1
|
Schafer JB, Lucas ED, Dzieciatkowska M, Forward T, Tamburini BAJ. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. J Biol Chem 2022; 298:102694. [PMID: 36375639 PMCID: PMC9761386 DOI: 10.1016/j.jbc.2022.102694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.
Collapse
Affiliation(s)
- Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Lim R, Banerjee A, Biswas R, Chari AN, Raghavan S. Mechanotransduction through adhesion molecules: Emerging roles in regulating the stem cell niche. Front Cell Dev Biol 2022; 10:966662. [PMID: 36172276 PMCID: PMC9511051 DOI: 10.3389/fcell.2022.966662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells have been shown to play an important role in regenerative medicine due to their proliferative and differentiation potential. The challenge, however, lies in regulating and controlling their potential for this purpose. Stem cells are regulated by growth factors as well as an array of biochemical and mechanical signals. While the role of biochemical signals and growth factors in regulating stem cell homeostasis is well explored, the role of mechanical signals has only just started to be investigated. Stem cells interact with their niche or to other stem cells via adhesion molecules that eventually transduce mechanical cues to maintain their homeostatic function. Here, we present a comprehensive review on our current understanding of the influence of the forces perceived by cell adhesion molecules on the regulation of stem cells. Additionally, we provide insights on how this deeper understanding of mechanobiology of stem cells has translated toward therapeutics.
Collapse
Affiliation(s)
- Ryan Lim
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Avinanda Banerjee
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Ritusree Biswas
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
- Sastra University, Thanjavur, TN, India
| | - Anana Nandakumar Chari
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
| | - Srikala Raghavan
- A∗STAR Skin Research Lab (ASRL), Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove, Singapore, Singapore
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Campus, Bangalore, India
| |
Collapse
|
3
|
Ripamonti M, Wehrle-Haller B, de Curtis I. Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 2022; 10:852016. [PMID: 35450290 PMCID: PMC9016114 DOI: 10.3389/fcell.2022.852016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
Focal adhesions are specialized integrin-dependent adhesion complexes, which ensure cell anchoring to the extracellular matrix. Focal adhesions also function as mechano-signaling platforms by perceiving and integrating diverse physical and (bio)chemical cues of their microenvironment, and by transducing them into intracellular signaling for the control of cell behavior. The fundamental biological mechanism of creating intracellular signaling in response to changes in tensional forces appears to be tightly linked to paxillin recruitment and binding to focal adhesions. Interestingly, the tension-dependent nature of the paxillin binding to adhesions, combined with its scaffolding function, suggests a major role of this protein in integrating multiple signals from the microenvironment, and accordingly activating diverse molecular responses. This minireview offers an overview of the molecular bases of the mechano-sensitivity and mechano-signaling capacity of core focal adhesion proteins, and highlights the role of paxillin as a key component of the mechano-transducing machinery based on the interaction of cells to substrates activating the β3 integrin-talin1-kindlin.
Collapse
Affiliation(s)
- Marta Ripamonti
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- *Correspondence: Ivan de Curtis,
| |
Collapse
|
4
|
Brimer N, Vande Pol S. Human papillomavirus type 16 E6 induces cell competition. PLoS Pathog 2022; 18:e1010431. [PMID: 35320322 PMCID: PMC8979454 DOI: 10.1371/journal.ppat.1010431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/04/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
High-risk human papillomavirus (HPV) infections induce squamous epithelial tumors in which the virus replicates. Initially, the virus-infected cells are untransformed, but expand in both number and area at the expense of uninfected squamous epithelial cells. We have developed an in vitro assay in which colonies of post-confluent HPV16 expressing cells outcompete and displace confluent surrounding uninfected keratinocytes. The enhanced colony competition induced by the complete HPV16 genome is conferred by E6 expression alone, not by individual expression of E5 or E7, and requires E6 interaction with p53. E6-expressing keratinocytes undermine and displace adjacent normal keratinocytes from contact with the attachment substrate, thereby expanding the area of the E6-expressing colony at the expense of normal keratinocytes. These new results separate classic oncogenicity that is primarily conferred by HPV16 E7 from cell competition that we show is primarily conferred by E6 and provides a new biological role for E6 oncoproteins from high-risk human papillomaviruses. Microbial infections can change the fate and behavior of normal vertebrate cells to resemble oncogenic cells. High-risk papillomaviruses induce infected squamous epithelial cells to form tumors, some of which evolve into malignancies. The present work shows that the enhanced competitiveness of HPV16-infected cells for the basal cell surface is primarily due to the expression of the E6 oncoprotein and not the E7 or E5 oncoproteins. Compared to normal keratinocytes, E6 induces a super-competitor phenotype while E5 and E7 do not. This work shows the importance of measuring oncoprotein traits not only as cell autonomous traits, but in the context of competition with uninfected cells and shows the potential of papillomavirus oncoproteins to be novel genetic probes for the analysis of cell competition.
Collapse
Affiliation(s)
- Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep 2021; 11:13295. [PMID: 34168237 PMCID: PMC8225821 DOI: 10.1038/s41598-021-92675-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Desmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.
Collapse
|
6
|
Zhu L, Plow EF, Qin J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. Protein Sci 2020; 30:531-542. [PMID: 33336515 DOI: 10.1002/pro.4014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are integrin-containing protein complexes regulated by a network of hundreds of protein-protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion-dependent physiological and pathological responses.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Atherton P, Lausecker F, Carisey A, Gilmore A, Critchley D, Barsukov I, Ballestrem C. Relief of talin autoinhibition triggers a force-independent association with vinculin. J Cell Biol 2020; 219:e201903134. [PMID: 31816055 PMCID: PMC7039207 DOI: 10.1083/jcb.201903134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023] Open
Abstract
Talin, vinculin, and paxillin are core components of the dynamic link between integrins and actomyosin. Here, we study the mechanisms that mediate their activation and association using a mitochondrial-targeting assay, structure-based mutants, and advanced microscopy. As expected, full-length vinculin and talin are autoinhibited and do not interact with each other. However, contrary to previous models that propose a critical role for forces driving talin-vinculin association, our data show that force-independent relief of autoinhibition is sufficient to mediate their tight interaction. We also found that paxillin can bind to both talin and vinculin when either is inactive. Further experiments demonstrated that adhesions containing paxillin and vinculin can form without talin following integrin activation. However, these are largely deficient in exerting traction forces to the matrix. Our observations lead to a model whereby paxillin contributes to talin and vinculin recruitment into nascent adhesions. Activation of the talin-vinculin axis subsequently leads to the engagement with the traction force machinery and focal adhesion maturation.
