1
|
Samsa WE, Zhang Z, Gong Z. CBFβ Regulates RUNX3 ADP-Ribosylation to Mediate Homologous Recombination Repair. J Cell Physiol 2025; 240:e31503. [PMID: 39696918 DOI: 10.1002/jcp.31503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
RUNX3 is a master developmental transcriptional factor that has been implicated as a tumor suppressor in many cancers. However, the exact role of RUNX3 in cancer pathogenesis remains to be completely elucidated. Recently, it has emerged that RUNX3 is involved in the DNA damage response. Here, we demonstrate that heterodimerization of RUNX3 with CBFβ is necessary for its stability by protecting RUNX3 from RUNX3 ADP-ribosylation-dependent ubiquitination and degradation. We further identify new amino acid residues that are targets for PARylation and demonstrate that RUNX3 PARylation at these residues is necessary for localization of RUNX3 to DNA double strand break sites (DBSs). We also demonstrate that both RUNX3 PARylation and CBFβ heterodimerization with RUNX3 positively regulates homologous recombination (HR) repair, in part by promoting the recruitment of CtIP and phospho-RPA2 to the DBSs to mediate HR repair. In summary, we provide evidence that RUNX3 regulates HR repair activity in a PARylation-dependent manner.
Collapse
Affiliation(s)
- William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ito K, Otani S, Date Y. p53 Deficiency-Dependent Oncogenicity of Runx3. Cells 2023; 12:cells12081122. [PMID: 37190031 DOI: 10.3390/cells12081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX transcription factors are frequently dysregulated in human cancers, suggesting their potential as attractive targets for drug treatment. However, all three transcription factors have been described as both tumor suppressors and oncogenes, indicating the need to determine their molecular mechanisms of action. Although RUNX3 has long been considered a tumor suppressor in human cancers, several recent studies have shown that RUNX3 is upregulated during the development or progression of various malignant tumors, suggesting it may act as a "conditional" oncogene. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. This review describes the evidence for the activities of RUNX3 in human cancer and proposes an explanation for the duality of RUNX3 involving the status of p53. In this model, p53 deficiency causes RUNX3 to become oncogenic, leading to aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Shohei Otani
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
3
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
4
|
Otálora-Otálora BA, González Prieto C, Guerrero L, Bernal-Forigua C, Montecino M, Cañas A, López-Kleine L, Rojas A. Identification of the Transcriptional Regulatory Role of RUNX2 by Network Analysis in Lung Cancer Cells. Biomedicines 2022; 10:3122. [PMID: 36551878 PMCID: PMC9775089 DOI: 10.3390/biomedicines10123122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
The use of a new bioinformatics pipeline allowed the identification of deregulated transcription factors (TFs) coexpressed in lung cancer that could become biomarkers of tumor establishment and progression. A gene regulatory network (GRN) of lung cancer was created with the normalized gene expression levels of differentially expressed genes (DEGs) from the microarray dataset GSE19804. Moreover, coregulatory and transcriptional regulatory network (TRN) analyses were performed for the main regulators identified in the GRN analysis. The gene targets and binding motifs of all potentially implicated regulators were identified in the TRN and with multiple alignments of the TFs' target gene sequences. Six transcription factors (E2F3, FHL2, ETS1, KAT6B, TWIST1, and RUNX2) were identified in the GRN as essential regulators of gene expression in non-small-cell lung cancer (NSCLC) and related to the lung tumoral process. Our findings indicate that RUNX2 could be an important regulator of the lung cancer GRN through the formation of coregulatory complexes with other TFs related to the establishment and progression of lung cancer. Therefore, RUNX2 could become an essential biomarker for developing diagnostic tools and specific treatments against tumoral diseases in the lung after the experimental validation of its regulatory function.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | | | - Lucia Guerrero
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Camila Bernal-Forigua
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| | - Martin Montecino
- Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370134, Chile
| | - Alejandra Cañas
- Departamento de Medicina Interna, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Unidad de Neumología, Hospital Universitario San Ignacio, Bogotá 110211, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| |
Collapse
|
5
|
RUNX Proteins as Epigenetic Modulators in Cancer. Cells 2022; 11:cells11223687. [PMID: 36429115 PMCID: PMC9688118 DOI: 10.3390/cells11223687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
RUNX proteins are highly conserved in metazoans and perform critical functions during development. Dysregulation of RUNX proteins through various molecular mechanisms facilitates the development and progression of various cancers, where different RUNX proteins show tumor type-specific functions and regulate different aspects of tumorigenesis by cross-talking with different signaling pathways such as Wnt, TGF-β, and Hippo. Molecularly, they could serve as transcription factors (TFs) to activate their direct target genes or interact with many other TFs to modulate chromatin architecture globally. Here, we review the current knowledge on the functions and regulations of RUNX proteins in different cancer types and highlight their potential role as epigenetic modulators in cancer.
Collapse
|
6
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
7
|
Date Y, Taniuchi I, Ito K. Oncogenic Runx1-Myc axis in p53-deficient thymic lymphoma. Gene 2022; 819:146234. [PMID: 35114276 DOI: 10.1016/j.gene.2022.146234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022]
Abstract
p53 deficiency and Myc dysregulation are frequently associated with cancer. However, the molecular mechanisms linking these two major oncogenic events are poorly understood. Using an osteosarcoma model caused by p53 loss, we have recently shown that Runx3 aberrantly upregulates Myc via mR1, a Runx consensus site in the Myc promoter. Here, we focus on thymic lymphoma, a major tumour type caused by germline p53 deletion in mice, and examine whether the oncogenic Runx-Myc axis plays a notable role in the development of p53-deficient lymphoma. Mice lacking p53 specifically in thymocytes (LP mice) mostly succumbed to thymic lymphoma. Runx1 and Myc were upregulated in LP mouse lymphoma compared with the normal thymus. Depletion of Runx1 or Myc prolonged the lifespan of LP mice and suppressed lymphoma development. In lymphoma cells isolated from LP mice, knockdown of Runx1 led to Myc suppression, weakening their tumour forming ability in immunocompromised mice. The mR1 locus was enriched by both Runx1 and H3K27ac, an active chromatin marker. LP mice with mutated mR1 had a longer lifespan and a lower incidence of lymphoma. Treatment with AI-10-104, a Runx inhibitor, improved the survival of LP mice. These results suggest that Myc upregulation by Runx1 is a key event in p53-deficient thymic lymphoma development and provide a clinical rationale for targeting the Runx family in p53-deficient malignancies.
