1
|
Sethy PS, Sengupta K, Mukhopadhyay S, Saha P. Translational regulation of δ-tubulin through its 5'-untranslated region. Mol Biol Rep 2023; 50:3451-3458. [PMID: 36757552 DOI: 10.1007/s11033-023-08289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND δ-tubulin - a member of tubulin superfamily, is found in a subset of eukaryotes including human where it has a role in centriole maturation. The mutation in the gene results in a disorganized microtubule triplet arrangement leading to formation of defective centriole. Since centriole maturation is a periodic event, it will be interesting to see if δ-tubulin is also regulated in a cell cycle dependent manner. METHODS AND RESULTS In this regard we show that the abundance of δ-tubulin mRNA remains unchanged throughout the cell cycle. However, the protein level varies periodically with a significantly higher expression in S-phase, implying regulation at the level of translation. Sequence analysis establishes the presence of a 90-base long conserved region, including a consensus motif of nine residues in the 5´-untranslated region (5´-UTR) of δ-tubulin transcript. The deletion analysis of the conserved region using luciferase reporter assay system confirms its strong inhibitory effect on translation. Interestingly, microtubule associated protein 4 (MAP4) is found to interact specifically with the 90-base long conserved region in the 5´-UTR and possibly responsible, at least partially, for the translation inhibitory activity of the UTR. Remarkably, MAP4 interacts with δ-tubulin in a periodic manner at protein level also. CONCLUSION The results reported here show that δ-tubulin protein expression is regulated at posttranscriptional level and strongly suggest the role of MAP4 in modulation of both abundance and function of δ-tubulin.
Collapse
Affiliation(s)
- Priyadarshani Suchismita Sethy
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.,Homi Bhabha National Institute, Mumbai, India
| | - Kasturi Sengupta
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.,Code Biotherapeutics, 2801 Sterling Drive, PA 19440, Hatfield, USA
| | - Saikat Mukhopadhyay
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Partha Saha
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
2
|
Hisaoka M, Schott J, Bortecen T, Lindner D, Krijgsveld J, Stoecklin G. Preferential translation of p53 target genes. RNA Biol 2022; 19:437-452. [PMID: 35388737 PMCID: PMC8993080 DOI: 10.1080/15476286.2022.2048562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcription factor p53 exerts its tumour suppressive effect through transcriptional activation of numerous target genes controlling cell cycle arrest, apoptosis, cellular senescence and DNA repair. In addition, there is evidence that p53 influences the translation of specific mRNAs, including translational inhibition of ribosomal protein synthesis and translational activation of MDM2. A challenge in the analysis of translational control is that changes in mRNA abundance exert a kinetic (passive) effect on ribosome densities. In order to separate these passive effects from active regulation of translation efficiency in response to p53 activation, we conducted a comprehensive analysis of translational regulation by comparative analysis of mRNA levels and ribosome densities upon DNA damage induced by neocarzinostatin in wild-type and TP53−/− HCT116 colorectal carcinoma cells. Thereby, we identified a specific group of mRNAs that are preferentially translated in response to p53 activation, many of which correspond to p53 target genes including MDM2, SESN1 and CDKN1A. By subsequent polysome profile analysis of SESN1 and CDKN1A mRNA, we could demonstrate that p53-dependent translational activation relies on a combination of inducing the expression of translationally advantageous isoforms and trans-acting mechanisms that further enhance the translation of these mRNAs.
Collapse
Affiliation(s)
- Miharu Hisaoka
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany.,National Center for Tumor Diseases (NCT) partner site, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany
| | - Toman Bortecen
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Georg Stoecklin
- Division of Biochemistry Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBHAlliance, Heidelberg, Germany.,National Center for Tumor Diseases (NCT) partner site, Heidelberg, Germany
| |
Collapse
|
3
|
Fusée LTS, Marín M, Fåhraeus R, López I. Alternative Mechanisms of p53 Action During the Unfolded Protein Response. Cancers (Basel) 2020; 12:cancers12020401. [PMID: 32050651 PMCID: PMC7072472 DOI: 10.3390/cancers12020401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor protein p53 orchestrates cellular responses to a vast number of stresses, with DNA damage and oncogenic activation being some of the best described. The capacity of p53 to control cellular events such as cell cycle progression, DNA repair, and apoptosis, to mention some, has been mostly linked to its role as a transcription factor. However, how p53 integrates different signaling cascades to promote a particular pathway remains an open question. One way to broaden its capacity to respond to different stimuli is by the expression of isoforms that can modulate the activities of the full-length protein. One of these isoforms is p47 (p53/47, Δ40p53, p53ΔN40), an alternative translation initiation variant whose expression is specifically induced by the PERK kinase during the Unfolded Protein Response (UPR) following Endoplasmic Reticulum stress. Despite the increasing knowledge on the p53 pathway, its activity when the translation machinery is globally suppressed during the UPR remains poorly understood. Here, we focus on the expression of p47 and we propose that the alternative initiation of p53 mRNA translation offers a unique condition-dependent mechanism to differentiate p53 activity to control cell homeostasis during the UPR. We also discuss how the manipulation of these processes may influence cancer cell physiology in light of therapeutic approaches.
Collapse
Affiliation(s)
| | - Mónica Marín
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Robin Fåhraeus
- INSERM U1162, 27 rue Juliette Dodu, 75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ignacio López
- Biochemistry-Molecular Biology, Faculty of Science, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Correspondence: ; Tel.: +598-25252095
| |
Collapse
|
4
|
Marcel V, Nguyen Van Long F, Diaz JJ. 40 Years of Research Put p53 in Translation. Cancers (Basel) 2018; 10:E152. [PMID: 29883412 PMCID: PMC5977125 DOI: 10.3390/cancers10050152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Since its discovery in 1979, p53 has shown multiple facets. Initially the tumor suppressor p53 protein was considered as a stress sensor able to maintain the genome integrity by regulating transcription of genes involved in cell cycle arrest, apoptosis and DNA repair. However, it rapidly came into light that p53 regulates gene expression to control a wider range of biological processes allowing rapid cell adaptation to environmental context. Among them, those related to cancer have been extensively documented. In addition to its role as transcription factor, scattered studies reported that p53 regulates miRNA processing, modulates protein activity by direct interaction or exhibits RNA-binding activity, thus suggesting a role of p53 in regulating several layers of gene expression not restricted to transcription. After 40 years of research, it appears more and more clearly that p53 is strongly implicated in translational regulation as well as in the control of the production and activity of the translational machinery. Translation control of specific mRNAs could provide yet unsuspected capabilities to this well-known guardian of the genome.