Collapse
Affiliation(s)
- Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Franziska Lausecker
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Alexandre Carisey
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Andrew Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - David Critchley
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Zhu L, Liu H, Lu F, Yang J, Byzova TV, Qin J. Structural Basis of Paxillin Recruitment by Kindlin-2 in Regulating Cell Adhesion. Structure 2019; 27:1686-1697.e5. [PMID: 31590942 DOI: 10.1016/j.str.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022]
Abstract
Activation of cell surface receptor integrin has been extensively studied as the first key step to trigger cell adhesion, but the subsequent events, widely regarded as integrin "outside-in" signaling to form supramolecular complexes (focal adhesions [FAs]) to promote dynamic cell adhesion, remain poorly elucidated. Integrin activator kindlin-2 was recently found to associate with paxillin in nascent FAs, implicating an early yet undefined integrin outside-in signaling event. Here we show structurally that kindlin-2 recognizes paxillin via a distinct interface involving the ubiquitin-like kindlin-2 F0 domain and the paxillin LIM4 domain. The interface is adjacent to the membrane binding site of kindlin-2 F0, suggesting a mechanism for kindlin-2 to recruit paxillin to the membrane-proximal site where FA assembly is initiated. Disruption of the interface impaired the localization of paxillin, causing strong defects in FA assembly and cell migration. These data unveil a structural basis of the kindlin-2/paxillin interaction in controlling dynamic cell adhesion.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jun Yang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
9
|
Jin CL, Zhang ZM, Ye JL, Gao CQ, Yan HC, Li HC, Yang JZ, Wang XQ. Lysine-induced swine satellite cell migration is mediated by the FAK pathway. Food Funct 2019; 10:583-591. [PMID: 30672919 DOI: 10.1039/c8fo02066c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lysine (Lys) is an essential amino acid for mammals in promoting protein synthesis and skeletal muscle growth. However, the underlying mechanism by which Lys governs muscle growth remains unknown. Lys is not only a material for protein synthesis but also a signaling molecule. Cell migration is a fundamental process for satellite cells (SCs) to promote muscle fiber hypertrophy and thus increase muscle mass. Nevertheless, the communication between Lys and SC has not yet attracted sufficient attention. In this study, we investigated whether Lys directly stimulates SC migration and whether this effect is mediated via the focal adhesion kinase (FAK) pathway. The results of a cell wound-healing assay and transwell assays indicated a significant inhibition of migration ability by Lys deficiency. In addition, the phosphorylation of FAK, paxillin and protein kinase B (Akt) was significantly suppressed, as were the level of integrin β3. Fortunately, we found that increasing Lys levels from deficiency to sufficiency rescued the migration ability to the control level. Moreover, compared with those in the Lys-deficiency group, the proteins in the FAK pathways were reactivated in the Lys-resupplementation group. In conclusion, these findings indicate that the FAK pathway mediates Lys-induced SC migration.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:255-266. [PMID: 29455619 PMCID: PMC7116060 DOI: 10.1089/ten.teb.2017.0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.
Collapse
Affiliation(s)
- Sarita Kumari
- National Center for Cell Science, SP Pune University, Pune, India
| | - Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Ben van der Veer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
11
|
Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials 2017; 144:211-229. [PMID: 28841465 DOI: 10.1016/j.biomaterials.2017.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/01/2017] [Accepted: 08/13/2017] [Indexed: 01/10/2023]
Abstract
This work shows that the active interaction between human umbilical cord matrix stem cells and Poly (l-lactide)acid (PLLA) and PLLA/Multi Walled Carbon Nanotubes (MWCNTs) nanocomposite films results in the stem cell assembly as a spheroid conformation and affects the stem cell fate transition. We demonstrated that spheroids directly respond to a tunable surface and the bulk properties (electric, dielectric and thermal) of plain and nanocomposite PLLA films by triggering a mechanotransduction axis. This stepwise process starts from tethering of the cells' focal adhesion proteins to the surface, together with the adherens junctions between cells. Both complexes transmit traction forces to F-Actin stress fibres that link Filamin-A and Myosin-IIA proteins, generating a biological scaffold, with increased stiffening conformation from PLLA to PLLA/MWCNTs, and enable the nucleoskeleton proteins to boost chromatin reprogramming processes. Herein, the opposite expression of NANOG and GATA6 transcription factors, together with other lineage specification related proteins, steer spheroids toward an Epiblast-like or Primitive Endoderm-like lineage commitment, depending on the absence or presence of 1 wt% MWCNTs, respectively. This work represents a pioneering effort to create a stem cell/material interface that can model the stem cell fate transition under growth culture conditions.
Collapse
|
12
|
Wong TY, Chang CH, Yu CH, Huang LLH. Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell 2017; 16:451-460. [PMID: 28474484 PMCID: PMC5418204 DOI: 10.1111/acel.12567] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hyaluronan (HA), an abundant polysaccharide found in human bodies, plays a role in the mesenchymal stem cells (MSCs) maintenance. We had previously found that HA prolonged the lifespan, and prevented the cellular aging of murine adipose-derived stromal cells. Recently, we had also summarized the potential pathways associated with HA regulation in human MSCs. In this study, we used the human placenta-derived MSCs (PDMSC) to investigate the effectiveness of HA in maintaining the PDMSC. We found that coating the culture surface coated with 30 μg cm-2 of HA (C) led to cluster growth of PDMSC, and maintained a higher number of PDMSC in quiescence compared to those grown on the normal tissue culture surface (T). PDMSC were treated for either 4 (short-term) or 19 (long-term) consecutive passages. PDMSC which were treated with HA for 19 consecutive passages had reduced cell enlargement, preserved MSCs biomarker expressions and osteogenic potential when compared to those grown only on T. The PDMSC transferred to T condition after long-term HA treatment showed preserved replicative capability compared to those on only T. The telomerase activity of the HA-treated PDMSC was also higher than that of untreated PDMSC. These data suggested a connection between HA and MSC maintenance. We suggest that HA might be regulating the distribution of cytoskeletal proteins on cell spreading in the event of quiescence to preserve MSC stemness. Maintenance of MSCs stemness delayed cellular aging, leading to the anti-aging phenotype of PDMSC.
Collapse
Affiliation(s)
- Tzyy Yue Wong
- Institute of Biotechnology; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology; National Cheng Kung University; Tainan Taiwan
| | - Chen-Hsiang Yu
- Department of Obstetrics and Gynecology; National Cheng Kung University; Tainan Taiwan
| | - Lynn L. H. Huang
- Institute of Biotechnology; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
- Department of Biotechnology and Bioindustry Sciences; College of Bioscience and Biotechnology; National Cheng Kung University; Tainan Taiwan
- Institute of Clinical Medicine; College of Medicine; National Cheng Kung University; Tainan Taiwan
- Research Center of Excellence in Regenerative Medicine; National Cheng Kung University; Tainan Taiwan
- Advanced Optoelectronic Technology Center; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
13
|
Petropoulos C, Oddou C, Emadali A, Hiriart-Bryant E, Boyault C, Faurobert E, Vande Pol S, Kim-Kaneyama JR, Kraut A, Coute Y, Block M, Albiges-Rizo C, Destaing O. Roles of paxillin family members in adhesion and ECM degradation coupling at invadosomes. J Cell Biol 2017; 213:585-99. [PMID: 27269065 PMCID: PMC4896053 DOI: 10.1083/jcb.201510036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
The exact functions of all paxillin family members in mechanosensing and adhesion at invadosomes are unclear. Petropoulos et al. show that redundant and specific activities of paxillin and Hic-5 can couple original adhesion and ECM degradation in invadosomes. Invadosomes are acto-adhesive structures able to both bind the extracellular matrix (ECM) and digest it. Paxillin family members—paxillin, Hic-5, and leupaxin—are implicated in mechanosensing and turnover of adhesion sites, but the contribution of each paxillin family protein to invadosome activities is unclear. We use genetic approaches to show that paxillin and Hic-5 have both redundant and distinctive functions in invadosome formation. The essential function of paxillin-like activity is based on the coordinated activity of LD motifs and LIM domains, which support invadosome assembly and morphology, respectively. However, paxillin preferentially regulates invadosome assembly, whereas Hic-5 regulates the coupling between ECM degradation and acto-adhesive functions. Mass spectrometry analysis revealed new partners that are important for paxillin and Hic-5 specificities: paxillin regulates the acto-adhesive machinery through janus kinase 1 (JAK1), whereas Hic-5 controls ECM degradation via IQGAP1. Integrating the redundancy and specificities of paxillin and Hic-5 in a functional complex provides insights into the coupling between the acto-adhesive and ECM-degradative machineries in invadosomes.