Collapse
Affiliation(s)
- Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
8
|
Zhao X, Li J, Liu Z, Powers S. Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer. Cancer Res 2021; 81:6090-6105. [PMID: 34561273 PMCID: PMC9762330 DOI: 10.1158/0008-5472.can-21-2555] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023]
Abstract
The majority of cancers are driven by multiple genetic alterations, but how these changes collaborate during tumorigenesis remains largely unknown. To gain mechanistic insights into tumor-promoting genetic interactions among tumor suppressor genes (TSG), we conducted combinatorial CRISPR screening coupled with single-cell transcriptomic profiling in human mammary epithelial cells. As expected, different driver gene alterations in mammary epithelial cells influenced the repertoire of tumor suppressor alterations capable of inducing tumor formation. More surprisingly, TSG interaction networks were comprised of numerous cliques-sets of three or four genes such that each TSG within the clique showed oncogenic cooperation with all other genes in the clique. Genetic interaction profiling indicated that the predominant cooperating TSGs shared overlapping functions rather than distinct or complementary functions. Single-cell transcriptomic profiling of CRISPR double knockouts revealed that cooperating TSGs that synergized in promoting tumorigenesis and growth factor independence showed transcriptional epistasis, whereas noncooperating TSGs did not. These epistatic transcriptional changes, both buffering and synergistic, affected expression of oncogenic mediators and therapeutic targets, including CDK4, SRPK1, and DNMT1. Importantly, the epistatic expression alterations caused by dual inactivation of TSGs in this system, such as PTEN and TP53, were also observed in patient tumors, establishing the relevance of these findings to human breast cancer. An estimated 50% of differentially expressed genes in breast cancer are controlled by epistatic interactions. Overall, our study indicates that transcriptional epistasis is a central aspect of multigenic breast cancer progression and outlines methodologies to uncover driver gene epistatic networks in other human cancers. SIGNIFICANCE: This study provides a roadmap for moving beyond discovery and development of therapeutic strategies based on single driver gene analysis to discovery based on interactions between multiple driver genes.See related commentary by Fong et al., p. 6078.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Pathology and Cancer Center, Renaissance School of Medicine, Stony Brook, New York
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York
| | - Jinyu Li
- Department of Pathology and Cancer Center, Renaissance School of Medicine, Stony Brook, New York
| | - Zhimin Liu
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York
- Department of Biochemistry, Stony Brook University, Stony Brook, New York
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York
- Janssen Research & Development Data Science, Titusville, New Jersey
| | - Scott Powers
- Department of Pathology and Cancer Center, Renaissance School of Medicine, Stony Brook, New York.
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
9
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
10
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Date Y, Ito K. Oncogenic RUNX3: A Link between p53 Deficiency and MYC Dysregulation. Mol Cells 2020; 43:176-181. [PMID: 31991537 PMCID: PMC7057839 DOI: 10.14348/molcells.2019.0285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
The RUNX transcription factors serve as master regulators of development and are frequently dysregulated in human cancers. Among the three family members, RUNX3 is the least studied, and has long been considered to be a tumor-suppressor gene in human cancers. This idea is mainly based on the observation that RUNX3 is inactivated by genetic/epigenetic alterations or protein mislocalization during the initiation of tumorigenesis. Recently, this paradigm has been challenged, as several lines of evidence have shown that RUNX3 is upregulated over the course of tumor development. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. We propose a simple explanation for the duality of RUNX3: p53 status. In this model, p53 deficiency causes RUNX3 to become an oncogene, resulting in aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
12
|
Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J Cell Biochem 2019; 120:18332-18345. [PMID: 31257681 PMCID: PMC6772115 DOI: 10.1002/jcb.29143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 11/12/2022]
Abstract
MYC and RUNX oncogenes each trigger p53‐mediated failsafe responses when overexpressed in vitro and collaborate with p53 deficiency in vivo. However, together they drive rapid onset lymphoma without mutational loss of p53. This phenomenon was investigated further by transcriptomic analysis of premalignant thymus from RUNX2/MYC transgenic mice. The distinctive contributions of MYC and RUNX to transcriptional control were illustrated by differential enrichment of canonical binding sites and gene ontology analyses. Pathway analysis revealed signatures of MYC, CD3, and CD28 regulation indicative of activation and proliferation, but also strong inhibition of cell death pathways. In silico analysis of discordantly expressed genes revealed Tnfsrf8/CD30, Cish, and Il13 among relevant targets for sustained proliferation and survival. Although TP53 mRNA and protein levels were upregulated, its downstream targets in growth suppression and apoptosis were largely unperturbed. Analysis of genes encoding p53 posttranslational modifiers showed significant upregulation of three genes, Smyd2, Set, and Prmt5. Overexpression of SMYD2 was validated in vivo but the functional analysis was constrained by in vitro loss of p53 in RUNX2/MYC lymphoma cell lines. However, an early role is suggested by the ability of SMYD2 to block senescence‐like growth arrest induced by RUNX overexpression in primary fibroblasts.
Collapse
Affiliation(s)
- Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Camille Huser
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alma Mcdonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amanda MacCallum
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ailsa Holroyd
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
14
|
Addiction to Runx1 is partially attenuated by loss of p53 in the Eµ-Myc lymphoma model. Oncotarget 2018; 7:22973-87. [PMID: 27056890 PMCID: PMC5029604 DOI: 10.18632/oncotarget.8554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
The Runx genes function as dominant oncogenes that collaborate potently with Myc or loss of p53 to induce lymphoma when over-expressed. Here we examined the requirement for basal Runx1 activity for tumor maintenance in the Eμ-Myc model of Burkitt's lymphoma. While normal Runx1fl/fl lymphoid cells permit mono-allelic deletion, primary Eμ-Myc lymphomas showed selection for retention of both alleles and attempts to enforce deletion in vivo led to compensatory expansion of p53null blasts retaining Runx1. Surprisingly, Runx1 could be excised completely from established Eμ-Myc lymphoma cell lines in vitro without obvious effects on cell phenotype. Established lines lacked functional p53, and were sensitive to death induced by introduction of a temperature-sensitive p53 (Val135) allele. Transcriptome analysis of Runx1-deleted cells revealed a gene signature associated with lymphoid proliferation, survival and differentiation, and included strong de-repression of recombination-activating (Rag) genes, an observation that was mirrored in a panel of human acute leukemias where RUNX1 and RAG1,2 mRNA expression were negatively correlated. Notably, despite their continued growth and tumorigenic potential, Runx1null lymphoma cells displayed impaired proliferation and markedly increased sensitivity to DNA damage and dexamethasone-induced apoptosis, validating Runx1 function as a potential therapeutic target in Myc-driven lymphomas regardless of their p53 status.
Collapse
|
15
|
Anderson G, Mackay N, Gilroy K, Hay J, Borland G, McDonald A, Bell M, Hassanudin SA, Cameron E, Neil JC, Kilbey A. RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J Cell Biochem 2017; 119:2750-2762. [PMID: 29052866 PMCID: PMC5813226 DOI: 10.1002/jcb.26443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/27/2023]
Abstract
RUNX gene over‐expression inhibits growth of primary cells but transforms cells with tumor suppressor defects, consistent with reported associations with tumor progression. In contrast, chromosomal translocations involving RUNX1 are detectable in utero, suggesting an initiating role in leukemias. How do cells expressing RUNX1 fusion oncoproteins evade RUNX‐mediated growth suppression? Previous studies showed that the TEL‐RUNX1 fusion from t(12;21) B‐ALLs is unable to induce senescence‐like growth arrest (SLGA) in primary fibroblasts while potent activity is displayed by the RUNX1‐ETO fusion found in t(8;21) AMLs. We now show that SLGA potential is suppressed in TEL‐RUNX1 but reactivated by deletion of the TEL HLH domain or mutation of a key residue (K99R). Attenuation of SLGA activity is also a feature of RUNX1‐ETO9a, a minor product of t(8;21) translocations with increased leukemogenicity. Finally, while RUNX1‐ETO induces SLGA it also drives a potent senescence‐associated secretory phenotype (SASP), and promotes the immortalization of rare cells that escape SLGA. Moreover, the RUNX1‐ETO SASP is not strictly linked to growth arrest as it is largely suppressed by RUNX1 and partially activated by RUNX1‐ETO9a. These findings underline the heterogeneous nature of premature senescence and the multiple mechanisms by which this failsafe process is subverted in cells expressing RUNX1 oncoproteins.
