1
|
Carbone FP, Ancona P, Volinia S, Terrazzan A, Bianchi N. Druggable Molecular Networks in BRCA1/BRCA2-Mutated Breast Cancer. BIOLOGY 2025; 14:253. [PMID: 40136510 PMCID: PMC11940086 DOI: 10.3390/biology14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
Mutations in the tumor suppressor genes BRCA1 and BRCA2 are associated with the triple-negative breast cancer phenotype, particularly aggressive and hard-to-treat tumors lacking estrogen, progesterone, and human epidermal growth factor receptor 2. This research aimed to understand the metabolic and genetic links behind BRCA1 and BRCA2 mutations and investigate their relationship with effective therapies. Using the Cytoscape software, two networks were generated through a bibliographic analysis of articles retrieved from the PubMed-NCBI database. We identified 98 genes deregulated by BRCA mutations, and 24 were modulated by therapies. In particular, BIRC5, SIRT1, MYC, EZH2, and CSN2 are influenced by BRCA1, while BCL2, BAX, and BRIP1 are influenced by BRCA2 mutation. Moreover, the study evaluated the efficacy of several promising therapies, targeting only BRCA1/BRCA2-mutated cells. In this context, CDDO-Imidazolide was shown to increase ROS levels and induce DNA damage. Similarly, resveratrol decreased the expression of the anti-apoptotic gene BIRC5 while it increased SIRT1 both in vitro and in vivo. Other specific drugs were found to induce apoptosis selectively in BRCA-mutated cells or block cell growth when the mutation occurs, i.e., 3-deazaneplanocin A, genistein or daidzein, and PARP inhibitors. Finally, over-representation analysis on the genes highlights ferroptosis and proteoglycan pathways as potential drug targets for more effective treatments.
Collapse
Affiliation(s)
- Francesca Pia Carbone
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory for Technologies of Advanced Therapies (LTTA), 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.P.C.); (P.A.); (S.V.); (N.B.)
| |
Collapse
|
2
|
Tripathi P, Kumari R, Pathak R. Drugging the undruggable: Advances in targeting KRAS signaling in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:1-39. [PMID: 38663957 DOI: 10.1016/bs.ircmb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer remains the leading cause of global mortality, prompting a paradigm shift in its treatment and outcomes with the advent of targeted therapies. Among the most prevalent mutations in RAS-driven cancers, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for approximately 86% of cases worldwide, particularly in lung, pancreatic, and colon cancers, contributing to poor prognosis and reduced overall survival. Despite numerous efforts to understand the biology of KRAS mutants and their pivotal role in cancer development, the lack of well-defined drug-binding pockets has deemed KRAS an "undruggable" therapeutic target, presenting significant challenges for researchers and clinicians alike. Through significant biochemical and technological advances, the last decade has witnessed promising breakthroughs in targeted therapies for KRAS-mutated lung, colon, and pancreatic cancers, marking a critical turning point in the field. In this chapter, we provide an overview of the characteristics of KRAS mutations across various solid tumors, highlighting ongoing cutting-edge research on the immune microenvironment, the development of KRAS-driven mice models, and the recent progress in the exploration of specific KRAS mutant-targeted therapeutic approaches. By comprehensive understanding of the intricacies of KRAS signaling in solid tumors and the latest therapeutic developments, this chapter will shed light on the potential for novel therapeutic strategies to combat KRAS-driven tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States.
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
3
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
4
|
Zhang N, Ru B, Hu J, Xu L, Wan Q, Liu W, Cai W, Zhu T, Ji Z, Guo R, Zhang L, Li S, Tong X. Recent advances of CREKA peptide-based nanoplatforms in biomedical applications. J Nanobiotechnology 2023; 21:77. [PMID: 36869341 PMCID: PMC9985238 DOI: 10.1186/s12951-023-01827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Nanomedicine technology is a rapidly developing field of research and application that uses nanoparticles as a platform to facilitate the diagnosis and treatment of diseases. Nanoparticles loaded with drugs and imaging contrast agents have already been used in clinically, but they are essentially passive delivery carriers. To make nanoparticles smarter, an important function is the ability to actively locate target tissues. It enables nanoparticles to accumulate in target tissues at higher concentrations, thereby improving therapeutic efficacy and reducing side effects. Among the different ligands, the CREKA peptide (Cys-Arg-Glu-Lys-Ala) is a desirable targeting ligand and has a good targeting ability for overexpressed fibrin in different models, such as cancers, myocardial ischemia-reperfusion, and atherosclerosis. In this review, the characteristic of the CREKA peptide and the latest reports regarding the application of CREKA-based nanoplatforms in different biological tissues are described. In addition, the existing problems and future application perspectives of CREKA-based nanoplatforms are also addressed.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Bin Ru
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jiaqi Hu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Langhai Xu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Quan Wan
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wenlong Liu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - WenJun Cai
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Tingli Zhu
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Zhongwei Ji
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Ran Guo
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Shun Li
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Xiangmin Tong
- Laboratory Medicine Center, Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
5
|
Prochownik EV. Regulation of Normal and Neoplastic Proliferation and Metabolism by the Extended Myc Network. Cells 2022; 11:3974. [PMID: 36552737 PMCID: PMC9777120 DOI: 10.3390/cells11243974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Myc Network, comprising a small assemblage of bHLH-ZIP transcription factors, regulates many hundreds to thousands of genes involved in proliferation, energy metabolism, translation and other activities. A structurally and functionally related set of factors known as the Mlx Network also supervises some of these same functions via the regulation of a more limited but overlapping transcriptional repertoire. Target gene co-regulation by these two Networks is the result of their sharing of three members that suppress target gene expression as well as by the ability of both Network's members to cross-bind one another's consensus DNA sites. The two Networks also differ in that the Mlx Network's control over transcription is positively regulated by several glycolytic pathway intermediates and other metabolites. These distinctive properties, functions and tissue expression patterns potentially allow for sensitive control of gene regulation in ways that are differentially responsive to environmental and metabolic cues while allowing for them to be both rapid and of limited duration. This review explores how such control might occur. It further discusses how the actual functional dependencies of the Myc and Mlx Networks rely upon cellular context and how they may differ between normal and neoplastic cells. Finally, consideration is given to how future studies may permit a more refined understanding of the functional interrelationships between the two Networks.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- The UPMC Hillman Comprehensive Cancer Center, Pittsburgh, PA 15232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
6
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
7
|
Abstract
Objective We investigated the antitumor effects of salidroside and preliminarily
examined its underlying mechanisms by establishing a nude mouse model
bearing MCF-7 breast cancer cell xenografts. Methods The mice were grouped and intraperitoneally injected with salidroside,
paclitaxel, or physiological saline. Tumor samples were weighed, and
immunohistochemical staining with hematoxylin and eosin and anti-CD34
antibody was performed. Tumor cell apoptosis was observed using the terminal
deoxynucleotidyl transferase deoxyuridine dUTP nick end labeling assay.
Bcl-1, p53, Bax, and caspase 3 expression in tumor tissues was determined
via western blotting. Results The tumor inhibition rate of high-dose salidroside was 75.16%, which was
significantly higher than the rates for paclitaxel and saline. A tumor
tissue pathology analysis revealed that high-dose salidroside inhibited
tumor cell proliferation and promoted tumor cell apoptosis. Western blotting
revealed that Bcl-2 and p53 expression were significantly lower in the
salidroside group than in the other groups, whereas Bax and caspase 3
(17 kDa) expression were increased. Conclusions Salidroside was more effective than paclitaxel in inhibiting tumor growth in
MCF-7 breast cancer cell-bearing nude mice. The mechanism of action may
involve Bcl-2 and p53 downregulation and Bax and caspase 3 upregulation,
thereby increasing proapoptotic factor expression and inducing tumor cell
apoptosis.
