1
|
Shah MV, Arber DA, Hiwase DK. TP53 -Mutated Myeloid Neoplasms: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am J Hematol 2025; 100 Suppl 4:88-115. [PMID: 40066944 PMCID: PMC12067166 DOI: 10.1002/ajh.27655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
Alterations in the tumor suppressor gene TP53 are common in human cancers and are associated with an aggressive nature. Approximately 8%-12% of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) harbor TP53 mutations (TP53 mut) and present immense challenges due to inherent chemoresistance and poor outcomes. As TP53 mut are more common in older individuals and those with secondary/therapy-related myeloid neoplasms (MN), their incidence is expected to increase with an aging population and rising proportion of cancer survivors. Treatments used for other MN-intensive chemotherapy, hypomethylating agents, and the BCL-2 inhibitor venetoclax-do not improve the survival of TP53 mut MN patients meaningfully. Additionally, further development of many promising agents has been discontinued, highlighting the challenges. Widespread acknowledgment of these problems led to the recognition of TP53 mut MN as a distinct entity in the 5th edition of the World Health Organization and International Consensus Classifications. However, critical discrepancies between the two classifications may lead to under- or overestimation of the prognostic risk. Here, we review recent advances in the biology, diagnosis, and treatment of TP53 mut MN. The development of TP53 mut MN is positioned at the intersection of age, hereditary predisposition, and anti-cancer therapies. Precursor TP53 mut clones can be detected years prior to the eventual leukemic transformation-raising the possibility of early intervention. We discuss the two classification systems and the bearing of the discrepancies between the two on timely and effective management. We provide novel evidence in the areas of discrepancies. Finally, we review the current therapeutic landscape and the obvious limitations of the currently used therapies.
Collapse
Affiliation(s)
| | - Daniel A. Arber
- Department of PathologyUniversity of ChicagoChicagoIllinoisUSA
| | - Devendra K. Hiwase
- Department of Haematology, Royal Adelaide HospitalCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Putra MA, Sandora N, Soetisna TW, Kusuma TR, Fitria NA, Karimah B, Noviana D, Gunanti, Busro PW, Supomo, Alwi I. Cocultured amniotic stem cells and cardiomyocytes in a 3-D acellular heart patch reduce the infarct size and left ventricle remodeling: promote angiogenesis in a porcine acute myocardial infarction model. J Cardiothorac Surg 2025; 20:229. [PMID: 40340905 PMCID: PMC12063456 DOI: 10.1186/s13019-025-03453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/06/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) induces significant myocardial damage, ultimately leading to heart failure as the surrounding healthy myocardial tissue undergoes progressive deterioration due to excessive mechanical stress. METHODS This study aimed to investigate myocardial regeneration in a porcine model of AMI using an acellular amniotic membrane with fibrin-termed an amnion bilayer (AB) or heart patch-as a cellular delivery system using porcine amniotic stem cells (pASCs) and autologous porcine cardiomyocytes (pCardios). Fifteen pigs (aged 2-4 months, weighing 50-60 kg) were randomly assigned to three experimental groups (n = 5): control group (AMI induction only), pASC group (pASC transplantation only), and coculture group (pASC and pCardio transplantation). AMI was induced via posterior left ventricular artery ligation and confirmed through standard biomarkers. After eight weeks, histological and molecular analyses were conducted to assess myocardial regeneration. RESULTS Improvement in regional wall motion abnormality (RWMA) was observed in 60% of the coculture group, 25% of the pASC group, and none in the control group. Histological analysis of the control group revealed extensive fibrosis with pronounced lipomatosis, particularly at the infarct center. In contrast, pASC and coculture groups exhibited minimal fibrotic scarring at both the infarct center and border regions. Immunofluorescence analysis demonstrated positive α-actinin expression in both the pASC and coculture groups, with the coculture group displaying sarcomeric structures-an organization absent in control group. RNA expression levels of key cardiomyogenic markers, including cardiac troponin T (cTnT), myosin heavy chain (MHC), and Nkx2.5, were significantly elevated in the treatment groups compared to the controls, with the coculture group exhibiting the highest MHC expression. The expression of c-Kit was also increased in both treatment groups relative to the control. Conversely, apoptotic markers p21 and Caspase-9 were highest in the control group, while coculture group exhibited the lowest p53 expression. CONCLUSION Epicardial transplantation of an acellular amniotic heart patch cocultured with cardiomyocytes and pASCs demonstrated superior cardiomyogenesis after eight weeks compared to pASC transplantation alone or control conditions. The coculture system was found to enhance the cardiac regeneration process, as evidenced by improved RWMA, distinct sarcomeric organization, reduced fibrotic scarring, and lower apoptotic gene expression.
Collapse
Affiliation(s)
- Muhammad Arza Putra
- Division of Thoracic, Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Normalina Sandora
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Tri Wisesa Soetisna
- Division of Adult Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Benati Karimah
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Pribadi Wiranda Busro
- Division of Pediatric and Congenital Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Supomo
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
3
|
Yin A, Gui Y, Wan L, Cai Q, Luo Y, Wang JZ, Liu R, Ying C, Wang X, Yang F. p53 SUMOylation promotes neurogenesis defects in APP/PS1 mice. J Alzheimers Dis 2025:13872877251340432. [PMID: 40336408 DOI: 10.1177/13872877251340432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Backgroundp53 is a transcriptional factor that regulates numerous cellular processes, the stability and activity of p53 is essential to maintain its function. Post-translational modifications (PTMs), particularly SUMOylation, play a vital role in regulating p53 activity.ObjectiveTo investigate the neurogenesis related genes that downregulated by p53 SUMOylation in APP/PS1 mice, and the protected effect by overexpressing non-SUMOylated p53 (p53 K386R). Furthermore, to provide new clues for the mechanisms of Alzheimer's disease (AD).MethodsCo-immunoprecipitation was used to detect the p53 SUMOylation levels in neuro2a (N2a) cells and APP/PS1 mice overexpressing wild-type p53 (p53 WT) or p53 K386R. In addition, RNA sequencing (RNA-seq) was used to detect the p53 SUMOylation regulated genes. Then we used qPCR, western blot, and immunofluorescence to measure the expression of neuroglobin (ngb) and the effect of neurogenesis defects induced by p53 SUMOylation.ResultsWe verified that overexpression of p53 WT promoted p53 SUMOylation and p53 K386R decreased p53 SUMOylation in N2a cells and APP/PS1 mice. Ngb was related to neurogenesis which dramatically downregulated by p53 SUMOylation. In addition, we found p53 SUMOylation caused neuron reduction and impairment of neurogenesis.ConclusionsOur data support that p53 SUMOylation may lead to neurogenesis defects by downregulating ngb in AD, suggesting that inhibition of p53 SUMOylation may be served as a therapeutic strategy for preventing AD and provide a new target for future researches and interventions.
Collapse
Affiliation(s)
- Anqi Yin
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuran Gui
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Lu Wan
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinfeng Cai
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yong Luo
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Fumin Yang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kim SW, Lee J, Jo KW, Jeong YH, Shin WS, Kim KT. RNF144A-VRK2-G3BP1 axis regulates stress granule assembly. Cell Death Discov 2025; 11:158. [PMID: 40204710 PMCID: PMC11982375 DOI: 10.1038/s41420-025-02460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Under the cellular stress, stress granules (SGs) help survival and proliferation of the cell. Unfortunately, the same SGs help unwanted cancer cells under stressful environment, including anti-cancer chemotherapy treatment. While SGs elevate the cancer cell's resistance to chemotherapy, the mechanism behind the formation of SGs in cancer cell under chemotherapy treatment is still to be revealed. Here, we identified that the level of VRK2 and the phosphorylation of its novel substrate, G3BP1, are reduced when the cellular stress was increased by sodium arsenite (SA) or cisplatin treatment. We also demonstrated that the level of RNF144A is increased in response to the stress and further downregulates VRK2 through proteasomal degradation in various types of cancer cells. Furthermore, inhibition of SG formation by the overexpression of VRK2 sensitized the cells to the stress and chemotherapy. Together, our study establishes an RNF144A-VRK2-G3BP1 axis that regulates SG formation and suggest its potential usage in anti-cancer therapy.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Jae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyung Won Jo
- Hesed Bio Corporation, Pohang, Gyeongbuk, Republic of Korea
| | - Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Won Sik Shin
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Tyagi K, Kumari R, Venkatesh V. Harnessing the Sulfur-for-Oxygen Shift: A Magic Bullet for Dynamic Photophysical and Anticancer Activities of Indole-Barbituric Acid Construct. ChemMedChem 2025; 20:e202400849. [PMID: 39786330 DOI: 10.1002/cmdc.202400849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6 a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities. A series of NIR-emitting indole-barbituric/thiobarbituric acid conjugates exhibiting aggregation-induced emission (AIE) were prepared, where the replacement of oxygen for sulfur strategy emerged as a magic bullet. On the evaluation of photophysical properties and chemopreventive efficacies, a significant improvement in the absorption and emission profile, cellular uptake, and antiproliferative activity was noted for sulfur counterparts. From the pool of the molecules, the lead molecule 6 a unveils a 55 nm emission shift, 142-fold increased anticancer profile, and ~4-fold elevated cellular uptake. Furthermore, the colocalization experiment unravels the nuclear localization of 6 a, where it causes severe DNA damage, arrests the cell cycle in the G2/M phase, and leads to the activation of p53-mediated apoptosis. Our experimental findings represent 6 a as a potential lead molecule possessing excellent anticancer potency in the HCT 116 cell line and HCT 116-derived 3D spheroid model.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Reena Kumari
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
6
|
Zhou L, Yu L, Song S, Wang Y, Zhu Q, Li M, Sha Y, Xu L, Shu X, Liao Q, Wu T, Yang B, Chai S, Lin B, Wu L, Zhou R, Duan X, Zhu C, Ruan Y, Yi W. Mina53 catalyzes arginine demethylation of p53 to promote tumor growth. Cell Rep 2025; 44:115242. [PMID: 39864061 DOI: 10.1016/j.celrep.2025.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase. Mina53 catalyzes the removal of asymmetric dimethylation at arginine 337 of p53. Mina53-mediated demethylation reduces p53 stability and oligomerization and alters chromatin modifications at the gene promoter, thereby suppressing p53-mediated transcriptional activation and cell-cycle arrest. Mina53 represses p53-dependent tumor suppression both in mouse xenografts and spontaneous tumor models. Moreover, downregulation of p53-mediated gene expression is observed in several types of cancer with elevated expression of Mina53. Thus, our study reveals a regulatory mechanism of p53 homeostasis and activity and, more broadly, defines a paradigm for dynamic arginine methylation in controlling important biological functions.
