1
|
Finotti A, Gasparello J, Zuccato C, Cosenza LC, Fabbri E, Bianchi N, Gambari R. Effects of Mithramycin on BCL11A Gene Expression and on the Interaction of the BCL11A Transcriptional Complex to γ-Globin Gene Promoter Sequences. Genes (Basel) 2023; 14:1927. [PMID: 37895276 PMCID: PMC10606601 DOI: 10.3390/genes14101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The anticancer drug mithramycin (MTH), has been proposed for drug repurposing after the finding that it is a potent inducer of fetal hemoglobin (HbF) production in erythroid precursor cells (ErPCs) from β-thalassemia patients. In this respect, previously published studies indicate that MTH is very active in inducing increased expression of γ-globin genes in erythroid cells. This is clinically relevant, as it is firmly established that HbF induction is a valuable approach for the therapy of β-thalassemia and for ameliorating the clinical parameters of sickle-cell disease (SCD). Therefore, the identification of MTH biochemical/molecular targets is of great interest. This study is inspired by recent robust evidence indicating that the expression of γ-globin genes is controlled in adult erythroid cells by different transcriptional repressors, including Oct4, MYB, BCL11A, Sp1, KLF3 and others. Among these, BCL11A is very important. In the present paper we report evidence indicating that alterations of BCL11A gene expression and biological functions occur during MTH-mediated erythroid differentiation. Our study demonstrates that one of the mechanisms of action of MTH is a down-regulation of the transcription of the BCL11A gene, while a second mechanism of action is the inhibition of the molecular interactions between the BCL11A complex and specific sequences of the γ-globin gene promoter.
Collapse
Affiliation(s)
- Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, 44121 Ferrara, Italy; (J.G.); (C.Z.); (L.C.C.); (E.F.); (N.B.)
- Department of Translational Medicine and for Romagna, Ferrara University, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Ferrara University, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Liu F, Wang Y, Cao Y, Wu Z, Ma D, Cai J, Sha J, Chen Q. Transcription factor B-MYB activates lncRNA CCAT1 and upregulates SOCS3 to promote chemoresistance in colorectal cancer. Chem Biol Interact 2023; 374:110412. [PMID: 36812959 DOI: 10.1016/j.cbi.2023.110412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Currently, resistance to oxaliplatin (OXA) has become an important obstacle to improving the clinical outcome of patients with colorectal cancer (CRC). Moreover, long non-coding RNAs (lncRNAs) have been documented in cancer chemoresistance, and our bioinformatic analysis suggested an involvement of lncRNA CCAT1 in CRC development. In this context, this study aimed to clarify the upstream and downstream mechanisms underpinning the effect of CCAT1 in the resistance of CRC to OXA. The expression of CCAT1 and the upstream B-MYB in the CRC samples was predicted by bioinformatics analysis and then verified using RT-qPCR in CRC cell lines. Accordingly, overexpression of B-MYB and CCAT1 was observed in CRC cells. SW480 cell line was used for the construction of OXA-resistant cell line (SW480R). Ectopic expression and knockdown experiments of B-MYB and CCAT1 were conducted in SW480R cells to delineate their roles in the malignant phenotypes and half-maximal (50%) inhibitory concentration (IC50) of OXA. It was found that CCAT1 promoted the resistance of CRC cells to OXA. Mechanistically, B-MYB transcriptionally activated CCAT1, which recruited DNMT1 to inhibit SOCS3 expression through elevating the SOCS3 promoter methylation. By this mechanism, the resistance of CRC cells to OXA was enhanced. Meanwhile, these in vitro findings were reproduced in vivo on xenografts of SW480R cells in nude mice. To sum up, B-MYB might promote the chemoresistance of CRC cells to OXA via regulating the CCAT1/DNMT1/SOCS3 axis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Proctology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China
| | - Yutingzi Wang
- Department of Pre-treatment, Jingjiang Chinese Medicine Hospital, Jingjiang, 214504, PR China
| | - Yang Cao
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China
| | - Zhiwei Wu
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China
| | - De Ma
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China
| | - Jun Cai
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China
| | - Jie Sha
- Department of Digestive, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China.
| | - Qing Chen
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, 214500, PR China.
| |
Collapse
|
3
|
B-Myb participated in ionizing radiation-induced apoptosis and cell cycle arrest in human glioma cells. Biochem Biophys Res Commun 2021; 573:19-26. [PMID: 34375765 DOI: 10.1016/j.bbrc.2021.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
As a common treatment of human glioma, ionizing radiation (IR) was reported to result in cell cycle arrest. However, the mechanisms underlying IR-induced abnormal cell cycle remain largely unclear. Here we found that IR caused an elevated expression of B-Myb and cell cycle-related proteins, as well as G2/M phase arrest in U251 cells instead of U87 cells. However, the knockdown of B-Myb by small interfering RNAs ameliorated the increasing of cell cycle-related proteins and G2/M phase arrest induced by IR. Further analysis demonstrated that decreased-B-Myb enhanced the sensitivity of U251 cells to IR. Moreover, the establishment of H1299 cell line proved that B-Myb expression was associated with the status of p53. Immunoprecipitation (IP) and chromatin immunoprecipitation (CHIP) assay results indicated that mutant p53 and SP1 regulated the expression of B-Myb via different mechanisms. This study not only elucidated the role of B-Myb in IR-induced cell cycle alternation, but also provided insight into mechanism of B-Myb expression.
Collapse
|
4
|
Association between B- Myb proto-oncogene and the development of malignant tumors. Oncol Lett 2021; 21:166. [PMID: 33552284 PMCID: PMC7798104 DOI: 10.3892/ol.2021.12427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
B-Myb is a critical transcription factor in regulating cell cycle. Dysregulated expression of B-Myb promotes tumor formation and development. B-Myb is a proto-oncogene ubiquitously expressed in proliferating cells, which maintains normal cell cycle progression. It participates in cell apoptosis, tumorigenesis and aging. In addition, B-Myb is overexpressed in several malignant tumors, including breast cancer, lung cancer and hepatocellular carcinoma, and is associated with tumor development. B-Myb expression is also associated with the prognosis of patients with malignant tumors. Both microRNAs and E2F family of transcription factors (E2Fs) contribute to the function of B-Myb. The present review highlights the association between B-Myb and malignant tumors, and offers a theoretical reference for the diagnosis and treatment of malignant tumors.
Collapse
|
5
|
Tu W, Yang B, Leng X, Pei X, Xu J, Liu M, Dong Q, Tao D, Lu Y, Liu Y, Yang Y. Testis-specific protein, Y-linked 1 activates PI3K/AKT and RAS signaling pathways through suppressing IGFBP3 expression during tumor progression. Cancer Sci 2019; 110:1573-1586. [PMID: 30815935 PMCID: PMC6501036 DOI: 10.1111/cas.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/19/2019] [Accepted: 02/24/2019] [Indexed: 02/05/2023] Open
Abstract
The testis‐specific protein, Y‐linked 1 (TSPY1), a newly recognized cancer/testis antigen, has been suggested to accelerate tumor progression. However, the mechanisms underlying TSPY1 cancer‐related function remain limited. By mining the RNA sequencing data of lung and liver tumors from The Cancer Genome Atlas, we found frequent ectopic expression of TSPY1 in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC), and the male‐specific protein was associated with higher mortality rate and worse overall survival in patients with LUAD and LIHC. Overexpression of TSPY1 promotes cell proliferation, invasiveness, and cycle transition and inhibits apoptosis, whereas TSPY1 knockdown has the opposite effects on these cancer cell phenotypes. Transcriptomic analysis revealed the involvement of TSPY1 in PI3K/AKT and RAS signaling pathways in both LUAD and LIHC cells, which was further confirmed by the increase in the levels of phosphorylated proteins in the PI3K‐AKT and RAS signaling pathways in TSPY1‐overexpressing cancer cells, and by the suppression on the activity of these two pathways in TSPY1‐knockdown cells. Further investigation identified that TSPY1 could directly bind to the promoter of insulin growth factor binding protein 3 (IGFBP3) to inhibit IGFBP3 expression and that downregulation of IGFBP3 increased the activity of PI3K/AKT/mTOR/BCL2 and RAS/RAF/MEK/ERK/JUN signaling in LUAD and LIHC cells. Taken together, the observations reveal a novel mechanism by which TSPY1 could contribute to the progression of LUAD and LIHC. Our finding is of importance for evaluating the potential of TSPY1 in immunotherapy of male tumor patients with TSPY1 expression.