Collapse
Affiliation(s)
- Gail Anderson
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nancy Mackay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Alma McDonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Margaret Bell
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Siti Ayuni Hassanudin
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
16
|
Selvarajan V, Osato M, Nah GSS, Yan J, Chung TH, Voon DCC, Ito Y, Ham MF, Salto-Tellez M, Shimizu N, Choo SN, Fan S, Chng WJ, Ng SB. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia 2017; 31:2219-2227. [PMID: 28119527 PMCID: PMC5629367 DOI: 10.1038/leu.2017.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/14/2022]
Abstract
RUNX3, runt-domain transcription factor, is a master regulator of gene expression in major developmental pathways. It acts as a tumor suppressor in many cancers but is oncogenic in certain tumors. We observed upregulation of RUNX3 mRNA and protein expression in nasal-type extranodal natural killer (NK)/T-cell lymphoma (NKTL) patient samples and NKTL cell lines compared to normal NK cells. RUNX3 silenced NKTL cells showed increased apoptosis and reduced cell proliferation. Potential binding sites for MYC were identified in the RUNX3 enhancer region. Chromatin immunoprecipitation-quantitative PCR revealed binding activity between MYC and RUNX3. Co-transfection of the MYC expression vector with RUNX3 enhancer reporter plasmid resulted in activation of RUNX3 enhancer indicating that MYC positively regulates RUNX3 transcription in NKTL cell lines. Treatment with a small-molecule MYC inhibitor (JQ1) caused significant downregulation of MYC and RUNX3, leading to apoptosis in NKTL cells. The growth inhibition resulting from depletion of MYC by JQ1 was rescued by ectopic MYC expression. In summary, our study identified RUNX3 overexpression in NKTL with functional oncogenic properties. We further delineate that MYC may be an important upstream driver of RUNX3 upregulation and since MYC is upregulated in NKTL, further study on the employment of MYC inhibition as a therapeutic strategy is warranted.
Collapse
Affiliation(s)
- V Selvarajan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - M Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - G S S Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - J Yan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - T-H Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - D C-C Voon
- Institute for Frontier Science Initiative, Kanazawa University, Japan.,Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Y Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - M F Ham
- Department of Anatomical Pathology, Faculty of Medicine, University of Indonesia, West Java, Indonesia
| | - M Salto-Tellez
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - N Shimizu
- Department of Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - S-N Choo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - S Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - W-J Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - S-B Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pathology, National University Hospital, National University Health System, Singapore
| |
Collapse
|
17
|
Kilbey A, Terry A, Wotton S, Borland G, Zhang Q, Mackay N, McDonald A, Bell M, Wakelam MJO, Cameron ER, Neil JC. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis. J Cell Biochem 2017; 118:1432-1441. [PMID: 27869314 PMCID: PMC5408393 DOI: 10.1002/jcb.25802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The three‐membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over‐expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the “sphingolipid rheostat” from ceramide to sphingosine‐1‐phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre‐mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid‐mediated apoptosis, and elucidate the mechanism of cross‐talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T‐lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx‐driven lymphomagenesis. J. Cell. Biochem. 118: 1432–1441, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Kilbey
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A Terry
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - S Wotton
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - G Borland
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Q Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - N Mackay
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A McDonald
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M Bell
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M J O Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - E R Cameron
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - J C Neil
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| |
Collapse
|
18
|
Neil JC, Gilroy K, Borland G, Hay J, Terry A, Kilbey A. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:247-264. [PMID: 28299662 DOI: 10.1007/978-981-10-3233-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.
Collapse
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anne Terry
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
19
|
Zhao Z, Wang Z, Ge C, Krebsbach P, Franceschi R. Healing Cranial Defects with AdRunx2-transduced Marrow Stromal Cells. J Dent Res 2016; 86:1207-11. [DOI: 10.1177/154405910708601213] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Marrow stromal cells (MSCs) include stem cells capable of forming all mesenchymal tissues, including bone. However, before MSCs can be successfully used in regeneration procedures, methods must be developed to stimulate their differentiation selectively to osteoblasts. Runx2, a bone-specific transcription factor, is known to stimulate osteoblast differentiation. In the present study, we tested the hypothesis that Runx2 gene therapy can be used to heal a critical-sized defect in mouse calvaria. Runx2-engineered MSCs displayed enhanced osteogenic potential and osteoblast-specific gene expression in vitro and in vivo. Runx2-expressing cells also dramatically enhanced the healing of critical-sized calvarial defects and increased both bone volume fraction and bone mineral density. These studies provide a novel route for enhancing osteogenesis that may have future therapeutic applications for craniofacial bone regeneration.
Collapse
Affiliation(s)
- Z. Zhao
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Z. Wang
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - C. Ge
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - P. Krebsbach
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - R.T. Franceschi
- Program in Oral Health Sciences,
- Department of Periodontics and Oral Medicine, and
- Department of Biological and Material Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA; and
- Department of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks MJ, Donehower LA, Yustein JT. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer 2015; 113:1289-97. [PMID: 26528706 PMCID: PMC4815801 DOI: 10.1038/bjc.2015.305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone malignancy in the paediatric population, principally affecting adolescents and young adults. Minimal advancements in patient prognosis have been made over the past two decades because of the poor understanding of disease biology. Runx2, a critical transcription factor in bone development, is frequently amplified and overexpressed in OS. However, the molecular and biological consequences of Runx2 overexpression remain unclear. METHODS si/shRNA and overexpression technology to alter Runx2 levels in OS cells. In vitro assessment of doxorubicin (doxo)-induced apoptosis and in vivo chemosensitivity studies. Small-molecule inhibitor of c-Myc transcriptional activity was used to assess its role. RESULTS Loss of Runx2 sensitises cells to doxo-induced apoptosis both in vitro and in vivo. Furthermore, in conjunction with chemotherapy, decreasing Runx2 protein levels activates both the intrinsic and extrinsic apoptotic pathways. Transplanted tumour studies demonstrated that loss of endogenous Runx2 protein expression enhances caspase-3 cleavage and tumour necrosis in response to chemotherapy. Finally, upon doxo-treated Runx2 knockdown OS cells there was evidence of enhanced c-Myc expression and transcriptional activity. Inhibition of c-Myc under these conditions resulted in decreased activation of apoptosis, therefore insinuating a role for c-Myc in dox-induced activation of apoptotic pathways. CONCLUSIONS Therefore, we have established a novel molecular mechanism by which Runx2 provides a chemoprotective role in OS, indicating that in conjunction to standard chemotherapy, targeting Runx2 may be a new therapeutic strategy for patients with OS.