Collapse
Affiliation(s)
- An-Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China.,The College of Post and Telecommunication, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Xiu-Lian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, 34756Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Lantvit DD, Unterberger CJ, Lazar M, Arneson PD, Longhurst CA, Swanson SM, Marker PC. Mammary Tumors Growing in the Absence of Growth Hormone Are More Sensitive to Doxorubicin Than Wild-Type Tumors. Endocrinology 2021; 162:bqab013. [PMID: 33475144 PMCID: PMC7881836 DOI: 10.1210/endocr/bqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Previously, we reported that N-methyl-N-nitrosourea (MNU)-induced mammary tumors could be established in mutant spontaneous dwarf rats (SDRs), which lack endogenous growth hormone (GH) by supplementing with exogenous GH, and almost all such tumors regressed upon GH withdrawal. When the highly inbred SDR line was outcrossed to wild-type (WT) Sprague-Dawley rats, MNU-induced mammary tumors could still be established in resulting outbred SDRs by supplementing with exogenous GH. However, unlike tumors in inbred SDRs, 65% of mammary tumors established in outbred SDRs continued growth after GH withdrawal. We further tested whether these tumors were more sensitive to doxorubicin than their WT counterparts. To accomplish this, MNU-induced mammary tumors were established in WT rats and in SDRs supplemented with exogenous GH. Once mammary tumors reached 1 cm3 in size, exogenous GH was withdrawn from SDRs, and the subset that harbored tumors that continued or resumed growth in the absence of GH were selected for doxorubicin treatment. Doxorubicin was then administered in 6 injections over 2 weeks at 2.5 mg/kg or 1.25 mg/kg for both the WT and SDR groups. The SDR mammary tumors that had been growing in the absence of GH regressed at both doxorubicin doses while WT tumors continued to grow robustly. The regression of SDR mammary tumors treated with 1.25 mg/kg doxorubicin was accompanied by reduced proliferation and dramatically higher apoptosis relative to the WT mammary tumors treated with 1.25 mg/kg doxorubicin. These data suggest that downregulating GH signaling may decrease the doxorubicin dose necessary to effectively treat breast cancer.
Collapse
Affiliation(s)
- Daniel D Lantvit
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin A Longhurst
- School of Medicine and Public Health, Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Abstract
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
10
|
Giles ED, Wellberg EA. Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools. J Mammary Gland Biol Neoplasia 2020; 25:237-253. [PMID: 33146844 PMCID: PMC8197449 DOI: 10.1007/s10911-020-09463-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Obesity increases the risk for breast cancer and is associated with poor outcomes for cancer patients. A variety of rodent models have been used to investigate these relationships; however, key differences in experimental approaches, as well as unique aspects of rodent physiology lead to variability in how these valuable models are implemented. We combine expertise in the development and implementation of preclinical models of obesity and breast cancer to disseminate effective practices for studies that integrate these fields. In this review, we share, based on our experience, key considerations for model selection, highlighting important technical nuances and tips for use of preclinical models in studies that integrate obesity with breast cancer risk and progression. We describe relevant mouse and rat paradigms, specifically highlighting differences in breast tumor subtypes, estrogen production, and strategies to manipulate hormone levels. We also outline options for diet composition and housing environments to promote obesity in female rodents. While we have applied our experience to understanding obesity-associated breast cancer, the experimental variables we incorporate have relevance to multiple fields that investigate women's health.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
Organoid models for mammary gland dynamics and breast cancer. Curr Opin Cell Biol 2020; 66:51-58. [PMID: 32535255 DOI: 10.1016/j.ceb.2020.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and involution during pregnancy and menstruation. It is also the site from which breast cancers emerge. Organoids provide an in vitro model that preserves several of the cellular, structural, and microenvironmental features that dictate mammary gland function in vivo and have greatly advanced our understanding of glandular biology. Their tractability for genetic manipulation, live imaging, and high throughput screening have facilitated investigation into the mechanisms of glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities remain to enhance cellular and structural complexity of mammary organoid models, including incorporating additional cell types and hormone signaling.
Collapse
|
12
|
Ma Z, Parris AB, Howard EW, Davis M, Cao X, Woods C, Yang X. In Utero Exposure to Bisphenol a Promotes Mammary Tumor Risk in MMTV-Erbb2 Transgenic Mice Through the Induction of ER-erbB2 Crosstalk. Int J Mol Sci 2020; 21:ijms21093095. [PMID: 32353937 PMCID: PMC7247154 DOI: 10.3390/ijms21093095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is the most common environmental endocrine disrupting chemical. Studies suggest a link between perinatal BPA exposure and increased breast cancer risk, but the underlying mechanisms remain unclear. This study aims to investigate the effects of in utero BPA exposure on mammary tumorigenesis in MMTV-erbB2 transgenic mice. Pregnant mice were subcutaneously injected with BPA (0, 50, 500 ng/kg and 250 µg/kg BW) daily between gestational days 11–19. Female offspring were examined for mammary tumorigenesis, puberty onset, mammary morphogenesis, and signaling in ER and erbB2 pathways. In utero exposure to low dose BPA (500 ng/kg) induced mammary tumorigenesis, earlier puberty onset, increased terminal end buds, and prolonged estrus phase, which was accompanied by proliferative mammary morphogenesis. CD24/49f-based FACS analysis showed that in utero exposure to 500 ng/kg BPA induced expansion of luminal and basal/myoepithelial cell subpopulations at PND 35. Molecular analysis of mammary tissues at PND 70 showed that in utero exposure to low doses of BPA induced upregulation of ERα, p-ERα, cyclin D1, and c-myc, concurrent activation of erbB2, EGFR, erbB-3, Erk1/2, and Akt, and upregulation of growth factors/ligands. Our results demonstrate that in utero exposure to low dose BPA promotes mammary tumorigenesis in MMTV-erbB2 mice through induction of ER-erbB2 crosstalk and mammary epithelial reprogramming, which advance our understanding of the mechanism associated with in utero exposure to BPA-induced breast cancer risk. The studies also support using MMTV-erbB2 mouse model for relevant studies.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Amanda B. Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Erin W. Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Meghan Davis
- Biotechnology, Rowan-Cabarrus Community College, Kannapolis, NC 28081, USA;
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Courtney Woods
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC 28081, USA; (Z.M.); (A.B.P.); (E.W.H.); (X.C.); (C.W.)
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-704-250-5726
| |
Collapse
|
13
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Fifield BA, Qemo I, Kirou E, Cardiff RD, Porter LA. The atypical cyclin-like protein Spy1 overrides p53-mediated tumour suppression and promotes susceptibility to breast tumourigenesis. Breast Cancer Res 2019; 21:140. [PMID: 31829284 PMCID: PMC6907270 DOI: 10.1186/s13058-019-1211-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023] Open
Abstract
Background Breast cancer is the most common cancer to affect women and one of the leading causes of cancer-related deaths. Proper regulation of cell cycle checkpoints plays a critical role in preventing the accumulation of deleterious mutations. Perturbations in the expression or activity of mediators of cell cycle progression or checkpoint activation represent important events that may increase susceptibility to the onset of carcinogenesis. The atypical cyclin-like protein Spy1 was isolated in a screen for novel genes that could bypass the DNA damage response. Clinical data demonstrates that protein levels of Spy1 are significantly elevated in ductal and lobular carcinoma of the breast. We hypothesized that elevated Spy1 would override protective cell cycle checkpoints and support the onset of mammary tumourigenesis. Methods We generated a transgenic mouse model driving expression of Spy1 in the mammary epithelium. Mammary development, growth characteristics and susceptibility to tumourigenesis were studied. In vitro studies were conducted to investigate the relationship between Spy1 and p53. Results We found that in the presence of wild-type p53, Spy1 protein is held ‘in check’ via protein degradation, representing a novel endogenous mechanism to ensure protected checkpoint control. Regulation of Spy1 by p53 is at the protein level and is mediated in part by Nedd4. Mutation or abrogation of p53 is sufficient to allow for accumulation of Spy1 levels resulting in mammary hyperplasia. Sustained elevation of Spy1 results in elevated proliferation of the mammary gland and susceptibility to tumourigenesis. Conclusions This mouse model demonstrates for the first time that degradation of the cyclin-like protein Spy1 is an essential component of p53-mediated tumour suppression. Targeting cyclin-like protein activity may therefore represent a mechanism of re-sensitizing cells to important cell cycle checkpoints in a therapeutic setting.
Collapse
Affiliation(s)
- Bre-Anne Fifield
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Ingrid Qemo
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Evie Kirou
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Robert D Cardiff
- Center of Comparative Medicine, University of California, Davis, CA, USA
| | - Lisa Ann Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
15
|
Al-azzawi S, Masheta D. Designing a drug delivery system for improved tumor treatment and targeting by functionalization of a cell-penetrating peptide. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-018-00424-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Mintz RL, Gao MA, Lo K, Lao YH, Li M, Leong KW. CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. ADVANCED BIOSYSTEMS 2018; 2:1800132. [PMID: 32832592 PMCID: PMC7437870 DOI: 10.1002/adbi.201800132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/17/2022]
Abstract
Molecularly, breast cancer represents a highly heterogenous family of neoplastic disorders, with substantial interpatient variations regarding genetic mutations, cell composition, transcriptional profiles, and treatment response. Consequently, there is an increasing demand for alternative diagnostic approaches aimed at the molecular annotation of the disease on a patient-by-patient basis and the design of more personalized treatments. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) technology enables the development of such novel approaches. For instance, in diagnostics, the use of the RNA-specific C2c2 system allows ultrasensitive nucleic acid detection and could be used to characterize the mutational repertoire and transcriptional breast cancer signatures. In disease modeling, CRISPR/Cas9 technology can be applied to selectively engineer oncogenes and tumor-suppressor genes involved in disease pathogenesis. In treatment, CRISPR/Cas9 can be used to develop gene-therapy, while its catalytically-dead variant (dCas9) can be applied to reprogram the epigenetic landscape of malignant cells. As immunotherapy becomes increasingly prominent in cancer treatment, CRISPR/Cas9 can engineer the immune cells to redirect them against cancer cells and potentiate antitumor immune responses. In this review, CRISPR strategies for the advancement of breast cancer diagnostics, modeling, and treatment are highlighted, culminating in a perspective on developing a precision medicine-based approach against breast cancer.