Collapse
Affiliation(s)
- Virginie Marcel
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Flora Nguyen Van Long
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| | - Jean-Jacques Diaz
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
5
|
Roy R, Huang Y, Seckl MJ, Pardo OE. Emerging roles of hnRNPA1 in modulating malignant transformation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28791797 DOI: 10.1002/wrna.1431] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins associated with complex and diverse biological processes such as processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs, RNA splicing, transactivation of gene expression, and modulation of protein translation. hnRNPA1 is the most abundant and ubiquitously expressed member of this protein family and has been shown to be involved in multiple molecular events driving malignant transformation. In addition to selective mRNA splicing events promoting expression of specific protein variants, hnRNPA1 regulates the gene expression and translation of several key players associated with tumorigenesis and cancer progression. Here, we will summarize our current knowledge of the involvement of hnRNPA1 in cancer, including its roles in regulating cell proliferation, invasiveness, metabolism, adaptation to stress and immortalization. WIREs RNA 2017, 8:e1431. doi: 10.1002/wrna.1431 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Yueyang Huang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
6
|
p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ 2017. [PMID: 28622297 PMCID: PMC5596431 DOI: 10.1038/cdd.2017.96] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Physiological and pathological conditions that affect the folding capacity of the endoplasmic reticulum (ER) provoke ER stress and trigger the unfolded protein response (UPR). The UPR aims to either restore the balance between newly synthesized and misfolded proteins or if the damage is severe, to trigger cell death. However, the molecular events underlying the switch between repair and cell death are not well understood. The ER-resident chaperone BiP governs the UPR by sensing misfolded proteins and thereby releasing and activating the three mediators of the UPR: PERK, IRE1 and ATF6. PERK promotes G2 cell cycle arrest and cellular repair by inducing the alternative translated p53 isoform p53ΔN40 (p53/47), which activates 14-3-3σ via suppression of p21CDKN1A. Here we show that prolonged ER stress promotes apoptosis via a p53-dependent inhibition of BiP expression. This leads to the release of the pro-apoptotic BH3-only BIK from BiP and activation of apoptosis. Suppression of bip mRNA translation is mediated via the specific binding of p53 to the first 346-nt of the bip mRNA and via a p53 trans-suppression domain located within the first seven N-terminal amino acids of p53ΔN40. This work shows how p53 targets BiP to promote apoptosis during severe ER stress and further illustrates how regulation of mRNA translation has a key role in p53-mediated regulation of gene expression during the UPR.
Collapse
|
7
|
Tournillon AS, López I, Malbert-Colas L, Findakly S, Naski N, Olivares-Illana V, Karakostis K, Vojtesek B, Nylander K, Fåhraeus R. p53 binds the mdmx mRNA and controls its translation. Oncogene 2016; 36:723-730. [PMID: 27375027 DOI: 10.1038/onc.2016.236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Abstract
MDMX and MDM2 are two nonredundant essential regulators of p53 tumor suppressor activity. MDM2 controls p53 expression levels, whereas MDMX is predominantly a negative regulator of p53 trans-activity. The feedback loops between MDM2 and p53 are well studied and involve both negative and positive regulation on transcriptional, translational and post-translational levels but little is known on the regulatory pathways between p53 and MDMX. Here we show that overexpression of p53 suppresses mdmx mRNA translation in vitro and in cell-based assays. The core domain of p53 binds the 5' untranslated region (UTR) of the mdmx mRNA in a zinc-dependent manner that together with a trans-suppression domain located in p53 N-terminus controls MDMX synthesis. This interaction can be visualized in the nuclear and cytoplasmic compartment. Fusion of the mdmx 5'UTR to the ovalbumin open reading frame leads to suppression of ovalbumin synthesis. Interestingly, the transcription inactive p53 mutant R273H has a different RNA-binding profile compared with the wild-type p53 and differentiates the synthesis of MDMX isoforms. This study describes p53 as a trans-suppressor of the mdmx mRNA and adds a further level to the intricate feedback system that exist between p53 and its key regulatory factors and emphasizes the important role of mRNA translation control in regulating protein expression in the p53 pathway.
Collapse
Affiliation(s)
- A-S Tournillon
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - I López
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - L Malbert-Colas
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - S Findakly
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - N Naski
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - V Olivares-Illana
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - K Karakostis
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - B Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - K Nylander
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - R Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France.,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Medical Biosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
9
|
Davidson BA, Rubatt JM, Corcoran DL, Teoh DK, Bernardini MQ, Grace LA, Soper WJ, Berchuck A, Siamakpour-Reihani S, Chen W, Owzar K, Murphy SK, Secord AA. Differential Angiogenic Gene Expression in TP53 Wild-Type and Mutant Ovarian Cancer Cell Lines. Front Oncol 2014; 4:163. [PMID: 24999452 PMCID: PMC4064453 DOI: 10.3389/fonc.2014.00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/06/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Underlying mechanisms regulating angiogenesis in ovarian cancer have not been completely elucidated. Evidence suggests that the TP53 tumor suppressor pathway and tumor microenvironment play integral roles. We utilized microarray technology to study the interaction between TP53 mutational status and hypoxia on angiogenic gene expression. METHODS Affymetrix U133A arrays were analyzed for angiogenic gene expression in 19 ovarian cancer cell lines stratified both by TP53 mutation status and A2780 wild-type (wt) TP53 vs. mutated (m) TP53 cell lines after treatment under hypoxic conditions or with ionizing radiation. RESULTS Twenty-eight differentially expressed angiogenic genes were identified in the mTP53 cell lines compared to wtTP53 lines. Five genes were upregulated in mTP53 cells: 40% involved in extracellular matrix (ECM) degradation [matrix metalloproteinase 10 (MMP10)/15] and 60% in angiogenesis (fibroblast growth factor receptor 3/VEGFA/ephrin receptor-B4). Twenty-three genes were upregulated in wtTP53: nearly 22% were ECM constituents or involved in ECM degradation; over 40% were growth factors or mediators of angiogenesis. Five genes were upregulated in the A2780mTP53 cells: 40% involved in ECM remodeling (MMP10, ADAMTS1), 40% with pro-angiogenic activity (EFNB2, factor 2 receptor), and 20% with anti-angiogenic properties (ADAMTS1). Three genes were upregulated in hypoxia treated cells compared to controls: one with anti-angiogenic activity (angiopoietin-like 4) and two with pro-angiogenic activity (VEGFA, EFNA3). No significant gene fold changes were noted after exposure to radiation. Four genes continued to demonstrate significant differential expression (p ≤ 0.05) after adjusting for multiple comparisons. These genes included endoglin upregulation in wt lines (pro-angiogenesis) and upregulation of FGF20 (growth factor), ADAMTS1 (anti-angiogenesis) and MMP10 (ECM degradation) in mTP53 cell lines. CONCLUSION Our exploratory findings indicate that non-overlapping angiogenic pathways may be altered by TP53 mutations and hypoxic conditions in the tumor microenvironment. Further evaluation is needed for confirmation.
Collapse
Affiliation(s)
- Brittany Anne Davidson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - Jennifer M. Rubatt
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - David L. Corcoran
- Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, NC, USA
| | - Deanna K. Teoh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - Marcus Q. Bernardini
- Gynecology Oncology, Toronto-Sunnybrook Regional Cancer Centre, Toronto, ON, Canada
| | - Lisa A. Grace
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - William John Soper
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | | | - Wei Chen
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| | - Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
10
|
Kim JH, Jiang S, Elwell CA, Engel JN. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog 2011; 7:e1002285. [PMID: 21998584 PMCID: PMC3188521 DOI: 10.1371/journal.ppat.1002285] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/10/2011] [Indexed: 12/12/2022] Open
Abstract
The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread. Chlamydia trachomatis is an obligate intracellular bacterium that is an important cause of human disease, including sexually transmitted diseases and acquired blindness in developing countries. The inability to carry out conventional genetic manipulations limits our understanding of the mechanisms of C. trachomatis binding, entry, and spread. Previous studies have shown that heparan sulfate proteoglycans (HSPGs) play a role in early binding events. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated whether HSPG-associated growth factors affect C. trachomatis binding or entry. Here, we report the novel finding that Fibroblast Growth Factor 2 (FGF2), a ubiquitously expressed growth factor, enhances C. trachomatis binding to host cells in an HSPG-dependent manner. Furthermore, C. trachomatis infection stimulates production and release of FGF2 through distinct signaling pathways. Released FGF2 is sufficient to enhance the subsequent rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway that sets up a positive feedback loop to enhance bacterial infection and spread.