Collapse
Affiliation(s)
- Lixiao Zhou
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shushu Song
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Qiang Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng Li
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liang Xu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qingqing Liao
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Ting Wu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Siyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruhong Zhou
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenggang Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Ribeiro JH, Etlioglu E, Buset J, Janssen A, Puype H, Berden L, Mbouombouo Mfossa AC, De Vos WH, Vermeirssen V, Baatout S, Rajan N, Quintens R. A human-specific, concerted repression of microcephaly genes contributes to radiation-induced growth defects in cortical organoids. iScience 2025; 28:111853. [PMID: 39967878 PMCID: PMC11834077 DOI: 10.1016/j.isci.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Prenatal radiation-induced DNA damage poses a significant threat to neurodevelopment, resulting in microcephaly which primarily affects the cerebral cortex. So far, mechanistic studies were done in rodents. Here, we leveraged human cortical organoids to model fetal corticogenesis. Organoids were X-irradiated with moderate or high doses at different time points. Irradiation caused a dose- and time-dependent reduction in organoid size, which was more prominent in younger organoids. This coincided with a delayed and attenuated DNA damage response (DDR) in older organoids. Besides the DDR, radiation induced premature differentiation of neural progenitor cells (NPCs). Our transcriptomic analysis demonstrated a concerted p53-E2F4/DREAM-dependent repression of primary microcephaly genes, which was independently confirmed in cultured human NPCs and neurons. This was a human-specific feature, as it was not observed in mouse embryonic brains or primary NPCs. Thus, human cortical organoids are an excellent model for DNA damage-induced microcephaly and to uncover potentially targetable human-specific pathways.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Hanne Puype
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lisa Berden
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Wilrijk, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Nicholas Rajan
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
8
|
Araki D, Chen V, Redekar N, Salisbury-Ruf C, Luo Y, Liu P, Li Y, Smith RH, Dagur P, Combs C, Larochelle A. Post-transplant G-CSF impedes engraftment of gene-edited human hematopoietic stem cells by exacerbating p53-mediated DNA damage response. Cell Stem Cell 2025; 32:53-70.e8. [PMID: 39536761 PMCID: PMC11698648 DOI: 10.1016/j.stem.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Granulocyte-colony-stimulating factor (G-CSF) is commonly used to accelerate recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, its utility after ex vivo gene therapy in human HSPCs remains unexplored. We show that administering G-CSF from day 1 to 14 post-transplant impedes engraftment of CRISPR-Cas9 gene-edited human HSPCs in murine xenograft models. G-CSF affects gene-edited HSPCs through a cell-intrinsic mechanism, causing proliferative stress and amplifying the early p53-mediated DNA damage response triggered by Cas9-mediated DNA double-strand breaks. This underscores a threshold mechanism where p53 activation must reach a critical level to impair cellular function. Transiently inhibiting p53 or delaying the initiation of G-CSF treatment to day 5 post-transplant attenuates its negative impact on gene-edited HSPCs. The potential for increased HSPC toxicity associated with post-transplant G-CSF administration in CRISPR-Cas9 autologous HSPC gene therapy warrants consideration in clinical trials.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vicky Chen
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Neelam Redekar
- Integrated Data Science Services (IDSS), National Institutes of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Christi Salisbury-Ruf
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yan Luo
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Richard H Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pradeep Dagur
- Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Christian Combs
- Light Microscopy Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2025; 329:e13409. [PMID: 39425547 PMCID: PMC11742653 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
| | - Prajwal Gurung
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
- Interdisciplinary Graduate Program in Human ToxicologyUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
- Center for Immunology and Immune Based DiseaseUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
10
|
Taniguchi S, Torii T, Goto T, Takeuchi K, Katsumi R, Sumida M, Lee S, Sugimoto W, Gessho M, Itoh K, Hirata H, Kawakami J, Miyoshi D, Kawauchi K. Bioinformatic Analysis of Actin-Binding Proteins in the Nucleolus During Heat Shock. Genes (Basel) 2024; 15:1580. [PMID: 39766847 PMCID: PMC11675300 DOI: 10.3390/genes15121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Actin plays a crucial role not only in the cytoplasm, but also in the nucleus, influencing various cellular behaviors, including cell migration and gene expression. Recent studies reveal that nuclear actin dynamics is altered by cellular stresses, such as DNA damage; however, the effect of heat shock on nuclear actin dynamics, particularly in the nucleolus, remains unclear. This study aims to elucidate the contribution of nucleolar actin to cellular responses under heat shock conditions. METHODS Nuclear actin dynamics in response to heat shock were investigated using nAC-GFP, a GFP-tagged actin chromobody, to visualize nuclear actin in HeLa cells. Bioinformatic analyses were also performed. RESULTS Heat shock induced the reversible assembly of nAC-GFP in the nucleolus, with disassembly occurring upon recovery in a heat shock protein (Hsp) 70-dependent manner. Because the nucleolus, formed via liquid-liquid phase separation (LLPS), sequesters misfolded proteins under heat shock to prevent irreversible aggregation, we hypothesized that nucleolar actin-binding proteins might also be sequestered in a similar manner. Using several databases, we identified 47 actin-binding proteins localized in the nucleolus and determined the proportion of intrinsically disordered regions (IDRs) known to promote LLPS. Our analysis revealed that many of these 47 proteins exhibited high levels of IDRs. CONCLUSIONS The findings from our bioinformatics analysis and further cellular studies may help elucidate new roles for actin in the heat shock response.
Collapse
Affiliation(s)
- Shinya Taniguchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Takeru Torii
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Toshiyuki Goto
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 650-0047, Japan;
| | - Kohei Takeuchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Rine Katsumi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Mako Sumida
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Sunmin Lee
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Wataru Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Masaya Gessho
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Katsuhiko Itoh
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan 924-0838, Japan;
| | - Junji Kawakami
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe 650-0047, Japan; (S.T.); (T.T.); (K.T.); (R.K.); (M.S.); (S.L.); (W.S.); (M.G.); (K.I.); (J.K.); (D.M.)
| |
Collapse
|
11
|
Tian X, Zhu Z, Li W, Zhang J, Han B. Identification and characterization of a novel upstream promoter of zebrafish p53 gene. Mol Biol Rep 2024; 52:15. [PMID: 39589571 DOI: 10.1007/s11033-024-10112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND It is widely acknowledged that the p53 gene can be expressed as multiple isoforms with different functions, however the transcriptional mechanism of p53 still needs further investigation. Here we identified an elevated transcription signal about 3.6 kb upstream of the p53 promoter in cold acclimated zebrafish ZF4 cells. METHODS AND RESULTS Through rapid amplification of cDNA ends (RACE), an unreported p53 transcript was cloned, which is transcribed from a novel upstream promoter about 3.6 kb from the canonical p53 promoter. This Novel p53 transcript includes a novel 5'untranslated region (5'UTR) transcribed from the - 3.6 kb region, which is followed by the coding sequences (CDS) encoding wild type (WT) p53 protein. This Novel p53 transcript showed remarkably enhanced stability than WT p53 and Δ113p53 mRNAs, when its novel 5'UTR showed the lowest translation efficiency in luciferase assay. Novel p53 transcript is differentially expressed in various tissues and during different stages of embryonic development of zebrafish. Novel p53 transcript also showed different responses to different stimuli. CONCLUSIONS A novel upstream promoter about 3.6 kb from the canonical P1 promoter of zebrafish p53 gene was found, which transcribes a novel p53 transcript that contains a new 5'UTR and the CDS encoding WT p53 protein. The findings of our study will enhance the current knowledge on the regulation and functionality of the p53 gene in fish.