Collapse
Affiliation(s)
- Wenling Tu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bo Yang
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangyou Leng
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xue Pei
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jinyan Xu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mohan Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yongjie Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Abdolazimi Y, Zhao Z, Lee S, Xu H, Allegretti P, Horton TM, Yeh B, Moeller HP, Nichols RJ, McCutcheon D, Shalizi A, Smith M, Armstrong NA, Annes JP. CC-401 Promotes β-Cell Replication via Pleiotropic Consequences of DYRK1A/B Inhibition. Endocrinology 2018; 159:3143-3157. [PMID: 29514186 PMCID: PMC6287593 DOI: 10.1210/en.2018-00083] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022]
Abstract
Pharmacologic expansion of endogenous β cells is a promising therapeutic strategy for diabetes. To elucidate the molecular pathways that control β-cell growth we screened ∼2400 bioactive compounds for rat β-cell replication-modulating activity. Numerous hit compounds impaired or promoted rat β-cell replication, including CC-401, an advanced clinical candidate previously characterized as a c-Jun N-terminal kinase inhibitor. Surprisingly, CC-401 induced rodent (in vitro and in vivo) and human (in vitro) β-cell replication via dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 1B inhibition. In contrast to rat β cells, which were broadly growth responsive to compound treatment, human β-cell replication was only consistently induced by DYRK1A/B inhibitors. This effect was enhanced by simultaneous glycogen synthase kinase-3β (GSK-3β) or activin A receptor type II-like kinase/transforming growth factor-β (ALK5/TGF-β) inhibition. Prior work emphasized DYRK1A/B inhibition-dependent activation of nuclear factor of activated T cells (NFAT) as the primary mechanism of human β-cell-replication induction. However, inhibition of NFAT activity had limited effect on CC-401-induced β-cell replication. Consequently, we investigated additional effects of CC-401-dependent DYRK1A/B inhibition. Indeed, CC-401 inhibited DYRK1A-dependent phosphorylation/stabilization of the β-cell-replication inhibitor p27Kip1. Additionally, CC-401 increased expression of numerous replication-promoting genes normally suppressed by the dimerization partner, RB-like, E2F and multivulval class B (DREAM) complex, which depends upon DYRK1A/B activity for integrity, including MYBL2 and FOXM1. In summary, we present a compendium of compounds as a valuable resource for manipulating the signaling pathways that control β-cell replication and leverage a DYRK1A/B inhibitor (CC-401) to expand our understanding of the molecular pathways that control β-cell growth.
Collapse
Affiliation(s)
- Yassan Abdolazimi
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Zhengshan Zhao
- Biomedical Institute for Regenerative Research, Texas A&M University,
Commerce, Texas
| | - Sooyeon Lee
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Haixia Xu
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Paul Allegretti
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Timothy M Horton
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Department of Chemistry, Stanford University, Stanford, California
| | - Benjamin Yeh
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Hannah P Moeller
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Robert J Nichols
- Department of Genetics, Stanford University, Stanford, California
| | - David McCutcheon
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| | - Aryaman Shalizi
- Department of Pathology, Stanford University, Stanford, California
| | - Mark Smith
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
- Medicinal Chemistry Knowledge Center, Chemistry, Engineering and Medicine for
Human Health, Stanford University, Stanford, California
| | - Neali A Armstrong
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
| | - Justin P Annes
- Department of Medicine, Division of Endocrinology, Stanford University,
Stanford, California
- Chemistry, Engineering and Medicine for Human Health Research Institute,
Stanford University, Stanford, California
| |
Collapse
|
7
|
MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017. [PMID: 28640249 PMCID: PMC5520903 DOI: 10.1038/cddis.2017.244] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression.
Collapse
|
8
|
Oka O, Waters LC, Strong SL, Dosanjh NS, Veverka V, Muskett FW, Renshaw PS, Klempnauer KH, Carr MD. Interaction of the transactivation domain of B-Myb with the TAZ2 domain of the coactivator p300: molecular features and properties of the complex. PLoS One 2012; 7:e52906. [PMID: 23300815 PMCID: PMC3534135 DOI: 10.1371/journal.pone.0052906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 01/15/2023] Open
Abstract
The transcription factor B-Myb is a key regulator of the cell cycle in vertebrates, with activation of transcription involving the recognition of specific DNA target sites and the recruitment of functional partner proteins, including the coactivators p300 and CBP. Here we report the results of detailed studies of the interaction between the transactivation domain of B-Myb (B-Myb TAD) and the TAZ2 domain of p300. The B-Myb TAD was characterized using circular dichroism, fluorescence and NMR spectroscopy, which revealed that the isolated domain exists as a random coil polypeptide. Pull-down and spectroscopic experiments clearly showed that the B-Myb TAD binds to p300 TAZ2 to form a moderately tight (K(d) ~1.0-10 µM) complex, which results in at least partial folding of the B-Myb TAD. Significant changes in NMR spectra of p300 TAZ2 suggest that the B-Myb TAD binds to a relatively large patch on the surface of the domain (~1200 Å(2)). The apparent B-Myb TAD binding site on p300 TAZ2 shows striking similarity to the surface of CBP TAZ2 involved in binding to the transactivation domain of the transcription factor signal transducer and activator of transcription 1 (STAT1), which suggests that the structure of the B-Myb TAD-p300 TAZ2 complex may share many features with that reported for STAT1 TAD-p300 TAZ2.
Collapse
Affiliation(s)
- Ojore Oka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Lorna C. Waters
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Sarah L. Strong
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Nuvjeevan S. Dosanjh
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Vaclav Veverka
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Frederick W. Muskett
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | - Philip S. Renshaw
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| | | | - Mark D. Carr
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Leicester, United Kingdom
| |
Collapse
|
9
|
Transcriptional regulators in hepatocarcinogenesis--key integrators of malignant transformation. J Hepatol 2012; 57:186-95. [PMID: 22446689 DOI: 10.1016/j.jhep.2011.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent human malignancies with poor prognosis and increasing incidence in the Western world. Only for a minority of HCC patients, surgical treatment options offer potential cure and therapeutic success of pharmacological approaches is limited. Highly specific approaches (e.g., kinase inhibitors) did not significantly improve the situation so far, possibly due to functional compensation, genetic heterogeneity of HCC, and development of resistance under selective pressure. In contrast, transcriptional regulators (especially transcription factors and co-factors) may integrate and process input signals of different (oncogenic) pathways and therefore represent cellular bottlenecks that regulate tumor cell biology. In this review, we want to summarize the current knowledge about central transcriptional regulators in human hepatocarcinogenesis and their potential as therapeutic target structures. Genomic and transcriptomic data of primary human HCC revealed that many of these factors showed up in subgroups of HCCs with a more aggressive phenotype, suggesting that aberrant activity of transcriptional regulators collect input information to promote tumor initiation and progression. Therefore, expression and dysfunction of transcription factors and co-factors may gain relevance for diagnostics and therapy of HCC.