Collapse
Affiliation(s)
- Jung Hwa Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Shaobo Jiang
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Cherilyn A. Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
| | - Joanne N. Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Chrusciel M, Bodek G, Kirtiklis L, Lewczuk B, Hyder CL, Blitek A, Kaczmarek MM, Ziecik AJ, Andronowska A. Immortalization of swine umbilical vein endothelial cells (SUVECs) with the simian virus 40 large-T antigen. Mol Reprod Dev 2011; 78:597-610. [PMID: 21786362 DOI: 10.1002/mrd.21353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/10/2011] [Indexed: 11/06/2022]
Abstract
Implementation of the swine umbilical vein endothelial cells (SUVECs) model in vitro can be instrumental in determining the biology of endothelial cells. We have generated an immortalized endothelial cell line, G-1410, using Simian virus 40 T-antigen (SV40 T-ag) primarily to overcome the short life span before the onset of senescence and high variability among enzymatically isolated cells of primary cultures. Fast proliferating cells were selected from cultures and, after a fifth passage, examined for the presence of the SV40 T-ag by PCR and immunocytochemistry. Phase contrast and transmission electron microscopy revealed that G-1410 cells did not differ morphologically from SUVECs. The G-1410 cells exhibited positive staining for vascular endothelial (VE)-cadherin and von Willebrand factor (vWF), and formed capillary-like tube structures on Matrigel. Despite the strong oncogenic signal provided by SV40 T-ag, these transformed G-1410 cells have remained karyotypically normal and non-tumorigenic. G-1410 cells also responded to stimulation with VEGF, FGF-2, and newborn calf serum. Moreover, G-1410 cells showed elevated expression of VEGF120, VEGF164 (VEGF-A), and FGF-2 at both mRNA and protein levels. In conclusion, based on the cytological and functional evaluation of the newly obtained immortalized cell line, it can be concluded that G-1410 cells provide a useful tool for studying the effects of VEGF and FGF systems, and other signal transduction pathways related to angiogenesis.
Collapse
Affiliation(s)
- Marcin Chrusciel
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lynch CJ, Shah ZH, Allison SJ, Ahmed SU, Ford J, Warnock LJ, Li H, Serrano M, Milner J. SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53. PLoS One 2010; 5:e13502. [PMID: 20975832 PMCID: PMC2958826 DOI: 10.1371/journal.pone.0013502] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/25/2010] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL). We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.
Collapse
Affiliation(s)
- Cian J. Lynch
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| | - Zahid H. Shah
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Simon J. Allison
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Shafiq U. Ahmed
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Jack Ford
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Lorna J. Warnock
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
| | - Han Li
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Serrano
- Tumour Suppression Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jo Milner
- YCR p53 Research Unit, Department of Biology, University of York, York, United Kingdom
- * E-mail: (CJL); (JM)
| |
Collapse
|
13
|
Vilborg A, Wilhelm MT, Wiman KG. Regulation of tumor suppressor p53 at the RNA level. J Mol Med (Berl) 2010; 88:645-52. [PMID: 20306257 DOI: 10.1007/s00109-010-0609-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/07/2023]
Abstract
p53 is a key tumor suppressor that triggers cell cycle arrest, senescence, or apoptosis in response to cellular stress. Frequent p53 mutation in human tumors allows survival, sustained growth, and tumor progression. p53 is expressed at low levels under normal conditions, due to rapid protein turnover. Stress signaling induces p53 protein stabilization through phosphorylation and other post-translational modifications. However, recent studies have demonstrated critical regulation of p53 at the mRNA level, mediated via both the 5'UTR and the 3'UTR and affecting both the stability and the translation efficiency of the p53 mRNA. Both proteins and microRNAs have been implicated in such regulation. The p53 target gene Wig-1 encodes a zinc finger protein that binds to double-stranded RNA and enhances p53 mRNA stability by binding to the 3'UTR in a positive feedback loop. Here, we shall summarize current knowledge about regulation of the p53 mRNA and discuss possible implications for cancer therapy.
Collapse
Affiliation(s)
- Anna Vilborg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Takada H, Kawana T, Ito Y, Kikuno RF, Mamada H, Araki T, Koga H, Asashima M, Taira M. The RNA-binding protein Mex3b has a fine-tuning system for mRNA regulation in early Xenopus development. Development 2009; 136:2413-22. [PMID: 19542354 DOI: 10.1242/dev.029165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Post-transcriptional control by RNA-binding proteins is a precise way to assure appropriate levels of gene expression. Here, we identify a novel mRNA regulatory system involving Mex3b (RKHD3) and demonstrate its role in FGF signaling. mex3b mRNA has a 3' long conserved UTR, named 3'LCU, which contains multiple elements for both mRNA destabilization and translational enhancement. Notably, Mex3b promotes destabilization of its own mRNA by binding to the 3'LCU, thereby forming a negative autoregulatory loop. The combination of positive regulation and negative autoregulation constitutes a fine-tuning system for post-transcriptional control. In early embryogenesis, Mex3b is involved in anteroposterior patterning of the neural plate. Consistent with this, Mex3b can attenuate FGF signaling and destabilize mRNAs for the FGF signaling components Syndecan 2 and Ets1b through their 3' UTRs. These data suggest that the 3'LCU-mediated fine-tuning system determines the appropriate level of mex3b expression, which in turn contributes to neural patterning through regulating FGF signaling.
Collapse
Affiliation(s)
- Hitomi Takada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Delluc-Clavières A, Le Bec C, Van den Berghe L, Conte C, Allo V, Danos O, Prats AC. Efficient gene transfer in skeletal muscle with AAV-derived bicistronic vector using the FGF-1 IRES. Gene Ther 2008; 15:1090-8. [PMID: 18369321 DOI: 10.1038/gt.2008.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IRESs (internal ribosome entry sites) are RNA elements behaving as translational enhancers in conditions of global translation blockade. IRESs are also useful in biotechnological applications as they allow expression of several genes from a single mRNA. Up to now, most IRES-containing vectors use the IRES from encephalomyocarditis virus (EMCV), highly active in transiently transfected cells but long and not flexible in its positioning relative to the gene of interest. In contrast, several IRESs identified in cellular mRNAs are short and flexible and may therefore be advantageous in gene transfer vectors such as those derived from the adeno-associated virus (AAV), where the size of the transgene expression cassette is limited. Here, we have tested bicistronic AAV-derived vectors expressing two luciferase genes separated by the EMCV- or fibroblast growth factor 1 (FGF-1) IRES. We demonstrate that the AAV vector with the FGF-1 IRES, when administrated into the mouse muscle, leads to efficient expression of both transgenes with a stable stoechiometry, for at least 120 days. Interestingly, the bicistronic mRNA containing the FGF-1 IRES leads to transgene expression 10 times superior to that observed with EMCV, in vivo. AAV vectors featuring the FGF-1 IRES may thus be advantageous for gene therapy approaches in skeletal muscle involving coexpression of genes of interest.