Collapse
Affiliation(s)
- Rachel L. Mintz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madeleine A. Gao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Kahmun Lo
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Mingqiang Li
- Guangdong Provincial Key Laboratory of Liver Disease The Third Affiliated Hospital of Sun Yat-Sen University Guangzhou, Guangdong 510630, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Kam W. Leong
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
17
|
Bao J, Di Lorenzo A, Lin K, Lu Y, Zhong Y, Sebastian MM, Muller WJ, Yang Y, Bedford MT. Mouse Models of Overexpression Reveal Distinct Oncogenic Roles for Different Type I Protein Arginine Methyltransferases. Cancer Res 2018; 79:21-32. [PMID: 30352814 DOI: 10.1158/0008-5472.can-18-1995] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 10/16/2018] [Indexed: 01/22/2023]
Abstract
Protein arginine methyltransferases (PRMT) are generally not mutated in diseased states, but they are overexpressed in a number of cancers, including breast cancer. To address the possible roles of PRMT overexpression in mammary gland tumorigenesis, we generated Cre-activated PRMT1, CARM1, and PRMT6 overexpression mouse models. These three enzymes are the primary type I PRMTs and are responsible for the majority of the asymmetric arginine methylation deposited in the cells. Using either a keratin 5-Cre recombinase (K5-Cre) cross or an MMTV-NIC mouse, we investigated the impact of PRMT overexpression alone or in the context of a HER2-driven model of breast cancer, respectively. The overexpression of all three PRMTs induced hyper-branching of the mammary glands and increased Ki-67 staining. When combined with the MMTV-NIC model, these in vivo experiments provided the first genetic evidence implicating elevated levels of these three PRMTs in mammary gland tumorigenesis, albeit with variable degrees of tumor promotion and latency. In addition, these mouse models provided valuable tools for exploring the biological roles and molecular mechanisms of PRMT overexpression in the mammary gland. For example, transcriptome analysis of purified mammary epithelial cells isolated from bigenic NIC-PRMT1 Tg and NIC-PRMT6 Tg mice revealed a deregulated PI3K-AKT pathway. In the future, these PRMT Tg lines can be leveraged to investigate the roles of arginine methylation in other tissues and tumor model systems using different tissue-specific Cre crosses, and they can also be used for testing the in vivo efficacy of small molecule inhibitors that target these PRMT. SIGNIFICANCE: These findings establish Cre-activated mouse models of three different arginine methyltransferases, PRMT1, CARM1, and PRMT6, which are overexpressed in human cancers, providing a valuable tool for the study of PRMT function in tumorigenesis.See related commentary by Watson and Bitler, p. 3.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Alessandra Di Lorenzo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Yi Zhong
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - Manu M Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | - William J Muller
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yanzhong Yang
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute at City of Hope, Duarte, California
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas.
| |
Collapse
|
18
|
Ma Z, Kim YM, Howard EW, Feng X, Kosanke SD, Yang S, Jiang Y, Parris AB, Cao X, Li S, Yang X. DMBA promotes ErbB2‑mediated carcinogenesis via ErbB2 and estrogen receptor pathway activation and genomic instability. Oncol Rep 2018; 40:1632-1640. [PMID: 30015966 PMCID: PMC6072406 DOI: 10.3892/or.2018.6545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Environmental factors, including 7,12‑dimethylbenz[a]anthracene (DMBA) exposure, and genetic predisposition, including ErbB2 overexpression/amplification, have been demonstrated to increase breast cancer susceptibility. Although DMBA‑ and ErbB2‑mediated breast cancers are well‑studied in their respective models, key interactions between environmental and genetic factors on breast cancer risk remain unclear. Therefore, the present study aimed to investigate the effect of DMBA exposure on ErbB2‑mediated mammary tumorigenesis. MMTV‑ErbB2 transgenic mice exposed to DMBA (1 mg) via weekly oral gavage for 6 weeks exhibited significantly enhanced mammary tumor development, as indicated by reduced tumor latency and increased tumor multiplicity compared with control mice. Whole mount analysis of premalignant mammary tissues from 15‑week‑old mice revealed increased ductal elongation and proliferative index in DMBA‑exposed mice. Molecular analyses of premalignant mammary tissues further indicated that DMBA exposure enhanced epidermal growth factor receptor (EGFR)/ErbB2 and estrogen receptor (ER) signaling, which was associated with increased mRNA levels of EGFR/ErbB2 family members and ER‑targeted genes. Furthermore, analysis of tumor karyotypes revealed that DMBA‑exposed tumors displayed more chromosomal alterations compared with control tumors, implicating DMBA‑induced chromosomal instability in tumor promotion in this model. Together, the data suggested that DMBA‑induced deregulation of EGFR/ErbB2‑ER pathways plays a critical role in the enhanced chromosomal instability and promotion of ErbB2‑mediated mammary tumorigenesis. The study highlighted gene‑environment interactions that may increase risk of breast cancer, which is a critical clinical issue.
Collapse
Affiliation(s)
- Zhikun Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Young Mi Kim
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaoshan Feng
- Department of Oncology, First Affiliated Hospital of Henan University of Sciences and Technology, Luoyang, Henan 471500, P.R. China
| | - Stanley D Kosanke
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xiaohe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Bansal N, Bosch A, Leibovitch B, Pereira L, Cubedo E, Yu J, Pierzchalski K, Jones JW, Fishel M, Kane M, Zelent A, Waxman S, Farias E. Blocking the PAH2 domain of Sin3A inhibits tumorigenesis and confers retinoid sensitivity in triple negative breast cancer. Oncotarget 2018; 7:43689-43702. [PMID: 27286261 PMCID: PMC5190053 DOI: 10.18632/oncotarget.9905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/05/2016] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) frequently relapses locally, regionally or as systemic metastases. Development of targeted therapy that offers significant survival benefit in TNBC is an unmet clinical need. We have previously reported that blocking interactions between PAH2 domain of chromatin regulator Sin3A and the Sin3 interaction domain (SID) containing proteins by SID decoys result in EMT reversal, and re-expression of genes associated with differentiation. Here we report a novel and therapeutically relevant combinatorial use of SID decoys. SID decoys activate RARα/β pathways that are enhanced in combination with RARα-selective agonist AM80 to induce morphogenesis and inhibit tumorsphere formation. These findings correlate with inhibition of mammary hyperplasia and a significant increase in tumor-free survival in MMTV-Myc oncomice treated with a small molecule mimetic of SID (C16). Further, in two well-established mouse TNBC models we show that treatment with C16-AM80 combination has marked anti-tumor effects, prevents lung metastases and seeding of tumor cells to bone marrow. This correlated to a remarkable 100% increase in disease-free survival with a possibility of "cure" in mice bearing a TNBC-like tumor. Targeting Sin3A by C16 alone or in combination with AM80 may thus be a promising adjuvant therapy for treating or preventing metastatic TNBC.