Collapse
Affiliation(s)
- Xiaoying Tian
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhongqiu Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenjuan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
12
|
Tomas F, Roux P, Gire V. Interaction of p53 with the Δ133p53α and Δ160p53α isoforms regulates p53 conformation and transcriptional activity. Cell Death Dis 2024; 15:845. [PMID: 39562560 PMCID: PMC11576908 DOI: 10.1038/s41419-024-07213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The TP53 gene encodes p53, a transcription factor involved in tumor suppression. However, TP53 also encodes other protein isoforms, some of which can disrupt the tumor suppressor functions of p53 even in the absence of TP53 mutations. In particular, elevated levels of the Δ133TP53 mRNA are detected in many cancer types and can be associated with poorer disease-free survival. We investigated the mechanisms of action of the two proteins translated from the Δ133TP53 mRNA: the Δ133p53α and Δ160p53α isoforms, both of which retain the oligomerization domain of p53. We discovered that the Δ133p53α and Δ160p53α isoforms adopt an altered conformation compared to full-length p53, exposing the PAb240 epitope (RHSVVV), which is inaccessible to the PAb240 antibody in the functional conformation of p53 (reactive to PAb1620). The Δ133p53α and/or Δ160p53α isoforms form hetero-oligomers with p53, regulating the stability, the conformation and the transcriptional activity of the p53 hetero-oligomers. Under basal conditions, Δ133p53α and Δ160p53α, in complex with p53, prevent proteasome-dependent degradation leading to the accumulation of PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers without increasing p53 transcriptional activity. Conversely, depletion of endogenous Δ133p53α isoforms in human fibroblasts is sufficient to restore p53 transcriptional activity, towards p53-target genes involved in cell cycle arrest. In the DNA damage response (DDR), PAb240 reactive Δ133p53α/Δ160p53α/p53 hetero-oligomers are highly phosphorylated at Ser15 compared to PAb1620-reactive p53 complexes devoid of Δ133p53α and Δ160p53α. This suggests that PAb240-reactive p53 hetero-oligomers integrate DNA damage signals. Δ133p53α accumulation is a late event in the DDR that depends on p53, but not on its transcriptional activation. The formation of Δ133p53α and p53 complexes increases at later DDR stages. We propose that Δ133p53α isoforms regulate p53 conformation as part of the normal p53 biology, modulating p53 activity and thereby adapting the cellular response to the cell signals.
Collapse
Affiliation(s)
- Fanny Tomas
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Roux
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Véronique Gire
- CRBM, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
13
|
Parekh M, Adhikari Y, Deshpande N, Miller P, Sperling AS, Tesfaigzi Y, Jurkunas UV. Long-term persistent exposure to cigarette smoke induces AhR driven corneal endothelial dysfunction in mice. Exp Eye Res 2024; 248:110089. [PMID: 39265717 PMCID: PMC11531995 DOI: 10.1016/j.exer.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Epidemiological studies show cigarette smoking enhances corneal endothelial dysfunction, but mechanisms remain unclear. Our study reveals that prolonged smoke exposure activates the aryl hydrocarbon receptor (AhR), increasing CYP1B1 expression and accelerating senescence and fibrosis in corneal endothelium, potentially reflecting adaptive responses to maintain corneal resilience. Although these molecular modifications indicate early endothelial dysfunction, no pathological changes were observed. The findings indicate that while chronic cigarette smoke exposure triggers initial molecular alterations and endothelial dysfunction, the progression to Fuchs endothelial corneal dystrophy likely requires additional environmental or genetic factors beyond smoke exposure alone.
Collapse
Affiliation(s)
- Mohit Parekh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yadav Adhikari
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Neha Deshpande
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Peter Miller
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam S Sperling
- Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohannes Tesfaigzi
- Harvard Medical School, Boston, MA, USA; Pulmonary and Critical Care Medicine Brigham and Women's Hospital, Boston, MA, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Erman A, Hawkins LJ, Storey KB. Changes in microRNA expression related to ischemia-reperfusion injury in the kidney of the thirteen-lined ground squirrel during torpor. Biochimie 2024; 225:40-48. [PMID: 38705508 DOI: 10.1016/j.biochi.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
During the hibernation season, the thirteen-lined ground squirrel undergoes cyclical torpor and arousal periods. The decrease and restoration of metabolic rate and oxygen delivery during torpor and arousal, respectively, may cause reperfusion-ischemia injury in the kidneys. In order to maintain the structural integrity of the kidneys necessary for renal function resumption during arousal, the thirteen-lined ground squirrel has developed adaptive methods to prevent and repair kidney injury. In this present study, computational methods were used to clean and analyze sequenced kidney RNA samples. Significantly differentially expressed microRNAs and enriched gene sets were also determined. From the gene set analysis, the results showed an increase in ubiquitin-related processes and p53 signaling pathways which suggested the occurrence of kidney damage during torpor. There was also an observed increase in cell cycle processes and the anchoring junction cellular compartment which may lend to the prevention of kidney injury. From the differentially expressed microRNAs, miR-27a (log2FC = 1.639; p-value = 0.023), miR-129 (log2FC = 2.516; p-value = 0.023), miR-let-7b (log2FC = 2.360; p-value = 0.025), miR-let-7c (log2FC = 2.291; p-value = 0.037) and miR-let-7i (log2FC = 1.564; p-value = 0.039) were found to be significantly upregulated. These biochemical adaptations may allow the thirteen-lined ground squirrel to maintain kidney structure and function during hibernation.
Collapse
Affiliation(s)
- Aylin Erman
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Liam J Hawkins
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
15
|
Aumer T, Däther M, Bergmayr L, Kartika S, Zeng T, Ge Q, Giorgio G, Hess AJ, Michalakis S, Traube FR. The type of DNA damage response after decitabine treatment depends on the level of DNMT activity. Life Sci Alliance 2024; 7:e202302437. [PMID: 38906675 PMCID: PMC11192838 DOI: 10.26508/lsa.202302437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Decitabine and azacytidine are considered as epigenetic drugs that induce DNA methyltransferase (DNMT)-DNA crosslinks, resulting in DNA hypomethylation and damage. Although they are already applied against myeloid cancers, important aspects of their mode of action remain unknown, highly limiting their clinical potential. Using a combinatorial approach, we reveal that the efficacy profile of both compounds primarily depends on the level of induced DNA damage. Under low DNMT activity, only decitabine has a substantial impact. Conversely, when DNMT activity is high, toxicity and cellular response to both compounds are dramatically increased, but do not primarily depend on DNA hypomethylation or RNA-associated processes. By investigating proteome dynamics on chromatin, we show that decitabine induces a strictly DNMT-dependent multifaceted DNA damage response based on chromatin recruitment, but not expression-level changes of repair-associated proteins. The choice of DNA repair pathway hereby depends on the severity of decitabine-induced DNA lesions. Although under moderate DNMT activity, mismatch (MMR), base excision (BER), and Fanconi anaemia-dependent DNA repair combined with homologous recombination are activated in response to decitabine, high DNMT activity and therefore immense replication stress induce activation of MMR and BER followed by non-homologous end joining.