Collapse
Affiliation(s)
- A Delluc-Clavières
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Häbig K, Walter M, Poths S, Riess O, Bonin M. RNA interference of LRRK2-microarray expression analysis of a Parkinson's disease key player. Neurogenetics 2007; 9:83-94. [PMID: 18097693 DOI: 10.1007/s10048-007-0114-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
The protein leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease (PD). Mutations in the LRRK2 gene account for up to 10% of all autosomal dominant forms of familiar and for approximately 1-3% of sporadic PD patients. Although the LRRK2 protein has many functional domains like a leucine-rich repeat domain, a Roc-GTPase domain, a kinase domain of the tyrosine kinase-like subfamily and multiple protein interaction domains (armadillo, ankyrin, WD40), the exact biological role of LRRK2 in the human brain is elusive. To gain more insight into the biological function of this protein, we monitored the changes in the expression profiles of SH-SY5Y cells, a dopaminergic neuroblastoma cell line, induced by a depletion of LRRK2 levels by RNA interference (RNAi) with Affymetrix U133 Plus 2.0 microarrays. A total of 187 genes were differentially regulated by at least a 1.5-fold change with 94 transcripts being upregulated and 93 transcripts being downregulated compared to scrambled control siRNA transfected cells. Key players of the interaction networks were independently verified by qRT-PCR. The differentially expressed gene products are involved in axonal guidance, nervous system development, cell cycle, cell growth, cell differentiation, cell communication, MAPKKK cascade, and Ras protein signal transduction. Defined gene expression networks will now serve to look more closely for candidates affected by LRRK2 reduction and how they might be altered in other forms of familial or sporadic PD.
Collapse
Affiliation(s)
- K Häbig
- Department of Medical Genetics, Microarray Facility, University of Tübingen, Tübingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Riley KJL, Maher LJ. Analysis of p53-RNA interactions in cultured human cells. Biochem Biophys Res Commun 2007; 363:381-7. [PMID: 17869221 PMCID: PMC2211410 DOI: 10.1016/j.bbrc.2007.08.181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 08/29/2007] [Indexed: 11/28/2022]
Abstract
Tumor suppressor p53 is a well-characterized transcription factor that binds DNA. More enigmatic are the RNA-binding properties of p53 and their physiological relevance. We used three sensitive co-immunoprecipitation methods in an attempt to detect RNAs that tightly associate with p53 in cultured human cells. Although recombinant p53 protein binds RNA in a sequence-nonspecific mode, we do not detect specific in vivo RNA binding by p53. These results suggest that RNA binding is prevented by post-translational p53 modifications. A ribonucleoprotein (not p53) is purified by multiple IgG monoclonal antibodies (including anti-p53 antibodies) from both p53 +/+ and p53 null cells. Caution is therefore required in interpreting RNA co-immunoprecipitation experiments. Though not formally excluded, these results do not support models in which p53 binds specific RNA partners in vivo.
Collapse
Affiliation(s)
- Kasandra J.-L. Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, 507-284-9041, Fax: 507-284-2053, E-mail:
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, 507-284-9041, Fax: 507-284-2053, E-mail:
| |
Collapse
|
18
|
Abstract
The p53 tumor suppressor protein is typically considered to be a sequence-specific DNA-binding transcription factor. However, reports over the last 15 years have described RNA binding by p53 in a variety of contexts, suggesting the possibility of new p53 functions. It is clear that p53-RNA interactions are mediated by a nucleic acid-binding domain of p53 independent of the sequence-specific core domain responsible for DNA recognition. Reports disagree on several aspects of the putative RNA interaction, including sequence specificity and biological relevance. Here we review the history and recent advances in the study of p53-RNA interactions. We argue that p53-RNA interactions are sequence nonspecific and depend on incomplete post-translational modification of the p53 C-terminal domain when the protein is expressed in heterologous systems. It is unknown what fraction of p53 protein exists in a state competent for RNA binding in vivo. Thus, potential physiological roles of p53-RNA interactions remain mysterious.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
19
|
Liekens S, Gijsbers S, Vanstreels E, Daelemans D, De Clercq E, Hatse S. The nucleotide analog cidofovir suppresses basic fibroblast growth factor (FGF2) expression and signaling and induces apoptosis in FGF2-overexpressing endothelial cells. Mol Pharmacol 2007; 71:695-703. [PMID: 17158200 DOI: 10.1124/mol.106.026559] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine; (S)-HPMPC] is an antiviral drug that has been approved for the treatment of cytomegalovirus retinitis in patients with AIDS. Cidofovir also possesses potent activity against human papillomavirus-induced tumors in animal models and patients. We have recently shown that cidofovir inhibits the development of vascular tumors induced by basic fibroblast growth factor (FGF2)-overexpressing endothelial cells (FGF2-T-MAE) in mice. Here, we demonstrate that the inhibitory activity of cidofovir in FGF2-T-MAE cells may result from the specific induction of apoptosis. Cell cycle analysis revealed that cidofovir induces accumulation of cells in the S phase and, upon prolonged treatment, a significant increase in sub-G1 cells, exhibiting a subdiploid DNA content. Moreover, annexin V binding, an early event in apoptosis induction, was increased in cidofovir-treated FGF2-T-MAE cells. Cidofovir also caused nuclear fragmentation and the activation of caspase-3-like proteases, as evidenced by the cleavage of poly(ADP-ribose)polymerase. In addition, cidofovir treatment of FGF2-T-MAE cells resulted in a pronounced up-regulation of the tumor suppressor protein p53. However, the expression of Bax and Bcl-2 remained unchanged, and cidofovir did not induce the release of cytochrome c from the mitochondria. In addition, cidofovir did not suppress the phosphorylation of protein kinase B/Akt, a transmitter of antiapoptotic survival signals, or its downstream regulator Bad, indicating that the Akt pathway is not affected by cidofovir in FGF2-T-MAE cells. However, the compound inhibited the expression of FGF2 and FGF2 signaling through Erk42/44, as shown by Western blot analysis. Our results indicate that cidofovir inhibits the growth of FGF2-T-MAE cells via inhibition of FGF2 expression and signaling and via the induction of apoptosis. These findings suggest that the clinical use of cidofovir might be expanded to tumors that are not induced by oncogenic viruses.