Collapse
Affiliation(s)
- Christos Petropoulos
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Christiane Oddou
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Anouk Emadali
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France
| | - Edwige Hiriart-Bryant
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Cyril Boyault
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Eva Faurobert
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo 142-8555, Japan
| | - Alexandra Kraut
- Institut de Recherche en Technologies et Sciences pour le Vivant-Biologie à Grande Échelle, Université Grenoble Alpes, 38000 Grenoble, France Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Recherche en Technologies et Sciences pour le Vivant-Biologie à Grande Échelle, 38000 Grenoble, France Institut National de la Santé et de la Recherche Médicale, Laboratoire Biologie à Grande Échelle, 38000 Grenoble, France
| | - Yohann Coute
- Institut de Recherche en Technologies et Sciences pour le Vivant-Biologie à Grande Échelle, Université Grenoble Alpes, 38000 Grenoble, France Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut de Recherche en Technologies et Sciences pour le Vivant-Biologie à Grande Échelle, 38000 Grenoble, France Institut National de la Santé et de la Recherche Médicale, Laboratoire Biologie à Grande Échelle, 38000 Grenoble, France
| | - Marc Block
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| | - Olivier Destaing
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale U823, 38042 Grenoble, France Université Grenoble Alpes, 38400 Saint-Martin-d'Hères, France Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique 5284, 38042 Grenoble, France
| |
Collapse
|
14
|
To C, Roy A, Chan E, Prado MAM, Di Guglielmo GM. Synthetic triterpenoids inhibit GSK3β activity and localization and affect focal adhesions and cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1274-1284. [PMID: 28366661 DOI: 10.1016/j.bbamcr.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 01/11/2023]
Abstract
Synthetic triterpenoids are a class of anti-cancer compounds that target many cellular functions, including apoptosis and cell growth in both cell culture and animal models. We have shown that triterpenoids inhibit cell migration in part by interfering with Arp2/3-dependent branched actin polymerization in lamellipodia (To et al., 2010). Our current studies reveal that Glycogen Synthase Kinase 3 beta (GSK3β), a kinase that regulates many cellular processes, including cell adhesion dynamics, is a triterpenoid-binding protein. Furthermore, triterpenoids were observed to inhibit GSK3β activity and increase cellular focal adhesion size. To further examine whether these effects on focal adhesions in triterpenoid-treated cells were GSK3β-dependent, GSK3β inhibitors (lithium chloride and SB216763) were used to examine cell adhesion and morphology as well as cell migration. Our results showed that GSK3β inhibitors also altered cell adhesion sizes. Moreover, these inhibitors blocked cell migration and displaced proteins at the leading edge of migrating cells, consistent with what was observed in triterpenoid-treated cells. Therefore, the triterpenoids may affect cell migration via a mechanism that targets and alters the activity and localization of GSK3β.
Collapse
Affiliation(s)
- Ciric To
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Ashbeel Roy
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | - Eddie Chan
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Marco A M Prado
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Department of Anatomy and Cell Biology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada
| | | |
Collapse
|
15
|
Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6:809-818. [PMID: 28316141 PMCID: PMC5387130 DOI: 10.1002/cam4.1019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/24/2022] Open
Abstract
Treatment with dasatinib, a tyrosine kinase inhibitor, is associated with edema, pleural effusion, and pulmonary edema. We investigated the effect of dasatinib on the barrier function of human microvascular endothelial cells‐1 (HMEC‐1) in vitro and in vivo. The permeability of HMEC‐1 to fluorescein isothiocyante (FITC)‐dextran increased in Transwell chambers within 5 min following the addition of therapeutic concentrations of dasatinib. The change in permeability was associated with increased activation of RhoA GTPase and its effector Rho‐associated coiled‐coil kinase 1(ROCK1). RhoA inhibitor C3 transferase almost completely inhibited dasatinib‐induced increase in permeability. Under similar conditions, imatinib had no effect on permeability or activation of RhoA. Since integrin‐induced cell spreading suppresses RhoA activation, we examined the effect of dasatinib on cell spreading on fibronectin substrate. Dasatinib impaired endothelial cell spreading in a concentration‐dependent manner and induced disorganization of actin fibers. Tyrosine kinases play an essential role in transmitting signals from integrins to RhoA and we examined tyrosine phosphorylation of several cytoskeletal proteins. Dasatinib markedly inhibited tyrosine phosphorylation of p130 Crk‐associated substrate (p130cas), paxillin and vinculin. These results suggest that the inhibition of tyrosine phosphorylation of the focal adhesion plaque components by dasatinib may alter the assembly of actin fibers resulting in the activation of RhoA/ROCK pathway. Consistent with these findings, dasatinib‐induced increase in the permeability was blocked by ROCK inhibitor y27632. In vivo administration of y27632, significantly inhibited the dasatinib‐induced extravasation of Evans blue in mice and dasatinib‐induced increase in microvascular permeability was attenuated in ROCK1‐deficient mice. These findings suggest that ROCK inhibitors could serve as therapeutic modalities to ameliorate the dasatinib‐induced pulmonary changes.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Anhquyen Le
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 2017; 10:50. [PMID: 28214467 PMCID: PMC5316197 DOI: 10.1186/s13045-017-0418-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 02/08/2023] Open
Abstract
Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.
Collapse
Affiliation(s)
- Ana María López-Colomé
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico.
| | - Irene Lee-Rivera
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Regina Benavides-Hidalgo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| |
Collapse
|
17
|
Corne TDJ, Sieprath T, Vandenbussche J, Mohammed D, Te Lindert M, Gevaert K, Gabriele S, Wolf K, De Vos WH. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins. Cell Adh Migr 2016; 11:447-463. [PMID: 27791462 DOI: 10.1080/19336918.2016.1247144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.
Collapse
Affiliation(s)
- Tobias D J Corne
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| | - Tom Sieprath
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| | - Jonathan Vandenbussche
- c Medical Biotechnology Center, VIB , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Danahe Mohammed
- e Mechanobiology & Soft Matter Research Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons , Mons , Belgium
| | - Mariska Te Lindert
- f Department of Cell Biology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kris Gevaert
- c Medical Biotechnology Center, VIB , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Sylvain Gabriele
- e Mechanobiology & Soft Matter Research Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons , Mons , Belgium
| | - Katarina Wolf
- f Department of Cell Biology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Winnok H De Vos
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| |
Collapse
|
18
|
Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 2016; 5:e10130. [PMID: 26821125 PMCID: PMC4749545 DOI: 10.7554/elife.10130] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn(2+). Despite compromised integrin activation and adhesion, Mn(2+) enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner.
Collapse
Affiliation(s)
- Marina Theodosiou
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Moritz Widmaier
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emanuel Rognoni
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maik Veelders
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Armin Lambacher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katharina Austen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, United States
- Department of Medicine, Veterans Affairs Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
19
|
Cheng L, Xu J, Qian YY, Pan HY, Yang H, Shao MY, Cheng R, Hu T. Interaction between mDia1 and ROCK in Rho-induced migration and adhesion of human dental pulp cells. Int Endod J 2015; 50:15-23. [PMID: 26609804 DOI: 10.1111/iej.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
AIM To investigate the effects of mammalian homologue of Drosophila diaphanous-1(mDia1) and Rho-associated coiled-coil-containing protein kinase (ROCK) on the migration and adhesion of dental pulp cells (DPCs). METHODOLOGY Lysophosphatidic acid (LPA) was used to activate Rho signalling. mDia1 and ROCK were inhibited by short interfering RNA and the specific inhibitor, Y-27632, respectively. The migration of DPCs was assessed using the transwell migration assay and scratch test. Formation of cytoskeleton and focal adhesions(FAs) was observed by confocal laser scanning microscopy. Cell adhesion and spreading assays were performed. Phosphorylation of focal adhesion kinase (FAK) and paxillin was detected by Western blotting, and the bands were analysed using Adobe Photoshop CS5 software. All experiments were performed at least three times, and data were analysed with one-way anova and a post hoc test. RESULTS LPA-triggered activation of Rho and inhibition of ROCK significantly increased the cell migration rate. Cell migration was inhibited by silencing mDia1. mDia1 silencing and ROCK inhibition suppressed the LPA-induced formation of the cytoskeleton, FA and phosphorylation of FAK and paxillin. Inhibition of ROCK or mDia1 facilitated early cell adhesion and spreading; by contrast, the combined inhibition of ROCK and mDia1 neutralized these effects. CONCLUSIONS mDia1 promoted RhoA-induced migration of DPCs, but ROCK had an opposite effect. Both mDia1 and ROCK participated in cytoskeleton formation and adhesion of DPCs. The interactions between mDia1 and ROCK might influence dental pulp repair by determining the migration and adhesion of DPCs.
