no effect on creatinine clearance and blood pressure. In addition, AM6545 and AM4113 alleviated the observed swelling and inflammatory cells infiltration in different kidney structures. Moreover, AM6545 and AM4113 alleviated the observed histopathological alterations in kidney structure of MetS rats. MetS was associated with a ten-fold increase in urine uric acid while both compounds blocked this increase. Furthermore, AM6545 and AM4113 completely prevented the collagen deposition and the elevated expression of the TGFβ1 seen in MetS animals. In conclusion, AM6545 and AM4113, possess reno-protective effects by interfering with TGFβ1-mediated renal inflammation and fibrosis, via peripheral action.
Collapse
Affiliation(s)
- Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Abeer Hanafy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Lenah Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.N.); (A.H.); (L.B.)
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Atif Hasan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Gamal Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; (K.V.); (A.M.)
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; (K.V.); (A.M.)
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
26
|
Liu JJ, Chiu YT, Chen C, Huang P, Mann M, Liu-Chen LY. Pharmacological and phosphoproteomic approaches to roles of protein kinase C in kappa opioid receptor-mediated effects in mice. Neuropharmacology 2020; 181:108324. [PMID: 32976891 DOI: 10.1016/j.neuropharm.2020.108324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Kappa opioid receptor (KOR) agonists possess adverse dysphoric and psychotomimetic effects, thus limiting their applications as non-addictive anti-pruritic and analgesic agents. Here, we showed that protein kinase C (PKC) inhibition preserved the beneficial antinociceptive and antipruritic effects of KOR agonists, but attenuated the adverse condition placed aversion (CPA), sedation, and motor incoordination in mice. Using a large-scale mass spectrometry-based phosphoproteomics of KOR-mediated signaling in the mouse brain, we observed PKC-dependent modulation of G protein-coupled receptor kinases and Wnt pathways at 5 min; stress signaling, cytoskeleton, mTOR signaling and receptor phosphorylation, including cannabinoid receptor CB1 at 30 min. We further demonstrated that inhibition of CB1 attenuated KOR-mediated CPA. Our results demonstrated the feasibility of in vivo biochemical dissection of signaling pathways that lead to side effects.
Collapse
Affiliation(s)
- Jeffrey J Liu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Yi-Ting Chiu
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Chongguang Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Peng Huang
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research & Department of Pharmacology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
27
|
Effects of the CB1 Receptor Antagonists AM6545 and AM4113 on Insulin Resistance in a High-Fructose High-Salt Rat Model of Metabolic Syndrome. ACTA ACUST UNITED AC 2020; 56:medicina56110573. [PMID: 33138155 PMCID: PMC7692885 DOI: 10.3390/medicina56110573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Insulin resistance (IR) is a serious condition leading to development of diabetes and cardiovascular complications. Hyper-activation of cannabinoid receptors-1 (CB1) has been linked to the development of metabolic disorders such as IR. Therefore, the effect of blocking CB1 on the development of IR was investigated in the present study. Materials and Methods: A 12-week high-fructose/high-salt feeding model of metabolic syndrome was used to induce IR in male Wistar rats. For this purpose, two different CB1-antagonists were synthesized and administered to the rats during the final four weeks of the study, AM6545, the peripheral neutral antagonist and AM4113, the central neutral antagonist. Results: High-fructose/salt feeding for 12 weeks led to development of IR while both AM6545 and AM4113, administered in the last 4 weeks, significantly inhibited IR. This was correlated with increased animal body weight wherein both AM6545 and AM4113 decreased body weight in IR animals but with loss of IR/body weight correlation. While IR animals showed significant elevations in serum cholesterol and triglycerides with no direct correlation with IR, both AM6545 and AM4113 inhibited these elevations, with direct IR/cholesterol correlation in case of AM6545. IR animals had elevated serum uric acid, which was reduced by both AM6545 and AM4113. In addition, IR animals had decreased adiponectin levels and elevated liver TNFα content with strong IR/adiponectin and IR/TNFα correlations. AM6545 inhibited the decreased adiponectin and the increased TNFα levels and retained the strong IR/adiponectin correlation. However, AM4113 inhibited the decreased adiponectin and the increased TNFα levels, but with loss of IR/adiponectin and IR/TNFα correlations. Conclusions: Both CB1 neutral antagonists alleviated IR peripherally, and exerted similar effects on rats with metabolic syndrome. They also displayed anti-dyslipidemic, anti-hyperurecemic and anti-inflammatory effects. Overall, these results should assist in the development of CB1 neutral antagonists with improved safety profiles for managing metabolic disorders.