Collapse
Affiliation(s)
- Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The tumor suppressor protein p53 is mutated in over half of human cancers. Despite 25 years of study, the complex regulation of this protein remains unclear. After serendipitously detecting RNA binding by p53 in the yeast three-hybrid system (Y3H), we are exploring the specificity and function of this interaction. Electrophoretic mobility shift assays show that full-length p53 binds equally to RNAs that are strongly distinguished in the Y3H. RNA binding blocks sequence-specific DNA binding by p53. The C-terminus of p53 is necessary and sufficient for strong RNA interaction in vitro. Mouse and human C-terminal p53 peptides have different affinities for RNA, and an acetylated human p53 C-terminal peptide does not bind RNA. Circular dichroism spectroscopy of p53 peptides shows that RNA binding does not induce a structural change in the p53 C-terminal peptide, and C-terminal peptides do not detectably affect the structure of RNA. These results demonstrate that p53 binds RNA with little sequence specificity, RNA binding has the potential to regulate DNA binding, and RNA-p53 interactions can be regulated by acetylation of the p53 C-terminus.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
21
|
Qin G, Kishore R, Dolan CM, Silver M, Wecker A, Luedemann CN, Thorne T, Hanley A, Curry C, Heyd L, Dinesh D, Kearney M, Martelli F, Murayama T, Goukassian DA, Zhu Y, Losordo DW. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc Natl Acad Sci U S A 2006; 103:11015-20. [PMID: 16835303 PMCID: PMC1544166 DOI: 10.1073/pnas.0509533103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Indexed: 11/18/2022] Open
Abstract
The transcription factor E2F1 is known to regulate cell proliferation and has been thought to modulate tumorigenesis via this mechanism alone. Here we show that mice deficient in E2F1 exhibit enhanced angiogenesis. The proangiogenic phenotype in E2F1 deficiency is the result of overproduction of vascular endothelial growth factor (VEGF) and is prevented by VEGF blockade. Under hypoxic conditions, E2F1 down-regulates the expression of VEGF promoter activity by associating with p53 and specifically down-regulating expression of VEGF but not other hypoxia-inducible genes, suggesting a promoter structure context-dependent regulation mechanism. We found that the minimum VEGF promoter mediating transcriptional repression by E2F1 features an E2F1- binding site with four Sp-1 sites in close proximity. These data disclose an unexpected function of endogenous E2F1: regulation of angiogenic activity via p53-dependent transcriptional control of VEGF expression.
Collapse
Affiliation(s)
- Gangjian Qin
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Raj Kishore
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Christine M. Dolan
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Marcy Silver
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Andrea Wecker
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Corinne N. Luedemann
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Tina Thorne
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Allison Hanley
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Cynthia Curry
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Lindsay Heyd
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Deepika Dinesh
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Marianne Kearney
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Fabio Martelli
- Istituto Dermopatico dell’Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00167 Rome, Italy
| | - Toshinori Murayama
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - David A. Goukassian
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Yan Zhu
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| | - Douglas W. Losordo
- *Division of Cardiovascular Research, Tufts University School of Medicine, Caritas St. Elizabeth’s Medical Center, Boston, MA 02135; and
| |
Collapse
|
22
|
Sørensen V, Nilsen T, Wiedłocha A. Functional diversity of FGF-2 isoforms by intracellular sorting. Bioessays 2006; 28:504-14. [PMID: 16615083 DOI: 10.1002/bies.20405] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regulation of the subcellular localization of certain proteins is a mechanism for the regulation of their biological activities. FGF-2 can be produced as distinct isoforms by alternative initiation of translation on a single mRNA and the isoforms are differently sorted in cells. High molecular weight FGF-2 isoforms are not secreted from the cell, but are transported to the nucleus where they regulate cell growth or behavior in an intracrine fashion. 18 kDa FGF-2 can be secreted to the extracellular medium where it acts as a conventional growth factor by binding to and activation of cell-surface receptors. Furthermore, following receptor-mediated endocytosis, the exogenous FGF-2 can be transported to the nuclei of target cells, and this is of importance for the transmittance of a mitogenic signal. The growth factor is able to interact with several intracellular proteins. Here, the mode of action and biological role of intracellular FGF-2 are discussed.
Collapse
Affiliation(s)
- Vigdis Sørensen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Norway
| | | | | |
Collapse
|
23
|
Riley KJL, Cassiday LA, Kumar A, Maher LJ. Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. RNA (NEW YORK, N.Y.) 2006; 12:620-30. [PMID: 16581806 PMCID: PMC1421098 DOI: 10.1261/rna.2286706] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The p53 tumor suppressor protein is a homotetrameric transcription factor whose gene is mutated in nearly half of all human cancers. In an unrelated screen of RNA/protein interactions using the yeast three-hybrid system, we inadvertently detected p53 interactions with several different RNAs. A literature review revealed previous reports of both sequence-specific and -non-specific interactions between p53 and RNA. Using yeast three-hybrid selections to identify preferred RNA partners for p53, we failed to identify primary RNA sequences or obvious secondary structures required for p53 binding. The cationic p53 C-terminus was shown to be required for RNA binding in yeast. We show that while p53 strongly discriminates between certain RNAs in the yeast three-hybrid assay, the same RNAs are bound equally by p53 in vitro. We further show that the p53 RNA-binding preferences in yeast are mirrored almost exactly by a recombinant tetrameric form of the HIV-1 nucleocapsid (NC) protein thought to be a sequence-nonspecific RNA-binding protein. However, the possibility of specific RNA binding by p53 could not be ruled out because p53 and HIV-1 NC displayed certain differences in RNA-binding preference. We conclude that (1) p53 binds RNA in vivo, (2) RNA binding by p53 is largely sequence-nonspecific in the yeast nucleus, (3) some structure-specific RNA binding by p53 cannot be ruled out, and (4) caution is required when interpreting results of RNA screens in the yeast three-hybrid system because sequence-dependent differences in RNA folding and display can masquerade as sequence-dependent differences in protein recognition.
Collapse
Affiliation(s)
- Kasandra J-L Riley
- Department of Biochemistry and Molecular Biology, Guggenheim 16, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
24
|
IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 2006. [DOI: 10.1042/bst0340017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mRNA coding for FGF-2 (fibroblast growth factor 2), a major angiogenic factor, is translated by an IRES (internal ribosome entry site)-dependent mechanism. We have studied the role of the IRES in the regulation of FGF-2 expression in vivo, under pathophysiological conditions, by creating transgenic mice lines expressing bioluminescent bicistronic transgenes. Analysis of FGF-2 IRES activity indicates strong tissue specificity in adult brain and testis, suggesting a role of the IRES in the activation of FGF-2 expression in testis maturation and brain function. We have explored translational control of FGF-2 mRNA under diabetic hyperglycaemic conditions, as FGF-2 is implied in diabetes-related vascular complications. FGF-2 IRES is specifically activated in the aorta wall in streptozotocin-induced diabetic mice, in correlation with increased expression of endogenous FGF-2. Thus, under hyperglycaemic conditions, where cap-dependent translation is blocked, IRES activation participates in FGF-2 overexpression, which is one of the keys of diabetes-linked atherosclerosis aggravation. IRES activation under such pathophysiological conditions may involve ITAFs (IRES trans-acting factors), such as p53 or hnRNP AI (heterogeneous nuclear ribonucleoprotein AI), recently identified as inhibitory or activatory ITAFs respectively for FGF-2 IRES.