Collapse
Affiliation(s)
- Tina Aumer
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Maike Däther
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Linda Bergmayr
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Stephanie Kartika
- Department of Biochemistry, University of Munich (LMU), München, Germany
| | - Theodor Zeng
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Qingyi Ge
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | - Grazia Giorgio
- Department of Ophthalmology, University Hospital LMU Munich, München, Germany
| | - Alexander J Hess
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
| | | | - Franziska R Traube
- Institute of Chemical Epigenetics Munich, Department of Chemistry, University of Munich (LMU), München, Germany
- TUM School of Natural Sciences, Technical University of Munich (TUM), München, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
16
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
17
|
He Y, Wang Y, Luo Z, Zhang X, Bai H, Wang J. SMC2 knockdown inhibits malignant progression of lung adenocarcinoma by upregulating BTG2 expression. Cell Signal 2024; 120:111216. [PMID: 38729325 DOI: 10.1016/j.cellsig.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer worldwide. Structural maintenance of chromosomes 2 (SMC2) serves as a predictor of poor prognosis across various cancer types. This study aims to explore the role and underlying mechanisms of SMC2 in LUAD progression. The expression of SMC2 in LUAD tissues and its correlation with prognosis were analyzed by public databases. Knockdown of SMC2 was performed to assess the proliferation, migration and invasion ability of LUAD cells. Bulk RNA sequencing analysis identified enriched cellular pathways and remarkable upregulation of BTG anti-proliferation factor 2 (BTG2) expression after SMC2 knockdown in LUAD cells. Then, BTG2 was silenced to assess the malignant behavior of LUAD cells. Subcutaneous transplantation and intracranial tumor models of LUAD cells in BALB/c nude mice were established to assess the antineoplastic effect of SMC2 knockdown in vivo. Additionally, a lung metastasis model was created to evaluate the pro-metastatic effect of SMC2. Our findings indicated that SMC2 was upregulated in LUAD tissues and cell lines, with higher expression correlating with poor prognosis. SMC2 silencing suppressed the proliferation, migration and invasion ability of LUAD cells by upregulating BTG2 expression via p53 and inactivating ERK and AKT pathways. BTG2 silencing reversed the effects of SMC2 downregulation on malignant behaviors of LUAD cells and restored the phosphorylated ERK and AKT levels. Furthermore, SMC2 knockdown effectively prevented the formation of subcutaneous, intracranial and metastatic tumor in vivo, and upregulation of BTG2 expression after SMC2 knockdown was confirmed in tumor models. This study revealed that SMC2 knockdown restrained the malignant progression of LUAD through upregulation of BTG2 expression and inactivation of ERK and AKT pathways, and SMC2 could be a potential therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Yan He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiyao Wang
- Department of Nursing Academy, Southwest Medical University, Luzhou, China
| | - Zhenyu Luo
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xue Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
18
|
Pan H, Ho SE, Xue C, Cui J, Johanson QS, Sachs N, Ross LS, Li F, Solomon RA, Connolly ES, Patel VI, Maegdefessel L, Zhang H, Reilly MP. Atherosclerosis Is a Smooth Muscle Cell-Driven Tumor-Like Disease. Circulation 2024; 149:1885-1898. [PMID: 38686559 PMCID: PMC11164647 DOI: 10.1161/circulationaha.123.067587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sebastian E. Ho
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Jian Cui
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Quinian S. Johanson
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research, partner site: Munich Heart Alliance, 10785 Berlin, Germany
| | - Leila S. Ross
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Fang Li
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert A. Solomon
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - E. Sander Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Virendra I. Patel
- Section of Vascular Surgery and Endovascular Interventions, New York-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
- German Center for Cardiovascular Research, partner site: Munich Heart Alliance, 10785 Berlin, Germany
- Department of Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
20
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
21
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
22
|
Kirby TJ, Zahr HC, Fong EHH, Lammerding J. Eliminating elevated p53 signaling fails to rescue skeletal muscle defects or extend survival in lamin A/C-deficient mice. Cell Death Discov 2024; 10:245. [PMID: 38778055 PMCID: PMC11111808 DOI: 10.1038/s41420-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear intermediate filaments that provide structural support to the nucleus and contribute to chromatin organization and transcriptional regulation. LMNA mutations cause muscular dystrophies, dilated cardiomyopathy, and other diseases. The mechanisms by which many LMNA mutations result in muscle-specific diseases have remained elusive, presenting a major hurdle in the development of effective treatments. Previous studies using striated muscle laminopathy mouse models found that cytoskeletal forces acting on mechanically fragile Lmna-mutant nuclei led to transient nuclear envelope rupture, extensive DNA damage, and activation of DNA damage response (DDR) pathways in skeletal muscle cells in vitro and in vivo. Furthermore, hearts of Lmna mutant mice have elevated activation of the tumor suppressor protein p53, a central regulator of DDR signaling. We hypothesized that elevated p53 activation could present a pathogenic mechanism in striated muscle laminopathies, and that eliminating p53 activation could improve muscle function and survival in laminopathy mouse models. Supporting a pathogenic function of p53 activation in muscle, stabilization of p53 was sufficient to reduce contractility and viability in wild-type muscle cells in vitro. Using three laminopathy models, we found that increased p53 activity in Lmna-mutant muscle cells primarily resulted from mechanically induced damage to the myonuclei, and not from altered transcriptional regulation due to loss of lamin A/C expression. However, global deletion of p53 in a severe muscle laminopathy model did not reduce the disease phenotype or increase survival, indicating that additional drivers of disease must contribute to the disease pathogenesis.
Collapse
Affiliation(s)
- Tyler J Kirby
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Movement Sciences, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| | - Hind C Zahr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ern Hwei Hannah Fong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
23
|
Göttig L, Jummer S, Staehler L, Groitl P, Karimi M, Blanchette P, Kosulin K, Branton PE, Schreiner S. The human adenovirus PI3K-Akt activator E4orf1 is targeted by the tumor suppressor p53. J Virol 2024; 98:e0170123. [PMID: 38451084 PMCID: PMC11019960 DOI: 10.1128/jvi.01701-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/13/2024] [Indexed: 03/08/2024] Open
Abstract
Human adenoviruses (HAdV) are classified as DNA tumor viruses due to their potential to mediate oncogenic transformation in non-permissive mammalian cells and certain human stem cells. To achieve transformation, the viral early proteins of the E1 and E4 regions must block apoptosis and activate proliferation: the former predominantly through modulating the cellular tumor suppressor p53 and the latter by activating cellular pro-survival and pro-metabolism protein cascades, such as the phosphoinositide 3-kinase (PI3K-Akt) pathway, which is activated by HAdV E4orf1. Focusing on HAdV-C5, we show that E4orf1 is necessary and sufficient to stimulate Akt activation through phosphorylation in H1299 cells, which is not only hindered but repressed during HAdV-C5 infection with a loss of E4orf1 function in p53-positive A549 cells. Contrary to other research, E4orf1 localized not only in the common, cytoplasmic PI3K-Akt-containing compartment, but also in distinct nuclear aggregates. We identified a novel inhibitory mechanism, where p53 selectively targeted E4orf1 to destabilize it, also stalling E4orf1-dependent Akt phosphorylation. Co-IP and immunofluorescence studies showed that p53 and E4orf1 interact, and since p53 is bound by the HAdV-C5 E3 ubiquitin ligase complex, we also identified E4orf1 as a novel factor interacting with E1B-55K and E4orf6 during infection; overexpression of E4orf1 led to less-efficient E3 ubiquitin ligase-mediated proteasomal degradation of p53. We hypothesize that p53 specifically subverts the pro-survival function of E4orf1-mediated PI3K-Akt activation to protect the cell from metabolic hyper-activation or even transformation.IMPORTANCEHuman adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous subtypes that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. Nonetheless, E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating the cellular pathways such as phosphoinositide 3-kinase-Akt-mTOR. Our study reveals a novel and general impact of E4orf1 on host mechanisms, providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as vaccine or gene vectors. HAdV constitute an ideal model system to analyze the underlying molecular principles of virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Jummer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Staehler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maryam Karimi
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paola Blanchette
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Karin Kosulin
- Molecular Microbiology, Children’s Cancer Research Institute, Vienna, Austria
| | - Philip E. Branton
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Freiburg, Germany
- Institute of Virology, Medical Center—University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Su T, Trang N, Zhu J, Kong L, Cheung D, Chou V, Ellis L, Huang C, Camden N, McHugh CA. GRAS1 non-coding RNA protects against DNA damage and cell death by binding and stabilizing NKAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.20.545783. [PMID: 38645172 PMCID: PMC11030241 DOI: 10.1101/2023.06.20.545783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Non-coding RNA (ncRNA) gene products are involved in diverse biological processes including splicing, epigenetic regulation, gene expression, proliferation, and metabolism. The biological mechanisms by which ncRNAs contribute to cell survival remain poorly understood. We found that the Growth Regulator Antisense 1 (GRAS1) long non-coding RNA (lncRNA) transcript promotes growth in multiple human cell types by protecting against DNA damage. Knockdown of GRAS1 induced DNA damage and cell death, along with significant expression changes in DNA damage response, intrinsic apoptotic signaling, and cellular response to environmental stimulus genes. Extensive DNA damage occurred after GRAS1 knockdown, with numerous double strand breaks occurring in each cell. The number of cells undergoing apoptosis and with fragmented nuclei increased significantly after GRAS1 knockdown. We used RNA antisense purification and mass spectrometry (RAP-MS) to identify the NF-κB activating protein (NKAP) as a direct protein interaction partner of GRAS1 lncRNA. NKAP protein was degraded after GRAS1 knockdown, in a proteasome-dependent manner. Overexpression of GRAS1 or NKAP mitigated the DNA damage effects of GRAS1 knockdown. In summary, GRAS1 and NKAP directly interact to protect against DNA damage and cell death in multiple human cell lines.
Collapse
Affiliation(s)
| | | | - Jonathan Zhu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Lingbo Kong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Darin Cheung
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Vita Chou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Lauren Ellis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Calvin Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Nichelle Camden
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Colleen A. McHugh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
25
|
Katebi A, Chen X, Ramirez D, Li S, Lu M. Data-driven modeling of core gene regulatory network underlying leukemogenesis in IDH mutant AML. NPJ Syst Biol Appl 2024; 10:38. [PMID: 38594351 PMCID: PMC11003984 DOI: 10.1038/s41540-024-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation of poorly differentiated myeloid cells, with a heterogenous mutational landscape. Mutations in IDH1 and IDH2 are found in 20% of the AML cases. Although much effort has been made to identify genes associated with leukemogenesis, the regulatory mechanism of AML state transition is still not fully understood. To alleviate this issue, here we develop a new computational approach that integrates genomic data from diverse sources, including gene expression and ATAC-seq datasets, curated gene regulatory interaction databases, and mathematical modeling to establish models of context-specific core gene regulatory networks (GRNs) for a mechanistic understanding of tumorigenesis of AML with IDH mutations. The approach adopts a new optimization procedure to identify the top network according to its accuracy in capturing gene expression states and its flexibility to allow sufficient control of state transitions. From GRN modeling, we identify key regulators associated with the function of IDH mutations, such as DNA methyltransferase DNMT1, and network destabilizers, such as E2F1. The constructed core regulatory network and outcomes of in-silico network perturbations are supported by survival data from AML patients. We expect that the combined bioinformatics and systems-biology modeling approach will be generally applicable to elucidate the gene regulation of disease progression.
Collapse
Affiliation(s)
- Ataur Katebi
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Xiaowen Chen
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Daniel Ramirez
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
| | - Sheng Li
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Computer Science & Engineering, University of Connecticut, Storrs, CT, USA.
- The Jackson Laboratory Cancer Center, Bar Harbor, ME, USA.