Collapse
Affiliation(s)
- L Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - J Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - Y Y Qian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - H Y Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - H Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - M Y Shao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan.,College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - R Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| | - T Hu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan
| |
Collapse
|
20
|
Hsu JL, van den Boomen DJH, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, Ruckova E, Sugrue D, Wilkie GS, Davison AJ, Wilkinson GWG, Lehner PJ. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS Pathog 2015; 11:e1004811. [PMID: 25875600 PMCID: PMC4397069 DOI: 10.1371/journal.ppat.1004811] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/13/2015] [Indexed: 11/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2’s impact on HCMV pathogenesis. As the largest human herpesvirus, HCMV is a paradigm of viral immune evasion and has evolved multiple mechanisms to evade immune detection and enable survival. The HCMV genes US2, US3, US6 and US11 promote virus persistence by their ability to downregulate cell surface MHC. We developed ‘Plasma Membrane Profiling’ (PMP), an unbiased SILAC-based proteomics technique to ask whether MHC molecules are the only focus of these genes, or whether additional cellular immunoreceptors are also targeted. PMP compares the relative abundance of cell surface receptors between control and viral gene expressing cells. We found that whereas US3, US6 and US11 were remarkably MHC specific, US2 modulated expression of a wide variety of cell surface immunoreceptors. US2-mediated proteasomal degradation of integrin α-chains blocked integrin signaling and suppressed cell adhesion and migration. All US2 substrates were degraded via the cellular E3 ligase TRC8, and in a remarkable example of cooperativity between HCMV immune-evasins, UL141 requisitioned US2 to target the NK cell ligand CD112 for proteasomal degradation. HCMV US2 and UL141 are therefore modulators of multiple immune-related pathways and act as a multifunctional degradation hub that inhibits the migration, immune recognition and killing of HCMV-infected cells.
Collapse
Affiliation(s)
- Jye-Lin Hsu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Peter Tomasec
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | | | - Eva Ruckova
- Regional Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniel Sugrue
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gavin S. Wilkie
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | | | - Paul J. Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Blackstone BN, Li R, Ackerman WE, Ghadiali SN, Powell HM, Kniss DA. Myoferlin depletion elevates focal adhesion kinase and paxillin phosphorylation and enhances cell-matrix adhesion in breast cancer cells. Am J Physiol Cell Physiol 2015; 308:C642-9. [PMID: 25631868 DOI: 10.1152/ajpcell.00276.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/21/2015] [Indexed: 02/02/2023]
Abstract
Breast cancer is the second leading cause of malignant death among women. A crucial feature of metastatic cancers is their propensity to lose adhesion to the underlying basement membrane as they transition to a motile phenotype and invade surrounding tissue. Attachment to the extracellular matrix is mediated by a complex of adhesion proteins, including integrins, signaling molecules, actin and actin-binding proteins, and scaffolding proteins. Focal adhesion kinase (FAK) is pivotal for the organization of focal contacts and maturation into focal adhesions, and disruption of this process is a hallmark of early cancer invasive potential. Our recent work has revealed that myoferlin (MYOF) mediates breast tumor cell motility and invasive phenotype. In this study we demonstrate that noninvasive breast cancer cell lines exhibit increased cell-substrate adhesion and that silencing of MYOF using RNAi in the highly invasive human breast cancer cell line MDA-MB-231 also enhances cell-substrate adhesion. In addition, we detected elevated tyrosine phosphorylation of FAK (FAK(Y397)) and paxillin (PAX(Y118)), markers of focal adhesion protein activation. Morphometric analysis of PAX expression revealed that RNAi-mediated depletion of MYOF resulted in larger, more elongated focal adhesions, in contrast to cells transduced with a control virus (MDA-231(LVC) cells), which exhibited smaller focal contacts. Finally, MYOF silencing in MDA-MB-231 cells exhibited a more elaborate ventral cytoskeletal structure near focal adhesions, typified by pronounced actin stress fibers. These data support the hypothesis that MYOF regulates cell adhesions and cell-substrate adhesion strength and may account for the high degree of motility in invasive breast cancer cells.
Collapse
Affiliation(s)
- B N Blackstone
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - R Li
- Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio
| | - W E Ackerman
- Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio
| | - S N Ghadiali
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Dorothy M. Davis Heart and Lung Research Institute and Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - H M Powell
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Department of Materials Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - D A Kniss
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio; Laboratory of Perinatal Research and Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Wexner Medical Center and College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
22
|
Uchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, Huang F, Floyd RW, Yang H, Hamilton WL, Bewersdorf J, Xiong Y, Calderwood DA, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. J Cell Sci 2014; 127:3928-42. [PMID: 25015296 DOI: 10.1242/jcs.143537] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration.
Collapse
Affiliation(s)
- Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tobias Pawliczek
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Tracy D Reynolds
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Siyuan Ding
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Angelika Hinz
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - James B Munro
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Fang Huang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Robert W Floyd
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Haitao Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - William L Hamilton
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA Departments of Pharmacology and Yale Cancer Center, Yale University, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
23
|
Interactions between E6, FAK, and GIT1 at paxillin LD4 are necessary for transformation by bovine papillomavirus 1 E6. J Virol 2014; 88:9927-33. [PMID: 24942580 DOI: 10.1128/jvi.00552-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Bovine papillomavirus 1 E6 interacts with two similar proteins that regulate cell attachment and cell migration called paxillin (PXN) and HIC-5 (also known as HIC5, ARA55, HIC-5, TSC-5, and TGFB1I1). Despite the similarity between HIC-5 and paxillin, paxillin is required for E6 to transform mouse embryo fibroblasts while HIC-5 is not. Using mutants of paxillin, we found that dynamic competitive interactions between E6, focal adhesion kinase, and the GIT1 ARF-GAP protein for binding to paxillin are required but not sufficient for transformation by E6. Using mutants of paxillin and chimeric proteins between HIC-5 and paxillin, we demonstrate that a critical difference between HIC-5 and paxillin is within the LIM domains of paxillin that do not directly interact with E6. Mutational analysis indicates that at least six distinct domains of paxillin are required for E6 transformation. IMPORTANCE Papillomaviruses cause epitheliomas in vertebrates through the actions of virus-encoded oncoproteins. Despite the immense diversity of papillomavirus types, our understanding of the mechanisms by which the virus-encoded E6 oncoproteins contribute to cell transformation is restricted to human papillomavirus types that are associated with cancer. Bovine papillomavirus 1 (BPV-1) E6 has served as a model system for studies of E6 structure and function. This study examines the mechanisms by which BPV-1 E6 association with the cellular focal adhesion adapter protein paxillin contributes to cell transformation and extends our knowledge of the diverse mechanisms by which papillomaviruses transform host cells.