Collapse
|
28
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
29
|
Kunos G. Interactions Between Alcohol and the Endocannabinoid System. Alcohol Clin Exp Res 2020; 44:790-805. [PMID: 32056226 DOI: 10.1111/acer.14306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoids are lipid mediators that interact with the same cannabinoid receptors that recognize Δ9 -tetrahydrocannabinol (THC), the psychoactive constituent of marijuana, to induce similar effects in the brain and periphery. Alcohol and THC are both addictive substances whose acute use elicits rewarding effects that can lead to chronic and compulsive use via engaging similar signaling pathways in the brain. In the liver, both alcohol and endocannabinoids activate lipogenic gene expression leading to fatty liver disease. This review focuses on evidence accumulated over the last 2 decades to indicate that both the addictive neural effects of ethanol and its organ toxic effects in the liver and elsewhere are mediated, to a large extent, by endocannabinoids signaling via cannabinoid-1 receptors (CB1 R). The therapeutic potential of CB1 R blockade globally or in peripheral tissues only is also discussed.
Collapse
Affiliation(s)
- George Kunos
- From the, Division of Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Kangas BD, Zakarian AS, Vemuri K, Alapafuja SO, Jiang S, Nikas SP, Makriyannis A, Bergman J. Cannabinoid Antagonist Drug Discrimination in Nonhuman Primates. J Pharmacol Exp Ther 2020; 372:119-127. [PMID: 31641018 PMCID: PMC6927407 DOI: 10.1124/jpet.119.261818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
Despite a growing acceptance that withdrawal symptoms can emerge following discontinuation of cannabis products, especially in high-intake chronic users, there are no Food and Drug Administration (FDA)-approved treatment options. Drug development has been hampered by difficulties studying cannabis withdrawal in laboratory animals. One preclinical approach that has been effective in studying withdrawal from drugs in several pharmacological classes is antagonist drug discrimination. The present studies were designed to examine this paradigm in squirrel monkeys treated daily with the long-acting CB1 agonist AM2389 (0.01 mg/kg) and trained to discriminate the CB1 inverse agonist/antagonist rimonabant (0.3 mg/kg) from saline. The discriminative-stimulus effects of rimonabant were both dose and time dependent and, importantly, could be reproduced by discontinuation of agonist treatment. Antagonist substitution tests with the CB1 neutral antagonists AM4113 (0.03-0.3 mg/kg), AM6527 (0.03-1.0 mg/kg), and AM6545 (0.03-1.0 mg/kg) confirmed that the rimonabant discriminative stimulus also could be reproduced by CB1 antagonists lacking inverse agonist action. Agonist substitution tests with the phytocannabinoid ∆9-tetrahydrocannabinol (0.1-1.0 mg/kg), synthetic CB1 agonists nabilone (0.01-0.1 mg/kg), AM4054 (0.01-0.03 mg/kg), K2/Spice compound JWH-018 (0.03-0.3 mg/kg), FAAH-selective inhibitors AM3506 (0.3-5.6 mg/kg), URB597 (3.0-5.6 mg/kg), and nonselective FAAH/MGL inhibitor AM4302 (3.0-10.0 mg/kg) revealed that only agonists with CB1 affinity were able to reduce the rimonabant-like discriminative stimulus effects of withholding daily agonist treatment. Although the present studies did not document physiologic disturbances associated with withdrawal, the results are consistent with the view that the cannabinoid antagonist drug discrimination paradigm provides a useful screening procedure for examining the ability of candidate medications to attenuate the interoceptive stimuli provoked by cannabis discontinuation. SIGNIFICANCE STATEMENT: Despite a growing acceptance that withdrawal symptoms can emerge following the discontinuation of cannabis products, especially in high-intake chronic users, there are no FDA-approved pharmacotherapies to assist those seeking treatment. The present studies systematically examined cannabinoid antagonist drug discrimination, a preclinical animal model that is designed to appraise the ability of candidate medications to attenuate the interoceptive effects that accompany abrupt cannabis abstinence.