Collapse
|
10
|
Shi H, Bevier M, Johansson R, Enquist-Olsson K, Henriksson R, Hemminki K, Lenner P, Försti A. Prognostic impact of polymorphisms in the MYBL2 interacting genes in breast cancer. Breast Cancer Res Treat 2011; 131:1039-47. [PMID: 22037783 DOI: 10.1007/s10549-011-1826-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 11/25/2022]
Abstract
MYBL2 is a transcription factor, which regulates the expression of genes involved in cancer progression. In this study, we investigated whether putative functional variants in genes regulating MYBL2 (E2F1, E2F3 and E2F4) or in genes, which are regulated by MYBL2 (BCL2, BIRC5, COL1A1, COL1A2, COL5A2, ERBB2, CLU, LIN9 and TOP2A) affect breast cancer (BC) susceptibility and clinical outcome. Twenty-eight SNPs were genotyped in a population-based series of 782 Swedish BC cases and 1,559 matched controls. BC-specific survival analysis of BIRC5 suggested that carriers of the minor allele of rs8073069 and rs1042489 have a worse survival compared with the major homozygotes (HR 2.46, 95% CI 1.39-4.36 and HR 1.81, 95% CI 1.01-3.25, respectively). The poor survival was observed especially in women with aggressive tumours. Multivariate analysis supported the role of rs8073069 as an independent prognostic marker. For BCL2, minor allele carriers of rs1564483 were more likely to have hormone receptor-positive tumours than the major homozygotes. Another SNP in BCL2, rs4987852, was associated with tumour stages II-IV and histologic grade 3. In CLU, the minor allele carriers of rs9331888 were more likely to have tumours with regional lymph node metastasis and stages II-IV than the major homozygotes. In conclusion, our study suggests a role of genetic variation in BIRC5, BCL2 and CLU as progression and prognostic markers for BC, supporting previous studies based on the expression of the genes.
Collapse
Affiliation(s)
- Hong Shi
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The transcription factor B-Myb plays a critical role in regulating gene expression and is implicated in controlling carcinogenesis and cellular senescence. Transcription of the B-Myb gene is regulated by retinoblastoma proteins acting directly on the B-Myb promoter. Recently, we found that microRNAs also control the abundance of B-Myb mRNA during senescence, adding another level of complexity to B-Myb regulation. This review focuses on the importance of B-Myb in cancer and senescence, with an emphasis on the regulation of B-Myb expression and activity.
Collapse
Affiliation(s)
- Ivan Martinez
- Department of Genetics and Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
| | | |
Collapse
|
12
|
Abstract
The proapoptotic BH3-only protein Bim is a crucial regulator of neuronal apoptosis. Previous studies have indicated the involvement of the c-Jun, FOXO1/3a, and B/C-Myb transcription factors in the regulation of Bim during neuronal apoptosis. However, the mechanism underlying the transcriptional regulation of Bim in activity deprivation-induced neuronal apoptosis has remained unclear. The present study demonstrates that early growth response 1 (Egr-1), rather than c-Jun, FOXO1/3a, or B/C-Myb, directly transactivates Bim gene expression to mediate apoptosis of rat cerebellar granule neurons. We showed that Egr-1 was sufficient and necessary for neuronal apoptosis. Suppression of Egr-1 activity using dominant-negative mutant or knockdown of Egr-1 using small interfering RNAs led to a decrease in Bim expression, whereas overexpression of Egr-1 resulted in induction of Bim. Deletion and site-directed mutagenesis of the Bim promoter revealed that Bim transcriptional activation depends primarily on a putative Egr-binding sequence between nucleotides -56 and -47 upstream of the start site. We also showed that Egr-1 binding to this sequence increased in response to activity deprivation in vitro and in vivo. Moreover, inhibition of Egr-1 binding to the Bim promoter, by mithramycin A and chromomycin A3, reduced the activity deprivation-induced increases in Bim promoter activity and mRNA and protein levels and protected neurons from apoptosis, further supporting the Egr-1-mediated transactivation of Bim. Additionally, Bim overcame the Egr-1 knockdown-mediated inhibition of apoptosis, whereas Bim knockdown impaired the increase in apoptosis induced by Egr-1. These findings establish Bim as an Egr-1 target gene in neurons, uncovering a novel Egr-1/Bim pathway by which activity deprivation induces neuronal apoptosis.
Collapse
|
13
|
Papetti M, Augenlicht LH. MYBL2, a link between proliferation and differentiation in maturing colon epithelial cells. J Cell Physiol 2011; 226:785-91. [PMID: 20857481 DOI: 10.1002/jcp.22399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple signals, controlling both proliferation and differentiation, must be integrated in the reprogramming of intestinal epithelial cells during maturation along the crypt-luminal axis. The v-myb family member Mybl2, a molecule implicated in the development and maintenance of the stem cell phenotype, has been suggested to play an important role in proliferation and differentiation of several cell types and is a gene we have found is commonly regulated in several systems of colon cell maturation both in vitro and in vivo. Here we show that siRNA silencing of Mybl2 in proliferating Caco-2 cells increases expression of the cell-cycle regulators cdk2, cyclin D2, and c-myc and decreases expression of cdc25B and cyclin B2 with a consequent 10% increase of cells in G2/M and a complementary 10% decrease in G1. Mybl2 occupies sequences upstream of transcriptional start sites of cyclin D2, c-myc, cyclin B2, and cdc25B and regulates reporter activity driven by upstream regions of cdk2, cyclin D2, and c-myc. These data suggest that Mybl2 plays a subtle but key role in linking specific aspects of cell-cycle progression with generation of signals for differentiation and may therefore be fundamental in commitment of intestinal epithelial cells to differentiation pathways during their maturation.
Collapse
Affiliation(s)
- Michael Papetti
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, New York 10467, USA.
| | | |
Collapse
|
14
|
Chen L, Xuan J, Riggins RB, Wang Y, Hoffman EP, Clarke R. Multilevel support vector regression analysis to identify condition-specific regulatory networks. Bioinformatics 2010; 26:1416-22. [PMID: 20375112 PMCID: PMC2872001 DOI: 10.1093/bioinformatics/btq144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/11/2010] [Accepted: 04/02/2010] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The identification of gene regulatory modules is an important yet challenging problem in computational biology. While many computational methods have been proposed to identify regulatory modules, their initial success is largely compromised by a high rate of false positives, especially when applied to human cancer studies. New strategies are needed for reliable regulatory module identification. RESULTS We present a new approach, namely multilevel support vector regression (ml-SVR), to systematically identify condition-specific regulatory modules. The approach is built upon a multilevel analysis strategy designed for suppressing false positive predictions. With this strategy, a regulatory module becomes ever more significant as more relevant gene sets are formed at finer levels. At each level, a two-stage support vector regression (SVR) method is utilized to help reduce false positive predictions by integrating binding motif information and gene expression data; a significant analysis procedure is followed to assess the significance of each regulatory module. To evaluate the effectiveness of the proposed strategy, we first compared the ml-SVR approach with other existing methods on simulation data and yeast cell cycle data. The resulting performance shows that the ml-SVR approach outperforms other methods in the identification of both regulators and their target genes. We then applied our method to breast cancer cell line data to identify condition-specific regulatory modules associated with estrogen treatment. Experimental results show that our method can identify biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. AVAILABILITY AND IMPLEMENTATION The ml-SVR MATLAB package can be downloaded at http://www.cbil.ece.vt.edu/software.htm.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | | | | | | | | | | |
Collapse
|
15
|
Boheler KR. Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle. J Cell Physiol 2009; 221:10-7. [PMID: 19562686 PMCID: PMC3326661 DOI: 10.1002/jcp.21866] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells self-renew and are pluripotent. Differentiation of these cells can yield over 200 somatic cell types, making pluripotent cells an obvious source for regenerative medicine. Before the potential of these cells can be maximally harnessed for clinical applications, it will be necessary to understand the processes that maintain pluripotentiality and signal differentiation. Currently, three unique molecular properties distinguish pluripotent stem cells from somatic cells. These include a unique transcriptional hierarchy that sustains the pluripotent state during the process of self-renewal; a poised epigenetic state that maintains chromatin in a form ready for rapid cell fate decisions; and a cell cycle characterized by an extremely short gap 1 (G1) phase and the near absence of normal somatic cell checkpoint controls. Recently, B-MYB (MYBL2) was implicated in the gene regulation of two pluripotency factors and normal cell cycle progression. In this article, the three pluripotency properties and the potential role of B-Myb to regulate these processes will be discussed.