Collapse
|
24
|
Pinon P, Pärssinen J, Vazquez P, Bachmann M, Rahikainen R, Jacquier MC, Azizi L, Määttä JA, Bastmeyer M, Hytönen VP, Wehrle-Haller B. Talin-bound NPLY motif recruits integrin-signaling adapters to regulate cell spreading and mechanosensing. ACTA ACUST UNITED AC 2014; 205:265-81. [PMID: 24778313 PMCID: PMC4003243 DOI: 10.1083/jcb.201308136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
β3 integrin residue Y747 is required for cell spreading and paxillin adapter recruitment to substrate-bound integrins in response to substrate stiffness. Integrin-dependent cell adhesion and spreading are critical for morphogenesis, tissue regeneration, and immune defense but also tumor growth. However, the mechanisms that induce integrin-mediated cell spreading and provide mechanosensing on different extracellular matrix conditions are not fully understood. By expressing β3-GFP-integrins with enhanced talin-binding affinity, we experimentally uncoupled integrin activation, clustering, and substrate binding from its function in cell spreading. Mutational analysis revealed Tyr747, located in the first cytoplasmic NPLY747 motif, to induce spreading and paxillin adapter recruitment to substrate- and talin-bound integrins. In addition, integrin-mediated spreading, but not focal adhesion localization, was affected by mutating adjacent sequence motifs known to be involved in kindlin binding. On soft, spreading-repellent fibronectin substrates, high-affinity talin-binding integrins formed adhesions, but normal spreading was only possible with integrins competent to recruit the signaling adapter protein paxillin. This proposes that integrin-dependent cell–matrix adhesion and cell spreading are independently controlled, offering new therapeutic strategies to modify cell behavior in normal and pathological conditions.
Collapse
Affiliation(s)
- Perrine Pinon
- Department of Cell Physiology and Metabolism, University Medical Center, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
German AE, Mammoto T, Jiang E, Ingber DE, Mammoto A. Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression. J Cell Sci 2014; 127:1672-83. [PMID: 24522185 DOI: 10.1242/jcs.132316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although a number of growth factors and receptors are known to control tumor angiogenesis, relatively little is known about the mechanism by which these factors influence the directional endothelial cell migration required for cancer microvessel formation. Recently, it has been shown that the focal adhesion protein paxillin is required for directional migration of fibroblasts in vitro. Here, we show that paxillin knockdown enhances endothelial cell migration in vitro and stimulates angiogenesis during normal development and in response to tumor angiogenic factors in vivo. Paxillin produces these effects by decreasing expression of neuropilin 2 (NRP2). Moreover, soluble factors secreted by tumors that stimulate vascular ingrowth, including vascular endothelial growth factor (VEGF), also decrease endothelial cell expression of paxillin and NRP2, and overexpression of NRP2 reverses these effects. These results suggest that the VEGF-paxillin-NRP2 pathway could represent a new therapeutic target for cancer and other angiogenesis-related diseases.
Collapse
Affiliation(s)
- Alexandra E German
- Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Wehrle-Haller B, Bastmeyer M. Intracellular signaling and perception of neuronal scaffold through integrins and their adapter proteins. PROGRESS IN BRAIN RESEARCH 2014; 214:443-60. [DOI: 10.1016/b978-0-444-63486-3.00018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Moik D, Böttcher A, Makhina T, Grashoff C, Bulus N, Zent R, Fässler R. Mutations in the paxillin-binding site of integrin-linked kinase (ILK) destabilize the pseudokinase domain and cause embryonic lethality in mice. J Biol Chem 2013; 288:18863-71. [PMID: 23658024 DOI: 10.1074/jbc.m113.470476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val(386) and Thr(387) were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins.
Collapse
Affiliation(s)
- Daniel Moik
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Kong YP, Tu CH, Donovan PJ, Yee AF. Expression of Oct4 in human embryonic stem cells is dependent on nanotopographical configuration. Acta Biomater 2013; 9:6369-80. [PMID: 23391989 DOI: 10.1016/j.actbio.2013.01.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/19/2013] [Accepted: 01/29/2013] [Indexed: 01/21/2023]
Abstract
The fate of adult stem cells can be influenced by physical cues, including nanotopography. However, the response of human embryonic stem cells (hESCs) to dimensionally well-defined nanotopography is unknown. Using imprint lithography, we prepared well-defined nanotopography of hexagonal (HEX) and honeycomb (HNY) configurations with various spacings between the nanostructures. In serum-free hESC culture medium, basic fibroblast growth factor (bFGF) is required to maintain expression of Oct4, a pluripotent gene. Unexpectedly, hESCs cultured on nanotopography could maintain Oct4 expression without bFGF supplementation. With bFGF supplementation, the HEX nanotopography maintained Oct4 expression whereas the HNY configuration caused down-regulation of Oct4 expression. Thus, we observed that the lattice configurations of the nanotopography cause hESCs to respond to bFGF in different ways. This differential response to a biochemical cue by nanotopography was unforeseen, but its discovery could lead to novel differentiation pathways. Consistent with studies of other cells, we observed that nanotopography affects focal adhesion formation in hESCs. We posit that this can in turn affect cell-matrix tension, focal adhesion kinase signaling and integrin-growth factor receptor crosstalk, which eventually modulates Oct4 expression in hESCs.
Collapse
|
29
|
Sumagin R, Robin AZ, Nusrat A, Parkos CA. Activation of PKCβII by PMA facilitates enhanced epithelial wound repair through increased cell spreading and migration. PLoS One 2013; 8:e55775. [PMID: 23409039 PMCID: PMC3569445 DOI: 10.1371/journal.pone.0055775] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/04/2013] [Indexed: 01/28/2023] Open
Abstract
Rapid repair of epithelial wounds is essential for intestinal homeostasis, and involves cell proliferation and migration, which in turn are mediated by multiple cellular signaling events including PKC activation. PKC isoforms have been implicated in regulating cell proliferation and migration, however, the role of PKCs in intestinal epithelial cell (IEC) wound healing is still not completely understood. In the current work we used phorbol 12-myristate 13-acetate (PMA), a well recognized agonist of classical and non-conventional PKC subfamilies to investigate the effect of PKC activation on IEC wound healing. We found that PMA treatment of wounded IEC monolayers resulted in 5.8±0.7-fold increase in wound closure after 24 hours. The PMA effect was specifically mediated by PKCβII, as its inhibition significantly diminished the PMA-induced increase in wound closure. Furthermore, we show that the PKCβII-mediated increase in IEC wound closure after PMA stimulation was mediated by increased cell spreading/cell migration but not proliferation. Cell migration was mediated by PKCβII dependent actin cytoskeleton reorganization, enhanced formation of lamellipodial extrusions at the leading edge and increased activation of the focal adhesion protein, paxillin. These findings support a role for PKCβII in IEC wound repair and further demonstrate the ability of epithelial cells to migrate as a sheet thereby efficiently covering denuded surfaces to recover the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Ronen Sumagin
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
30
|
Zou W, DeSelm CJ, Broekelmann TJ, Mecham RP, Pol SV, Choi K, Teitelbaum SL. Paxillin contracts the osteoclast cytoskeleton. J Bone Miner Res 2012; 27:2490-500. [PMID: 22807029 PMCID: PMC3494816 DOI: 10.1002/jbmr.1706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/27/2012] [Accepted: 07/03/2012] [Indexed: 01/09/2023]
Abstract
Osteoclastic bone resorption depends upon the cell's ability to organize its cytoskeleton via the αvβ3 integrin and osteoclastogenic cytokines. Because paxillin associates with αvβ3, we asked if it participates in skeletal degradation. Unlike deletion of other αvβ3-associated cytoskeleton-regulating molecules, which impairs the cell's ability to spread, paxillin-deficient (Pax(-/-) ) osteoclasts, generated from embryonic stem cells, "superspread" in response to receptor activator of NF-κB ligand (RANKL) and form large, albeit dynamically atypical, actin bands. Despite their increased size, Pax(-/-) osteoclasts resorb bone poorly, excavating pits approximately one-third normal depth. Ligand-occupied αvβ3 or RANKL promotes paxillin serine and tyrosine phosphorylation, the latter via cellular sarcoma (c-Src). The abnormal Pax(-/-) phenotype is rescued by wild-type (WT) paxillin but not that lacking its LD4 domain. In keeping with the appearance of mutant osteoclasts, WT paxillin, overexpressed in WT cells, contracts the cytoskeleton. Most importantly, the abnormal phenotype of Pax(-/-) osteoclasts likely represents failed RANKL-mediated delivery of myosin IIA to the actin cytoskeleton via the paxillin LD4 domain but is independent of tyrosine phosphorylation. Thus, in response to RANKL, paxillin associates with myosin IIA to contract the osteoclast cytoskeleton, thereby promoting its bone-degrading capacity.