Collapse
Affiliation(s)
- Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Ani S Zakarian
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Kiran Vemuri
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Shakiru O Alapafuja
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Shan Jiang
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| |
Collapse
|
31
|
Wouters E, Walraed J, Robertson MJ, Meyrath M, Szpakowska M, Chevigné A, Skiniotis G, Stove C. Assessment of Biased Agonism among Distinct Synthetic Cannabinoid Receptor Agonist Scaffolds. ACS Pharmacol Transl Sci 2019; 3:285-295. [PMID: 32296768 DOI: 10.1021/acsptsci.9b00069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Cannabinoid receptor 1 (CB1) is a key drug target for a number of diseases, including metabolic syndromes and neuropathic pain. Most of the typical cannabinoid ligands provoke psychotropic side effects that impair their therapeutic utility. As of today, it is not yet clearly known which structural features of cannabinoid ligands determine a preference toward specific signaling pathways. Distinct bioassays are typically used to elucidate signaling preferences. However, these are often based on different cell lines and use different principles and/or read-outs, which makes straightforward assessment of "ligand bias" difficult. Within this context, this study is the first to investigate ligand bias among synthetic cannabinoid receptor agonists (SCRAs) in as closely analogous conditions as possible, by applying a new functional complementation-based assay panel to assess the recruitment of Gαi protein or β-arrestin2 to CB1. In a panel of 21 SCRAs, chosen to cover a broad diversity in chemical structures, distinct, although often subtle, preferences toward specific signaling pathways were observed. Relative to CP55940, here considered as a "balanced" reference agonist, most of the selected SCRAs (e.g., 5F-APINACA, CUMYL-PEGACLONE, among others) displayed preferred signaling through the β-arrestin2 pathway, whereas MMB-CHMICA could serve as a potential "balanced" agonist. Interestingly, EG-018 was the only SCRA showing a significant (10-fold) preference toward G protein over β-arrestin2 recruitment. While it is currently unclear what this exactly means in terms of abuse potential and/or toxicity, the approach proposed here may allow construction of a knowledge base that in the end may allow better insight into the structure-"functional" activity relationship of these compounds. This may aid the development of new therapeutics with less unwanted psychoactive effects.
Collapse
Affiliation(s)
- Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Walraed
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michael Joseph Robertson
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
32
|
Nguyen T, Thomas BF, Zhang Y. Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development. Curr Top Med Chem 2019; 19:1418-1435. [PMID: 31284863 DOI: 10.2174/1568026619666190708164841] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| |
Collapse
|
33
|
Nguyen T, Gamage TF, Decker AM, Barrus D, Langston TL, Li JX, Thomas BF, Zhang Y. Synthesis and Pharmacological Evaluation of 1-Phenyl-3-Thiophenylurea Derivatives as Cannabinoid Type-1 Receptor Allosteric Modulators. J Med Chem 2019; 62:9806-9823. [PMID: 31596583 DOI: 10.1021/acs.jmedchem.9b01161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported diarylurea derivatives as cannabinoid type-1 receptor (CB1) allosteric modulators, which were effective in attenuating cocaine-seeking behavior. Herein, we extended the structure-activity relationships of PSNCBAM-1 (2) at the central phenyl ring directly connected to the urea moiety. Replacement with a thiophene ring led to 11 with improved or comparable potencies in calcium mobilization, [35S]GTPγS binding, and cAMP assays, whereas substitution with nonaromatic rings led to significant attenuation of the modulatory activity. These compounds had no inverse agonism in [35S]GTPγS binding, a characteristic that is often thought to contribute to adverse psychiatric effects. While 11 had good metabolic stability in rat liver microsomes, it showed modest solubility and blood-brain barrier permeability. Compound 11 showed an insignificant attenuation of cocaine seeking behavior in rats, most likely due to its limited CNS penetration, suggesting that pharmacokinetics and distribution play a role in translating the in vitro efficacy to in vivo behavior.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Thomas F Gamage
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Ann M Decker
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Daniel Barrus
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Tiffany L Langston
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology , University of Buffalo, the State University of New York , Buffalo , New York 14214 , United States
| | - Brian F Thomas
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| | - Yanan Zhang