Collapse
|
16
|
Jun DY, Park HS, Lee JY, Baek JY, Park HK, Fukui K, Kim YH. Positive regulation of promoter activity of human 3-phosphoglycerate dehydrogenase (PHGDH) gene is mediated by transcription factors Sp1 and NF-Y. Gene 2008; 414:106-14. [PMID: 18378410 DOI: 10.1016/j.gene.2008.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/12/2008] [Accepted: 02/16/2008] [Indexed: 11/28/2022]
Abstract
The PHGDH gene encodes the 3-phosphoglycerate dehydrogenase that catalyzes the transition of 3-phosphoglycerate into 3-phosphohydroxy pyruvate for the phosphorylated pathway of serine biosynthesis. To understand transcriptional regulation of the human PHGDH promoter, a genomic clone containing the 5'-flanking region of the PHGDH gene was isolated from a human genomic library. The 1192-bp PHGDH promoter region was cloned by PCR using the genomic DNA isolated from the PHGDH genomic clone. Sequence analysis of the promoter region exhibited several putative transcription factor binding sites for NF-Y, Sp1, GATA-1, p53, AP2, and AP1, with no TATA-box motif at an appropriate position. Transfection of a series of deletion constructs of the promoter region into HeLa cells revealed that the core positive promoter activity resided in the -276 to +1, which contains two GC-motifs for binding Sp1 and one CCAAT-motif for NF-Y. Mutational analysis and electrophoretic mobility shift assay indicated that both the proximal GC-motif and CCAAT-motif were crucial for full induction of the promoter activity. Chromatin immunoprecipitation analysis confirmed the recruitment of Sp1 and NF-Y to the promoter region in vivo. These results demonstrated that the promoter activity of the human PHGDH gene was positively regulated by the action of transcription factors Sp1 and NF-Y.
Collapse
Affiliation(s)
- Do Youn Jun
- Laboratory of Immunobiology, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Schwab R, Caccamo A, Bettuzzi S, Anderson J, Sala A. B-MYB is hypophosphorylated and resistant to degradation in neuroblastoma: implications for cell survival. Blood Cells Mol Dis 2007; 39:263-71. [PMID: 17588787 DOI: 10.1016/j.bcmd.2007.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 11/24/2022]
Abstract
B-MYB is an oncoprotein highly expressed and frequently amplified in human neoplasia. B-MYB is more expressed in neuroblastoma patients with adverse prognostic indicators, corroborating the hypothesis that it plays an important role in this pediatric malignancy. While attempting targeting strategies for therapeutic purposes, we found that the B-MYB protein was difficult to downregulate in neuroblastoma cells using siRNA approaches. This lead us to discover that the B-MYB protein half-life is increased in neuroblastoma compared to other normal or transformed human cell lines. The B-MYB protein is quickly destroyed and apoptosis is induced in Ewing sarcoma cells exposed to UV irradiation. In contrast, neuroblastoma cells are resistant to UV-induced apoptosis and B-MYB protein levels do not change in UV-treated cells. In further experiments, we show that the B-MYB protein extracted from neuroblastoma cells is hypophosphorylated. It was previously shown that B-MYB phosphorylation activates its transcriptional activity but also promotes its destruction. Overexpression of a non-phosphorylatable B-MYB mutant protects cells from UV-induced apoptosis, suggesting that its reduced phosphorylation, rather than causing its inactivation, facilitates B-MYB pro-survival activity. Thus, expression of stable, hypophosphorylated B-MYB in neuroblastoma may promote cell survival and induce aggressive tumour growth.
Collapse
Affiliation(s)
- Rebekka Schwab
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
18
|
Pilkinton M, Sandoval R, Song J, Ness SA, Colamonici OR. Mip/LIN-9 regulates the expression of B-Myb and the induction of cyclin A, cyclin B, and CDK1. J Biol Chem 2006; 282:168-75. [PMID: 17098733 DOI: 10.1074/jbc.m609924200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the novel family of proteins that include Drosophila Mip130, Caenorhabditis elegans LIN-9, and mammalian LIN-9 intervene in different cellular functions such as regulation of transcription, differentiation, transformation, and cell cycle progression. Here we demonstrate that LIN-9, designated as Mip/LIN-9, interacts with B-Myb but not with c-Myb or A-Myb. Mip/LIN-9 regulates the expression of B-Myb in a post-transcriptional manner, and its depletion not only decreases the level of the B-Myb protein but also affects the expression of S phase and mitotic genes (i.e. cyclin A, CDK1, and cyclin B). The critical role of Mip/LIN-9 on the expression of S and G(2)/M genes is further supported by the finding that coexpression of Mip/LIN-9 and B-Myb results in the activation of cyclin A and cyclin B promoter-luciferase reporters, and both proteins are detected on the cyclin A and B promoters. Interestingly, although Mip/LIN-9 promoter occupancy peaks earlier than B-Myb, the highest levels of expression of cyclins A and B correlate with the maximum binding of B-Myb to these promoters. These data support the concept that Mip/LIN-9 is required for the expression of B-Myb, and both proteins collaborate in the control of the cell cycle progression via the regulation of S phase and mitotic cyclins.
Collapse
Affiliation(s)
- Mark Pilkinton
- Department of Pharmacology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
19
|
Lutwyche JK, Keough RA, Hunter J, Coles LS, Gonda TJ. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein. Biochem Biophys Res Commun 2006; 344:1300-7. [PMID: 16650815 DOI: 10.1016/j.bbrc.2006.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Accepted: 04/12/2006] [Indexed: 11/26/2022]
Abstract
Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor.
Collapse
Affiliation(s)
- Jodi K Lutwyche
- Division of Human Immunology and Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | |
Collapse
|
20
|
Sala A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 2005; 41:2479-84. [PMID: 16198555 DOI: 10.1016/j.ejca.2005.08.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
B-MYB belongs to the MYB family of transcription factors that include A-MYB and c-MYB. While A-MYB and c-MYB are tissue-specific, B-MYB is broadly expressed in rapidly dividing cells of developing or adult mammals. B-MYBs liaisons with important players of the cell cycle and transcription machinery, such as E2F and retinoblastoma proteins, suggest that its essential function in stem cell formation and mammalian development could be related to its ability to directly or indirectly impinge on gene expression. Besides its role in the cell cycle, B-MYB has been shown to promote cell survival by activating antiapoptotic genes such as ApoJ/clusterin and BCL2. Here, we discuss how B-MYB could be implicated in tumourigenesis by regulating gene expression.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, WC1N 1EH London, UK.