Collapse
Affiliation(s)
- Wei Zou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Carl J. DeSelm
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L. Teitelbaum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
31
|
Impaired c-src activation and motility defects in PEA3-null fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2237-42. [PMID: 22982417 DOI: 10.1016/j.bbamcr.2012.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/22/2022]
Abstract
Null mutations in the pea3 allele compromise the capacity of mammary tumors to metastasize in MMTV-Neu/ErbB2/HER2 transgenic mice, indicating a motility defect in PEA3-null cells. Cellular and biochemical analyses of established PEA3-null fibroblasts show impaired motility and aberrant localization of adhesion proteins in spreading cells. Our results show that PEA3-/- cells express normal levels of key adhesion components, but that spreading PEA3-null cells fail to activate c-src and to downregulate phospho-FAK(Y397), suggesting that focal adhesion signaling is impaired. Supporting this, biochemical analysis revealed that adhesion complex-associated proteins such as p130Cas failed to undergo tyrosine phosphorylation and dissociated from the adhesion complex with delayed kinetics. Overall our data show that the motility defects observed in PEA3-null cells are due to altered adhesion signaling.
Collapse
|
32
|
Parsons SA, Sharma R, Roccamatisi DL, Zhang H, Petri B, Kubes P, Colarusso P, Patel KD. Endothelial paxillin and focal adhesion kinase (FAK) play a critical role in neutrophil transmigration. Eur J Immunol 2012; 42:436-46. [PMID: 22095445 DOI: 10.1002/eji.201041303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During an inflammatory response, endothelial cells undergo morphological changes to allow for the passage of neutrophils from the blood vessel to the site of injury or infection. Although endothelial cell junctions and the cytoskeleton undergo reorganization during inflammation, little is known about another class of cellular structures, the focal adhesions. In this study, we examined several focal adhesion proteins during an inflammatory response. We found that there was selective loss of paxillin and focal adhesion kinase (FAK) from focal adhesions in proximity to transmigrating neutrophils; in contrast the levels of the focal adhesion proteins β1-integrin and vinculin were unaffected. Paxillin was lost from focal adhesions during neutrophil transmigration both under static and flow conditions. Down-regulating endothelial paxillin with siRNA blocked neutrophil transmigration while having no effect on rolling or adhesion. As paxillin dynamics are regulated partly by FAK, the role of FAK in neutrophil transmigration was examined using two complementary methods. siRNA was used to down-regulate total FAK protein while dominant-negative, kinase-deficient FAK was expressed to block FAK signaling. Disruption of the FAK protein or FAK signaling decreased neutrophil transmigration. Collectively, these findings reveal a novel role for endothelial focal adhesion proteins paxillin and FAK in regulating neutrophil transmigration.
Collapse
Affiliation(s)
- Sean A Parsons
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sero JE, Thodeti CK, Mammoto A, Bakal C, Thomas S, Ingber DE. Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning. PLoS One 2011; 6:e28303. [PMID: 22194823 PMCID: PMC3237434 DOI: 10.1371/journal.pone.0028303] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/05/2011] [Indexed: 12/17/2022] Open
Abstract
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.
Collapse
Affiliation(s)
- Julia E. Sero
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Charles K. Thodeti
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akiko Mammoto
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chris Bakal
- Dynamical Cell Systems Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Sheila Thomas
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, United States of America
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wade R, Brimer N, Lyons C, Pol SV. Paxillin enables attachment-independent tyrosine phosphorylation of focal adhesion kinase and transformation by RAS. J Biol Chem 2011; 286:37932-37944. [PMID: 21900245 DOI: 10.1074/jbc.m111.294504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Paxillin and HIC5 are closely related adapter proteins that regulate cell migration and are tyrosine-phosphorylated by focal adhesion kinase (FAK). Paxillin, HIC5, and FAK tyrosine phosphorylation increase upon cell attachment and decrease upon detachment from extracellular matrix. Unexpectedly, we found that although FAK tyrosine phosphorylation in attached cells did not require paxillin, in detached fibroblasts there was remaining FAK tyrosine phosphorylation that required expression of paxillin and was not supported by HIC5. The support of attachment-independent FAK tyrosine phosphorylation required the paxillin LIM domains and suggested that paxillin might facilitate oncogenic transformation. Paxillin but not HIC5 augmented anchorage-independent cell proliferation induced by RAS. Both anchorage-independent FAK tyrosine phosphorylation and RAS-induced colony formation required multiple docking sites on paxillin, including LD4 (docking sites for FAK-Src and GIT1/2-PIX-NCK-PAK complex), LD5, and all four carboxyl-terminal LIM domains (that bind tubulin and PTP-PEST). Analysis using paxillin mutants dissociated domains of paxillin that are required for regulation of cell migration from domains that are required for anchorage-independent cell proliferation and demonstrated essential functions of the paxillin LIM domains that are not found in HIC5 LIM domains. These results highlight the role of paxillin in facilitating attachment-independent signal transduction implicated in cancer.
Collapse
Affiliation(s)
- Ramon Wade
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908.
| |
Collapse
|
35
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
36
|
Chen PW, Kroog GS. Leupaxin is similar to paxillin in focal adhesion targeting and tyrosine phosphorylation but has distinct roles in cell adhesion and spreading. Cell Adh Migr 2011; 4:527-40. [PMID: 20543562 DOI: 10.4161/cam.4.4.12399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN’s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin’s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
37
|
Cheng R, Shao MY, Yang H, Cheng L, Wang FM, Zhou XD, Hu T. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells. Int Endod J 2010; 44:2-8. [PMID: 21073482 DOI: 10.1111/j.1365-2591.2010.01773.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate the effects of lysophosphatidic acid (LPA) and the Rho/Rho-associated kinase (ROCK) pathway on adhesion of dental pulp cells (DPCs). METHODOLOGY Human DPCs were cultured ex vivo. After treatment of LPA and Y-27632, a specific ROCK inhibitor, changes in focal contacts (FCs) were examined by immunofluorescent staining. Activation of FCs proteins was examined by measuring tyrosine 397 phosphorylation of focal adhesion kinase (FAK) and paxillin using immunoblotting. The data were analysed by Student's t-test. RESULTS The immunofluorescent staining indicated LPA stimulation induced larger focal adhesion in the cell periphery, compared with the control. Inhibition of ROCK by Y-27632 decreased the formation of FCs markedly, even in the LPA-stimulated cells. LPA also increased the level of tyrosine phosphorylation of paxillin at 30min (P<0.05) and FAK at 5 and 30min (P<0.05). Furthermore, p-paxillin levels declined immediately after Y-27632 treatment and remained low at 5, 30, 60min. Y-27632 also suppressed the effects of LPA on p-paxillin and p-FAK at 5 and 30min (P<0.05). CONCLUSION LPA activated Rho and then subsequently activated ROCK, suggesting that LPA influences the FCs of DPCs by modulating tyrosine phosphorylation of FAK and paxillin via the Rho/ROCK pathway.