- Research Triangle Institute , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
34
|
Abstract
Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment options are limited. During the past 2 decades, researchers have investigated the impact of a variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for SUDs. In this article, we first review recent progress in research regarding the endocannabinoid systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then review recent progress in cannabinoid-based medication development for the treatment of SUDs. As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R agonists (JWH133, Xie2-64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, ∆9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal symptoms in cannabis and opioid users.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medication Discoveries Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
35
|
Micale V, Drago F, Noerregaard PK, Elling CE, Wotjak CT. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front Pharmacol 2019; 10:207. [PMID: 30949045 PMCID: PMC6435594 DOI: 10.3389/fphar.2019.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Rimonabant was the first selective CB1 antagonist/inverse agonist introduced into clinical practice to treat obesity and metabolic-related disorders. It was withdrawn from market due to the notably increased rates of psychiatric side effects. We have evaluated TM38837, a novel, largely peripherally restricted CB1 antagonist, in terms of fear-promoting consequences of systemic vs. intracerebral injections. Different groups of male C57BL/6 N mice underwent auditory fear conditioning, followed by re-exposure to the tone. Mice were treated per os (p.o.) with TM38837 (10, 30, or 100 mg/kg), rimonabant (10 mg/kg; a brain penetrating CB1 antagonist/inverse agonist which served as a positive control), or vehicle, 2 h prior the tone presentation. Only the high dose of TM38837 (100 mg/kg) induced a significant increase in freezing behavior, similar to that induced by rimonabant (10 mg/kg) (p < 0.001). If injected into the brain both TM38837 (10 or 30 μg/mouse) and rimonabant (1 or 10 μg/mouse) caused a sustained fear response to the tone, which was more pronounced after rimonabant treatment. Taken together, TM38837 was at least one order of magnitude less effective in promoting fear responses than rimonabant. Given the equipotency of the two CB1 antagonists with regard to weight loss and metabolic syndrome-like symptoms in rodent obesity models, our results point to a critical dose range in which TM3887 might be beneficial for indications such as obesity and metabolic disorders with limited risk of fear-promoting effects.
Collapse
Affiliation(s)
- Vincenzo Micale
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.,National Institute Mental Health, Klecany, Czechia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | | | - Carsten T Wotjak
- Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
36
|
Cannabinoid CB 1 receptor neutral antagonist AM4113 inhibits heroin self-administration without depressive side effects in rats. Acta Pharmacol Sin 2019; 40:365-373. [PMID: 29967454 DOI: 10.1038/s41401-018-0059-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Cannabinoid CB1 receptors (CB1Rs) have been shown to be a promising target in medication development for the treatment of addiction. However, clinical trials with SR141716A (rimonabant, a selective CB1R antagonist/inverse agonist) for the treatment of obesity and smoking cessation failed due to unwanted side effects, such as depression, anxiety, and suicidal tendencies. Recent preclinical studies suggest that the neutral CB1R antagonist AM4113 may retain the therapeutic anti-addictive effects of SR141716A in nicotine self-administration models and possibly has fewer unwanted side effects. However, little is known about whether AM4113 is also effective for other drugs of abuse, such as opioids and psychostimulants, and whether it produces depressive side effects similar to SR141716A in experimental animals. In this study, we demonstrated that systemic administration of AM4113 (3 and 10 mg/kg) dose-dependently inhibited the self-administration of intravenous heroin but not cocaine or methamphetamine, whereas SR141716A (3 and 10 mg/kg) dose-dependently inhibited the self-administration of heroin and methamphetamine but not cocaine. In the electrical brain-stimulation reward (BSR) paradigm, SR141716A (3 and 10 mg/kg) dose-dependently increased the BSR stimulation threshold (i.e., decreased the stimulation reward), but AM4113 had no effect on BSR at the same doses, suggesting that SR141716A may produce aversive effects while AM4113 may not. Together, these findings show that neutral CB1R antagonists such as AM4113 deserve further research as a new class of CB1R-based medications for the treatment of opioid addiction without SR141716A-like aversive effects.