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.
| |
Collapse
|
26
|
Pereira MP, Herrity E, Kim DDH. TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Ann Hematol 2024; 103:1049-1067. [PMID: 37770618 DOI: 10.1007/s00277-023-05462-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Improved understanding of TP53 biology and the clinicopathological features of TP53-mutated myeloid neoplasms has led to the recognition of TP53-mutated acute myeloid leukemia/myelodysplastic syndrome (TP53m AML/MDS) as a unique entity, characterized by dismal outcomes following conventional therapies. Several clinical trials have investigated combinations of emerging therapies for these patients with the poorest molecular prognosis among myeloid neoplasms. Although some emerging therapies have shown improvement in overall response rates, this has not translated into better overall survival, hence the notion that p53 remains an elusive target. New therapeutic strategies, including novel targeted therapies, immune checkpoint inhibitors, and monoclonal antibodies, represent a shift away from cytotoxic and hypomethylating-based therapies, towards approaches combining non-immune and novel immune therapeutic strategies. The triple combination of azacitidine and venetoclax with either magrolimab or eprenetapopt have demonstrated safety in early trials, with phase III trials currently underway, and promising interim clinical results. This review compiles background on TP53 biology, available and emerging therapies along with their mechanisms of action for the TP53m disease entity, current treatment challenges, and recently published data and status of ongoing clinical trials for TP53m AML/MDS.
Collapse
Affiliation(s)
- Mariana Pinto Pereira
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Elizabeth Herrity
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada
| | - Dennis D H Kim
- Hans Messner Allogeneic Blood and Marrow Transplantation Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, M5G2M9, Toronto, ON, Canada.
- Leukemia Program, Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Hematology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Liu Z, Wang H, Liu H, Ding K, Shen H, Zhao X, Fu R. Targeting NKG2D/NKG2DL axis in multiple myeloma therapy. Cytokine Growth Factor Rev 2024; 76:1-11. [PMID: 38378397 DOI: 10.1016/j.cytogfr.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Immune effector cells in patients with multiple myeloma (MM) are at the forefront of many immunotherapy treatments, and several methods have been developed to fully utilise the antitumour potential of immune cells. T and NK cell-derived immune lymphocytes both expressed activating NK receptor group 2 member D(NKG2D). This receptor can identify eight distinct NKG2D ligands (NKG2DL), including major histocompatibility complex class I (MHC) chain-related protein A and B (MICA and MICB). Their binding to NKG2D triggers effector roles in T and NK cells. NKG2DL is polymorphic in MM cells. The decreased expression of NKG2DL on the cell surface is explained by multiple mechanisms of tumour immune escape. In this review, we discuss the mechanisms by which the NKG2D/NKG2DL axis regulates immune effector cells and strategies for promoting NKG2DL expression and inhibiting its release in multiple myeloma and propose therapeutic strategies that increase the expression of NKG2DL in MM cells while enhancing the activation and killing function of NK cells.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| | - Hao Wang
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Hongli Shen
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Xianghong Zhao
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, 154 Anshan Street, Heping District, Tianjin 300052, PR China.
| |
Collapse
|
28
|
Kamal M, Joanisse S, Parise G. Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation. GeroScience 2024; 46:1843-1859. [PMID: 37751045 PMCID: PMC10828175 DOI: 10.1007/s11357-023-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
As we age, the ability to regenerate and repair skeletal muscle damage declines, partially due to increasing dysfunction of muscle resident stem cells-satellite cells (SC). Recent evidence implicates cellular senescence, which is the irreversible arrest of proliferation, as a potentiator of SC impairment during aging. However, little is known about the role of senescence in SC, and there is a large discrepancy in senescence classification within skeletal muscle. The purpose of this study was to develop a model of senescence in skeletal muscle myoblasts and identify how common senescence-associated biomarkers respond. Low-passage C2C12 myoblasts were treated with bleomycin or vehicle and then evaluated for cytological and molecular senescence markers, proliferation status, cell cycle kinetics, and differentiation potential. Bleomycin treatment caused double-stranded DNA breaks, which upregulated p21 mRNA and protein, potentially through NF-κB and senescence-associated super enhancer (SASE) signaling (p < 0.01). Consequently, cell proliferation was abruptly halted due to G2/M-phase arrest (p < 0.01). Bleomycin-treated myoblasts displayed greater senescence-associated β-galactosidase staining (p < 0.01), which increased over several days. These myoblasts remained senescent following 6 days of differentiation and had significant impairments in myotube formation (p < 0.01). Furthermore, our results show that senescence can be maintained despite the lack of p16 gene expression in C2C12 myoblasts. In conclusion, bleomycin treatment provides a valid model of damage-induced senescence that was associated with elevated p21, reduced myoblast proliferation, and aberrant cell cycle kinetics, while confirming that a multi-marker approach is needed for the accurate classification of senescence within skeletal muscle.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sport Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
29
|
Naso FD, Polverino F, Cilluffo D, Latini L, Stagni V, Asteriti IA, Rosa A, Soddu S, Guarguaglini G. AurkA/TPX2 co-overexpression in nontransformed cells promotes genome instability through induction of chromosome mis-segregation and attenuation of the p53 signalling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167116. [PMID: 38447882 DOI: 10.1016/j.bbadis.2024.167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.
Collapse
Affiliation(s)
- Francesco Davide Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Danilo Cilluffo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Linda Latini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Venturina Stagni
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Signal Transduction Unit, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Viale Regina Elena, 291, 00161 Rome, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
30
|
Eppard M, Passos JF, Victorelli S. Telomeres, cellular senescence, and aging: past and future. Biogerontology 2024; 25:329-339. [PMID: 38150087 DOI: 10.1007/s10522-023-10085-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Over half a century has passed since Alexey Olovnikov's groundbreaking proposal of the end-replication problem in 1971, laying the foundation for our understanding of telomeres and their pivotal role in cellular senescence. This review paper delves into the intricate and multifaceted relationship between cellular senescence, the influence of telomeres in this process, and the far-reaching consequences of telomeres in the context of aging and age-related diseases. Additionally, the paper investigates the various factors that can influence telomere shortening beyond the confines of the end-replication problem and how telomeres can exert their impact on aging, even in the absence of significant shortening. Ultimately, this paper stands as a tribute to the pioneering work of Olovnikov, whose seminal contributions established the solid foundation upon which our ongoing explorations of telomeres and the aging process are based.
Collapse
Affiliation(s)
- Madeline Eppard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Stella Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Roselle C, Horikawa I, Chen L, Kelly AR, Gonzales D, Da T, Wellhausen N, Rommel PC, Baker D, Suhoski M, Scholler J, O'Connor RS, Young RM, Harris CC, June CH. Enhancing chimeric antigen receptor T cell therapy by modulating the p53 signaling network with Δ133p53α. Proc Natl Acad Sci U S A 2024; 121:e2317735121. [PMID: 38408246 DOI: 10.1073/pnas.2317735121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Antigens, CD19
- Cell- and Tissue-Based Therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Christopher Roselle
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Donna Gonzales
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tong Da
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Megan Suhoski
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Stafylidis C, Vlachopoulou D, Kontandreopoulou CN, Diamantopoulos PΤ. Unmet Horizons: Assessing the Challenges in the Treatment of TP53-Mutated Acute Myeloid Leukemia. J Clin Med 2024; 13:1082. [PMID: 38398394 PMCID: PMC10889132 DOI: 10.3390/jcm13041082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a challenging hematologic malignancy. The presence of TP53 mutations in AML poses a therapeutic challenge, considering that standard treatments face significant setbacks in achieving meaningful responses. There is a pressing need for the development of innovative treatment modalities to overcome resistance to conventional treatments attributable to the unique biology of TP53-mutated (TP53mut) AML. This review underscores the role of TP53 mutations in AML, examines the current landscape of treatment options, and highlights novel therapeutic approaches, including targeted therapies, combination regimens, and emerging immunotherapies, as well as agents being explored in preclinical studies according to their potential to address the unique hurdles posed by TP53mut AML.
Collapse
Affiliation(s)
| | | | | | - Panagiotis Τ. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.S.); (D.V.); (C.-N.K.)
| |
Collapse
|
33
|
Usluer S, Galhuber M, Khanna Y, Bourgeois B, Spreitzer E, Michenthaler H, Prokesch A, Madl T. Disordered regions mediate the interaction of p53 and MRE11. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119654. [PMID: 38123020 DOI: 10.1016/j.bbamcr.2023.119654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.