Collapse
Affiliation(s)
- Nidhi Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Almudena Bosch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris Leibovitch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lutecia Pereira
- Division of Hemato-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elena Cubedo
- Division of Hemato-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Keely Pierzchalski
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Melissa Fishel
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maureen Kane
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Arthur Zelent
- Division of Hemato-Oncology, Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Samuel Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Yu J, Qin B, Moyer AM, Sinnwell JP, Thompson KJ, Copland JA, Marlow LA, Miller JL, Yin P, Gao B, Minter-Dykhouse K, Tang X, McLaughlin SA, Moreno-Aspitia A, Schweitzer A, Lu Y, Hubbard J, Northfelt DW, Gray RJ, Hunt K, Conners AL, Suman VJ, Kalari KR, Ingle JN, Lou Z, Visscher DW, Weinshilboum R, Boughey JC, Goetz MP, Wang L. Establishing and characterizing patient-derived xenografts using pre-chemotherapy percutaneous biopsy and post-chemotherapy surgical samples from a prospective neoadjuvant breast cancer study. Breast Cancer Res 2017; 19:130. [PMID: 29212525 PMCID: PMC5719923 DOI: 10.1186/s13058-017-0920-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
Background Patient-derived xenografts (PDXs) are increasingly used in cancer research as a tool to inform cancer biology and drug response. Most available breast cancer PDXs have been generated in the metastatic setting. However, in the setting of operable breast cancer, PDX models both sensitive and resistant to chemotherapy are needed for drug development and prospective data are lacking regarding the clinical and molecular characteristics associated with PDX take rate in this setting. Methods The Breast Cancer Genome Guided Therapy Study (BEAUTY) is a prospective neoadjuvant chemotherapy (NAC) trial of stage I-III breast cancer patients treated with neoadjuvant weekly taxane+/-trastuzumab followed by anthracycline-based chemotherapy. Using percutaneous tumor biopsies (PTB), we established and characterized PDXs from both primary (untreated) and residual (treated) tumors. Tumor take rate was defined as percent of patients with the development of at least one stably transplantable (passed at least for four generations) xenograft that was pathologically confirmed as breast cancer. Results Baseline PTB samples from 113 women were implanted with an overall take rate of 27.4% (31/113). By clinical subtype, the take rate was 51.3% (20/39) in triple negative (TN) breast cancer, 26.5% (9/34) in HER2+, 5.0% (2/40) in luminal B and 0% (0/3) in luminal A. The take rate for those with pCR did not differ from those with residual disease in TN (p = 0.999) and HER2+ (p = 0.2401) tumors. The xenografts from 28 of these 31 patients were such that at least one of the xenografts generated had the same molecular subtype as the patient. Among the 35 patients with residual tumor after NAC adequate for implantation, the take rate was 17.1%. PDX response to paclitaxel mirrored the patients’ clinical response in all eight PDX tested. Conclusions The generation of PDX models both sensitive and resistant to standard NAC is feasible and these models exhibit similar biological and drug response characteristics as the patients’ primary tumors. Taken together, these models may be useful for biomarker discovery and future drug development. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0920-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - James L Miller
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bowen Gao
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Anthony Schweitzer
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Yan Lu
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Jason Hubbard
- Affymetrix, now part of Thermo Fisher Scientific, Santa Clara, CA, 95051, USA
| | - Donald W Northfelt
- Department of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Richard J Gray
- Department of Surgery, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Katie Hunt
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amy L Conners
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Judy C Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Daly CS, Shaw P, Ordonez LD, Williams GT, Quist J, Grigoriadis A, Van Es JH, Clevers H, Clarke AR, Reed KR. Functional redundancy between Apc and Apc2 regulates tissue homeostasis and prevents tumorigenesis in murine mammary epithelium. Oncogene 2017; 36:1793-1803. [PMID: 27694902 PMCID: PMC5219933 DOI: 10.1038/onc.2016.342] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023]
Abstract
Aberrant Wnt signaling within breast cancer is associated with poor prognosis, but regulation of this pathway in breast tissue remains poorly understood and the consequences of immediate or long-term dysregulation remain elusive. The exact contribution of the Wnt-regulating proteins adenomatous polyposis coli (APC) and APC2 in the pathogenesis of human breast cancer are ill-defined, but our analysis of publically available array data sets indicates that tumors with concomitant low expression of both proteins occurs more frequently in the 'triple negative' phenotype, which is a subtype of breast cancer with particularly poor prognosis. We have used mouse transgenics to delete Apc and/or Apc2 from mouse mammary epithelium to elucidate the significance of these proteins in mammary homeostasis and delineate their influences on Wnt signaling and tumorigenesis. Loss of either protein alone failed to affect Wnt signaling levels or tissue homeostasis. Strikingly, concomitant loss led to local disruption of β-catenin status, disruption in epithelial integrity, cohesion and polarity, increased cell division and a distinctive form of ductal hyperplasia with 'squamoid' ghost cell nodules in young animals. Upon aging, the development of Wnt activated mammary carcinomas with squamous differentiation was accompanied by a significantly reduced survival. This novel Wnt-driven mammary tumor model highlights the importance of functional redundancies existing between the Apc proteins both in normal homeostasis and in tumorigenesis.
Collapse
Affiliation(s)
- C S Daly
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - P Shaw
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - L D Ordonez
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - G T Williams
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - J Quist
- Breast Cancer Now Unit, King's College London, Guy's Hospital London, London, UK
- Cancer Bioinformatics, King's College London, Guy's Hospital London, London, UK
| | - A Grigoriadis
- Breast Cancer Now Unit, King's College London, Guy's Hospital London, London, UK
- Cancer Bioinformatics, King's College London, Guy's Hospital London, London, UK
| | - J H Van Es
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | - H Clevers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | - A R Clarke
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| | - K R Reed
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff, Wales, UK
| |
Collapse
|
22
|
Xu C, Cao L, Liu J, Qian Z, Peng Y, Zhu W, Qiu Y, Lin Y. Suppression of Asparaginyl Endopeptidase Inhibits Polyomavirus Middle T Antigen-Induced Tumor Formation and Metastasis. Oncol Res 2016; 25:407-415. [PMID: 27660925 PMCID: PMC7841005 DOI: 10.3727/096504016x14743350548249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elevated circulating asparaginyl endopeptidase (AEP), a novel lysosomal protease, has been found in breast cancer, and AEP is thus considered to be a prognostic factor in this disease. However, the pathological functions of circulating AEP in the development of breast cancer and the potential of AEP-targeted therapy remain unclear. We used MMTV-PyVmT transgenic mice, which spontaneously develop mammary tumors. Western blotting showed overexpression of AEP in both primary tumor tissue and lung metastases compared to their normal counterparts. Moreover, the concentration of circulating AEP gradually increased in the serum during the development of mammary tumors. Purified AEP protein injected through the tail vein promoted tumor growth and mammary tumor metastasis and shortened survival, whereas AEP-specific small compound inhibitors (AEPIs) effectively suppressed tumor progression and prolonged host survival. Further analysis of the molecular mechanism revealed that AEP was important for PI3K/AKT pathway activation. Thus, an elevated serum AEP level was closely related to mammary cancer progression and metastasis, and AEP is a potential target for breast cancer therapy in the clinic.
Collapse
|
23
|
Abou-Elkacem L, Wilson KE, Johnson SM, Chowdhury SM, Bachawal S, Hackel BJ, Tian L, Willmann JK. Ultrasound Molecular Imaging of the Breast Cancer Neovasculature using Engineered Fibronectin Scaffold Ligands: A Novel Class of Targeted Contrast Ultrasound Agent. Theranostics 2016; 6:1740-52. [PMID: 27570547 PMCID: PMC4997233 DOI: 10.7150/thno.15169] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecularly-targeted microbubbles (MBs) are increasingly being recognized as promising contrast agents for oncological molecular imaging with ultrasound. With the detection and validation of new molecular imaging targets, novel binding ligands are needed that bind to molecular imaging targets with high affinity and specificity. In this study we assessed a novel class of potentially clinically translatable MBs using an engineered 10th type III domain of human-fibronectin (MB-FN3VEGFR2) scaffold-ligand to image VEGFR2 on the neovasculature of cancer. The in vitro binding of MB-FN3VEGFR2 to a soluble VEGFR2 was assessed by flow-cytometry (FACS) and binding to VEGFR2-expressing cells was assessed by flow-chamber cell attachment studies under flow shear stress conditions. In vivo binding of MB-FN3VEGFR2 was tested in a transgenic mouse model (FVB/N Tg(MMTV/PyMT634Mul) of breast cancer and control litter mates with normal mammary glands. In vitro FACS and flow-chamber cell attachment studies showed significantly (P<0.01) higher binding to VEGFR2 using MB-FN3VEGFR2 than control agents. In vivo ultrasound molecular imaging (USMI) studies using MB-FN3VEGFR2 demonstrated specific binding to VEGFR2 and was significantly higher (P<0.01) in breast cancer compared to normal breast tissue. Ex vivo immunofluorescence-analysis showed significantly (P<0.01) increased VEGFR2-expression in breast cancer compared to normal mammary tissue. Our results suggest that MBs coupled to FN3-scaffolds can be designed and used for USMI of breast cancer neoangiogenesis. Due to their small size, stability, solubility, the lack of glycosylation and disulfide bonds, FN3-scaffolds can be recombinantly produced with the advantage of generating small, high affinity ligands in a cost efficient way for USMI.