Collapse
|
37
|
Tai S, Vasiljevik T, Sherwood AM, Eddington S, Wilson CD, Prisinzano TE, Fantegrossi WE. Assessment of rimonabant-like adverse effects of purported CB1R neutral antagonist / CB2R agonist aminoalkylindole derivatives in mice. Drug Alcohol Depend 2018; 192:285-293. [PMID: 30300803 PMCID: PMC6475911 DOI: 10.1016/j.drugalcdep.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cannabinoids may be useful in the treatment of CNS disorders including drug abuse and addiction, where both CB1R antagonists / inverse agonists and CB2R agonists have shown preclinical efficacy. TV-5-249 and TV-6-41, two novel aminoalkylindoles with dual action as neutral CB1R antagonists and CB2R agonists, previously attenuated abuse-related effects of ethanol in mice. PURPOSE To further characterize these drugs, TV-5-249 and TV-6-41 were compared with the CB1R antagonist / inverse agonist rimonabant in assays relevant to adverse effects and cannabinoid withdrawal. PROCEDURES AND FINDINGS The cannabinoid tetrad confirmed that TV-5-249 and TV-6-41 were devoid of CB1R agonist effects at behaviorally-relevant doses, and neither of the novel drugs induced rimonabant-like scratching. Generalized aversive effects were assessed, and rimonabant and TV-5-249 induced taste aversion, but TV-6-41 did not. Schedule-controlled responding and observation of somatic signs were used to assess withdrawal-like effects precipitated by rimonabant or TV-6-41 in mice previously treated with the high-efficacy CB1R agonist JWH-018 or vehicle. Rimonabant and TV-6-41 dose-dependently suppressed response rates in all subjects, but TV-6-41 did so more potently in JWH-018-treated mice than in vehicle-treated mice, while rimonabant equally suppressed responding in both groups. Importantly, rimonabant elicited dramatic withdrawal signs, but TV-6-41 did not. CONCLUSIONS These findings suggest differences in both direct adverse effects and withdrawal-related effects elicited by rimonabant, TV-5-249, and TV-6-41, which could relate to neutral CB1R antagonism, CB2R agonism, or a combination of both. Both mechanisms should be explored and exploited in future drug design efforts to develop pharmacotherapies for drug dependence.
Collapse
Affiliation(s)
- Sherrica Tai
- Department of Pharmacology and Edward F Domino Research Center, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Tamara Vasiljevik
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Alexander M Sherwood
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - Sarah Eddington
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
38
|
DeVuono MV, Hrelja KM, Sabaziotis L, Rajna A, Rock EM, Limebeer CL, Mutch DM, Parker LA. Conditioned gaping produced by high dose Δ 9-tetrahydracannabinol: Dysregulation of the hypothalamic endocannabinoid system. Neuropharmacology 2018; 141:272-282. [PMID: 30195587 DOI: 10.1016/j.neuropharm.2018.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/17/2022]
Abstract
Δ9-tetrahydracannabinol (THC) is recognized as an effective treatment for nausea and vomiting via its action on the cannabinoid 1 (CB1) receptor. Paradoxically, there is evidence that THC can also produce nausea and vomiting. Using the conditioned gaping model of nausea in rats, we evaluated the ability of several doses of THC (0.0, 0.5, 5 and 10 mg/kg, i.p.) to produced conditioned gaping reactions. We then investigated the ability of the CB1 receptor antagonist, rimonabant, to block the establishment of THC-induced conditioned gaping. Real-time polymerase chain reaction (RT-PCR) was then used to investigate changes in endocannabinoid related genes in various brain regions in rats chronically treated with vehicle (VEH), 0.5 or 10 mg/kg THC. THC produced dose-dependent gaping, with 5 and 10 mg/kg producing significantly more gaping reactions than VEH or 0.5 mg/kg THC, a dose known to have anti-emetic properties. Pre-treatment with rimonabant reversed this effect, indicating that THC-induced conditioned gaping was CB1 receptor mediated. The RT-PCR analysis revealed an upregulation of genes for the degrading enzyme, monoacylglycerol lipase (MAGL), of the endocannabinoid, 2-arachidolyl glycerol (2-AG), in the hypothalamus of rats treated with 10 mg/kg THC. No changes in the expression of relevant genes were found in nausea (interoceptive insular cortex) or vomiting (dorsal vagal complex) related brain regions. These findings support the hypothesis that THC-induced nausea is a result of a dysregulated hypothalamic-pituitary-adrenal axis leading to an overactive stress response.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Kelly M Hrelja
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Lauren Sabaziotis
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alex Rajna
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, N1G 2W1, ON, Canada.