Collapse
Affiliation(s)
- Sinem Usluer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Markus Galhuber
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Yukti Khanna
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Benjamin Bourgeois
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Emil Spreitzer
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; Research Unit Integrative Structural Biology, Medical University of Graz, Austria
| | - Helene Michenthaler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
34
|
Singh AK, Yadav D, Malviya R. Splicing DNA Damage Adaptations for the Management of Cancer Cells. Curr Gene Ther 2024; 24:135-146. [PMID: 38282448 DOI: 10.2174/0115665232258528231018113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 01/30/2024]
Abstract
Maintaining a tumour cell's resistance to apoptosis (organized cell death) is essential for cancer to metastasize. Signal molecules play a critical function in the tightly regulated apoptotic process. Apoptosis may be triggered by a wide variety of cellular stresses, including DNA damage, but its ultimate goal is always the same: the removal of damaged cells that might otherwise develop into tumours. Many chemotherapy drugs rely on cancer cells being able to undergo apoptosis as a means of killing them. The mechanisms by which DNA-damaging agents trigger apoptosis, the interplay between pro- and apoptosis-inducing signals, and the potential for alteration of these pathways in cancer are the primary topics of this review.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
35
|
Mohammed FF, Abdelrazik EG, Anwar A, Abdelgayed SS. Hepatic P53 upregulation and the genotoxic potential of acesulfame-K treatment in rats with a special emphasis on in vitro lymphocyte and macrophage activity testing. Hum Exp Toxicol 2024; 43:9603271241236900. [PMID: 38418425 DOI: 10.1177/09603271241236900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Acesulfame-k (Ace-k) is a widely used artificial sweetener in various products, and long-term cumulative and multisource exposure is possible despite inadequate toxicological data confirming its safety. Ninety male rats were divided into two main groups according to their body weight into immature and mature rats. Each group was subdivided into 3 subgroups: control untreated, 30 and 90 mg/kg b. w of Ace-k via gastric intubation. The treatment was performed daily 5 days per week for 12 weeks. At the end of the experimental period, blood samples were collected for in vitro testing of lymphocyte proliferation rate, comet assay, and macrophage activity about nitric oxide (NO) production. In addition, the collection of liver specimens was performed for P53 gene expression and histopathological evaluation. The results revealed that Ace-k induced modulation in lymphocyte proliferation rate and affected the production of NO by macrophages while increasing in tail moment in a dose-dependent manner that varied among different age groups. The upregulation of P53 in the liver was correlated with increased polyploidization and necro apoptotic reaction and various histopathological hepatic alterations. The present data revealed that chronic treatment of rats with Ace-k affects lymphocyte proliferation and macrophage activity in a dose-dependent manner. In addition, the genotoxic and hepatotoxic potential of Ace-k were confirmed.
Collapse
Affiliation(s)
- Faten F Mohammed
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Abeer Anwar
- Immunology Unit, Animal Reproduction Research Institute, Giza, Egypt
| | - Sherein S Abdelgayed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
36
|
Yoon H, Jang KL. Hydrogen Peroxide Inhibits Hepatitis C Virus Replication by Downregulating Hepatitis C Virus Core Levels through E6-Associated Protein-Mediated Proteasomal Degradation. Cells 2023; 13:62. [PMID: 38201266 PMCID: PMC10778395 DOI: 10.3390/cells13010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) is constantly exposed to considerable oxidative stress, characterized by elevated levels of reactive oxygen species, including hydrogen peroxide (H2O2), during acute and chronic infection in the hepatocytes of patients. However, the effect of oxidative stress on HCV replication is largely unknown. In the present study, we demonstrated that H2O2 downregulated HCV Core levels to inhibit HCV replication. For this purpose, H2O2 upregulated p53 levels, resulting in the downregulation of both the protein and enzyme activity levels of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b, and activated the expression of E6-associated protein (E6AP) through promoter hypomethylation in the presence of HCV Core. E6AP, an E3 ligase, induced the ubiquitin-dependent proteasomal degradation of HCV Core in a p53-dependent manner. The inhibitory effect of H2O2 on HCV replication was almost completely nullified either by treatment with a representative antioxidant, N-acetyl-L-cysteine, or by knockdown of p53 or E6AP using a specific short hairpin RNA, confirming the roles of p53 and E6AP in the inhibition of HCV replication by H2O2. This study provides insights into the mechanisms that regulate HCV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea;
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
37
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
38
|
Bandyopadhyay A, Ghosh SK. Role of autophagy in stress and drug-responsive cell death in Entamoeba histolytica and its cross-talk with apoptosis-inducing factor. Mol Biochem Parasitol 2023; 256:111593. [PMID: 37708914 DOI: 10.1016/j.molbiopara.2023.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Cell death in unicellular protozoan parasite Entamoeba histolytica is not yet reported though it displays several features of autophagic cell death. Autophagic cell death was reported to take place in ancient protozoans under several stresses. Here we report the occurrence of autophagic cell death in the Entamoeba histolytica trophozoites under oxidative stress as well as by the treatment with metronidazole, the most-widely-used drug for amoebiasis treatment and was shown to generate oxidative stress in the trophozoites. The autophagic flux increases during nutrient deprivation and metronidazole treatment and decreases upon oxidative stress. During oxidative stress the autophagy leads to nucleophagy that is ultimately destined to be digested within the lysosomal chamber. The formation of nucleophagosome depends on the apoptosis-inducing factor (AIF) that translocates to the nucleus from cytoplasm upon oxidative stress. It was experimentally proved that ATG8 (Autophagy-related protein 8) binds with the AIF in the nucleus of the trophozoites and helps in ATG8 recruitment and autophagy initiation overall suggesting that oxidative stress-driven AIF translocation to nucleus results in binding with ATG8 and initiates nucleophagy leading to cell death.
Collapse
Affiliation(s)
| | - Sudip Kumar Ghosh
- Department of Biotechnology, IIT Kharagpur, West Bengal 721302, India.
| |
Collapse
|
39
|
Liang L, Huang Y, Chen L, Shi Z, Wang H, Zhang T, Li Z, Mi J, Fan T, Lu Y, Chen F, Huang W, Hu K. Radioprotective efficacy of Astilbin in mitigating radiation-induced lung injury through inhibition of p53 acetylation. ENVIRONMENTAL TOXICOLOGY 2023; 38:2967-2980. [PMID: 37598414 DOI: 10.1002/tox.23931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Radiation-induced lung injury (RILI) is a common side effect in thoracic tumor patients undergoing radiotherapy. At present, there is no ideal radio-protective agent which is widely used in RILI treatment. Astilbin (AST), a bioactive flavonoid, exhibits various biological effects, including anti-inflammatory, antioxidant, and anti-fibrotic activities, which partly result from reducing oxidative stress and inflammation in various pathogenic conditions. However, the protective efficacy of AST to ameliorate RILI has not been reported. In this study, we employed network pharmacology, RNA sequencing, and experimental evaluation to reveal the effects and pharmacological mechanism of AST to treat RILI in vivo and in vitro. We observed that AST reduced radiation-induced apoptosis, DNA damage, inflammatory reactions, and the reactive oxygen species (ROS) level in human normal lung epithelial cells BEAS-2B. Further study showed that AST treatment significantly ameliorated RILI by reducing the radiation-induced pathology changes and inflammatory reaction of lung tissue in C57BL/6J mice. Mechanistically, the expression of epithelial-mesenchymal transition (EMT) markers and radiation-triggered acetylation of the p53 protein were alleviated by AST treatment. Furthermore, AST alleviated the acetylation of p53 after intervention of Trichostatin A (TSA). Our data indicate that AST can alleviate RILI by inhibiting inflammatory reactions and the EMT process through decreasing the expression of p53 acetylation. In conclusion, our study suggests that AST has great potential to be a new protective and therapeutic compound for RILI.
Collapse
Affiliation(s)
- Lixing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yaqin Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Liuyin Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhiling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Housheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zhixun Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Jinglin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Ting Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yushuang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Fuli Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
40
|
Torii T, Sugimoto W, Itoh K, Kinoshita N, Gessho M, Goto T, Uehara I, Nakajima W, Budirahardja Y, Miyoshi D, Nishikata T, Tanaka N, Hirata H, Kawauchi K. Loss of p53 function promotes DNA damage-induced formation of nuclear actin filaments. Cell Death Dis 2023; 14:766. [PMID: 38001089 PMCID: PMC10674001 DOI: 10.1038/s41419-023-06310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Tumor suppressor p53 plays a central role in response to DNA damage. DNA-damaging agents modulate nuclear actin dynamics, influencing cell behaviors; however, whether p53 affects the formation of nuclear actin filaments remains unclear. In this study, we found that p53 depletion promoted the formation of nuclear actin filaments in response to DNA-damaging agents, such as doxorubicin (DOXO) and etoposide (VP16). Even though the genetic probes used for the detection of nuclear actin filaments exerted a promotive effect on actin polymerization, the detected formation of nuclear actin filaments was highly dependent on both p53 depletion and DNA damage. Whilst active p53 is known to promote caspase-1 expression, the overexpression of caspase-1 reduced DNA damage-induced formation of nuclear actin filaments in p53-depleted cells. In contrast, co-treatment with DOXO and the pan-caspase inhibitor Q-VD-OPh or the caspase-1 inhibitor Z-YVAD-FMK induced the formation of nuclear actin filament formation even in cells bearing wild-type p53. These results suggest that the p53-caspase-1 axis suppresses DNA damage-induced formation of nuclear actin filaments. In addition, we found that the expression of nLifeact-GFP, the filamentous-actin-binding peptide Lifeact fused with the nuclear localization signal (NLS) and GFP, modulated the structure of nuclear actin filaments to be phalloidin-stainable in p53-depleted cells treated with the DNA-damaging agent, altering the chromatin structure and reducing the transcriptional activity. The level of phosphorylated H2AX (γH2AX), a marker of DNA damage, in these cells also reduced upon nLifeact-GFP expression, whilst details of the functional relationship between the formation of nLifeact-GFP-decorated nuclear actin filaments and DNA repair remained to be elucidated. Considering that the loss of p53 is associated with cancer progression, the results of this study raise a possibility that the artificial reinforcement of nuclear actin filaments by nLifeact-GFP may enhance the cytotoxic effect of DNA-damaging agents in aggressive cancer cells through a reduction in gene transcription.