Collapse
Affiliation(s)
- Alison Roos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Satterfield
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuying Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Fuja
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - M John Hicks
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lawrence A Donehower
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Yustein
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
21
|
Wysokinski D, Pawlowska E, Blasiak J. RUNX2: A Master Bone Growth Regulator That May Be Involved in the DNA Damage Response. DNA Cell Biol 2015; 34:305-15. [DOI: 10.1089/dna.2014.2688] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Sun SS, Zhang L, Yang J, Zhou X. Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 2015; 361:1-7. [PMID: 25727319 DOI: 10.1016/j.canlet.2015.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Runt-related transcription factor 2 (RUNX2) is a member of the polyomavirus enhancer-binding protein 2/core-binding factor superfamily. RUNX2 is known for its contribution to osteoblast phenotype and bone formation. In recent years, increasing attention has been focused on the relationship of Runx2 with tumorigenesis. In different types of tumor cells, RUNX2 cooperates with its co-activators or co-inhibitors, and mediates the responses of cells to various signaling pathways that are hyperactive in tumors. Thus, several downstream target genes of RUNX2 are activated when RUNX2 interacts with its co-factors, leading to a variety of effects on tumor cells (epithelial-mesenchymal transition, metastasis, proliferation, and osteolytic lesion). This review focuses on the involvement of RUNX2 in tumor cells in the crosstalk of diverse signaling pathways and its multiple functions to develop optimal and feasible approaches for clinical treatment based on the functions of RUNX2.
Collapse
Affiliation(s)
- Shan-Shan Sun
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Lun Zhang
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China
| | - Jingxuan Yang
- Department of Medicine, University of Oklahoma Health Science Center, Stanton L. Young Biomedical, Research Center, BRC I264, Oklahoma City, OK 73 104, USA
| | - Xuan Zhou
- The Maxillary Facial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer, Institute & Hospital, Tianjin Key Laboratory of Cancer, Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin 300060, China.
| |
Collapse
|
23
|
Mondello P, Cuzzocrea S, Mian M. Pim kinases in hematological malignancies: where are we now and where are we going? J Hematol Oncol 2014; 7:95. [PMID: 25491234 PMCID: PMC4266197 DOI: 10.1186/s13045-014-0095-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022] Open
Abstract
The proviral insertion in murine (PIM) lymphoma proteins are a serine/threonine kinase family composed of three isoformes: Pim-1, Pim-2 and Pim-3. They play a critical role in the control of cell proliferation, survival, homing and migration. Recently, overexpression of Pim kinases has been reported in human tumors, mainly in hematologic malignancies. In vitro and in vivo studies have confirmed their oncogenic potential. Indeed, PIM kinases have shown to be involved in tumorgenesis, to enhance tumor growth and to induce chemo-resistance, which is why they have become an attractive therapeutic target for cancer therapy. Novel molecules inhibiting Pim kinases have been evaluated in preclinical studies, demonstrating to be effective and with a favorable toxicity profile. Given the promising results, some of these compounds are currently under investigation in clinical trials. Herein, we provide an overview of the biological activity of PIM-kinases, their role in hematologic malignancies and future therapeutic opportunities.
Collapse
Affiliation(s)
- Patrizia Mondello
- Department of Human Pathology, University of Messina, Via Consolare Valeria, 98125, Messina, Italy. .,Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy.
| | - Michael Mian
- Department of Hematology, Hospital S. Maurizio, Bolzano/Bozen, Italy. .,Department of Internal Medicine V, Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
24
|
Aguirre E, Renner O, Narlik-Grassow M, Blanco-Aparicio C. Genetic Modeling of PIM Proteins in Cancer: Proviral Tagging and Cooperation with Oncogenes, Tumor Suppressor Genes, and Carcinogens. Front Oncol 2014; 4:109. [PMID: 24860787 PMCID: PMC4030178 DOI: 10.3389/fonc.2014.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 12/24/2022] Open
Abstract
The PIM proteins, which were initially discovered as proviral insertion sites in Moloney-murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anti-cancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim, and a third group of genes (including bmi1 and gfi1) as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate, and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all three isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.
Collapse
Affiliation(s)
- Enara Aguirre
- Biology Section, Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Oliver Renner
- Biology Section, Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Maja Narlik-Grassow
- Biology Section, Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| | - Carmen Blanco-Aparicio
- Biology Section, Experimental Therapeutics Programme, Spanish National Cancer Research Centre (CNIO) , Madrid , Spain
| |
Collapse
|
25
|
McDonald L, Ferrari N, Terry A, Bell M, Mohammed ZM, Orange C, Jenkins A, Muller WJ, Gusterson BA, Neil JC, Edwards J, Morris JS, Cameron ER, Blyth K. RUNX2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of Runx2 perturbs differentiation in the mouse mammary gland. Dis Model Mech 2014; 7:525-34. [PMID: 24626992 PMCID: PMC4007404 DOI: 10.1242/dmm.015040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RUNX2, a master regulator of osteogenesis, is oncogenic in the lymphoid lineage; however, little is known about its role in epithelial cancers. Upregulation of RUNX2 in cell lines correlates with increased invasiveness and the capacity to form osteolytic disease in models of breast and prostate cancer. However, most studies have analysed the effects of this gene in a limited number of cell lines and its role in primary breast cancer has not been resolved. Using a human tumour tissue microarray, we show that high RUNX2 expression is significantly associated with oestrogen receptor (ER)/progesterone receptor (PR)/HER2-negative breast cancers and that patients with high RUNX2 expression have a poorer survival rate than those with negative or low expression. We confirm RUNX2 as a gene that has a potentially important functional role in triple-negative breast cancer. To investigate the role of this gene in breast cancer, we made a transgenic model in which Runx2 is specifically expressed in murine mammary epithelium under the control of the mouse mammary tumour virus (MMTV) promoter. We show that ectopic Runx2 perturbs normal development in pubertal and lactating animals, delaying ductal elongation and inhibiting lobular alveolar differentiation. We also show that the Runx2 transgene elicits age-related, pre-neoplastic changes in the mammary epithelium of older transgenic animals, suggesting that elevated RUNX2 expression renders such tissue more susceptible to oncogenic changes and providing further evidence that this gene might have an important, context-dependent role in breast cancer.
Collapse
Affiliation(s)
- Laura McDonald
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huser CA, Gilroy KL, de Ridder J, Kilbey A, Borland G, Mackay N, Jenkins A, Bell M, Herzyk P, van der Weyden L, Adams DJ, Rust AG, Cameron E, Neil JC. Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genet 2014; 10:e1004167. [PMID: 24586197 PMCID: PMC3937229 DOI: 10.1371/journal.pgen.1004167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.