| |
Collapse
|
21
|
Bartusel T, Schubert S, Klempnauer KH. Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351:171-80. [PMID: 15922873 DOI: 10.1016/j.gene.2005.03.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/21/2005] [Accepted: 03/22/2005] [Indexed: 11/25/2022]
Abstract
B-Myb is a highly conserved member of the Myb family of transcription factors which plays an important role during the cell cycle. Previous work has shown that B-Myb is phosphorylated at several sites by cyclin A/Cdk2 in the early S-phase. These phosphorylations increase the transactivation potential of B-Myb by counteracting the repressive function of an inhibitory domain located at the carboxyl-terminus of B-Myb. As yet, only a few genes have been identified as B-Myb target genes. Previous work has suggested that the cyclin D1 gene might be regulated by B-Myb. Here, we have studied the effect of B-Myb on the promoter of the cyclin D1 gene. We show that B-Myb is a potent activator of the cyclin D1 promoter and that this activation is not mediated by Myb binding sites but rather by a group of Sp1 binding sites which have previously been shown to be crucial for cyclin D1 promoter activity. Our data show that the C-terminal domain of B-Myb is required for the activation of the cyclin D1 promoter and that this part of B-Myb interacts with Sp1. Finally, we have found that the promoter of the cyclin A1 gene is also activated by B-Myb by a Sp1 binding site-dependent mechanism. The effect of B-Myb on the promoters of the cyclin A1 and D1 genes is reminiscent of the mechanism that has been proposed for the autoregulation of the B-myb promoter by B-Myb, which also involves Sp1 binding sites. Taken together, our identification of two novel B-Myb responsive promoters whose activation by B-Myb does not involve Myb binding sites extends previous evidence for the existence of a distinct mechanism of transactivation by B-Myb which is dependent on Sp1 binding sites. The observation that this mechanism is not subject to the inhibitory effect of the C-terminal domain of B-Myb but rather requires this domain supports the notion that the Sp1 site-dependent mechanism is already active in the G1-phase prior to the phosphorylation of B-Myb by cyclin A/Cdk2.
Collapse
Affiliation(s)
- Thorsten Bartusel
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Germany
| | | | | |
Collapse
|
22
|
Liu DX, Biswas SC, Greene LA. B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth factor deprivation and DNA damage. J Neurosci 2005; 24:8720-5. [PMID: 15470138 PMCID: PMC6729960 DOI: 10.1523/jneurosci.1821-04.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of cell cycle elements plays a required role in neuronal apoptosis associated with both development and neurodegenerative disorders. We demonstrated previously that neuron survival requires gene repression mediated by the cell cycle transcription factor E2F (E2 promoter binding factor) and that apoptotic stimuli lead to de-repression of E2F-regulated genes and consequent death. However, the downstream mediators of such death have been unclear. The transcription factors B- and C-myb are E2F-regulated genes that are induced in neurons by apoptotic stimuli. Here, we examine the role of B- and C-myb induction in neuron death. Antisense and siRNA constructs that effectively block the upregulation of B- and C-myb provide substantial protection against death of cultured neuronal PC12 cells, sympathetic neurons, and cortical neurons elicited by either NGF withdrawal or DNA damage. There is also significant protection from death induced by direct E2F-dependent gene de-repression. Our findings thus establish required roles for B- and C-myb in neuronal apoptosis.
Collapse
Affiliation(s)
- David X Liu
- Department of Pathology, Center for Neurobiology and Behavior and Taub Center for Alzheimer's Disease Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | |
Collapse
|
23
|
Hofmann CS, Wang X, Sullivan CP, Toselli P, Stone PJ, McLean SE, Mecham RP, Schreiber BM, Sonenshein GE. B-Myb Represses Elastin Gene Expression in Aortic Smooth Muscle Cells. J Biol Chem 2005; 280:7694-701. [PMID: 15615710 DOI: 10.1074/jbc.m412501200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-Myb represses collagen gene transcription in vascular smooth muscle cells (SMCs) in vitro and in vivo. Here we sought to determine whether elastin is similarly repressed by B-Myb. Levels of tropoelastin mRNA and protein were lower in aortas and isolated SMCs of adult transgenic mice expressing the human B-myb gene, driven by the basal cytomegalovirus promoter, compared with age-matched wild type (WT) animals. However, the vessel wall architecture and levels of insoluble elastin revealed no differences. Since elastin deposition occurs early in development, microarray analysis was performed using nontransgenic mice. Aortic levels of tropoelastin mRNA were low during embryonal growth and increased substantially in neonates, whereas B-myb levels varied inversely. Tropoelastin mRNA expression in aortas of 6-day-old neonatal transgenic and WT animals was comparable. Recently, we demonstrated that cyclin A-Cdk2 prevents B-Myb-mediated repression of collagen promoter activity. Cyclin A2 levels were higher in neonatal versus adult WT or transgenic mouse aortas. Ectopic cyclin A expression reversed the ability of B-Myb to repress elastin gene promoter activity in adult SMCs. These results demonstrate for the first time that B-Myb represses SMC elastin gene expression and that cyclin A plays a role in the developmental regulation of elastin gene expression in the aorta. Furthermore, the findings provide additional insight into the mechanism of B-myb-mediated resistance to femoral artery injury.
Collapse
Affiliation(s)
- Claudia S Hofmann
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cicchillitti L, Jimenez SA, Sala A, Saitta B. B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J 2004; 378:609-16. [PMID: 14613485 PMCID: PMC1223966 DOI: 10.1042/bj20031110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 10/21/2003] [Accepted: 11/13/2003] [Indexed: 11/17/2022]
Abstract
We investigated the role of B-Myb, a cell-cycle-regulated transcription factor, in the expression of the alpha1 (I) pro-collagen gene (COL1A1) in scleroderma fibroblasts. Scleroderma or SSc (systemic sclerosis) is a fibrotic disease characterized by excessive production of extracellular matrix components, especially type I collagen. Northern-blot analysis showed an inverse relationship between COL1A1 mRNA expression and that of B-Myb during exponential cell growth and during quiescence in human SSc fibroblasts. Overexpression of B-Myb in SSc fibroblasts was correlated with decreased COL1A1 mRNA expression. Transient transfections localized the down-regulatory effect of B-Myb to a region containing the proximal 174 bp of the COL1A1 promoter that does not contain B-Myb consensus binding sites. Gel-shift analysis, using nuclear extracts from normal and SSc fibroblasts transfected with B-Myb, showed no differences in DNA-protein complex formation when compared with the nuclear extracts from mock-transfected cells. However, we found that B-Myb decreases Sp1 (specificity protein 1) and CBF (CCAAT-binding factor) binding for their specific sites localized in the 174 bp COL1A1 proximal promoter. These results were also confirmed using B-Myb-immunodepleted nuclear extracts. Furthermore, immunoprecipitation assays using SSc nuclear extracts demonstrated a physical interaction of B-Myb with Sp1 and CBF transcription factors, and also an interaction between Sp1 and CBF. In addition, by employing full-length or deleted B-Myb cDNA construct, we found that B-Myb down-regulates the COL1A1 proximal promoter through its C-terminal domain. Thus these results suggest that B-Myb may be an important factor in the pathway(s) regulating collagen production in SSc fibroblasts.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
25
|
Long EM, Long MA, Tsirigotis M, Gray DA. Stimulation of the murine Uchl1 gene promoter by the B-Myb transcription factor. Lung Cancer 2004; 42:9-21. [PMID: 14512183 DOI: 10.1016/s0169-5002(03)00279-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been reported that human lung cancers frequently overexpress both the ubiquitous cell cycle transcription factor B-myb and the ubiquitin carboxyterminal hydrolase UCHL1, an enzyme whose expression is normally limited to neurons and neuroendocrine cells in the lung. A possible explanation for the co-expression of these markers is that Uchl1 is subject to transcriptional regulation by B-Myb, and in tumors the ectopic expression of UCHL1 is a direct consequence of B-Myb overexpression. We have tested this hypothesis in the mouse model system by cloning the murine Uchl1 promoter and analyzing its regulation by murine B-Myb. Expression of a luciferase reporter gene driven by the Uchl1 promoter was induced by cotransfected B-Myb, but induction was not dependent on the presence of a myb consensus binding site identified in the promoter region. B-Myb induction was dependent on the context of the Uchl1 TATA box, as has been reported for other genes. Transgenic mice expressing a truncated, constitutively active form of B-Myb in the lung epithelium showed elevated expression of UCHL1 protein. We conclude that B-Myb can stimulate expression of the Uchl1 both in cultured cells and in vivo.