Collapse
|
24
|
Manning HC, Buck JR, Cook RS. Mouse Models of Breast Cancer: Platforms for Discovering Precision Imaging Diagnostics and Future Cancer Medicine. J Nucl Med 2016; 57 Suppl 1:60S-8S. [PMID: 26834104 DOI: 10.2967/jnumed.115.157917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed.
Collapse
Affiliation(s)
- H Charles Manning
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt-Ingram Cancer Center, Nashville, Tennessee Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and Vanderbilt Center for Molecular Probes, Nashville, Tennessee
| | - Jason R Buck
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; and Vanderbilt Center for Molecular Probes, Nashville, Tennessee
| | - Rebecca S Cook
- Vanderbilt University Medical Center, Nashville, Tennessee Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
25
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
26
|
Qian BZ, Zhang H, Li J, He T, Yeo EJ, Soong DYH, Carragher NO, Munro A, Chang A, Bresnick AR, Lang RA, Pollard JW. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med 2015; 212:1433-48. [PMID: 26261265 PMCID: PMC4548055 DOI: 10.1084/jem.20141555] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 07/09/2015] [Indexed: 11/20/2022] Open
Abstract
Although the link between inflammation and cancer initiation is well established, its role in metastatic diseases, the primary cause of cancer deaths, has been poorly explored. Our previous studies identified a population of metastasis-associated macrophages (MAMs) recruited to the lung that promote tumor cell seeding and growth. Here we show that FMS-like tyrosine kinase 1 (Flt1, also known as VEGFR1) labels a subset of macrophages in human breast cancers that are significantly enriched in metastatic sites. In mouse models of breast cancer pulmonary metastasis, MAMs uniquely express FLT1. Using several genetic models, we show that macrophage FLT1 signaling is critical for metastasis. FLT1 inhibition does not affect MAM recruitment to metastatic lesions but regulates a set of inflammatory response genes, including colony-stimulating factor 1 (CSF1), a central regulator of macrophage biology. Using a gain-of-function approach, we show that CSF1-mediated autocrine signaling in MAMs is downstream of FLT1 and can restore the tumor-promoting activity of FLT1-inhibited MAMs. Thus, CSF1 is epistatic to FLT1, establishing a link between FLT1 and inflammatory responses within breast tumor metastases. Importantly, FLT1 inhibition reduces tumor metastatic efficiency even after initial seeding, suggesting that these pathways represent therapeutic targets in metastatic disease.
Collapse
Affiliation(s)
- Bin-Zhi Qian
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Hui Zhang
- Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jiufeng Li
- Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tianfang He
- Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eun-Jin Yeo
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel Y H Soong
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Neil O Carragher
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Alison Munro
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK
| | - Alvin Chang
- Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R Bresnick
- Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Richard A Lang
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Divisions of Pediatric Ophthalmology and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jeffrey W Pollard
- MRC and University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute; and Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine; University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK Department of Developmental and Molecular Biology and Department of Biochemistry, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
27
|
Zhao CL, Zhang GP, Xiao ZZ, Ma ZK, Lei CP, Song SY, Feng YY, Zhao YC, Feng XS. Recombinant Human Granulocyte Colony-Stimulating Factor Promotes Preinvasive and Invasive Estrogen Receptor-Positive Tumor Development in MMTV-erbB2 Mice. J Breast Cancer 2015; 18:126-33. [PMID: 26155288 PMCID: PMC4490261 DOI: 10.4048/jbc.2015.18.2.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/28/2015] [Indexed: 01/22/2023] Open
Abstract
PURPOSE We investigated whether recombinant human granulocyte colony-stimulating factor (rhG-CSF) could promote the development of preinvasive and invasive breast cancer in mouse mammary tumor virus (MMTV-erbB2) mice with estrogen receptor-positive tumors. METHODS MMTV-erbB2 mice were randomly divided into three experimental groups with 20 mice in each group. MMTV-erbB2 mice were treated with daily subcutaneous injections of vehicle or rhG-CSF (low-rhG-CSF group, rhG-CSF 0.125 µg; vehicle-rhG-CSF group, normal saline 0.25 µg; and high-rhG-CSF group, rhG-CSF 0.25 µg) at 3 months of age. Cellular and molecular mechanisms of G-CSF action in mammary glands were investigated via immunohistochemistry and reverse transcription polymerase chain reaction. RESULTS Low, but not high, rhG-CSF doses significantly accelerated mammary tumorigenesis in MMTV-erbB2 mice. Short-term treatment with rhG-CSF could significantly promote the development of preinvasive mammary lesions. The cancer prevention effect was associated with reduced expression of proliferating cell nuclear antigen, cluster of differentiation 34, and signal transducers and activators of transcription 3 in mammary glands by >80%. CONCLUSION We found that G-CSF was regulated by rhG-CSF both in vitro and in vivo. Identification of G-CSF genes helped us further understand the mechanism by which G-CSF promotes cancer. Low doses of rhG-CSF could significantly increase tumor latency and increase tumor multiplicity and burden. Moreover, rhG-CSF effectively promotes development of both malignant and premalignant mammary lesions in MMTV-erbB2 mice.
Collapse
Affiliation(s)
- Chun Ling Zhao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Guang Ping Zhang
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zheng Zheng Xiao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhi Kun Ma
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Cai Peng Lei
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Shi Yuan Song
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ying Ying Feng
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ya Chao Zhao
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao Shan Feng
- Department of Oncology, Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
28
|
Robichaux JP, Hallett RM, Fuseler JW, Hassell JA, Ramsdell AF. Mammary glands exhibit molecular laterality and undergo left-right asymmetric ductal epithelial growth in MMTV-cNeu mice. Oncogene 2015; 34:2003-10. [PMID: 24909172 PMCID: PMC4261057 DOI: 10.1038/onc.2014.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/01/2014] [Accepted: 04/21/2014] [Indexed: 02/07/2023]
Abstract
Significant left-right (L-R) differences in tumor incidence and disease outcome occur for cancers of paired organs, including the breasts; however, the basis for this laterality is unknown. Here, we show that despite their morphologic symmetry, left versus right mammary glands in wild-type mice have baseline differences in gene expression that are L-R independently regulated during pubertal development, including genes that regulate luminal progenitor cell renewal, luminal cell differentiation, mammary tumorigenesis, tamoxifen sensitivity and chemotherapeutic resistance. In MMTV-cNeu(Tg/Tg) mice, which model HER2/Neu-amplified breast cancer, baseline L-R differences in mammary gene expression are amplified, sustained or inverted in a gene-specific manner and the mammary ductal epithelium undergoes L-R asymmetric growth and patterning. Comparative genomic analysis of mouse L-R mammary gene expression profiles with gene expression profiles of human breast tumors revealed significant linkage between right-sided gene expression and decreased breast cancer patient survival. Collectively, these findings are the first to demonstrate that mammary glands are lateralized organs, and, moreover, that mammary glands have L-R differential susceptibility to HER2/Neu oncogene-mediated effects on ductal epithelial growth and differentiation. We propose that intrinsic molecular laterality may have a role in L-R asymmetric breast tumor incidence and, furthermore, that interplay between the L-R molecular landscape and oncogene activity may contribute to the differential disease progression and patient outcome that are associated with tumor situs.