Collapse
Affiliation(s)
- Camille A. Huser
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn L. Gilroy
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
| | - Anna Kilbey
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alma Jenkins
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- Glasgow Polyomics, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewan Cameron
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James C. Neil
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Fu Y, Fesler M, Mahmud G, Bernreuter K, Jia D, Batanian JR. Narrowing down the common deleted region of 5q to 6.0 Mb in blastic plasmacytoid dendritic cell neoplasms. Cancer Genet 2013; 206:293-8. [DOI: 10.1016/j.cancergen.2013.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/04/2013] [Accepted: 07/20/2013] [Indexed: 11/28/2022]
|
28
|
Shimizu K, Yamagata K, Kurokawa M, Mizutani S, Tsunematsu Y, Kitabayashi I. Roles of AML1/RUNX1 in T-cell malignancy induced by loss of p53. Cancer Sci 2013; 104:1033-8. [PMID: 23679839 DOI: 10.1111/cas.12199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022] Open
Abstract
AML1/RUNX1 is a frequent target of chromosome translocations and mutations in myeloid and B-cell leukemias, and upregulation of AML1 is also observed in some cases of T-cell leukemias and lymphomas. This study shows that the incidence of thymic lymphoma in p53-null mice is less frequent in the Aml1(+/-) than in the Aml1(+/+) background. AML1 is upregulated in p53-null mouse bone-marrow cells and embryonic fibroblasts. In the steady state, p53 binds to and inhibits the distal AML1 promoter. When the cells are exposed to stresses, p53 is released from the distal AML1 promoter, resulting in upregulation of AML1. Overexpression of AML1 stimulates T-lymphocyte proliferation. These results suggest that upregulation of AML1 induced by loss of p53 promotes lymphoid-cell proliferation, thereby inducing lymphoma development.
Collapse
Affiliation(s)
- Kimiko Shimizu
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Ferrari N, McDonald L, Morris JS, Cameron ER, Blyth K. RUNX2 in mammary gland development and breast cancer. J Cell Physiol 2013; 228:1137-42. [PMID: 23169547 DOI: 10.1002/jcp.24285] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
Runx2 is best known as an essential factor in osteoblast differentiation and bone development but, like many other transcription factors involved in development, is known to operate over a much wider tissue range. Our understanding of these other aspects of Runx2 function is still at a relatively early stage and the importance of its role in cell fate decisions and lineage maintenance in non-osseous tissues is only beginning to emerge. One such tissue is the mammary gland, where Runx2 is known to be expressed and participate in the regulation of mammary specific genes. Furthermore, differential and temporal expression of this gene is observed during mammary epithelial differentiation in vivo, strongly indicative of an important functional role. Although the precise nature of that role remains elusive, preliminary evidence hints at possible involvement in the regulation of mammary stem and/or progenitor cells. As with many genes important in regulating cell fate, RUNX2 has also been linked to metastatic cancer where in some established breast cell lines, retention of expression is associated with a more invasive phenotype. More recently, expression analysis has been extended to primary breast cancers where high levels of RUNX2 align with a specific subtype of the disease. That RUNX2 expression correlates with the so called "Triple Negative" subtype is particularly interesting given the known cross talk between Runx2 and estrogen receptor signaling pathways. This review summaries our current understanding of Runx2 in mammary gland development and cancer, and postulates a role that may link both these processes.
Collapse
Affiliation(s)
- Nicola Ferrari
- The Beatson Institute for Cancer Research, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
30
|
Khandanpour C, Phelan JD, Vassen L, Schütte J, Chen R, Horman SR, Gaudreau MC, Krongold J, Zhu J, Paul WE, Dührsen U, Göttgens B, Grimes HL, Möröy T. Growth factor independence 1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia. Cancer Cell 2013; 23:200-14. [PMID: 23410974 PMCID: PMC3597385 DOI: 10.1016/j.ccr.2013.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/11/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022]
Abstract
Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Because oncogenic signaling activates a p53-dependent DNA damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function because Gfi1 ablation exacerbates p53 responses and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of proapoptotic p53 targets such as Bax, Noxa (Pmaip1), and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Department of Haematology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - James D. Phelan
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Lothar Vassen
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
| | - Judith Schütte
- Cambridge Institute for Medical Research & Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Riyan Chen
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
| | - Shane R. Horman
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
| | - Marie-Claude Gaudreau
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, H2W1R7 Canada
| | - Joseph Krongold
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3 Canada
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20829 USA
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20829 USA
| | - Ulrich Dührsen
- Department of Haematology, University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Bertie Göttgens
- Cambridge Institute for Medical Research & Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - H. Leighton Grimes
- Division of Cellular and Molecular Immunology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
- Division of Experimental Hematology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229 USA
- Correspondence to TM () and HLG ()
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal IRCM, Montréal, QC, Canada
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, QC, H2W1R7 Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 1A3 Canada
- Correspondence to TM () and HLG ()
| |
Collapse
|
31
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
32
|
Blanco-Aparicio C, Carnero A. Pim kinases in cancer: diagnostic, prognostic and treatment opportunities. Biochem Pharmacol 2012; 85:629-643. [PMID: 23041228 DOI: 10.1016/j.bcp.2012.09.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
PIM proteins belong to a family of ser/thr kinases composed of 3 members, PIM1, PIM2 and PIM3, with greatly overlapping functions. PIM kinases are mainly responsible for cell cycle regulation, antiapoptotic activity and the homing and migration of receptor tyrosine kinases mediated via the JAK/STAT pathway. PIM kinases have been found to be upregulated in many hematological malignancies and solid tumors. Although these kinases have been described as weak oncogenes, they are heavily targeted for anticancer drug discovery. The present review summarizes the discoveries made to date regarding PIM kinases as driving oncogenes in the process of tumorigenesis and their validation as drug targets.
Collapse
Affiliation(s)
- Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain; Consejo Superior de Investigaciones Cientificas, Spain.
| |
Collapse
|
33
|
Zhukova YN, Alekseeva MG, Zakharevich NV, Shtil AA, Danilenko VN. Pim family of protein kinases: Structure, functions, and roles in hematopoietic malignancies. Mol Biol 2011. [DOI: 10.1134/s0026893311040170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
He N, Xiao Z, Yin T, Stubbs J, Li L, Quarles LD. Inducible expression of Runx2 results in multiorgan abnormalities in mice. J Cell Biochem 2011; 112:653-65. [PMID: 21268087 DOI: 10.1002/jcb.22968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Runx2 is a transcription factor controlling skeletal development, and is also expressed in extraskeletal tissues where its function is not well understood. Existing Runx2 mutant and transgenic mouse models do not allow the necessary control of Runx2 expression to understand its functions in different tissues. We generated conditional, doxycyline-inducible, triple transgenic mice (CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2) to investigate the effects of wide spread overexpression of Runx2. Osteoblasts isolated from CMV-Cre;ROSA26-neo(flox/+)-rtTA; Tet-O-Runx2 mice demonstrated a dose-dependent effect of doxycycline to stimulate Runx2 transgene expression. Doxycycline administration to CMV-Cre;ROSA26-neo(flox/+)-rtTA;Tet-O-Runx2 mice induced Runx2 transgene expression in all tissues tested, with the highest levels observed in kidney, ovary, and bone. Runx2 overexpression resulted in deceased body size and reduced viability. With regard to bone, Runx2 overexpressing mice paradoxically displayed profound osteopenia and diminished osteogenesis. Induced expression of Runx2 in extraskeletal tissues resulted in ectopic calcification and induction of the osteogenic program in a limited number of tissues, including lung and muscle. In addition, the triple transgenic mice showed evidence of a myeloproliferative disorder and an apparent inhibition of lymphocyte development. Thus, overexpression of Runx2 both within and outside of the skeleton can have diverse biological effects. Use of tissue specific Cre mice will allow this model to be used to conditionally and inducibly overexpress Runx2 in different tissues and provide a means to study the post-natal tissue- and cell context-dependent functions of Runx2.