Collapse
|
25
|
Gonzalez-Herrera IG, Prado-Lourenco L, Pileur F, Conte C, Morin A, Cabon F, Prats H, Vagner S, Bayard F, Audigier S, Prats AC. Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. FASEB J 2006; 20:476-8. [PMID: 16423876 DOI: 10.1096/fj.04-3314fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spermatogenesis is a complex process involving cell proliferation, differentiation, and apoptosis. Fibroblast growth factor 2 (FGF-2) is involved in testicular function, but its role in spermatogenesis has not been fully documented. The control of FGF-2 expression particularly occurs at the translational level, by an internal ribosome entry site (IRES)-dependent mechanism driving the use of alternative initiation codons. To study IRES activity regulation in vivo, we have developed transgenic mice expressing a bicistronic construct coding for two luciferase genes. Here, we show that the FGF-2 IRES is age-dependently activated in mouse testis, whereas EMCV and c-myc IRESs are not. Real-time PCR confirms that this regulation is translational. By using immunohistological techniques, we demonstrate that FGF-2 IRES stimulation occurs in adult, but not in immature, type-A spermatogonias. This is correlated with activation of endogenous FGF-2 expression in spermatogonia; whereas FGF-2 mRNA transcription is known to decrease in adult testis. Interestingly, the FGF-2 IRES activation is triggered by testosterone and is partially inhibited by siRNA directed against the androgen receptor. Two-dimensional analysis of proteins bound to the FGF-2 mRNA 5'UTR after UV cross-linking reveals that testosterone treatment correlates with the binding of several proteins. These data suggest a paracrine loop where IRES-dependent FGF-2 expression, stimulated by Sertoli cells in response to testosterone produced by Leydig cells, would in turn activate Leydig function and testosterone production. In addition, nuclear FGF-2 isoforms could be involved in an intracrine function of FGF-2 in the start of spermatogenesis, mitosis, or meiosis initiation. This report demonstrates that mRNA translation regulation by an IRES-dependent mechanism participates in a physiological process.
Collapse
MESH Headings
- 5' Untranslated Regions
- Age Factors
- Androgen Receptor Antagonists
- Animals
- Codon
- Fibroblast Growth Factor 2/biosynthesis
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Genes, Reporter
- Genes, Synthetic
- Leydig Cells/physiology
- Luciferases, Renilla/genetics
- Male
- Meiosis
- Mice
- Mice, Transgenic
- Mitosis
- Paracrine Communication
- Peptide Chain Initiation, Translational/physiology
- Protein Biosynthesis
- Protein Isoforms/physiology
- RNA, Messenger/genetics
- RNA, Messenger/radiation effects
- RNA, Small Interfering/pharmacology
- Receptors, Androgen/genetics
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Ribosomes/metabolism
- Sertoli Cells/physiology
- Spermatogenesis/physiology
- Testis/growth & development
- Testis/metabolism
- Testis/physiology
- Testosterone/metabolism
- Testosterone/pharmacology
- Testosterone/physiology
- Ultraviolet Rays
Collapse
|
26
|
Abstract
Malignant tumours can spread to lymph nodes through lymphatic vessels. Recent studies show that tumours produce a range of growth factors that directly or indirectly stimulate lymphatic vessel growth (lymphangiogenesis) and lymphatic metastasis. These findings indicate that tumour lymphangiogenesis, similar to haemangiogenesis, is a complex process that is regulated by multiple growth factors. Understanding the underlying mechanisms by which tumours induce lymphangiogenesis might provide important information for the therapeutic intervention of metastatic spread.
Collapse
Affiliation(s)
- Yihai Cao
- Laboratory of Angiogenesis Research, Microbiology and Tumour Biology Center, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
27
|
Bouleau S, Grimal H, Rincheval V, Godefroy N, Mignotte B, Vayssière JL, Renaud F. FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene 2005; 24:7839-49. [PMID: 16091747 DOI: 10.1038/sj.onc.1208932] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We analysed the relationships between p53-induced apoptosis and the acidic fibroblast growth factor 1 (FGF1) survival pathway. We found that p53 activation in rat embryonic fibroblasts induced the downregulation of FGF1 expression. These data suggest that the fgf1 gene is a repressed target of p53. Unlike extracellular FGF1, which has no effect on p53-dependent pathways, intracellular FGF1 inhibits both p53-dependent apoptosis and cell growth arrest via an intracrine pathway. FGF1 increases MDM2 expression at both mRNA and protein levels. This increase is associated with an acceleration of p53 degradation, which may partly account for the ability of endogenous FGF1 to counteract p53 pathways. In the presence of FGF1, p53 was unable to transactivate bax, but no modification of p21 gene transactivation was observed. As Bax is an essential component of the p53-dependent apoptosis pathway, this suggests that intracellular FGF1 inhibits p53 pathways not only by decreasing the stability of p53, but also by modifying some of its transactivation properties. In conclusion, we showed that p53 and FGF1 pathways may interact in the cell to determine cell fate. Deregulation of one of these pathways modifies the balance between cell proliferation and cell death and may lead to tumor progression.
Collapse
Affiliation(s)
- Sylvina Bouleau
- Laboratoire de Génétique et Biologie Cellulaire, Université de Versailles/Saint Quentin-en Yvelines, CNRS FRE 2445, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, Emanuel PD, Blume SW. The ELAV RNA-stability factor HuR binds the 5'-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res 2005; 33:2962-79. [PMID: 15914670 PMCID: PMC1140080 DOI: 10.1093/nar/gki603] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5'-untranslated region (5'-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5'-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3'-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5'-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5'-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5'-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5'-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5'-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35294, USA
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Nateka L. Jackson
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter D. Emanuel
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| | - Scott W. Blume
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
- To whom correspondence should be addressed at 1824 6th Avenue South, Wallace Tumor Institute, Room 508, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Tel: +1 205 975 2409; Fax: +1 205 975 6911;
| |
Collapse
|
29
|
North S, Moenner M, Bikfalvi A. Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 2005; 218:1-14. [PMID: 15639335 DOI: 10.1016/j.canlet.2004.08.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 08/04/2004] [Indexed: 10/26/2022]
Abstract
Angiogenesis in tumors is controlled by the so-called 'angiogenic switch' which allows the passage from low invasive and poorly vascularized tumors to highly invasive and angiogenic tumors. A number of cellular stress factors such as hypoxia, nutrient deprivation or inducers of reactive oxygen species (ROS) are important stimuli of angiogenic signalling. The HIF system plays a significant role in several of these effects and the molecular mechanisms of its regulation have recently been characterized. In addition, HIF-independent mechanisms have been described which involved number of other molecules and transcription factors such as nuclear factor-(kappa)B (NF-(kappa)B) and p53. p53 is an important intracellular mediator of the stress response and is now also recognized as a modifier of the angiogenic response. p53 may interact with the HIF system but may also have direct effects on angiogenesis regulators or interfere with translation mechanisms of angiogenesis factors.
Collapse
Affiliation(s)
- Sophie North
- Molecular Mechanisms of Angiogenesis Laboratory, INSERM EMI 0113, University Bordeaux I, Avenue des Facultes, 33 405 Talence, France
| | | | | |
Collapse
|
30
|
Bonnal S, Pileur F, Orsini C, Parker F, Pujol F, Prats AC, Vagner S. Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. J Biol Chem 2004; 280:4144-53. [PMID: 15525641 DOI: 10.1074/jbc.m411492200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative initiation of translation of the human fibroblast growth factor 2 (FGF-2) mRNA at five in-frame CUG or AUG translation initiation codons requires various RNA cis-acting elements, including an internal ribosome entry site (IRES). Here we describe the purification of a trans-acting factor controlling FGF-2 mRNA translation achieved by several biochemical purification approaches. We have identified the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) as a factor that binds to the FGF-2 5'-leader RNA and that also complements defective FGF-2 translation in vitro in rabbit reticulocyte lysate. Recombinant hnRNP A1 stimulates in vitro translation at the four IRES-dependent initiation codons but has no effect on the cap-dependent initiation codon. Consistent with a role of hnRNP A1 in the control of alternative initiation of translation, short interfering RNA-mediated knock down of hnRNP A1 specifically inhibits translation at the four IRES-dependent initiation codons. Furthermore, hnRNP A1 binds to the FGF-2 IRES, implicating this interaction in the control of alternative initiation of translation.