| |
Collapse
|
39
|
Balla A, Dong B, Shilpa BM, Vemuri K, Makriyannis A, Pandey SC, Sershen H, Suckow RF, Vinod KY. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology 2017; 131:200-208. [PMID: 29109060 DOI: 10.1016/j.neuropharm.2017.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/16/2023]
Abstract
Binge alcohol (ethanol) drinking is associated with profound adverse effects on our health and society. Rimonabant (SR141716A), a CB1 receptor inverse agonist, was previously shown to be effective for nicotine cessation and obesity. However, studies using rimonabant were discontinued as it was associated with an increased risk of depression and anxiety. In the present study, we examined the pharmacokinetics and effects of AM4113, a novel CB1 receptor neutral antagonist on binge-like ethanol drinking in C57BL/6J mice using a two-bottle choice drinking-in-dark (DID) paradigm. The results indicated a slower elimination of AM4113 in the brain than in plasma. AM4113 suppressed ethanol consumption and preference without having significant effects on body weight, ambulatory activity, preference for tastants (saccharin and quinine) and ethanol metabolism. AM4113 pretreatment reduced ethanol-induced increase in dopamine release in nucleus accumbens. Collectively, these data suggest an important role of CB1 receptor-mediated regulation of binge-like ethanol consumption and mesolimbic dopaminergic signaling, and further points to the potential utility of CB1 neutral antagonists for the treatment of binge ethanol drinking.
Collapse
Affiliation(s)
- Andrea Balla
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Bin Dong
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Borehalli M Shilpa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States
| | - Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, United States
| | | | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Henry Sershen
- Department of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; Department of Psychiatry, NYU Langone Medical Center, New York, NY, United States
| | - Raymond F Suckow
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; New York State Psychiatric Institute, New York, United States; Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - K Yaragudri Vinod
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, NY, United States; Emotional Brain Institute, Orangeburg, New York, NY, United States; Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY, United States.
| |
Collapse
|
40
|
Maccioni P, Colombo G, Lorrai I, Zaru A, Carai MAM, Gessa GL, Brizzi A, Mugnaini C, Corelli F. Suppressing effect of COR659 on alcohol, sucrose, and chocolate self-administration in rats: involvement of the GABA B and cannabinoid CB 1 receptors. Psychopharmacology (Berl) 2017; 234:2525-2543. [PMID: 28536867 DOI: 10.1007/s00213-017-4644-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES COR659 [methyl2-(4-chlorophenylcarboxamido)-4-ethyl-5-methylthiophene-3-carboxylate] is a new, positive allosteric modulator (PAM) of the GABAB receptor. This study evaluated whether COR659 shared with previously tested GABAB PAMs the capacity to reduce alcohol self-administration in rats. RESULTS Treatment with non-sedative doses of COR659 (2.5, 5, and 10 mg/kg; i.p.) suppressed lever-responding for alcohol (15% v/v) in Sardinian alcohol-preferring (sP) rats under the fixed ratio (FR) 4 (FR4) and progressive ratio (PR) schedules of reinforcement; COR659 was more potent and effective than the reference GABAB PAM, GS39783. Treatment with COR659, but not GS39783, suppressed (a) lever-responding for a sucrose solution (1-3% w/v) in sP rats under the FR4 and PR schedules, (b) lever-responding for a chocolate solution [5% (w/v) Nesquik®] in Wistar rats under the FR10 and PR schedules, and (c) cue-induced reinstatement of chocolate seeking in Wistar rats. Treatment with COR659 was completely ineffective on lever-responding (FR10) for regular food pellets in food-deprived Wistar rats. Pretreatment with the GABAB receptor antagonist, SCH50911, partially blocked COR659-induced reduction of alcohol self-administration, being ineffective on reduction of chocolate self-administration. Pretreatment with the cannabinoid CB1 receptor antagonist, AM4113, fully blocked COR659-induced reduction of chocolate self-administration, being ineffective on reduction of alcohol self-administration. CONCLUSIONS COR659 might exert its behavioral effects via a composite mechanism: (i) positive allosteric modulation of the GABAB receptor, responsible for a large proportion of reduction of alcohol self-administration; (ii) an action at other receptor system(s), including the cannabinoid CB1 receptor, through which COR659 affects seeking and consumption of highly palatable foods.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.