Collapse
Affiliation(s)
- Takeru Torii
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Wataru Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Katsuhiko Itoh
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Natsuki Kinoshita
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Masaya Gessho
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Toshiyuki Goto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Yemima Budirahardja
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Takahito Nishikata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, 924-0838, Japan.
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, 650-0047, Japan.
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, 113-8602, Japan.
| |
Collapse
|
41
|
Ben-Oz BM, Machour FE, Nicola M, Argoetti A, Polyak G, Hanna R, Kleifeld O, Mandel-Gutfreund Y, Ayoub N. A dual role of RBM42 in modulating splicing and translation of CDKN1A/p21 during DNA damage response. Nat Commun 2023; 14:7628. [PMID: 37993446 PMCID: PMC10665399 DOI: 10.1038/s41467-023-43495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
p53-mediated cell cycle arrest during DNA damage is dependent on the induction of p21 protein, encoded by the CDKN1A gene. p21 inhibits cyclin-dependent kinases required for cell cycle progression to guarantee accurate repair of DNA lesions. Hence, fine-tuning of p21 levels is crucial to preserve genomic stability. Currently, the multilayered regulation of p21 levels during DNA damage is not fully understood. Herein, we identify the human RNA binding motif protein 42 (RBM42) as a regulator of p21 levels during DNA damage. Genome-wide transcriptome and interactome analysis reveals that RBM42 alters the expression of p53-regulated genes during DNA damage. Specifically, we demonstrate that RBM42 facilitates CDKN1A splicing by counteracting the splicing inhibitory effect of RBM4 protein. Unexpectedly, we also show that RBM42, underpins translation of various splicing targets, including CDKN1A. Concordantly, transcriptome-wide mapping of RBM42-RNA interactions using eCLIP further substantiates the dual function of RBM42 in regulating splicing and translation of its target genes, including CDKN1A. Collectively, our data show that RBM42 couples splicing and translation machineries to fine-tune gene expression during DNA damage response.
Collapse
Affiliation(s)
- Bella M Ben-Oz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marian Nicola
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Amir Argoetti
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Galia Polyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Rawad Hanna
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Oded Kleifeld
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
42
|
Huang Y, Hertzel AV, Fish SR, Halley CL, Bohm EK, Martinez HM, Durfee CC, Sanders MA, Harris RS, Niedernhofer LJ, Bernlohr DA. TP53/p53 Facilitates Stress-Induced Exosome and Protein Secretion by Adipocytes. Diabetes 2023; 72:1560-1573. [PMID: 37347719 PMCID: PMC10588298 DOI: 10.2337/db22-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Besides the secretion of fatty acids, lipolytic stimulation of adipocytes results in the secretion of triglyceride-rich extracellular vesicles and some free proteins (e.g., fatty acid binding protein 4) that, in sum, affect adipose homeostasis as well as the development of metabolic disease. At the mechanistic level, lipolytic signals activate p53 in an adipose triglyceride lipase-dependent manner, and pharmacologic inhibition of p53 attenuates adipocyte-derived extracellular vesicle (AdEV) protein and FABP4 secretion. Mass spectrometry analyses of the lipolytic secretome identified proteins involved in glucose and fatty acid metabolism, translation, chaperone activities, and redox control. Consistent with a role for p53 in adipocyte protein secretion, activation of p53 by the MDM2 antagonist nutlin potentiated AdEV particles and non-AdEV protein secretion from cultured 3T3-L1 or OP9 adipocytes while the levels of FABP4 and AdEV proteins were significantly reduced in serum from p53-/- mice compared with wild-type controls. The genotoxin doxorubicin increased AdEV protein and FABP4 secretion in a p53-dependent manner and DNA repair-depleted ERCC1-/Δ-haploinsufficient mice expressed elevated p53 in adipose depots, along with significantly increased serum FABP4. In sum, these data suggest that lipolytic signals, and cellular stressors such as DNA damage, facilitate AdEV protein and FABP4 secretion by adipocytes in a p53-dependent manner. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Shayla R. Fish
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Catherine L. Halley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ellie K. Bohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hector Martell Martinez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
| | - Cameron C. Durfee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Mark A. Sanders
- University Imaging Center, University of Minnesota, Minneapolis, MN
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN
- Institute for Diabetes, Obesity and Metabolism, University of Minnesota, Minneapolis, MN
| |
Collapse
|
43
|
Kuroki Y, Agata K. Isolation of planarian viable cells using fluorescence-activated cell sorting for advancing single-cell transcriptome analysis. Genes Cells 2023; 28:800-810. [PMID: 37723830 PMCID: PMC11448005 DOI: 10.1111/gtc.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Preparing viable single cells is critical for conducting single-cell RNA sequencing (scRNA-seq) because the presence of ambient RNA from dead or damaged cells can interfere with data analysis. Here, we developed a method for isolating viable single cells from adult planarian bodies using fluorescence-activated cell sorting (FACS). This method was then applied to both adult pluripotent stem cells (aPSCs) and differentiating/differentiated cells. Initially, we employed a violet instead of ultraviolet (UV) laser to excite Hoechst 33342 to reduce cellular damage. After optimization of cell staining conditions and FACS compensation, we generated FACS profiles similar to those created using a previous method that employed a UV laser. Despite successfully obtaining high-quality RNA sequencing data for aPSCs, non-aPSCs produced low-quality RNA reads (i.e., <60% of cells possessing barcoding mRNAs). Subsequently, we identified an effective FACS gating condition that excluded low-quality cells and tissue debris without staining. This non-staining isolation strategy not only reduced post-dissociation time but also enabled high-quality scRNA-seq results for all cell types (i.e., >80%). Taken together, these findings imply that the non-staining FACS strategy may be beneficial for isolating viable cells not only from planarians but also from other organisms and tissues for scRNA-seq studies.
Collapse
Affiliation(s)
- Yoshihito Kuroki
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Kiyokazu Agata
- Laboratory of Regeneration Biology, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
44
|
De Marco K, Sanese P, Simone C, Grossi V. Histone and DNA Methylation as Epigenetic Regulators of DNA Damage Repair in Gastric Cancer and Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:4976. [PMID: 37894343 PMCID: PMC10605360 DOI: 10.3390/cancers15204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer (GC), one of the most common malignancies worldwide, is a heterogeneous disease developing from the accumulation of genetic and epigenetic changes. One of the most critical epigenetic alterations in GC is DNA and histone methylation, which affects multiple processes in the cell nucleus, including gene expression and DNA damage repair (DDR). Indeed, the aberrant expression of histone methyltransferases and demethylases influences chromatin accessibility to the DNA repair machinery; moreover, overexpression of DNA methyltransferases results in promoter hypermethylation, which can suppress the transcription of genes involved in DNA repair. Several DDR mechanisms have been recognized so far, with homologous recombination (HR) being the main pathway involved in the repair of double-strand breaks. An increasing number of defective HR genes are emerging in GC, resulting in the identification of important determinants of therapeutic response to DDR inhibitors. This review describes how both histone and DNA methylation affect DDR in the context of GC and discusses how alterations in DDR can help identify new molecular targets to devise more effective therapeutic strategies for GC, with a particular focus on HR-deficient tumors.
Collapse
Affiliation(s)
- Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (K.D.M.); (P.S.)
| |
Collapse
|
45
|
Charkiewicz R, Sulewska A, Mroz R, Charkiewicz A, Naumnik W, Kraska M, Gyenesei A, Galik B, Junttila S, Miskiewicz B, Stec R, Karabowicz P, Zawada M, Miltyk W, Niklinski J. Serum Insights: Leveraging the Power of miRNA Profiling as an Early Diagnostic Tool for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:4910. [PMID: 37894277 PMCID: PMC10605272 DOI: 10.3390/cancers15204910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Non-small cell lung cancer is the predominant form of lung cancer and is associated with a poor prognosis. MiRNAs implicated in cancer initiation and progression can be easily detected in liquid biopsy samples and have the potential to serve as non-invasive biomarkers. In this study, we employed next-generation sequencing to globally profile miRNAs in serum samples from 71 early-stage NSCLC patients and 47 non-cancerous pulmonary condition patients. Preliminary analysis of differentially expressed miRNAs revealed 28 upregulated miRNAs in NSCLC compared to the control group. Functional enrichment analyses unveiled their involvement in NSCLC signaling pathways. Subsequently, we developed a gradient-boosting decision tree classifier based on 2588 miRNAs, which demonstrated high accuracy (0.837), sensitivity (0.806), and specificity (0.859) in effectively distinguishing NSCLC from non-cancerous individuals. Shapley Additive exPlanations analysis improved the model metrics by identifying the top 15 miRNAs with the strongest discriminatory value, yielding an AUC of 0.96 ± 0.04, accuracy of 0.896, sensitivity of 0.884, and specificity of 0.903. Our study establishes the potential utility of a non-invasive serum miRNA signature as a supportive tool for early detection of NSCLC while also shedding light on dysregulated miRNAs in NSCLC biology. For enhanced credibility and understanding, further validation in an independent cohort of patients is warranted.