Collapse
Affiliation(s)
- Jacqulyne P. Robichaux
- Department of Regenerative Medicine and Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - Robin M. Hallett
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Ontario, Canada
| | - John W. Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Ontario, Canada
| | - Ann F. Ramsdell
- Department of Regenerative Medicine and Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208
- Program In Women’s and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208
| |
Collapse
|
29
|
Darpp-32 and t-Darpp are differentially expressed in normal and malignant mouse mammary tissue. Mol Cancer 2014; 13:192. [PMID: 25128420 PMCID: PMC4147176 DOI: 10.1186/1476-4598-13-192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/29/2014] [Indexed: 11/29/2022] Open
Abstract
Background Darpp-32 and t-Darpp are expressed in several forms of breast cancer. Both are transcribed from the gene PPP1R1B via alternative promoters. In humans, Darpp-32 is expressed in both normal and malignant breast tissue, whereas t-Darpp has only been found in malignant breast tissue. The exact biological functions of these proteins in the breast are not known. Although Darpp-32 is a well known regulator of neurotransmission, its role in other tissues and in cancer is less well understood. t-Darpp is known to increase cellular growth, inhibit apoptosis and contribute to acquired drug resistance. The use of transgenic mouse mammary tumor models to study Darpp-32 and t-Darpp in breast cancer in vivo has been limited by a lack of knowledge regarding t-Darpp expression in mice, in both normal and malignant tissue. Methods We used RT-PCR and Western analysis to investigate Darpp-32 and t-Darpp levels in normal and malignant mouse mammary tissue. To determine if Darpp-32 and t-Darpp play a direct role in mammary tumor development, Ppp1r1b gene knockout mice and wild-type mice were crossed with a mouse mammary tumor model. Tumor growth and metastasis were examined. Differences between groups were determined by the two-tailed Student’s t-test. Results We found that Darpp-32 was expressed in normal mouse mammary tissue and in some breast tumors, whereas t-Darpp was found exclusively in tumors, with t-Darpp usually expressed at equal or higher levels than Darpp-32. Ppp1r1b knockout in MMTV-PyMT transgenic tumor mice resulted in a decrease in tumor growth. Conclusions The shift in expression from Darpp-32 to t-Darpp during mouse mammary tumorigenesis is reminiscent of the expression patterns observed in humans and is consistent with a role for t-Darpp in promoting cell growth and Darpp-32 in inhibiting cell growth. Decreased tumor growth in Ppp1r1b knockout mice also suggests that t-Darpp plays a direct role, predominant to Darpp-32, in mammary tumor development. These results indicate that transgenic mouse mammary tumor models might be valuable tools for future investigation of Darpp-32 and t-Darpp in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-192) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Adochite RC, Moshnikova A, Carlin SD, Guerrieri RA, Andreev OA, Lewis JS, Reshetnyak YK. Targeting breast tumors with pH (low) insertion peptides. Mol Pharm 2014; 11:2896-905. [PMID: 25004202 PMCID: PMC4123937 DOI: 10.1021/mp5002526] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular acidity is associated with tumor progression. Elevated glycolysis and acidosis promote the appearance of aggressive malignant cells with enhanced multidrug resistance. Thus, targeting of tumor acidity can open new avenues in diagnosis and treatment of aggressive tumors and targeting metastatic cancers cells within a tumor. pH (low) insertion peptides (pHLIPs) belong to the class of pH-sensitive agents capable of delivering imaging and/or therapeutic agents to cancer cells within tumors. Here, we investigated targeting of highly metastatic 4T1 mammary tumors and spontaneous breast tumors in FVB/N-Tg (MMTV-PyMT)634Mul transgenic mice with three fluorescently labeled pHLIP variants including well-characterized WT-pHLIP and, recently introduced, Var3- and Var7-pHLIPs. The Var3- and Var7-pHLIPs constructs have faster blood clearance than the parent WT-pHLIP. All pHLIPs demonstrated excellent targeting of the above breast tumor models with tumor accumulation increasing over 4 h postinjection. Staining of nonmalignant stromal tissues in transgenic mice was minimal. The pHLIPs distribution in tumors showed colocalization with 2-deoxyglucose and the hypoxia marker, Pimonidazole. The highest degree of colocalization of fluorescent pHLIPs was shown to be with lactate dehydrogenase A, which is related to lactate production and acidification of tumors. In sum, the pHLIP-based targeting of breast cancer presents an opportunity to monitor metabolic changes, and to selectively deliver imaging and therapeutic agents to tumors.
Collapse
Affiliation(s)
- Ramona-Cosmina Adochite
- Physics Department, University of Rhode Island , 2 Lippitt Road, Kingston, Rhode Island 02881, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
From chromosomal abnormalities to the identification of target genes in mouse models of breast cancer. Cancer Genet 2014; 207:233-46. [DOI: 10.1016/j.cancergen.2014.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/16/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022]
|
32
|
Wu Y, Kim J, Elshimali Y, Sarkissyan M, Vadgama JV. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice. BMC Cancer 2014; 14:266. [PMID: 24742286 PMCID: PMC4021211 DOI: 10.1186/1471-2407-14-266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/17/2014] [Indexed: 11/10/2022] Open
Abstract
Background Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. Methods The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. Results The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. Conclusions In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER-positive breast tumor development.
Collapse
Affiliation(s)
| | | | | | | | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Charles R, Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA.
| |
Collapse
|
33
|
Lollini PL, Cavallo F, De Giovanni C, Nanni P. Preclinical vaccines against mammary carcinoma. Expert Rev Vaccines 2014; 12:1449-63. [DOI: 10.1586/14760584.2013.845530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
35
|
Ghadiri F, Iranpour N, Yunesian M, Shadlou Z, Kaviani A. Do the different reasons for lactation discontinuation have similar impact on future breast problems? Asian Pac J Cancer Prev 2013; 14:6147-50. [PMID: 24289543 DOI: 10.7314/apjcp.2013.14.10.6147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast feeding is considered to be mutually beneficial for both mothers and infants, though the effect of lactation problems on development of breast lesions (whether benign or malignant) is not clear. OBJECTIVES This study was conducted to identify possible relations between lactation problems and benign and malignant breast disease. MATERIALS AND METHODS 308 patients referred to two referral breast clinics in Tehran, the capital city of IR Iran, between January 2008 and January 2011, were recruited. They were interviewed by a standard questionnaire regarding breast feeding problems. The study population was classified in 3 major groups; breast feeding without any problem, unwillingness to breast feed according to whether mothers' preference not to feed or some breast problems like mastitis, and finally insufficient milk that caused the mothers to feed their babies with formula. RESULTS Recruiting binary logistic regression method, mother's unwillingness to feed her child by breast milk, and also breast problems such as mastitis and abscess during lactation period showed significant relation with both benign and malignant breast diseases (p value<0.01). Surprisingly, inadequate milk was not associated with any of these conditions. CONCLUSIONS We concluded that lactation problems which involve normal milk drainage from the breast may play an important role in whether the mother wll subsequently develope both benign and malignant pathologies. In contrast in the situation that the production of the milk is not sufficient and there are no intentional or unintentional problems in drainage of the produced milk, future problems would not be more common.
Collapse
Affiliation(s)
- Fereshteh Ghadiri
- Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | | | |
Collapse
|
36
|
Hurrell T, Outhoff K. The in vitro influences of epidermal growth factor and heregulin-β1 on the efficacy of trastuzumab used in Her-2 positive breast adenocarcinoma. Cancer Cell Int 2013; 13:97. [PMID: 24119761 PMCID: PMC3852844 DOI: 10.1186/1475-2867-13-97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/10/2013] [Indexed: 11/15/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (Her-2) is over expressed in approximately 25-30% of all primary breast tumors resulting in a distinctive breast cancer subtype associated with a poor prognosis and a decrease in overall survival. Trastuzumab (Herceptin®), an anti-Her-2 monoclonal antibody, has dramatically altered the prognosis of Her-2 positive breast cancer. Trastuzumab is, however, associated with primary and acquired resistance. Aim and methods To investigate the in-vitro effects of trastuzumab on cell viability (tetrazolium conversion assay), cell cycling (propidium iodide staining), apoptosis (executioner caspases and annexin-V) and relative surface Her-2 receptor expression (anti-Her-2 affibody molecule) in Her-2-positive (SK-Br-3) and oestrogen receptor positive (MCF-7) breast adenocarcinoma cells and to determine potential augmentation of these effects by two endogenous ligands, epidermal growth factor (EGF) and heregulin-β1 (HRG- β1). Results Cell viability was decreased in SK-Br-3 cells by exposure to trastuzumab. This was associated with G1 accumulation and decreased relative surface Her-2 receptor density, supporting the cytostatic nature of trastuzumab in vitro. SK-Br-3 cells exposed to EGF and heregulin-β1 produced differential cell responses alone and in combination with trastuzumab, in some instances augmenting cell viability and cell cycling. Relative surface Her-2 receptor density was reduced substantially by trastuzumab, EGF and heregulin-β1. These reductions were amplified when ligands were used in combination with trastuzumab. Conclusion Cell type specific interactions of endogenous ligands appear to be dependent on absolute Her-receptor expression and cross activation of signaling pathways. This supports the notion that receptor density of Her-family members and multiplicity of growth ligands are of mutual importance in breast cancer cell proliferation and therefore also in resistance associated with trastuzumab.
Collapse
Affiliation(s)
- Tracey Hurrell
- Department of Pharmacology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa.
| | | |
Collapse
|
37
|
McGee SF, O'Connor DP, Gallagher WM. Functional interrogation of breast cancer: from models to drugs. Expert Opin Drug Discov 2013; 1:569-84. [PMID: 23506067 DOI: 10.1517/174604441.1.6.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Functional genomics allows for the activity of the whole genome to be surveyed at once. Using this technology for the identification of novel targets and their validation in disease-specific contexts has profound implications for the future of drug discovery. Now researchers have the technological means to gather comprehensive data on basic biological phenomena and disease mechanisms, while monitoring the effect of drug candidates on a molecular level. Pathway analysis can facilitate the genetic profiling of patients and, in turn, predict individual responses to treatment regimes. Functional interrogation of a disease-specific phenotype at a whole genome level (through, for example, the use of whole genome RNAi libraries) allows for the identification of critical regulators in complex biological systems, and the detection of putative targets for future therapeutic intervention. The authors describe the applications of functional genomics in models of breast cancer and the integration of these disparate technologies, specifically in the context of the search for novel therapeutic targets.