Collapse
Affiliation(s)
- Nan He
- The Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
35
|
Baniwal SK, Khalid O, Gabet Y, Shah RR, Purcell DJ, Mav D, Kohn-Gabet AE, Shi Y, Coetzee GA, Frenkel B. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis. Mol Cancer 2010; 9:258. [PMID: 20863401 PMCID: PMC2955618 DOI: 10.1186/1476-4598-9-258] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/23/2010] [Indexed: 02/07/2023] Open
Abstract
Background Prostate cancer (PCa) cells preferentially metastasize to bone at least in part by acquiring osteomimetic properties. Runx2, an osteoblast master transcription factor, is aberrantly expressed in PCa cells, and promotes their metastatic phenotype. The transcriptional programs regulated by Runx2 have been extensively studied during osteoblastogenesis, where it activates or represses target genes in a context-dependent manner. However, little is known about the gene regulatory networks influenced by Runx2 in PCa cells. We therefore investigated genome wide mRNA expression changes in PCa cells in response to Runx2. Results We engineered a C4-2B PCa sub-line called C4-2B/Rx2dox, in which Doxycycline (Dox) treatment stimulates Runx2 expression from very low to levels observed in other PCa cells. Transcriptome profiling using whole genome expression array followed by in silico analysis indicated that Runx2 upregulated a multitude of genes with prominent cancer associated functions. They included secreted factors (CSF2, SDF-1), proteolytic enzymes (MMP9, CST7), cytoskeleton modulators (SDC2, Twinfilin, SH3PXD2A), intracellular signaling molecules (DUSP1, SPHK1, RASD1) and transcription factors (Sox9, SNAI2, SMAD3) functioning in epithelium to mesenchyme transition (EMT), tissue invasion, as well as homing and attachment to bone. Consistent with the gene expression data, induction of Runx2 in C4-2B cells enhanced their invasiveness. It also promoted cellular quiescence by blocking the G1/S phase transition during cell cycle progression. Furthermore, the cell cycle block was reversed as Runx2 levels declined after Dox withdrawal. Conclusions The effects of Runx2 in C4-2B/Rx2dox cells, as well as similar observations made by employing LNCaP, 22RV1 and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa cells, including tissue invasion, homing to bone and induction of high bone turnover. Runx2 is therefore an attractive target for the development of novel diagnostic, prognostic and therapeutic approaches to PCa management. Targeting Runx2 may prove more effective than focusing on its individual downstream genes and pathways.
Collapse
Affiliation(s)
- Sanjeev K Baniwal
- Department of Biochemistry & Molecular Biology, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kilbey A, Terry A, Jenkins A, Borland G, Zhang Q, Wakelam MJO, Cameron ER, Neil JC. Runx regulation of sphingolipid metabolism and survival signaling. Cancer Res 2010; 70:5860-9. [PMID: 20587518 DOI: 10.1158/0008-5472.can-10-0726] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Runx genes (Runx1, 2, and 3) regulate cell fate in development and can operate as either oncogenes or tumor suppressors in cancer. The oncogenic potential of ectopic Runx expression has been shown in transgenic mice that develop lymphoma in potent synergy with overexpressed Myc, and in established fibroblasts that display altered morphology and increased tumorigenicity. Candidate oncogenic functions of overexpressed Runx genes include resistance to apoptosis in response to intrinsic and extrinsic stresses. In a search for gene targets responsible for this aspect of Runx phenotype, we have identified three key enzymes in sphingolipid metabolism (Sgpp1, Ugcg, and St3gal5/Siat9) as direct targets for Runx transcriptional regulation in a manner consistent with survival and apoptosis resistance. Consistent with these changes in gene expression, mass spectrometric analysis showed that ectopic Runx reduces intracellular long-chain ceramides in NIH3T3 fibroblasts and elevated extracellular sphingosine 1 phosphate. Runx expression also opposed the activation of c-Jun-NH(2)-kinase and p38(MAPK), key mediators of ceramide-induced death, and suppressed the onset of apoptosis in response to exogenous tumor necrosis factor alpha. The survival advantage conferred by ectopic Runx could be partially recapitulated by exogenous sphingosine 1 phosphate and was accompanied by reduced phosphorylation of p38(MAPK). These results reveal a novel link between transcription factor oncogenes and lipid signaling pathways involved in cancer cell survival and chemoresistance.
Collapse
Affiliation(s)
- Anna Kilbey
- Molecular Oncology Laboratory, Faculty of Veterinary Medicine, Institute of Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Runx2 in normal tissues and cancer cells: A developing story. Blood Cells Mol Dis 2010; 45:117-23. [PMID: 20580290 DOI: 10.1016/j.bcmd.2010.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/22/2022]
Abstract
The Runx transcription factors are essential for mammalian development, most notably in the haematopoietic and osteogenic lineages. Runx1 and its binding partner, CBFbeta, are frequently targeted in acute leukaemia but evidence is accumulating that all three Runx genes may have a role to play in a wider range of cancers, either as tumour promoters or tumour suppressors. Whilst Runx2 is renowned for its role as a master regulator of bone development we discuss here its expression pattern and putative functions beyond this lineage. Furthermore, we review the evidence that RUNX2 promotes neoplastic development in haematopoietic lineages and in advanced mammary and prostate cancer.
Collapse
|
38
|
|
39
|
Altieri DC, Languino LR, Lian JB, Stein JL, Leav I, van Wijnen AJ, Jiang Z, Stein GS. Prostate cancer regulatory networks. J Cell Biochem 2009; 107:845-52. [PMID: 19492418 DOI: 10.1002/jcb.22162] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although the timing with which common epithelial malignancies arise and become established remains a matter of debate, it is clear that by the time they are detected these tumors harbor hundreds of deregulated, aberrantly expressed or mutated genes. This enormous complexity poses formidable challenges to identify gene pathways that are drivers of tumorigenesis, potentially suitable for therapeutic intervention. An alternative approach is to consider cancer pathways as interconnected networks, and search for potential nodal proteins capable of connecting multiple signaling networks of tumor maintenance. We have modeled this approach in advanced prostate cancer, a condition with current limited therapeutic options. We propose that the integration of three signaling networks, including chaperone-mediated mitochondrial homeostasis, integrin-dependent cell signaling, and Runx2-regulated gene expression in the metastatic bone microenvironment plays a critical role in prostate cancer maintenance, and offers novel options for molecular therapy.