Collapse
Affiliation(s)
- Sophie Bonnal
- INSERM U589, Institut Louis Bugnard, Hopital Rangueil, TSA 50032, 31059 Toulouse Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Teshima-Kondo S, Kondo K, Prado-Lourenco L, Gonzalez-Herrera IG, Rokutan K, Bayard F, Arnal JF, Prats AC. Hyperglycemia upregulates translation of the fibroblast growth factor 2 mRNA in mouse aorta via internal ribosome entry site. FASEB J 2004; 18:1583-5. [PMID: 15289445 DOI: 10.1096/fj.03-1118fje] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) is normally synthesized at low levels but is elevated in various pathophysiological conditions including diabetes-associated vascular diseases. FGF-2 expression is regulated translationally through an internal ribosome entry site (IRES) located in its mRNA, which allows a nonclassical cap-independent translation. We addressed the pathophysiological regulation of the IRES in vivo by using a streptozotocin-induced hyperglycemic model known to suppress markedly overall translation. Evaluation of FGF-2 IRES-dependent translation was performed with transgenic mice expressing dual luciferase bicistronic mRNA containing the FGF-2 IRES. FGF-2 IRES-dependent reporter activity increased 240% of control in the diabetic aorta although the reporter mRNA levels significantly decreased. Expression of endogenous FGF-2 protein in the aorta closely correlated with the IRES activity but not with FGF-2 mRNA levels. Moreover, the biosynthesis of endogenous FGF-2 protein was stimulated in an IRES-dependent manner by high glucose that significantly suppressed global protein synthesis in aortic smooth muscle cells from the transgenic mice. These results suggest that IRES-dependent translational regulation could play a pathological role in FGF-2 expression in vivo, especially in the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
- Shigetada Teshima-Kondo
- Institut National de la Santé et de la Recherche Médicale U589, Hormones, Facteurs de Croissance et Physiopathologie Vasculaire, Institut Louis Bugnard IFR31, Hôpital Rangueil, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Angiogenesis is required for multistage carcinogenesis. The inducible enzyme cyclooxygenase-2 (COX-2) is an important mediator of angiogenesis and tumor growth. COX-2 expression occurs in a wide range of preneoplastic and malignant conditions; and the enzyme has been localized to the neoplastic cells, endothelial cells, immune cells, and stromal fibroblasts within tumors. The proangiogenic effects of COX-2 are mediated primarily by three products of arachidonic metabolism: thromboxane A(2) (TXA(2)), prostaglandin E(2) (PGE(2)), and prostaglandin I(2) (PGI(2)). Downstream proangiogenic actions of these eicosanoid products include: (1) production of vascular endothelial growth factor; (2) promotion of vascular sprouting, migration, and tube formation; (3) enhanced endothelial cell survival via Bcl-2 expression and Akt signaling; (4) induction of matrix metalloproteinases; (5) activation of epidermal growth factor receptor-mediated angiogenesis; and (6) suppression of interleukin-12 production. Selective inhibition of COX-2 activity has been shown to suppress angiogenesis in vitro and in vivo. Because these agents are safe and well tolerated, selective COX-2 inhibitors could have clinical utility as antiangiogenic agents for cancer prevention, as well as for intervention in established disease alone or in combination with chemotherapy, radiation, and biological therapies.
Collapse
Affiliation(s)
- Stephen Gately
- Department of Translational Medicine, NeoPharm Inc., 150 Field Drive, Suite 195, Lake Forest, IL 60045, USA
| | | |
Collapse
|
33
|
Clemens MJ. Targets and mechanisms for the regulation of translation in malignant transformation. Oncogene 2004; 23:3180-8. [PMID: 15094767 DOI: 10.1038/sj.onc.1207544] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that deregulation of gene expression at the level of mRNA translation can contribute to cell transformation and the malignant phenotype. Two steps in the pathway of polypeptide chain initiation, viz. the assembly of the 43S initiation complex catalysed by polypeptide chain initiation factor eIF2 and the binding of eIF4E to eIF4G during the recruitment of mRNA to the ribosome, have been shown to be likely targets for changes associated with tumorigenesis. The activity of eIF2 is controlled by changes in phosphorylation of the alpha subunit of this factor. The availability of eIF4E for binding to eIF4G is regulated by the phosphorylation of a small family of eIF4E-binding proteins (the 4E-BPs). The activities of the protein kinases and/or phosphatases responsible for the (de)phosphorylation of these substrates may in turn be controlled by cellular and viral oncogenes and tumour-suppressor genes. This review will describe recent aspects of the mechanisms involved, with particular emphasis on the regulation of the eIF2 alpha kinase PKR and the control of 4E-BP phosphorylation by viral gene products, growth-inhibitory cytokines and the tumour-suppressor protein p53.
Collapse
Affiliation(s)
- Michael J Clemens
- Translational Control Group, Biochemistry and Immunology, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|
34
|
Cencig S, Nanbru C, Le SY, Gueydan C, Huez G, Kruys V. Mapping and characterization of the minimal internal ribosome entry segment in the human c-myc mRNA 5' untranslated region. Oncogene 2004; 23:267-77. [PMID: 14712232 DOI: 10.1038/sj.onc.1207017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human c-myc proto-oncogene is transcribed from four alternative promoters generating transcripts with 5' untranslated regions of various lengths. These transcripts encode two proteins, c-Myc1 and c-Myc2, from two initiation codons, CUG and AUG, respectively. We and others have previously demonstrated that the region of c-myc transcripts between nucleotides (nt) -363 and -94 upstream from the CUG start codon contained an internal ribosome entry site leading to the cap-independent translation of c-myc open reading frames (ORFs). Here, we mapped a 50-nt sequence (-143 -94), which is sufficient to promote internal translation initiation of c-myc ORFs. Interestingly, this 50-nt element can be further dissected into two segments of 14 nt, each capable of activating internal translation initiation. We also demonstrate that this 50-nt element acts as the ribosome landing site from which the preinitiation ribosomal complex scans the mRNA until the CUG or AUG start codons.
Collapse
Affiliation(s)
- Sabrina Cencig
- Laboratoire de Chimie Biologique, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Constantinou C, Bushell M, Jeffrey IW, Tilleray V, West M, Frost V, Hensold J, Clemens MJ. p53-induced inhibition of protein synthesis is independent of apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3122-32. [PMID: 12869187 DOI: 10.1046/j.1432-1033.2003.03687.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of a temperature-sensitive form of p53 in murine erythroleukaemia cells results in a rapid impairment of protein synthesis that precedes inhibition of cell proliferation and loss of cell viability by several hours. The inhibition of translation is associated with specific cleavages of polypeptide chain initiation factors eIF4GI and eIF4B, a phenomenon previously observed in cells induced to undergo apoptosis in response to other stimuli. Although caspase activity is enhanced in the cells in which p53 is activated, both the effects on translation and the cleavages of the initiation factors are completely resistant to inhibition of caspase activity. Moreover, exposure of the cells to a combination of the caspase inhibitor z-VAD.FMK and the survival factor erythropoietin prevents p53-induced cell death but does not reverse the inhibition of protein synthesis. We conclude that the p53-regulated cleavages of eIF4GI and eIF4B, as well as the overall inhibition of protein synthesis, are caspase-independent events that can be dissociated from the induction of apoptosis per se.