Collapse
Affiliation(s)
- Sharon F McGee
- UCD Conway Institute, UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
38
|
Bachawal SV, Jensen KC, Lutz AM, Gambhir SS, Tranquart F, Tian L, Willmann JK. Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res 2013; 73:1689-98. [PMID: 23328585 DOI: 10.1158/0008-5472.can-12-3391] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While there is an increasing role of ultrasound for breast cancer screening in patients with dense breast, conventional anatomical ultrasound lacks sensitivity and specificity for early breast cancer detection. In this study, we assessed the potential of ultrasound molecular imaging using clinically translatable vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted microbubbles (MB(VEGFR2)) to improve the diagnostic accuracy of ultrasound in earlier detection of breast cancer and ductal carcinoma in situ (DCIS) in a transgenic mouse model [FVB/N-Tg(MMTV-PyMT)634Mul]. In vivo binding specificity studies (n = 26 tumors) showed that ultrasound imaging signal was significantly higher (P < 0.001) using MB(VEGFR2) than nontargeted microbubbles and imaging signal significantly decreased (P < 0.001) by blocking antibodies. Ultrasound molecular imaging signal significantly increased (P < 0.001) when breast tissue (n = 315 glands) progressed from normal [1.65 ± 0.17 arbitrary units (a.u.)] to hyperplasia (4.21 ± 1.16), DCIS (15.95 ± 1.31), and invasive cancer (78.1 ± 6.31) and highly correlated with ex vivo VEGFR2 expression [R(2) = 0.84; 95% confidence interval (CI), 0.72-0.91; P < 0.001]. At an imaging signal threshold of 4.6 a.u., ultrasound molecular imaging differentiated benign from malignant entities with a sensitivity of 84% (95% CI, 78-88) and specificity of 89% (95% CI, 81-94). In a prospective screening trail (n = 63 glands), diagnostic performance of detecting DCIS and breast cancer was assessed and two independent readers correctly diagnosed malignant disease in more than 95% of cases and highly agreed between each other [intraclass correlation coefficient (ICC) = 0.98; 95% CI, 97-99]. These results suggest that VEGFR2-targeted ultrasound molecular imaging allows highly accurate detection of DCIS and breast cancer in transgenic mice and may be a promising approach for early breast cancer detection in women.
Collapse
Affiliation(s)
- Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers.
Collapse
|
40
|
Revilla-López G, Torras J, Nussinov R, Alemán C, Zanuy D. Exploring the energy landscape of a molecular engineered analog of a tumor-homing peptide. Phys Chem Chem Phys 2011; 13:9986-94. [PMID: 21258721 PMCID: PMC7385989 DOI: 10.1039/c0cp02572k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently a new non-coded amino acid was designed as a replacement for Arg, to protect the tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) from proteases. This constrained Arg analog, denoted c(5)Arg, was engineered to also promote the stability of the CREKA bioactive conformation. The conformational profile of the CREKA analog obtained by replacing Arg by c(5)Arg has been extensively investigated in this work. Two molecular dynamics simulations-based strategies have been employed: a modified simulated annealing and replica exchange. Results obtained using both techniques show that the conformational features of the new analog fulfill the purpose of its design. The new CREKA analog not only preserves the main structural attributes found for the bioactive conformation of the parent peptide but also shows lower flexibility. Moreover, the conformational profile of the mutated peptide narrows towards the most stable structures previously observed for the parent CREKA peptide.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | | | | | | | | |
Collapse
|
41
|
DNA methylation changes in murine breast adenocarcinomas allow the identification of candidate genes for human breast carcinogenesis. Mamm Genome 2011; 22:249-59. [PMID: 21373886 DOI: 10.1007/s00335-011-9318-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Epigenetic inactivation due to aberrant promoter methylation is a key process in breast tumorigenesis. Murine models for human breast cancer have been established for nearly every important human oncogene or tumor suppressor gene. Mouse-to-human comparative gene expression and cytogenetic profiling have been widely investigated for these models; however, little is known about the conservation of epigenetic alterations during tumorigenesis. To determine if this key process in human breast tumorigenesis is also mirrored in a murine breast cancer model, we mapped cytosine methylation changes in primary adenocarcinomas and paired lung metastases derived from the polyomavirus middle T antigen mouse model. Global changes in methylcytosine levels were observed in all tumors when compared to the normal mammary gland. Aberrant methylation and associated gene silencing was observed for Hoxa7, a gene that is differentially methylated in human breast tumors, and Gata2, a novel candidate gene. Analysis of HOXA7 and GATA2 expression in a bank of human primary tumors confirms that the expression of these genes is also reduced in human breast cancer. In addition, HOXA7 hypermethylation is observed in breast cancer tissues when compared to adjacent tumor-free tissue. Based on these studies, we present a model in which comparative epigenetic techniques can be used to identify novel candidate genes important for human breast tumorigenesis, in both primary and metastatic tumors.
Collapse
|
42
|
Curcó D, Zanuy D, Nussinov R, Alemán C. A simulation strategy for the atomistic modeling of flexible molecules covalently tethered to rigid surfaces: application to peptides. J Comput Chem 2011; 32:607-19. [PMID: 20806264 PMCID: PMC8237343 DOI: 10.1002/jcc.21647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 06/17/2010] [Accepted: 07/09/2010] [Indexed: 11/10/2022]
Abstract
A computational strategy to model flexible molecules tethered to a rigid inert surface is presented. The strategy is able to provide uncorrelated relaxed microstructures at the atomistic level. It combines an algorithm to generate molecules tethered to the surface without atomic overlaps, a method to insert solvent molecules and ions in the simulation box, and a powerful relaxation procedure. The reliability of the strategy has been investigated by simulating two different systems: (i) mixed monolayers consisting of binary mixtures of long-chain alkyl thiols of different lengths adsorbed on a rigid inert surface and (ii) CREKA (Cys-Arg-Glu-Lys-Ala), a short linear pentapeptide that recognizes clotted plasma proteins and selectively homes to tumors, covalently tethered to a rigid inert surface in aqueous solution. In the first, we examined the segregation of the two species in the monolayers using different long-chain:short-chain ratios, whereas in the second, we explored the conformational space of CREKA and ions distribution considering densities of peptides per nm(2) ranging from 0.03 to 1.67. Results indicate a spontaneous segregation in alkyl thiol monolayers, which enhances when the concentration of longest chains increases. However, the whole conformational profile of CREKA depends on the number of molecules tethered to the surface pointing out the large influence of molecular density on the intermolecular interactions, even though the bioactive conformation was found as the most stable in all cases.
Collapse
Affiliation(s)
- David Curcó
- Department d'Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí Franques 1, Barcelona E-08028, Spain.
| | | | | | | |
Collapse
|
43
|
Curcó D, Revilla-López G, Alemán C, Zanuy D. Atomistic modeling of peptides bound to a chemically active surface: conformational implications. J Pept Sci 2011; 17:132-8. [DOI: 10.1002/psc.1321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 11/08/2022]
|
44
|
Zhou ZN, Boimel PJ, Segall JE. Tumor-stroma: In vivo assays and intravital imaging to study cell migration and metastasis. DRUG DISCOVERY TODAY. DISEASE MODELS 2011; 8:95-112. [PMID: 22081771 PMCID: PMC3212048 DOI: 10.1016/j.ddmod.2011.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of metastatic disease is often correlated with poor patient outcome in a variety of different cancers. The metastatic cascade is a complex, multistep process that involves the growth of the primary tumor and angiogenesis, invasion into the local environment, intravasation into the vasculature, tumor cell survival in the circulation, extravasation from the vasculature and sustained growth at secondary organ sites to form metastases. Although in vitro assays of single cell types can provide information regarding cell autonomous mechanisms contributing to metastasis, the in vivo microenvironment entails a network of interactions between cells which is also important. Insight into the mechanisms underlying tumor cell migration, invasion and metastasis in vivo has been aided by development of multiphoton microscopy and in vivo assays, which we will review here.