| | - Irene Lorrai
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy
| | - Alessandro Zaru
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.,Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, 09127, Cagliari (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, 09042, Monserrato (CA), Italy.,Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato (CA), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, 53100, Siena (SI), Italy
| |
Collapse
|
41
|
Chen B, Hu N. Rimonabant improves metabolic parameters partially attributed to restoration of high voltage-activated Ca2+ channels in skeletal muscle in HFD-fed mice. ACTA ACUST UNITED AC 2017; 50:e6141. [PMID: 28492810 PMCID: PMC5441279 DOI: 10.1590/1414-431x20176141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
Cannabinoid type 1 receptor (CB1R) inhibition tends to be one of the promising strategies for the treatment of obesity and other related metabolic disorders. Although CB1R inhibition may cause adverse psychiatric effects including depression and anxiety, the investigation of the role of peripheral CB1R on weight loss and related metabolic parameters are urgently needed. We first explored the effect of rimonabant, a selective CB1R antagonist/inverse agonist, on some metabolic parameters in high fat-diet (HFD)-induced obesity in mice. Then, real-time PCR and electrophysiology were used to explore the contribution of high voltage-activated Ca2+ channels (HVACCs), especially Cav1.1, on rimonabant's effect in skeletal muscle (SM) in HFD-induced obesity. Five-week HFD feeding caused body weight gain, and decreased glucose/insulin tolerance in mice compared to those in the regular diet group (P<0.05), which was restored by rimonabant treatment compared to the HFD group (P<0.05). Interestingly, HVACCs and Cav1.1 were decreased in soleus muscle cells in the HFD group compared to the control group. Daily treatment with rimonabant for 5 weeks was shown to counter such decrease (P<0.05). Collectively, our findings provided a novel understanding for peripheral CB1R's role in the modulation of body weight and glucose homeostasis and highlight peripheral CB1R as well as Cav1.1 in the SM as potential targets for obesity treatment.
Collapse
Affiliation(s)
- B Chen
- Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - N Hu
- Department of Concurrent Chemoradiation Lymphatic Hematopoietic Comprehensive Ward, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
43
|
Gueye AB, Pryslawsky Y, Trigo JM, Poulia N, Delis F, Antoniou K, Loureiro M, Laviolette SR, Vemuri K, Makriyannis A, Le Foll B. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability. Int J Neuropsychopharmacol 2016; 19:pyw068. [PMID: 27493155 PMCID: PMC5203757 DOI: 10.1093/ijnp/pyw068] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/31/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. METHODS Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). RESULTS AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. CONCLUSION Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bernard Le Foll
- Translational Addiction Research Laboratory (Dr Gueye, Mr Pryslawsky, Dr Trigo, and Dr Le Foll), Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments (Dr Le Foll), and Campbell Family Mental Health Research Institute (Dr Le Foll), Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Family and Community Medicine, Department of Pharmacology, and Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada (Dr Le Foll); Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Greece (Ms Poulia and Drs Delis and Antoniou); Department of Anatomy and Cell Biology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada (Drs Loureiro and Laviolette); Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA (Drs Vemuri and Makriyannis).
| |
Collapse
|
44
|
Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys. Neuropsychopharmacology 2016; 41:2283-93. [PMID: 26888056 PMCID: PMC4946059 DOI: 10.1038/npp.2016.27] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.
Collapse
|
45
|
Wills KL, Parker LA. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature. Front Pharmacol 2016; 7:187. [PMID: 27445822 PMCID: PMC4923145 DOI: 10.3389/fphar.2016.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.