Collapse
Affiliation(s)
- Elizabeth M Long
- Ottawa Regional Cancer Center, 503 Smyth Rd., Ottawa, Ont., Canada K1H 1C4
| | | | | | | |
Collapse
|
26
|
Cesi V, Tanno B, Vitali R, Mancini C, Giuffrida ML, Calabretta B, Raschellà G. Cyclin D1-dependent regulation of B-myb activity in early stages of neuroblastoma differentiation. Cell Death Differ 2002; 9:1232-9. [PMID: 12404122 DOI: 10.1038/sj.cdd.4401103] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Revised: 06/03/2002] [Accepted: 07/08/2002] [Indexed: 11/08/2022] Open
Abstract
Levels of the transcription factor B-myb must be down-regulated to allow terminal differentiation of neuroectodermal cells and yet its constitutive expression induces early markers of neural differentiation. Thus, we investigated potential mechanisms of enhanced B-myb activity in early stages of neural differentiation. We report here that B-myb expression does not decrease, cyclin A and Sp1 levels remain constant while p21 levels increase continuously upon retinoic acid-induced differentiation of the LAN-5 neuroblastoma cell line. In contrast, cyclin D1 expression is down-regulated at the onset of the differentiative process by protein destabilization. Luciferase assays of promoter activity indicate that B-myb-dependent transactivation is enhanced in LAN-5 cells treated with retinoic acid (RA) for 24 h. The enhancement is independent from cyclin A but is suppressed by a degradation-resistant mutant form of cyclin D1. The importance of cyclin D1 in controlling B-myb activity is further suggested by co-immunoprecipitation experiments, showing that the amount of cyclin D1 co-immunoprecipitated with B-myb decreased after RA treatment. Thus, B-myb may play an active role in the early stages of differentiation when its transactivation activity is enhanced as a consequence of cyclin D1 down-modulation.
Collapse
Affiliation(s)
- V Cesi
- ENEA Research Center Casaccia, Biotechnology Unit, Section of Toxicology and Biomedical Sciences, Via Angullarese, 301, 00060 S Maria di Galeria Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Tanno B, Negroni A, Vitali R, Pirozzoli MC, Cesi V, Mancini C, Calabretta B, Raschellà G. Expression of insulin-like growth factor-binding protein 5 in neuroblastoma cells is regulated at the transcriptional level by c-Myb and B-Myb via direct and indirect mechanisms. J Biol Chem 2002; 277:23172-80. [PMID: 11973331 DOI: 10.1074/jbc.m200141200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB), a malignant childhood tumor deriving from the embryonic neural crest, is sensitive to the growth-stimulating effects of insulin-like growth factors (IGFs). Aggressive cases of this disease often acquire autocrine loops of IGF production, but the mechanisms through which the different components of the IGF axis are regulated in tumor cells remain unclear. Upon conditional expression of c-Myb in a NB cell line, we detected up-regulation of IGF1, IGF1 receptor, and insulin-like growth factor-binding protein 5 (IGFBP-5) expression. Analysis of the IGFBP-5 promoter revealed two potential Myb binding sites at position -59 to -54 (M1) and -429 to -424 (M2) from the transcription start site; both sites were bound by c-Myb and B-Myb in vitro and in vivo. Reporter assays carried out using the proximal region of the human IGFBP-5 promoter demonstrated that c-Myb and B-Myb enhanced transcription. However, site-directed mutagenesis and deletion of the Myb binding sites coupled with reporter assays revealed that M2 but not M1 was important for Myb-dependent transactivation of the IGFBP-5 promoter. The double mutant M1/M2 was still transactivated by c-Myb, suggesting the existence of Myb binding-independent mechanisms of IGFBP-5 promoter regulation. A constitutively active AKT transactivated the IGFBP-5 promoter, whereas the phosphatidylinositol 3-kinase inhibitor LY294002 suppressed it. Moreover, the kinase dead dominant negative K179M AKT mutant was able to inhibit transcription from the M2 and M1/M2 IGFBP-5 mutant promoters. Deletion analysis of the IGFBP-5 promoter revealed that the AKT-responsive region lies between nucleotides -334 and -83. Together, these data suggest that the Myb binding-independent transactivation of the IGFBP-5 promoter was due to the activation of the phosphatidylinositol 3-kinase/AKT pathway likely mediated by IGF1 receptor-dependent signals. Finally, IGFBP-5 was able to modulate proliferation of NB cells in a manner dependent on its concentration and on the presence of IGFs.
Collapse
Affiliation(s)
- Barbara Tanno
- Ente Nuove Tecnologie Energia Ambiente (ENEA), Section of Toxicology and Biomedical Sciences, Via Anguillarese 301, 00060 S. Maria di Galeria, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Johnson LR, Johnson TK, Desler M, Luster TA, Nowling T, Lewis RE, Rizzino A. Effects of B-Myb on gene transcription: phosphorylation-dependent activity ans acetylation by p300. J Biol Chem 2002; 277:4088-97. [PMID: 11733503 DOI: 10.1074/jbc.m105112200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor B-Myb is a cell-cycle regulated phosphoprotein involved in cell cycle progression through the transcriptional regulation of many genes. In this study, we show that the promoter of the fibroblast growth factor-4 (FGF-4) gene is strongly activated by B-Myb in HeLa cells and it can serve as a novel diagnostic tool for assessing B-Myb activity. Specifically, B-Myb deletion mutants were examined and domains of B-Myb required for activation of the FGF-4 promoter were identified. Using phosphorylation-deficient mutant forms of B-Myb, we also show that phosphorylation is essential for B-Myb activity. Moreover, a mutant form of B-Myb, which lacks all identified phosphorylation sites and which has little activity, can function as a dominant-negative and suppress wild-type B-Myb activity. Acetylation is another post-translational modification known to affect the activity of other Myb family members. We show that B-Myb is acetylated by the co-activator p300. We also show that the bromo and histone acetyltransferase domains of p300 are sufficient to interact with and acetylate B-Myb. These data indicate that phosphorylation of B-Myb is an essential modification for activity and that acetylation of B-Myb may play a role in B-Myb activity.
Collapse
Affiliation(s)
- Lance R Johnson
- Eppley Institute for Research in Cancer and Allied Diseases, Department of Pathology University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Santilli G, Cervellera MN, Johnson TK, Lewis RE, Iacobelli S, Sala A. PARP co-activates B-MYB through enhanced phosphorylation at cyclin/cdk2 sites. Oncogene 2001; 20:8167-74. [PMID: 11781832 DOI: 10.1038/sj.onc.1204943] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2001] [Revised: 08/20/2001] [Accepted: 08/30/2001] [Indexed: 11/09/2022]
Abstract
PARP is a multifunctional protein that can affect genome stability, transcription control, telomere length and cell death. Recently we have reported that PARP binds to and enhances B-MYB transactivating potential. B-MYB is a potentially oncogenic transcription factor involved in mammalian cell proliferation, survival and differentiation. B-MYB gene expression is growth regulated and B-MYB protein is phosphorylated during S phase by cyclin A or E/cdk2 kinase, resulting in augmented transactivating potential. Here we show that PARP induces phosphorylation of B-MYB protein at cdk2 phosphorylation sites, since a B-MYB protein with mutated cdk2 phosphorylation sites is refractory to PARP-induced phosphorylation and co-activation in mammalian cells. We propose that PARP functions as a B-MYB co-factor by promoting cyclin/cdk2-dependent B-MYB phosphorylation. These results highlight a novel role for PARP as a factor that integrates cyclin-dependent kinases signaling with gene transcription.