Collapse
Affiliation(s)
| | | | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology
- Gruss Lipper Center for Biophotonics
| |
Collapse
|
45
|
Abstract
In recent years, obesity has been identified as a risk factor for the development of breast cancer in postmenopausal women, and it has been associated with a poor outcome. Many factors appear to be important in the mechanism of this increased risk, including estrogen, estrogen receptors, and the adipokines leptin and adiponectin. Estrogen, a potent mitogen for mammary cells, has long been implicated in the development of mammary tumors. Because adipose-associated aromatase activity increases the conversion of androgen to estrogen, mammary adipose tissue is thought to be an important source of local estrogen production. Leptin, which increases in the circulation in proportion to body fat stores, has been demonstrated in vitro to promote breast cancer cell growth. Animal models have also identified leptin as an important factor for the development of mammary tumors. In contrast to leptin, serum adiponectin concentrations are inversely related to body fat stores, and the addition of adiponectin to human breast cancer cells reduces cell proliferation and enhances apoptosis. This review explores the relationship between these factors and the development of mammary cancer in humans and mouse models.
Collapse
Affiliation(s)
- M. P. Cleary
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN55912
| | - M. E. Grossmann
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN55912
| | - A. Ray
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN55912
| |
Collapse
|
46
|
Insufficient milk supply and breast cancer risk: a systematic review. PLoS One 2009; 4:e8237. [PMID: 20011591 PMCID: PMC2788215 DOI: 10.1371/journal.pone.0008237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 10/26/2009] [Indexed: 12/03/2022] Open
Abstract
Background An association between insufficient milk supply, the inability of a mother's breast milk to provide sufficiently for her infant, and breast cancer has been suggested by observations in animal models. To determine if an association has been reported in epidemiological studies of human breast cancer, a systematic review of the literature has been conducted. We also sought to identify the methodological limitations of existing studies to guide the design of any future prospective studies in this field. Methodology/Principal Findings PubMed, EMBASE, Web of Science, BIOSIS, and CAB abstracts were searched. We selected any study that (1) assessed breast cancer in association with breastfeeding history and (2) examined the relationship between insufficient milk supply with breast cancer. Seven relevant studies were identified that met both criteria. There was statistically significant heterogeneity among the results which likely reflects clinically significant differences in definitions of insufficient milk supply and reference groups that were used. Among premenopausal women who had experienced insufficient milk supply, odds ratios (ORs) for breast cancer risk ranged from 0.9 to 16.3. Among postmenopausal women, ORs ranged from 0.6 to 6.7. Based on the range of odds ratios obtained in the studies reported in this review, it remains unclear if there is a true association between insufficient milk supply and breast cancer. Conclusions/Significance Although some studies have shown a strong positive association, there is no consistent evidence for an effect of insufficient milk supply on breast cancer risk. Exposure definitions are in need of improvement in order to focus on primary insufficient milk supply. Reference groups consisting of women who have successfully breastfed may also introduce positive bias (inflation of the odds ratio) into study results because of the protective effect of prolonged breastfeeding in the control group.
Collapse
|
47
|
Abstract
Myc is the most frequently deregulated oncogene in human tumors. The protein belongs to the Myc/Max/Mxd network of transcriptional regulators important for cell growth, proliferation, differentiation, and apoptosis. The ratio between Mnt/Max and c-Myc/Max on the 5'-CACGTG-3' E-box sequence at shared target genes is of great importance for cell cycle progression and arrest. Serum stimulation of quiescent cells results in phosphorylation of Mnt and disruption of the critical Mnt-mSin3-HDAC1 interaction. This in turn leads to increased expression of the Myc/Mnt target gene cyclin D2. It is therefore possible that Myc function relies on its ability to overcome transcriptional repression by Mnt and that relief of Mnt-mediated transcriptional repression is of greater importance for regulation of target genes than the sole activation by Myc. In addition, Mnt has many features of a tumor suppressor and may thus be nonfunctional or inactivated in human tumors. In summary, accumulating evidence supports the model of Mnt as the key regulator of the network in vivo.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
48
|
Zanuy D, Flores-Ortega A, Jiménez AI, Calaza MI, Cativiela C, Nussinov R, Ruoslahti E, Alemán C. In silico molecular engineering for a targeted replacement in a tumor-homing peptide. J Phys Chem B 2009; 113:7879-89. [PMID: 19432404 PMCID: PMC2734192 DOI: 10.1021/jp9006119] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and molecular dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone...backbone and side-chain...side-chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptides exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu, and Lys side chains face the same side of the molecule, which is considered important for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Alejandra Flores-Ortega
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - Ana I. Jiménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - M. Isabel Calaza
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Carlos Cativiela
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702, USA
- Department of Human Genetics Sackler, Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Erkki Ruoslahti
- Vascular Mapping Center, The Burnham Institute for Medical Research at UCSB, Santa Barbara, California 93106, USA
- Cancer Research Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Carlos Alemán
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
49
|
Zanuy D, Curcó D, Nussinov R, Alemán C. Influence of the dye presence on the conformational preferences of CREKA, a tumor homing linear pentapeptide. Biopolymers 2009; 92:83-93. [PMID: 19051312 PMCID: PMC7243877 DOI: 10.1002/bip.21122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The conformational properties of the Cys-Arg-Glu-Lys-Ala (CREKA) peptide sequence labeled with fluorescein, a fluorescent dye attached to the Cys through a flexible linker have been examined using molecular dynamics simulations. The CREKA sequence has been identified as a tumor-homing peptide that effectively binds to clotted plasma proteins. Before conformational exploration, the molecular geometry, basicity and spectroscopic properties of this dye, which is essential for the imaging the peptide activity, have been examined using quantum mechanical calculations, with the results also allowing determination of the force-field parameters required for classical simulations. Minimum energy conformations derived from the conformational search have been classified using clustering analyses with criteria based on both the existence of interactions and backbone geometric similarity. The results have been compared with those reported for isolated CREKA (peptide without dye). We found that the fluorescein affects the energy distribution of the minimum energy conformations, with the repulsive steric interactions induced by the dye producing shifting the distribution towards higher energy values. Interestingly, although the structural characteristics of the bioactive conformation identified for CREKA are not perturbed by the dye, it is less stable when the peptide is attached to the dye than in other chemical environments previously studied (isolated peptide, peptide attached to the surface of a protein, and peptide inserted in a phage display protein).
Collapse
Affiliation(s)
- David Zanuy
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| | - David Curcó
- Departament d’Enginyeria Química, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI, Frederick, MD 21702
- Department of Human Genetics, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Carlos Alemán
- Departament d’Enginyeria Química, E. T. S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain
| |
Collapse
|
50
|
Li Y, Zhang Y, Hill J, Kim HT, Shen Q, Bissonnette RP, Lamph WW, Brown PH. The rexinoid, bexarotene, prevents the development of premalignant lesions in MMTV-erbB2 mice. Br J Cancer 2008; 98:1380-8. [PMID: 18362934 PMCID: PMC2361704 DOI: 10.1038/sj.bjc.6604320] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 02/04/2023] Open
Abstract
Retinoids, vitamin A analogues that bind to retinoic acid receptor (RAR) or retinoid X receptor (RXR), play important roles in regulating cell proliferation, apoptosis, and differentiation. Recently, RXR-selective ligands, also referred to as rexinoids, have been investigated as potential chemopreventive agents for breast cancer. Our previous studies demonstrated that the rexinoid bexarotene significantly prevented ER-negative mammary tumourigenesis with less toxicity than naturally occurring retinoids in animal models. To determine whether bexarotene prevents cancer at the early stages during the multistage process of mammary carcinogenesis, we treated MMTV-erbB2 mice with bexarotene for 2 or 4 months. The development of preinvasive mammary lesions such as hyperplasias and carcinoma-in-situ was significantly inhibited. This inhibition was associated with reduced proliferation, but no induction of apoptosis. We also examined the regulation of a number of rexinoid-modulated genes including critical growth and cell cycle regulating genes using breast cell lines and mammary gland samples from mice treated with rexinoids. We showed that two of these genes (DHRS3 and DEC2) were modulated by bexarotene both in vitro and in vivo. Identification of these rexinoid-modulated genes will help us understand the mechanism by which rexinoid prevents cancer. Such rexinoid-regulated genes also represent potential biomarkers to assess the response of rexinoid treatment in clinical trials.
Collapse
Affiliation(s)
- Y Li
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Y Zhang
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J Hill
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - H-T Kim
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Q Shen
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - R P Bissonnette
- Department of Retinoid Research, Ligand Pharmaceuticals Inc., San Diego, CA 92121, USA
| | - W W Lamph
- Department of Retinoid Research, Ligand Pharmaceuticals Inc., San Diego, CA 92121, USA
| | - P H Brown
- Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor college of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|