Collapse
Affiliation(s)
- Kiri L Wills
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| |
Collapse
|
46
|
Järbe TUC, LeMay BJ, Thakur GA, Makriyannis A. A high efficacy cannabinergic ligand (AM4054) used as a discriminative stimulus: Generalization to other adamantyl analogs and Δ(9)-THC in rats. Pharmacol Biochem Behav 2016; 148:46-52. [PMID: 27264437 DOI: 10.1016/j.pbb.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
In addition to endogenous lipids, the two main cloned receptors (CB1R and CB2R) of the endocannabinoid signaling system (ECS) can be activated (and blocked) by various exogenous ligands. A relatively novel template for CB1R activators contains an adamantyl moiety as a key structural subunit, the first being the cannabinergic AM411. Additional chemical optimization efforts using the classical tricyclic scaffold led to AM4054. Here we explored the in vivo consequences of novel adamantyl analogs in rats trained to recognize the effects of the potent adamantyl cannabinergic AM4054. Rats were trained to discriminate between AM4054 (0.1mg/kg) and vehicle. Three AM4054 analogs and Δ(9)-THC were tested for generalization (substitution) and antagonism was assessed with rimonabant. We found that all cannabinergics resulted in response generalization to the target stimulus AM4054. The order of potency was: AM4054≥AM4083≥AM4050>AM4089>Δ(9)-THC. The CB1R antagonist/inverse agonist rimonabant blocked the discriminative stimulus effects of AM4054. Thus the examined structural modifications affected binding affinities but did not markedly change potencies with the exception of AM4089. In vitro (cAMP assay) functional data have suggested that AM4089 behaves as a partial rather than as a full agonist at CB1R which could explain its lower potency compared to AM4054 (Thakur et al., 2013). The 9β-formyl functionality at C-9 position was identified as an important pharmacophore yielding high in vivo potency. Antagonism by rimonabant suggested CB1R mediation.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmaceutical Sciences, Bouvé College of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Brian J LeMay
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmaceutical Sciences, Bouvé College of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
47
|
Thompson EE, Jagielo-Miller JE, Vemuri VK, Makriyannis A, McLaughlin PJ. CB1 antagonism produces behaviors more consistent with satiety than reduced reward value in food-maintained responding in rats. J Psychopharmacol 2016; 30:482-91. [PMID: 27005309 PMCID: PMC5531753 DOI: 10.1177/0269881116639287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoid CB1 antagonists are widely known to reduce motivation for food, but it is not known whether they induce satiety or reduce reward value of food. It may therefore be necessary to compare effects of altered satiety and reward food value in the same appetitive task, and determine whether CB1 antagonism produces a behavior pattern similar to either, both, or neither. A fine-grained analysis of fixed-ratio 10 (FR10) responding for palatable food initially included number and duration of, and between, all lever presses and food tray entries in order to differentiate the pattern of suppression of prefeeding from that caused by reducing the reward value of the pellets with quinine. Discriminant function analysis then determined that these manipulations were best differentiated by effects on tray entries, pellet retrieval latencies, and time of the first response. At 0.5 mg/kg, AM 6527 produced similar effects to reducing reward value, but at 1.0 and 4.0 mg/kg, effects were more similar to those when animals were satiated. We conclude that AM 6527 both reduced reward value and enhanced satiety, but as dose increased, effects on satiety became much more prominent. These findings contribute to knowledge about the behavioral processes affected by CB1 antagonism.
Collapse
Affiliation(s)
- Emily E Thompson
- Department of Psychology, Edinboro University of Pennsylvania, Edinboro, PA, USA
| | | | - V Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | | | - Peter J McLaughlin
- Department of Psychology, Edinboro University of Pennsylvania, Edinboro, PA, USA
| |
Collapse
|
48
|
Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459. Behav Pharmacol 2015; 26:289-303. [PMID: 25356730 DOI: 10.1097/fbp.0000000000000108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3 h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.
Collapse
|
49
|
Cluny NL, Keenan CM, Reimer RA, Le Foll B, Sharkey KA. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS One 2015; 10:e0144270. [PMID: 26633823 PMCID: PMC4669115 DOI: 10.1371/journal.pone.0144270] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.
Collapse
Affiliation(s)
- Nina L. Cluny
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
50
|
Abstract
One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective. Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals. In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.
Collapse
|