Collapse
Affiliation(s)
- G Santilli
- Department of Oncology and Neurosciences, Section of Medical Oncology, Universita' G. D'Annunzio, 66100 Chieti, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Masselink H, Vastenhouw N, Bernards R. B-myb rescues ras-induced premature senescence, which requires its transactivation domain. Cancer Lett 2001; 171:87-101. [PMID: 11485831 DOI: 10.1016/s0304-3835(01)00631-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
B-myb, a ubiquitously expressed member of the myb gene family, is highly regulated throughout the cell cycle and appears to be required for cell cycle progression. In contrast to its relatives A-myb, c-myb, and v-myb, no transforming activity of B-myb has been reported thus far. We report here that B-myb can rescue senescence induced by an activated ras oncogene in rodent cells in vitro. We show that transformation by B-Myb involves its ability to activate transcription. Similar to other oncogenic transcription factors, such as c-Myc and E2F, we show that B-Myb also has repression activity. We demonstrate that the C-terminus of B-Myb can function as a repressor of transcription, that B-Myb interacts with the repressor molecules BS69 and N-CoR and that the repression function, like the transactivation domain, contributes to B-myb transformation.
Collapse
Affiliation(s)
- H Masselink
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Bessa M, Saville MK, Watson RJ. Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator. Oncogene 2001; 20:3376-86. [PMID: 11423988 DOI: 10.1038/sj.onc.1204439] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 02/27/2001] [Accepted: 03/06/2001] [Indexed: 11/08/2022]
Abstract
Expression of the B-Myb transcription factor is directed by an E2F-dependent transcriptional mechanism to late G1 and S phases of the cell cycle, where its transactivation properties are enhanced post-translationally by cyclin A/Cdk2-mediated phosphorylation. Other experiments have shown that removal of the B-Myb C-terminus constitutively activates both transactivation and DNA-binding activities, suggesting that autoregulation by this inhibitory domain is counteracted by phosphorylation. We report here on further experiments to examine this hypothesis. The importance of this modification was first emphasized by showing that co-transfected dominant-negative Cdk2 (Cdk2DN) substantially reduced B-Myb transactivation activity. We then attempted to map the autoregulatory domain by analysing a series of progressively deleted C-terminal B-Myb mutants. Removal of just 29 C-terminal aa increased transactivation appreciably, however, maximal activity required removal of 143 amino acids (as in B-Myb + 561). Enhanced B-Myb + 561 function correlated with the acquisition of DNA binding activity to a single Myb binding site (MBS) oligonucleotide as determined by bandshift assays, however, further assays showed that even wt B-Myb could bind a DNA fragment containing three MBS. Although transactivation by B-Myb was severely dependent on hyperphosphorylation, neither inhibiting this activity by co-transfecting Cdk2DN nor augmenting it with cyclin A resulted in significant effects on DNA-binding. We also found that B-Myb could synergize with the CBP coactivator and that this cooperativity was cyclin A/Cdk2-dependent. Despite this, the physical association between these proteins was not influenced by the B-Myb phosphorylation status. We discuss these findings in relation to the autoregulation of B-Myb by the C-terminal domain.
Collapse
Affiliation(s)
- M Bessa
- Section of Virology and Cell Biology, Imperial College School of Medicine, St Mary's Campus, London W2 1PG, UK
| | | | | |
Collapse
|
32
|
Müller-Tidow C, Wang W, Idos GE, Diederichs S, Yang R, Readhead C, Berdel WE, Serve H, Saville M, Watson R, Koeffler HP. Cyclin A1 directly interacts with B-myb and cyclin A1/cdk2 phosphorylate B-myb at functionally important serine and threonine residues: tissue-specific regulation of B-myb function. Blood 2001; 97:2091-7. [PMID: 11264176 DOI: 10.1182/blood.v97.7.2091] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin A1 is tissue-specifically expressed during spermatogenesis, but it is also highly expressed in acute myeloid leukemia (AML). Its pathogenetic role in AML and in the cell cycle of leukemic blasts is unknown. B-myb is essential for G1/S transition and has been shown to be phosphorylated by the cyclin A2/cdk2 complex. Here it is demonstrated that cyclin A1 interacts with the C-terminal portion of B-myb as shown by glutathione S-transferase (GST) precipitation. This interaction is confined to cyclin A1 because binding could not be detected between cyclin A2 and B-myb. Also, cdk2 was not pulled down by GST-B-myb from U937 lysates. In addition, co-immunoprecipitation of cyclin A1 and B-myb in leukemic cells evidenced protein interaction in vivo. Baculovirus-expressed cyclin A1/cdk2 complexes were able to phosphorylate human as well as murine B-myb in vitro. Tryptic phosphopeptide mapping revealed that cyclin A1/cdk2 complexes phosphorylated the C-terminal part of B-myb at several sites including threonine 447, 490, and 497 and serine 581. These phosphorylation sites have been demonstrated to be important for the enhancement of B-myb transcriptional activity. Further studies showed that cyclin A1 cooperated with B-myb to transactivate myb binding site containing promoters including the promoter of the human cyclin A1 gene. Taken together, the data suggest that cyclin A1 is a tissue-specific regulator of B-myb function and activates B-myb in leukemic blasts. (Blood. 2001;97:2091-2097)
Collapse
Affiliation(s)
- C Müller-Tidow
- Department of Medicine, Hematology, and Oncology, University of Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lei XH, Shen X, Xu XQ, Bernstein HS. Human Cdc5, a regulator of mitotic entry, can act as a site-specific DNA binding protein. J Cell Sci 2000; 113 Pt 24:4523-31. [PMID: 11082045 DOI: 10.1242/jcs.113.24.4523] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G(2)/M progression requires coordinated expression of many gene products, but little is known about the transcriptional regulators involved. We recently identified human Cdc5, a positive regulator of G(2)/M in mammalian cells. We also demonstrated the presence of a latent activation domain in its carboxyl terminus, suggesting that human Cdc5 regulates G(2)/M through transcriptional activation. Despite the presence of a DNA binding domain, studies by others have failed to identify a preferential binding site for Cdc5 family members. In addition, Cdc5 recently has been associated with the splicesome in several organisms, suggesting that it may not act through DNA binding. We now report the identification of a 12 bp sequence to which human Cdc5 binds specifically and with high affinity through its amino terminus. We show that this DNA-protein interaction is capable of activating transcription. We also used a selection system in yeast to identify human genomic fragments that interact with human Cdc5. Several of these contained sequences similar to the binding site. We demonstrate that these bind human Cdc5 with similar specificity and affinity. These experiments provide the first evidence that Cdc5 family members can act as site-specific DNA binding proteins, and that human Cdc5 may interact with specific, low abundance sequences in the human genome. This raises the possibility that Cdc5 proteins may participate in more than one process necessary for regulated cell division.