Collapse
Affiliation(s)
- R Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Sen A, O'Malley K, Wang Z, Raj GV, Defranco DB, Hammes SR. Paxillin regulates androgen- and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. J Biol Chem 2010; 285:28787-95. [PMID: 20628053 DOI: 10.1074/jbc.m110.134064] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although transcriptional effects of androgens have been extensively studied, mechanisms regulating transcription-independent (nongenomic) androgen actions are poorly understood. Previously, we have shown that paxillin, a multidomain adaptor protein, is a critical regulator of testosterone-induced MAPK-signaling during Xenopus oocyte maturation. Here we examine the nongenomic effects of dihydrotestosterone (DHT) in prostate cancer cells, focusing on how paxillin mediates Erk signaling and downstream physiologic actions. We show that in LnCAP cells DHT functions as a growth factor that indirectly activates the EGF-receptor (EGFR) via androgen receptor binding and matrix metalloproteinase-mediated release of EGFR ligands. Interestingly, siRNA-mediated knockdown of paxillin expression in androgen-dependent LnCAP cells as well as in androgen-independent PC3 cells abrogates DHT- and/or EGF-induced Erk signaling. Furthermore, EGFR-induced Erk activation requires Src-mediated phosphorylation of paxillin on tyrosines 31/118. In contrast, paxillin is not required for PKC-induced Erk signaling. However, Erk-mediated phosphorylation of paxillin on serines 83/126/130 is still needed for both EGFR and PKC-mediated cellular proliferation. Thus, paxillin serves as a specific upstream regulator of Erk in response to receptor-tyrosine kinase signaling but as a general regulator of downstream Erk actions regardless of agonist. Importantly, Erk-mediated serine phosphorylation of paxillin is also required for DHT-induced prostate-specific antigen mRNA expression in LnCAP cells as well as EGF-induced cyclin D1 mRNA expression in PC3 cells, suggesting that paxillin may regulate prostate cancer proliferation by serving as a liaison between extra-nuclear kinase signaling and intra-nuclear transcriptional signals. Thus, paxillin may prove to be a novel diagnostic or therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Aritro Sen
- Department of Medicine, Division of Endocrinology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
39
|
Goody MF, Kelly MW, Lessard KN, Khalil A, Henry CA. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis. Dev Biol 2010; 344:809-26. [PMID: 20566368 DOI: 10.1016/j.ydbio.2010.05.513] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/22/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not beta-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn plays roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis.
Collapse
Affiliation(s)
- Michelle F Goody
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | | | | | | |
Collapse
|
40
|
Nakamura K, Palmer HEF, Ozawa T, Mashima K. Protein phosphatase 1alpha associates with protein tyrosine phosphatase-PEST inducing dephosphorylation of phospho-serine 39. J Biochem 2009; 147:493-500. [PMID: 19919952 DOI: 10.1093/jb/mvp191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein tyrosine phosphatase (PTP)-PEST is expressed in a wide variety of several cell types and is an efficient regulator of cell adhesion, spreading and migration. PTP-PEST-associating molecules are important in elucidating the function of PTP-PEST. Herein, we have identified protein phosphatase 1alpha (PP1alpha) as a novel PTP-PEST binding protein, and then we aimed to determine how PP1alpha contributes to the phosphorylation at Ser39 of PTP-PEST, whose phosphorylation suppresses PTP-PEST enzymatic activity. The HEK 293 cells overexpressing exogenous PTP-PEST were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and the phosphorylation of PTP-PEST at Ser39 was evaluated using an anti-phospho-Ser39 PTP-PEST specific antibody (anti-pS39-PEST Ab). It was demonstrated that the phosphorylation at Ser39 detected by anti-pS39-PEST Ab was dependent on TPA treatment and a significant inverse correlation between the PTP activity of PTP-PEST and anti-pS39-PEST Ab-immunoreactive band intensity. The phosphorylation of Ser39 was suppressed by co-transfection of a plasmid encoding wild-type PP1alpha, but not by that of the dominant-negative PP1alpha mutant. Furthermore, TPA-induced phosphorylation could take place in PTP-PEST catalytic domain, but the phosphorylation of PTP-PEST catalytic domain could not be abrogated by co-transfection of a plasmid expressing wild-type PP1alpha. In conclusion, PP1alpha associates with the non-catalytic domain of PTP-PEST and regulates PTP activity via dephosphorylation of phospho-Ser39.
Collapse
Affiliation(s)
- Kana Nakamura
- Department of Life Science, Rikkyo (St Paul's) University, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | |
Collapse
|
41
|
Epshtein A, Jackman A, Gonen P, Sherman L. HPV16 E6 oncoprotein increases cell adhesion in human keratinocytes. Arch Virol 2008; 154:55-63. [PMID: 19066713 DOI: 10.1007/s00705-008-0273-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
Abstract
Expression of the E6 oncoprotein of human papillomavirus (HPV) 16 in primary human keratinocytes (PHKs) was previously shown to significantly reduce apoptosis. This could be due to increased cell adhesion. Adhesion ability was tested by seeding cells on tissue culture dishes coated with different concentrations of poly(HEME) and determination of the proportion of attached cells. Assays were carried out with PHKs, immortalized human keratinocytes (HaCaT) and human 293T cells. The E6 gene was transduced via retroviral infection or DNA transfection. Results of these assays showed that expression of E6 increased the proportion of cells that attached to poly(HEME). Several HPV16 E6 mutants were also tested in the above assay in 293T cells. These assays showed that the p53 targeting region of E6 is dispensable for this activity. Assays of inhibition of tyrosine kinases by bombesin showed that E6 probably utilizes other pathways to increase cell adhesion.
Collapse
Affiliation(s)
- Alexander Epshtein
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
42
|
Kaulfuss S, Grzmil M, Hemmerlein B, Thelen P, Schweyer S, Neesen J, Bubendorf L, Glass AG, Jarry H, Auber B, Burfeind P. Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Mol Endocrinol 2008; 22:1606-21. [PMID: 18451096 DOI: 10.1210/me.2006-0546] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the present study, we demonstrate that leupaxin mRNA is overexpressed in prostate cancer (PCa) as compared with normal prostate tissue by using cDNA arrays and quantitative RT-PCR analyses. Moderate to strong expression of leupaxin protein was detected in approximately 22% of the PCa tissue sections analyzed, and leupaxin expression intensities were found to be significantly correlated with Gleason patterns/scores. In addition, different leupaxin expression levels were observed in PCa cell lines, and at the subcellular level, leupaxin was usually localized in focal adhesion sites. Furthermore, mutational analysis and transfection experiments of LNCaP cells using different green fluorescent protein-leupaxin constructs demonstrated that leupaxin contains functional nuclear export signals in its LD3 and LD4 motifs, thus shuttling between the cytoplasm and the nucleus. We could also demonstrate for the first time that leupaxin interacts with the androgen receptor in a ligand-dependent manner and serves as a transcriptional activator of this hormone receptor in PCa cells. Down-regulation of leupaxin expression using RNA interference in LNCaP cells resulted in a high rate of morphological changes, detachment, spontaneous apoptosis, and a reduction of prostate-specific antigen secretion. In contrast, knockdown of leupaxin expression in androgen-independent PC-3 and DU 145 cells induced a significant decrease of both the invasive capacity and motility. Our results therefore indicate that leupaxin could serve as a potential progression marker for a subset of PCa and may represent a novel coactivator of the androgen receptor. Leupaxin could function as a putative target for therapeutic interventions of a subset of advanced PCa.
Collapse
Affiliation(s)
- Silke Kaulfuss
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker Weg 12, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Papillomavirus E6 proteins are adapters that change the function of cellular regulatory proteins. The bovine papillomavirus type 1 E6 (BE6) binds to LXXLL peptide sequences termed LD motifs (consensus sequence LDXLLXXL) on the cellular protein paxillin that is a substrate of Src and focal adhesion kinases. Anchorage-independent transformation induced by BE6 required both paxillin and BE6-binding LD motifs on paxillin but was independent of the major tyrosine phosphorylation sites of paxillin. The essential role of paxillin in transformation by BE6 highlights the role of paxillin in the transduction of cellular signals that result in anchorage-independent cell proliferation.