Collapse
Affiliation(s)
- Constantina Constantinou
- Translational Control Group, Department of Basic Medical Sciences, St George's Hospital Medical School, Cranmer Terrace, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Tumor angiogenesis is the proliferation of a network of blood vessels that penetrates into cancerous growths, supplying nutrients and oxygen and removing waste products. The process of angiogenesis plays an important role in many physiological and pathological conditions. Solid tumors depend on angiogenesis for growth and metastasis in a hostile environment. In the prevascular phase, the tumor is rarely larger than 2 to 3 mm3 and may contain a million or more cells. Up to this size, tumor cells can obtain the necessary oxygen and nutrient supplies required for growth and survival by simple passive diffusion. The properties of tumors to release and induce several angiogenic and anti-angiogenic factors which play crucial roles in regulating endothelial cell (EC) proliferation, migration, apoptosis or survival, cell-cell and cell-matrix adhesion through different intracellular signaling are thought to be the essential mechanisms during tumor-induced angiogenesis. Tumor angiogenesis actually starts with tumor cells releasing molecules that send signals to surrounding normal host tissue. This signaling activates certain genes in the host tissue that, in turn, make proteins to encourage growth of new blood vessels. In this review, we focus the mechanisms of tumor-induced angiogenesis, with an emphasis on the regulatory role of several angiogenic and anti-angiogenic agents during the angiogenic process in tumors. Advances in understanding the mechanisms of tumor angiogenesis have led to the development of several most effective anti-angiogenic and anti-metastatic therapeutic agents and also have provided several techniques for the regulation of cancer's angiogenic switch. The suggestion is made that standard cytotoxic chemotherapy and angiogenesis inhibitors used in combination may produce complementary therapeutic benefits in the treatment of cancer.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | | |
Collapse
|
37
|
Meng Z, Snyder RC, Shrestha K, Miller DM, Emanuel PD, Blume SW. Evidence for differential ribonucleoprotein complex assembly in vitro on the 5'-untranslated region of the human IGF-IR transcript. Mol Cell Endocrinol 2003; 200:127-40. [PMID: 12644306 DOI: 10.1016/s0303-7207(02)00381-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The type I insulin-like growth factor receptor (IGF-IR) plays a key role in the control of cellular proliferation and survival. The human IGF-IR transcript is characterized by an unusually long 1038 nucleotide 5'-untranslated region (5'-UTR). We hypothesized that the contribution of this complex 5'-untranslated RNA sequence to the post-transcriptional regulation of IGF-IR expression would involve a dynamic interplay between RNA structure and specific RNA-binding proteins. Here we have detected and characterized a diverse series of regulatory proteins binding the IGF-IR 5'-UTR under disparate conditions. One pair of proteins ( approximately 42/38 kDa) binds readily to the intact 5'-UTR, which is predicted to adopt a highly base-paired, highly favorable (dG=-498 kcal/mol) three-domain structure. Another protein(s) (p20*) specifically induces formation of a novel RNA structure from within the initial 209 nucleotides of the nascent IGF-IR transcript, but fails to UV crosslink to this RNA sequence. A third group of proteins recognizes and binds the IGF-IR 5'-UTR under highly stringent conditions, but only after higher-ordered RNA structure has been disrupted. Our in vitro results indicate that the IGF-IR 5'-UTR may exist in at least three distinct states, and we propose that interconversion between these states might take place in vivo and differentially alter IGF-IR transcript utilization.
Collapse
Affiliation(s)
- Zheng Meng
- The Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | |
Collapse
|
38
|
Prats AC, Prats H. Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:367-413. [PMID: 12206457 DOI: 10.1016/s0079-6603(02)72075-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translational control of gene expression has, over the last 10 years, become appreciated as an important process in its regulation in eukaryotes. Among a series of control mechanisms exerted at the translational level, the use of alternative codons provides a very subtle means of increasing gene diversity by expressing several proteins from a single mRNA. The internal ribosome entry sites (IRESs) act as specific translational enhancers that allow translation initiation to occur independently of the classic cap-dependent mechanism, in response to specific stimuli and under the control of different trans-acting factors. It is striking to observe that the two processes mostly concern genes coding for control proteins such as growth factors, protooncogenes, angiogenesis factors, and apoptosis regulators. Here, we focus on the translational regulation of four mRNAs, with both IRESs and alternative initiation codons, which are the messengers of retroviral murine leukemia virus, fibroblast growth factor 2, vascular endothelial growth factor, and protooncogene c-myc. Four of them are involved in cell transformation and/or angiogenesis, with important consequences for such translation regulations in these pathophysiological processes.
Collapse
Affiliation(s)
- Anne-Catherine Prats
- Institut National de la Santé et de la Recherche Médicale U397, Endocrinologie et Communication Cellulaire, CHU Rangueil Toulouse, France
| | | |
Collapse
|
39
|
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39:193-206. [PMID: 12203386 DOI: 10.1002/glia.10094] [Citation(s) in RCA: 710] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neural stem cells from neurogenic regions of mammalian CNS are clonogenic in an in vitro culture system exploiting serum and anchorage withdrawal in medium supplemented with methyl cellulose and the pleiotropic growth factors EGF, FGF2, and insulin. The aim of this study was to test whether cortical glial tumors contain stem-like cells capable, under this culture system, of forming clones showing intraclonal heterogeneity in the expression of neural lineage-specific proteins. The high frequencies of clone-forming cells (about 0.1-10 x 10(-3)) in clinical tumor specimens with mutated p53, and in neurogenic regions of normal human CNS, suggest that the ability to form clones in this culture system is induced epigenetically. RT-PCR analyses of populations of normal brain- and tumor-derived sister clones revealed transcripts for nestin, neuron-specific enolase, and glial fibrillary acidic protein (GFAP). However, the tumor-derived clones were different from clones derived from neurogenic regions of normal brain in the expression of transcripts specific for genes associated with neural cell fate determination via the Notch-signaling pathway (Delta and Jagged), and cell survival at G2 or mitotic phases (Survivin). Moreover, the individual glioma-derived clones contain cells immunopositive separately for GFAP or neuronal beta-III tubulin, as well as single cells coexpressing both glial and neuronal markers. The data suggest that the latent critical stem cell characteristics can be epigenetically induced by growth conditions not only in cells from neurogenic regions of normal CNS but also in cells from cortical glial tumors. Moreover, tumor stem-like cells with genetically defective responses to epigenetic stimuli may contribute to gliomagenesis and the developmental pathological heterogeneity of glial tumors.
Collapse
Affiliation(s)
- Tatyana N Ignatova
- Departments of Neuroscience and Neurosurgery, McKnight Brain Institute and Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|