Collapse
Affiliation(s)
- X H Lei
- Department of Pediatrics, Cardiovascular Research Institute and Cancer Center, University of California, San Francisco, Box 0130, San Francisco, California 94143-0130, USA
| | | | | | | |
Collapse
|
34
|
Saitta B, Gaidarova S, Cicchillitti L, Jimenez SA. CCAAT binding transcription factor binds and regulates human COL1A1 promoter activity in human dermal fibroblasts: demonstration of increased binding in systemic sclerosis fibroblasts. ARTHRITIS AND RHEUMATISM 2000; 43:2219-29. [PMID: 11037881 DOI: 10.1002/1529-0131(200010)43:10<2219::aid-anr9>3.0.co;2-n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine the binding factors that interact with the proximal promoter region of the human type I collagen gene, COL1A1, and to examine their involvement in its transcriptional regulation in normal and systemic sclerosis (SSc) dermal fibroblasts. METHODS Nuclear extracts from dermal fibroblasts from 4 patients with SSc and 4 age- and sex-matched control individuals were examined by electrophoresis mobility shift assays with a COL1A1 promoter fragment encompassing nucleotides -174 to -50 bp. Supershift assays with antibodies specific to various transcription factors, and competition experiments using consensus, wild-type, or mutated oligonucleotides corresponding to their specific binding sites, were performed. The effects of specific oligonucleotides as "intracellular competitors" were examined by transient transfection experiments in SSc fibroblasts using a COL1A1 construct containing -174 bp of the promoter. RESULTS The findings demonstrate that the CCAAT binding transcription factor (CBF) binds the proximal CCAAT box located at -100 to -96 bp, but not the distal CCAAT box at -125 to -121 bp, of the human COL1A1 promoter in both SSc and normal fibroblasts. CBF binding activity was 3-5-fold higher in the SSc fibroblasts. Moreover, the promoter activity of the -174-bp COL1A1 construct was decreased by up to 50% when specific oligonucleotides were used as "intracellular competitors." In addition, Sp1 and Sp3 were other transcription factors found to be involved in the formation of the DNA-protein complexes within this region of the COL1A1 promoter. CONCLUSION These results indicate that the transcription factor CBF binds the human COL1A1 proximal promoter region in human dermal fibroblasts, and its binding activity is higher in SSc fibroblasts.
Collapse
Affiliation(s)
- B Saitta
- Istituto di Biologia dello Sviluppo, Palermo, Italy
| | | | | | | |
Collapse
|
35
|
Facchinetti V, Lopa R, Spreafico F, Bolognese F, Mantovani R, Tavner F, Watson R, Introna M, Golay J. Isolation and characterization of the human A-myb promoter: regulation by NF-Y and Sp1. Oncogene 2000; 19:3931-40. [PMID: 10951586 DOI: 10.1038/sj.onc.1203730] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The A-myb transcription factor shows a restricted tissue distribution and is cell cycle regulated. Furthermore its deregulation has profound effects on the growth and/or differentiation of the cells in which it is normally expressed. We have therefore characterized its promoter. A 12 kb genomic clone was isolated that comprises the first exon, part of the first intron as well as upstream regulatory sequences. Multiple transcription start sites have been identified which operate in both B lymphocytes and epithelial cells and the upsteam region was shown to have promoter, activity. The boundaries of the minimal promoter region (-183-14), of a positive upstream (-538-183) and a negative downstream regulatory region (NRE) (+83+374) have been defined. The NRE is promoter- and orientation-independent but position specific. The A-myb minimal promoter is GC-rich, does not contain any TATA box but has a functional CCAAT box. The CCAAT box and minimal promoter is highly conserved in the corresponding murine sequence. The CCAAT box efficiently binds the NF-Y complex and its mutation decreases basal promoter activity by 50%. Two Sp1 binding sites are present upstream from the CCAAT box which can bind Spl and contribute to A-myb promoter activity by 70 and 30%, respectively. The two Sp1 sites and CCAAT box together contribute to over 80% of A-myb basal promoter activity and are therefore the major regulatory elements. Finally, we show that the promoter is cell cycle regulated and that the SP1 and CCAAT elements are required for S phase induction.
Collapse
Affiliation(s)
- V Facchinetti
- Department of Immunology and Cell Biology, Istituto Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
B-MYB is implicated in cell growth control, differentiation, and cancer and belongs to the MYB family of nuclear transcription factors. Evidence exists that cellular proteins bind directly to B-MYB, and it has been hypothesized that B-MYB transcriptional activity may be modulated by specific cofactors. In an attempt to isolate proteins that interact with the B-MYB DNA-binding domain, a modular domain that has the potential to mediate protein-protein interaction, we performed pull-down experiments with a glutathione S-transferase-B-MYB protein and mammalian protein extracts. We isolated a 110-kDa protein associated endogenously with B-MYB in the nuclei of HL60 cells. Microsequence analysis and immunoprecipitation experiments determined that the bound protein was poly(ADP-ribose) polymerase (PARP). Transient transfection assays showed that PARP enhanced B-MYB transactivation and that PARP enzymatic activity is not required for B-MYB-dependent transactivation. These results suggest that PARP, as a transcriptional cofactor of a potentially oncogenic protein, may play a role in growth control and cancer.
Collapse
Affiliation(s)
- M N Cervellera
- Department of Molecular Pharmacology and Pathology, Consorzio Mario Negri Sud, S. Maria Imbaro, via Nazionale, 66030 Chieti, Italy
| | | |
Collapse
|
37
|
De Falco G, Bagella L, Claudio PP, De Luca A, Fu Y, Calabretta B, Sala A, Giordano A. Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation. Oncogene 2000; 19:373-9. [PMID: 10656684 DOI: 10.1038/sj.onc.1203305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
B-Myb is a transcription factor belonging to the myb family, whose activity has been associated with augmented DNA synthesis and cell cycle progression. We showed recently that B-Myb autoregulates its own expression through promoter transactivation. We report in this study that CDK9, the cyclin T associated kinase, which phosphorylates and activates RNA-Polymerase II, suppresses B-Myb autoregulation through direct interaction with the carboxyl-terminus of the B-Myb protein. Down-regulation of the transactivating ability of B-Myb is independent of the kinase activity of CDK9, because a kinase deficient mutant (dn-CDK9) also represses B-myb gene autoregulation. Overexpression of CDK9 did not result in suppression of p53-dependent transactivation or inhibition of the basal activity of the promoters tested so far, demonstrating that CDK9 is a B-Myb-specific repressor. Rather, transfection of the dominant negative dn-CDK9 construct inhibited the basal activity of the reporter genes, confirming an essential role for CDK9 in gene transcription. In addition, Cyclin T1 restores B-Myb transactivating activity when co-transfected along with CDK9, suggesting that the down-regulatory effect observed on B-Myb is specifically due to CDK9 alone. Thus, our data suggest that CDK9 is involved in the negative regulation of activated transcription mediated by certain transcription factors, such as B-Myb. This may indicate the existence of a feedback loop, mediated by the different activities of CDK9, which links basal with activated transcription.
Collapse
Affiliation(s)
- G De Falco
- Department of Pathology, Anatomy & Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Since its isolation exactly a decade ago, B-Myb has intrigued a growing number of scientists interested in understanding the mechanisms of cell proliferation. In many aspects the B-Myb story resembles that of a fashionable transcription factor involved in cell cycle control: E2F-1. Similar to E2F-1, B-Myb is a transcription factor whose expression is regulated at the G1/S border of the cell cycle. Given the ubiquitous expression of B-Myb within different cell types, its link with the cell cycle, and augmented expression in transformed cells, studies are in progress to define the potential role of B-Myb in human cancer. The purpose of this review is not to provide an extensive background to the B-Myb field but rather to describe the latest developments. A comprehensive outline of B-Myb structure and function can be found in the review by Saville and Watson (1998a, Adv. Cancer Res., 72:109-140).
Collapse
Affiliation(s)
- A Sala
- Department of Molecular Pharmacology and Pathology, Consorzio Mario Negri Sud, S. Maria Imbaro (CH), Italy.
| | | |
Collapse
|