Collapse
|
44
|
Tang DD, Anfinogenova Y. Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 2008; 13:130-40. [PMID: 18212360 DOI: 10.1177/1074248407313737] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular smooth muscle tone plays a fundamental role in regulating blood pressure, blood flow, microcirculation, and other cardiovascular functions. The cellular and molecular mechanisms by which vascular smooth muscle contractility is regulated are not completely elucidated. Recent studies show that the actin cytoskeleton in smooth muscle is dynamic, which regulates force development. In this review, evidence for actin polymerization in smooth muscle upon external stimulation is summarized. Protein kinases such as Abelson tyrosine kinase, focal adhesion kinase, Src, and mitogen-activated protein kinase have been documented to coordinate actin polymerization in smooth muscle. Transmembrane integrins have also been reported to link to signaling pathways modulating actin dynamics. The roles of Rho family of the small proteins that bind to guanosine triphosphate (GTP), also known as GTPases, and the actin-regulatory proteins, including Crk-associated substrate, neuronal Wiskott-Aldrich Syndrome protein, the Arp2/3 complex, and profilin, and heat shock proteins in regulating actin assembly are discussed. These new findings promote our understanding on how smooth muscle contraction is regulated at cellular and molecular levels.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
45
|
Scheswohl DM, Harrell JR, Rajfur Z, Gao G, Campbell SL, Schaller MD. Multiple paxillin binding sites regulate FAK function. J Mol Signal 2008; 3:1. [PMID: 18171471 PMCID: PMC2246129 DOI: 10.1186/1750-2187-3-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 01/02/2008] [Indexed: 11/17/2022] Open
Abstract
Background FAK localization to focal adhesions is essential for its activation and function. Localization of FAK is mediated through the C-terminal focal adhesion targeting (FAT) domain. Recent structural analyses have revealed two paxillin-binding sites in the FAT domain of FAK. To define the role of paxillin binding to each site on FAK, point mutations have been engineered to specifically disrupt paxillin binding to each docking site on the FAT domain of FAK individually or in combination. Results These mutants have been characterized and reveal an important role for paxillin binding in FAK subcellular localization and signaling. One paxillin-binding site (comprised of α-helices 1 and 4 of the FAT domain) plays a more prominent role in localization than the other. Mutation of either paxillin-binding site has similar effects on FAK activation and downstream signaling. However, the sites aren't strictly redundant as each mutant exhibits phosphorylation/signaling defects distinct from wild type FAK and a mutant completely defective for paxillin binding. Conclusion The studies demonstrate that the two paxillin-binding sites of FAK are not redundant and that both sites are required for FAK function.
Collapse
Affiliation(s)
- Danielle M Scheswohl
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Cooper B, Brimer N, Vande Pol SB. Human papillomavirus E6 regulates the cytoskeleton dynamics of keratinocytes through targeted degradation of p53. J Virol 2007; 81:12675-9. [PMID: 17804489 PMCID: PMC2168984 DOI: 10.1128/jvi.01083-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The attachment and spreading of keratinocyte cells result from interactions between integrins and immobilized extracellular matrix molecules. Human papillomavirus type 16 (HPV-16) E6 augmented the kinetics of cell spreading, while E6 genes from HPV-11 or bovine papillomavirus type 1 did not. The ability of E6 to interact with the E6AP ubiquitin ligase and target p53 degradation was required to augment cell-spreading kinetics; dominant negative p53 alleles also enhanced the kinetics of cell spreading and the level of attachment of cells to hydrophobic surfaces. The targeted degradation of p53 by E6 may contribute to the invasive phenotype exhibited by cervical cells that contain high-risk HPV types.
Collapse
Affiliation(s)
- Brooke Cooper
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
47
|
Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 2007; 8:85. [PMID: 17394647 PMCID: PMC1851713 DOI: 10.1186/1471-2164-8-85] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/29/2007] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database.
Collapse
|
48
|
Sahu SN, Nunez S, Bai G, Gupta A. Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol 2007; 292:C2288-96. [PMID: 17329398 DOI: 10.1152/ajpcell.00503.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases Pyk2 and c-Src and the cytosolic protein tyrosine phosphatase-proline-, glutamate-, serine-, and threonine-rich sequence (PTP-PEST). In the current study, LPXN was detectable as a 50-kDa protein in PC-3 cells, a bone-derived metastatic prostate cancer cell line. In PC-3 cells, LPXN was also found to associate with Pyk2, c-Src, and PTP-PEST. A siRNA-mediated inhibition of LPXN resulted in decreased in vitro PC-3 cell migration. A recombinant adenoviral-mediated overexpression of LPXN resulted in an increased association of Pyk2 with LPXN, whereas a similar adenoviral-mediated overexpression of PTP-PEST resulted in decreased association of Pyk2 and c-Src with LPXN. The overexpression of LPXN in PC-3 cells resulted in increased migration, as assessed by in vitro Transwell migration assays. On the contrary, the overexpression of PTP-PEST in PC-3 cells resulted in decreased migration. The overexpression of LPXN resulted in increased activity of Rho GTPase, which was decreased in PTP-PEST-overexpressing cells. The increase in Rho GTPase activity following overexpression of LPXN was inhibited in the presence of Y27632, a selective inhibitor of Rho GTPase. In conclusion, our data demonstrate that LPXN forms a signaling complex with Pyk2, c-Src, and PTP-PEST to regulate migration of prostate cancer cells.
Collapse
Affiliation(s)
- Surasri Nandan Sahu
- Dept. of Biomedical Sciences, Dental School, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
49
|
Gu Z, Kordowska J, Williams GL, Wang CLA, Hai CM. Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells. Exp Cell Res 2006; 313:849-66. [PMID: 17239373 PMCID: PMC2040298 DOI: 10.1016/j.yexcr.2006.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 01/27/2023]
Abstract
We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained alpha-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells.
Collapse
Affiliation(s)
- Zhizhan Gu
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI 02912
| | | | - Geoffrey L. Williams
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | | | - Chi-Ming Hai
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University, Providence, RI 02912
- *Correspondence: Chi-Ming Hai, Ph.D., Department of Molecular Pharmacology, Physiology & Biotechnology, Box G-B3, Brown University, Providence, RI 02912, Tel. (401) 863-3288, Fax. (401) 863-1222, Email.
| |
Collapse
|
50
|
Cooper B, Brimer N, Stoler M, Vande Pol SB. Suprabasal overexpression of beta-1 integrin is induced by bovine papillomavirus type 1. Virology 2006; 355:102-14. [PMID: 16899269 DOI: 10.1016/j.virol.2006.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/20/2006] [Accepted: 06/28/2006] [Indexed: 01/05/2023]
Abstract
In a normal stratified squamous epithelium, beta1-integrin is expressed in basal epithelial cells. In BPV-induced fibropapillomas beta1-integrin is overexpressed and aberrantly localized, with uniform expression in the lower spinous layer, and sporadic expression within the mid-spinous region that co-localizes with expression of the viral E5 and E7 oncoproteins. In situ hybridization of fibropapillomas for beta1-integrin RNA revealed sporadic hybridization in the spinous layer, indicating transcriptional induction. Beta1-integrin expression in cultured keratinocytes requires exogenous EGF in the media, but this requirement is lost if E7 is expressed, and E7 was able to abrogate the EGF-requirement of normal keratinocytes for the activation of ERK and DNA synthesis. Within fibropapillomas, suprabasal expression of E5 and E7 correlated with suprabasal expression of beta1-integrin and PCNA, indicating that vegetative viral replication in the spinous layer correlated with the expression of E7 and beta1 integrin. The ability of BPV-1 E7 to support beta1-integrin expression and EGF independent DNA synthesis and the activation of ERK are the first biochemical correlates of its expression in keratinocytes.
Collapse
Affiliation(s)
- Brooke Cooper
- Institute of Pathology, Case Western Reserve University, 10900 Euclid Av., Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|