Collapse
Affiliation(s)
- Radoslaw Charkiewicz
- Center of Experimental Medicine, Medical University of Bialystok, 15-369 Bialystok, Poland
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| | - Anetta Sulewska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| | - Robert Mroz
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Alicja Charkiewicz
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Wojciech Naumnik
- 1st Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland;
| | - Marcin Kraska
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Attila Gyenesei
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, H-7624 Pecs, Hungary; (A.G.); (B.G.)
| | - Bence Galik
- Szentagothai Research Center, Genomic and Bioinformatic Core Facility, H-7624 Pecs, Hungary; (A.G.); (B.G.)
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku & Åbo Akademi University, FI-20520 Turku, Finland;
| | - Borys Miskiewicz
- Department of Thoracic Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Rafal Stec
- Department of Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Piotr Karabowicz
- Biobank, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Magdalena Zawada
- Department of Hematology Diagnostics and Genetics, The University Hospital, 30-688 Krakow, Poland;
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (W.M.)
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.S.); (M.K.)
| |
Collapse
|
46
|
Jung BC, Kim SH, Cho Y, Kim YS. Tumor suppressor Parkin induces p53-mediated cell cycle arrest in human lung and colorectal cancer cells. BMB Rep 2023; 56:557-562. [PMID: 37679297 PMCID: PMC10618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest. [BMB Reports 2023; 56(10): 557-562].
Collapse
Affiliation(s)
- Byung Chul Jung
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA, Wonju 26460, Korea
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
| | - Sung Hoon Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan 31172, Korea
| | - Yoonjung Cho
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
47
|
Din RU, Jiao A, Qiu Y, Mohan AAM, Yuen KC, Wong HT, Wan TMH, Wong POY, Sin CF. Bortezomib Is Effective in the Treatment of T Lymphoblastic Leukaemia by Inducing DNA Damage, WEE1 Downregulation, and Mitotic Catastrophe. Int J Mol Sci 2023; 24:14646. [PMID: 37834095 PMCID: PMC10572992 DOI: 10.3390/ijms241914646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
T lymphoblastic leukemia (T-ALL) is an aggressive haematolymphoid malignancy comprising 15% of acute lymphoblastic leukemia (ALL). Although its prognosis has improved with intensive chemotherapy, the relapse/refractory disease still carries a dismal prognosis. Thus, there is an urgent need to develop novel therapy for T-ALL. Bortezomib, a 26S proteasome inhibitor, is licensed to treat plasma cell myeloma and mantle cell lymphoma. Due to its favorable side effect profile, it is a novel agent of research interest in the treatment of ALL. Despite an increasing number of clinical trials of bortezomib in T-ALL, its detailed mechanistic study in terms of DNA damage, cell cycle, and mitotic catastrophe remains elusive. Moreover, WEE1, a protein kinase overexpressed in ALL and involved in cell-cycle regulation, has been known to be a novel therapeutic target in many cancers. But the role of bortezomib in modulating WEE1 expression in ALL still remains elusive. In this study, we demonstrate the therapeutic efficacy of bortezomib on T-ALL primary samples and cell lines. Our findings reveal that bortezomib treatment induces DNA damage and downregulates WEE1, leading to G2-M cell-cycle progression with damaged DNA. This abnormal mitotic entry induced by bortezomib leads to mitotic catastrophe in T-ALL. In conclusion, our findings dissect the mechanism of action of bortezomib and provide further insights into the use of bortezomib to treat T-ALL. Our findings suggest the possibility of novel combination therapy using proteasome inhibitors together with DNA-damaging agents in the future, which may fill the research gaps and unmet clinical needs in treating ALL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chun-Fung Sin
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
48
|
Kimura Y, Ekuban FA, Zong C, Sugie S, Zhang X, Itoh K, Yamamoto M, Ichihara S, Ohsako S, Ichihara G. Role of Nrf2 in 1,2-dichloropropane-induced cell proliferation and DNA damage in the mouse liver. Toxicol Sci 2023; 195:28-41. [PMID: 37326970 DOI: 10.1093/toxsci/kfad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative chemical of occupational cholangiocarcinoma in printing workers in Japan. However, the cellular and molecular mechanisms of 1,2-DCP-induced carcinogenesis remains elusive. The present study investigated cellular proliferation, DNA damage, apoptosis, and expression of antioxidant and proinflammatory genes in the liver of mice exposed daily to 1,2-DCP for 5 weeks, and the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in these responses. Wild-type and Nrf2-knockout (Nrf2-/-) mice were administered 1,2-DCP by gastric gavage, and then the livers were collected for analysis. Immunohistochemistry for BrdU or Ki67 and TUNEL assay revealed that exposure to 1,2-DCP dose-dependently increased proliferative cholangiocytes, whereas decreased apoptotic cholangiocytes in wild-type mice but not in Nrf2-/- mice. Western blot and quantitative real-time PCR showed that exposure to 1,2-DCP increased the levels of DNA double-strand break marker γ-H2AX and mRNA expression levels of NQO1, xCT, GSTM1, and G6PD in the livers of wild-type mice in a dose-dependent manner, but no such changes were noted in Nrf2-/- mice. 1,2-DCP increased glutathione levels in the liver of both the wild-type and Nrf2-/- mice, suggesting that an Nrf2-independent mechanism contributes to 1,2-DCP-induced increase in glutathione level. In conclusion, the study demonstrated that exposure to 1,2-DCP induced proliferation but reduced apoptosis in cholangiocytes, and induced double-strand DNA breaks and upregulation of antioxidant genes in the liver in an Nrf2-dependent manner. The study suggests a role of Nrf2 in 1,2-DCP-induced cell proliferation, antiapoptotic effect, and DNA damage, which are recognized as key characteristics of carcinogens.
Collapse
Affiliation(s)
- Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 550-8856, Japan
| | - Xiao Zhang
- Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, People's Republic of China
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Masayuki Yamamoto
- Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0431, Japan
| | - Seiichiro Ohsako
- Department of Environmental and Preventive Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
49
|
Yoon H, Lee HK, Jang KL. Hydrogen Peroxide Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation in Human Hepatoma Cells. Int J Mol Sci 2023; 24:13354. [PMID: 37686160 PMCID: PMC10488175 DOI: 10.3390/ijms241713354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatitis B virus (HBV) is constantly exposed to significant oxidative stress characterized by elevated levels of reactive oxygen species (ROS), such as H2O2, during infection in hepatocytes of patients. In this study, we demonstrated that H2O2 inhibits HBV replication in a p53-dependent fashion in human hepatoma cell lines expressing sodium taurocholate cotransporting polypeptide. Interestingly, H2O2 failed to inhibit the replication of an HBV X protein (HBx)-null HBV mutant, but this defect was successfully complemented by ectopic expression of HBx. Additionally, H2O2 upregulated p53 levels, leading to increased expression of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induced the ubiquitination-dependent proteasomal degradation of HBx. The inhibitory effect of H2O2 was nearly abolished not only by treatment with a representative antioxidant, N-acetyl-L-cysteine but also by knockdown of either p53 or Siah-1 using specific short hairpin RNA, confirming the role of p53 and Siah-1 in the inhibition of HBV replication by H2O2. The present study provides insights into the mechanism that regulates HBV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Hye-Kyoung Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
50
|
Le-Trung N, Duong TM, Dang TTP, Kamei K. Potent anti-cancer activity of Sphaerocoryne affinis fruit against cervical cancer HeLa cells via inhibition of cell proliferation and induction of apoptosis. BMC Complement Med Ther 2023; 23:290. [PMID: 37598145 PMCID: PMC10439542 DOI: 10.1186/s12906-023-04127-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Cervical cancer remains a significant global health issue, highlighting the need for effective therapeutic strategies. Given that Sphaerocoryne affinis (SA) has shown potential anti-cancer activity in several cancer types, herein, we investigate the effects of SA fruit (SAF) on human cervical cancer HeLa cells and their underlying mechanisms of action. METHODS SAF extract cytotoxicity was assessed in various cancer cell lines. The effects of the hexane fraction (SAF-Hex) on HeLa cell viability, cell cycle protein expression, apoptosis, and DNA damage were evaluated using cytotoxicity assays, Western blotting, quantitative PCR, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. RESULTS SAF-Hex selectively inhibited HeLa cell viability with an IC50 of 4.20 ± 0.36 µg/mL and a selectivity index of 5.11 ± 0.58. The time-dependent cytotoxicity assay showed decreased cell survival after 48 h of treatment, accompanied by morphological changes and apoptotic bodies in HeLa cells. SAF-Hex also suppressed HeLa cell cycle proteins (Cyclin E, CDK2, and CDK1), reduced PCNA transcription, and diminished AKT and mTOR activation, thus inhibiting cell proliferation. The increased γH2AX expression, DNA fragmentation, and caspases-3 and -9 activation indicated SAF-Hex-induced DNA damage and apoptosis. However, the BAX/BCL-2 ratio remained unchanged, and BAX and BCL2 expression was attenuated. CONCLUSION SAF-Hex effectively inhibits HeLa cell proliferation and induces DNA damage in that cervical cancer cell line activating apoptosis through the intrinsic pathway. Interestingly, the BAX/BCL-2 ratio remained unchanged while BAX and BCL2 transcription was attenuated. Hence, further research is required to explore this unexpected finding and facilitate the development of novel therapies targeting cervical cancer HeLa cells.
Collapse
Affiliation(s)
- Nghia Le-Trung
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tue Minh Duong
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Thao Thi Phuong Dang
- Laboratory of Cancer Research, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto, 606-8585, Japan.
| |
Collapse
|