Collapse
Affiliation(s)
- Dario C Altieri
- Department of Cancer Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Piscopo DM, Johansen EB, Derynck R. Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter. J Biol Chem 2009; 284:31690-703. [PMID: 19759027 DOI: 10.1074/jbc.m109.052316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A proteomic analysis of proteins bound to the osteocalcin OSE2 sequence of the mouse osteocalcin promoter identified TRPS1 as a regulator of osteocalcin transcription. Mutations in the TRPS1 gene are responsible for human tricho-rhino-phalangeal syndrome, which is characterized by skeletal and craniofacial abnormalities. TRPS1 has been shown to bind regulatory promoter sequences containing GATA consensus binding sites and to repress transcription of genes involved in chondrocyte differentiation. Here we show that TRPS1 can directly bind the osteocalcin promoter in the presence or absence of Runx2. TRPS1 binds through a GATA binding sequence in the proximal promoter of the osteocalcin gene. The GATA binding site is conserved in mice, humans, and rats, although its location and orientation are not. Mutation of the mouse or human GATA binding sequence abrogates binding of TRPS1 to the osteocalcin promoter. We show that TRPS1 is expressed in osteosarcoma cells and upon induction of osteoblast differentiation in primary mouse bone marrow stromal cells and that TRPS1 regulates the expression of osteocalcin in both cell types. The expression of TRPS1 modulates mineralized bone matrix formation in differentiating osteoblast cells. These data suggest a role for TRPS1 in osteoblast differentiation, in addition to its previously described role in chondrogenesis.
Collapse
Affiliation(s)
- Denise M Piscopo
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
41
|
Scobie L, Hector RD, Grant L, Bell M, Nielsen AA, Meikle S, Philbey A, Philbey A, Thrasher AJ, Thrasher AJ, Cameron ER, Blyth K, Neil JC. A novel model of SCID-X1 reconstitution reveals predisposition to retrovirus-induced lymphoma but no evidence of gammaC gene oncogenicity. Mol Ther 2009; 17:1031-8. [PMID: 19337236 DOI: 10.1038/mt.2009.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The emergence of leukemia following gene transfer to restore common cytokine receptor gamma chain (gammaC) function in X-linked severe combined immunodeficiency (SCID-X1) has raised important questions with respect to gene therapy safety. To explore the risk factors involved, we tested the oncogenic potential of human gammaC in new strains of transgenic mice expressing the gene under the control of the CD2 promoter and locus control region (LCR). These mice demonstrated mildly perturbed T-cell development, with an increased proportion of thymic CD8 cells, but showed no predisposition to tumor development even on highly tumor prone backgrounds or after gamma-retrovirus infection. The human CD2-gammaC transgene rescued T and B-cell development in gammaC(-/-) mice but with an age-related delay, mimicking postnatal reconstitution in SCID-X1 gene therapy subjects. However, we noted that gammaC(-/-) mice are acutely susceptible to murine leukemia virus (MLV) leukemogenesis, and that this trait was not corrected by the gammaC transgene. We conclude that the SCID-X1 phenotype can be corrected safely by stable ectopic expression of gammaC and that the transgene is not significantly oncogenic when expressed in this context. However, an underlying predisposition conferred by the SCID-X1 background appears to collaborate with insertional mutagenesis to increase the risk of tumor development.
Collapse
Affiliation(s)
- Linda Scobie
- Division of Pathological Sciences, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu J, Sørensen AB, Wang B, Wabl M, Nielsen AL, Pedersen FS. Identification of novel Bach2 transcripts and protein isoforms through tagging analysis of retroviral integrations in B-cell lymphomas. BMC Mol Biol 2009; 10:2. [PMID: 19159451 PMCID: PMC2635362 DOI: 10.1186/1471-2199-10-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 01/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bach2 gene functions as a transcriptional repressor in B-cells, showing high expression level only before the plasma cell stage. Several lines of evidence indicate that Bach2 is a B-cell specific tumor suppressor. We here address patterns of insertional mutagenesis and expression of Bach2 is a murine retroviral model of B-cell lymphoma induction. RESULTS We report that the Bach2 gene is a target of proviral integrations in B-cell lymphomas induced by murine leukemia virus. An alternative Bach2 promoter was identified within intron 2 and this promoter was activated in one of the tumors harboring proviral integration. The alternative promoter was active in both normal and tumor tissue and the tissue specificity of the two Bach2 promoters was similar. Three different alternatively used Bach2 terminal exons were identified to be located in intron 4. The inclusion of these exons resulted in the generation of Bach2 mRNA with open reading frames lacking the bZIP DNA binding domain present in the normal Bach2 protein, but retaining a partial BTB protein dimerization domain. Such Bach2 protein was excluded from the cell nucleus. CONCLUSION We have identified an alternative promoter and new protein isoforms of Bach2. Our data imply that activation of an alternative promoter by proviral integration serves as a possible mechanism of up-regulation of the Bach2 gene with a potential role in B-cell lymphomagenesis. The finding of novel Bach2 transcripts and protein isoforms will facilitate a better insight into the normal and pathophysiological regulation of the Bach2 gene.
Collapse
Affiliation(s)
- Jinghua Liu
- Department of Molecular Biology, C.F. Møllers Allé 1.130, University of Aarhus, Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
43
|
Kim HR, Oh BC, Choi JK, Bae SC. Pim-1 kinase phosphorylates and stabilizes RUNX3 and alters its subcellular localization. J Cell Biochem 2008; 105:1048-58. [DOI: 10.1002/jcb.21906] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Wotton S, Terry A, Kilbey A, Jenkins A, Herzyk P, Cameron E, Neil JC. Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene 2008; 27:5856-66. [PMID: 18560354 DOI: 10.1038/onc.2008.195] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Runx genes are important in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias toward genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1 and CBFB-MYH11) were also tested. Although two direct Runx activation target genes were repressed (Ncam1 and Rgc32), the fusion proteins appeared to disrupt the regulation of downregulated targets (Cebpd, Id2 and Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition.
Collapse
Affiliation(s)
- S Wotton
- Faculty of Veterinary Medicine, Molecular Oncology Laboratory,Institute of Comparative Medicine, University of Glasgow, Glasgow, Scotland.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kilbey A, Blyth K, Wotton S, Terry A, Jenkins A, Bell M, Hanlon L, Cameron ER, Neil JC. Runx2 disruption promotes immortalization and confers resistance to oncogene-induced senescence in primary murine fibroblasts. Cancer Res 2008; 67:11263-71. [PMID: 18056452 DOI: 10.1158/0008-5472.can-07-3016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Runx genes play paradoxical roles in cancer where they can function either as dominant oncogenes or tumor suppressors according to context. We now show that the ability to induce premature senescence in primary murine embryonic fibroblasts (MEF) is a common feature of all three Runx genes. However, ectopic Runx-induced senescence contrasts with Ras oncogene-induced senescence, as it occurs directly and lacks the hallmarks of proliferative stress. Moreover, a fundamental role for Runx function in the senescence program is indicated by the effects of Runx2 disruption, which renders MEFs prone to spontaneous immortalization and confers an early growth advantage that is resistant to stress-induced growth arrest. Runx2(-/-) cells are refractory to H-Ras(V12)-induced premature senescence, despite the activation of a cascade of growth inhibitors and senescence markers, and are permissive for oncogenic transformation. The aberrant behavior of Runx2(-/-) cells is associated with signaling defects and elevated expression of S-G(2)-M cyclins and their associated cyclin dependent kinase activities that may override the effects of growth inhibitory signals. Coupling of stress responses to the cell cycle represents a novel facet of Runx tumor suppressor function and provides a rationale for the lineage-specific effects of loss of Runx function in cancer.
Collapse
Affiliation(s)
- Anna Kilbey
- Molecular Oncology Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stewart M, Mackay N, Hanlon L, Blyth K, Scobie L, Cameron E, Neil JC. Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Res 2007; 67:5126-33. [PMID: 17545590 PMCID: PMC2562448 DOI: 10.1158/0008-5472.can-07-0433] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we have exploited the power of insertional mutagenesis to elucidate tumor progression pathways in mice carrying two oncogenes (MYC/Runx2) that collaborate to drive early lymphoma development. Neonatal infection of these mice with Moloney murine leukemia virus resulted in accelerated tumor onset with associated increases in clonal complexity and lymphoid dissemination. Large-scale analysis of retroviral integration sites in these tumors revealed a profound bias towards a narrow range of target genes, including Jdp2 (Jundm2), D cyclin, and Pim family genes. Remarkably, direct PCR analysis of integration hotspots revealed that every progressing tumor consisted of multiple clones harboring hits at these loci, giving access to large numbers of independent insertion events and uncovering the contrasting mutagenic mechanisms operating at each target gene. Direct PCR analysis showed that high-frequency targeting occurs only in the tumor environment in vivo and is specific for the progression gene set. These results indicate that early lymphomas in MYC/Runx2 mice remain dependent on exogenous growth signals, and that progression can be achieved by constitutive activation of pathways converging on a cell cycle checkpoint that acts as the major rate-limiting step for lymphoma outgrowth.
Collapse
Affiliation(s)
- Monica Stewart
- Molecular Oncology Laboratory, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
47
|
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2007; 25:589-600. [PMID: 17165130 DOI: 10.1007/s10555-006-9032-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The three mammalian Runt homology domain transcription factors (Runx1, Runx2, Runx3) support biological control by functioning as master regulatory genes for the differentiation of distinct tissues. Runx proteins also function as cell context-dependent tumor suppressors or oncogenes. Abnormalities in Runx mediated gene expression are linked to cell transformation and tumor progression. Runx2 is expressed in mesenchymal linage cells committed to the osteoblast phenotype and is essential for bone formation. This skeletal transcription factor is aberrantly expressed at high levels in breast and prostate tumors and cells that aggressively metastasize to the bone environment. In cancer cells, Runx2 activates expression of bone matrix and adhesion proteins, matrix metalloproteinases and angiogenic factors that have long been associated with metastasis. In addition, Runx2 mediates the responses of cells to signaling pathways hyperactive in tumors, including BMP/TGFbeta and other growth factor signals. Runx2 forms co-regulatory complexes with Smads and other co-activator and co-repressor proteins that are organized in subnuclear domains to regulate gene transcription. These activities of Runx2 contribute to tumor growth in bone and the accompanying osteolytic disease, established by interfering with Runx2 functions in metastatic breast cancer cells. Inhibition of Runx2 in MDA-MB-231 cells transplanted to bone decreased tumorigenesis and prevented osteolysis. This review evaluates evidence that Runx2 regulates early metastatic events in breast and prostate cancers, tumor growth, and osteolytic bone disease. Consideration is given to the potential for inhibition of this transcription factor as a therapeutic strategy upstream of the regulatory events contributing to the complexity of metastasis to bone.
Collapse
Affiliation(s)
- J Pratap
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Osteosarcoma is a devastating but rare disease, whose study has illuminated both the basic biology and clinical management of cancer over the past 30 years. These contributions have included insight into the roles of key cancer genes such as the retinoblastoma tumor suppressor gene and TP53, the identification of familial cancer syndromes implicating DNA helicases, and dramatic improvements in survival by the use of adjuvant chemotherapy. This review provides a synoptic overview of our current understanding of the molecular causes of osteosarcoma, and suggests future directions for study.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine and Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | |
Collapse
|
49
|
Young DW, Hassan MQ, Yang XQ, Galindo M, Javed A, Zaidi SK, Furcinitti P, Lapointe D, Montecino M, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2. Proc Natl Acad Sci U S A 2007; 104:3189-94. [PMID: 17360627 PMCID: PMC1805558 DOI: 10.1073/pnas.0611419104] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Indexed: 12/31/2022] Open
Abstract
During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells.
Collapse
Affiliation(s)
| | | | | | | | - Amjad Javed
- *Department of Cell Biology and Cancer Center
| | | | | | - David Lapointe
- *Department of Cell Biology and Cancer Center
- Information Services, University of Massachusetts Medical School, Worcester, MA 01655-0105; and
| | - Martin Montecino
- **Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias Biologicas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | |
Collapse
|
50
|
Dijkman R, van Doorn R, Szuhai K, Willemze R, Vermeer MH, Tensen CP. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 2006; 109:1720-7. [PMID: 17068154 DOI: 10.1182/blood-2006-04-018143] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AbstractCD4+CD56+ hematodermic neoplasm (CD4+CD56+HN) is an aggressive hematopoietic malignancy with distinct clinicopathologic and immunophenotypic features that commonly involve the skin, bone marrow, and blood. Differentiation from cutaneous myelomonocytic leukemia (c-AML) may be exceedingly difficult and requires extensive phenotyping. The molecular mechanisms involved in the development of CD4+CD56+HN are largely unresolved. Moreover, recurrent chromosomal alterations have not yet been precisely defined in CD4+CD56+HN and c-AML. In the present study an integrated genomic analysis using expression profiling and array-based comparative genomic hybridization (CGH) was performed on lesional skin biopsy samples of patients with CD4+CD56+HN and c-AML. Our results demonstrate that CD4+CD56+HN and c-AML show distinct gene-expression profiles and distinct patterns of chromosomal aberrations. CD4+CD56+HN is characterized by recurrent deletion of regions on chromosome 4 (4q34), chromosome 9 (9p13-p11 and 9q12-q34), and chromosome 13 (13q12-q31) that contain several tumor suppressor genes with diminished expression (Rb1, LATS2). Elevated expression of the oncogenes HES6, RUNX2, and FLT3 was found but was not associated with genomic amplification. We noted high expression of various plasmacytoid dendritic-cell (pDC)–related genes, pointing to the cell of origin of this malignancy.
Collapse
Affiliation(s)
- Remco Dijkman
- Department of Dermatology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|