1
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Bhansali RS, Barta SK. Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers (Basel) 2023; 15:925. [PMID: 36765882 PMCID: PMC9913807 DOI: 10.3390/cancers15030925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Non-Hodgkin lymphomas (NHL) are cancers of mature B-, T-, and NK-cells which display marked biological heterogeneity between different subtypes. Mature T- and NK-cell neoplasms are an often-aggressive subgroup of NHL and make up approximately 15% of all NHL. Long-term follow up studies have demonstrated that patients with relapsed/refractory disease have dismal outcomes; in particular, secondary central nervous system (CNS) involvement is associated with higher mortality, though it remains controversial whether this independently confers worse outcomes or if it simply reflects more aggressive systemic disease. Possible risk factors predictive of CNS involvement, such as an elevated lactate dehydrogenase and more than two sites of extranodal involvement, may suggest the latter, though several studies have suggested that discrete sites of anatomic involvement or tumor histology may be independent risk factors as well. Ultimately, small retrospective case series form the basis of our understanding of this rare but devastating event but have not yet demonstrated a consistent benefit of CNS-directed prophylaxis in preventing this outcome. Nonetheless, ongoing efforts are working to establish the epidemiology of CNS progression/relapse in mature T- and NK-cell lymphomas with the goal of identifying clinicopathologic risk factors, which may potentially help discern which patients may benefit from CNS-directed prophylactic therapy or more aggressive systemic therapy.
Collapse
Affiliation(s)
| | - Stefan K. Barta
- Department of Medicine, Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Yim J, Koh J, Kim S, Song SG, Bae JM, Yun H, Sung JY, Kim TM, Park SH, Jeon YK. Clinicopathologic and Genetic Features of Primary T-cell Lymphomas of the Central Nervous System: An Analysis of 11 Cases Using Targeted Gene Sequencing. Am J Surg Pathol 2022; 46:486-497. [PMID: 34980830 PMCID: PMC8923358 DOI: 10.1097/pas.0000000000001859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) of peripheral T-cell lineage (T-PCNSL) is rare, and its genetic and clinicopathologic features remain unclear. Here, we present 11 cases of T-PCNSL in immunocompetent individuals from a single institute, focusing on their genetic alterations. Seven cases were subject to targeted panel sequencing covering 120 lymphoma-related genes. Nine of the eleven cases were classified as peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), of which one was of γδT-cell lineage. There was one case of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma and another of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) of αβT-cell lineage. The male to female ratio was 7 : 4 and the age ranged from 3 to 75 years (median, 61 y). Most patients presented with neurological deficits (n=10) and showed multifocal lesions (n=9) and deep brain structure involvement (n=9). Tumor cells were mostly small-to-medium, and T-cell monoclonality was detected in all nine evaluated cases. PTCL-NOS was CD4-positive (n=4), CD8-positive (n=3), mixed CD4-positive and CD8-positive (n=1), or CD4/CD8-double-negative (n=1, γδT-cell type). Cytotoxic molecule expression was observed in 4 (67%) of the 6 evaluated cases. Pathogenic alterations were found in 4 patients: one PTCL-NOS case had a frameshift mutation in KMT2C, another PTCL-NOS case harbored a truncating mutation in TET2, and another (γδT-cell-PTCL-NOS) harbored NRAS G12S and JAK3 M511I mutations, and homozygous deletions of CDKN2A and CDKN2B. The ENKTL (αβT-cell lineage) case harbored mutations in genes ARID1B, FAS, TP53, BCOR, KMT2C, POT1, and PRDM1. In conclusion, most of the T-PCNSL were PTCL-NOS, but sporadic cases of other subtypes including γδT-cell lymphoma, anaplastic lymphoma kinase-positive anaplastic large cell lymphoma, and ENKTL were also encountered. Immunophenotypic analysis, clonality test, and targeted gene sequencing along with clinicoradiologic evaluation, may be helpful for establishing the diagnosis of T-PCNSL. Moreover, this study demonstrates genetic alterations with potential diagnostic and therapeutic utility in T-PCNSL.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Anaplastic Lymphoma Kinase/metabolism
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/metabolism
- Central Nervous System Neoplasms/pathology
- Child
- Child, Preschool
- Female
- Humans
- Lymphoma, Extranodal NK-T-Cell/genetics
- Lymphoma, Extranodal NK-T-Cell/metabolism
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Male
- Middle Aged
- Young Adult
Collapse
Affiliation(s)
| | - Jiwon Koh
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Sehui Kim
- Department of Pathology
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine
| | | | - Jeong Mo Bae
- Department of Pathology
- Center for Precision Medicine, Seoul National University Hospital
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital
| | - Ji-Youn Sung
- Department of Pathology, Kyung Hee University School of Medicine
| | - Tae Min Kim
- Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Yoon Kyung Jeon
- Department of Pathology
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Seyrek K, Ivanisenko NV, Wohlfromm F, Espe J, Lavrik IN. Impact of human CD95 mutations on cell death and autoimmunity: a model. Trends Immunol 2021; 43:22-40. [PMID: 34872845 DOI: 10.1016/j.it.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
Abstract
CD95/Fas/APO-1 can trigger apoptotic as well as nonapoptotic pathways in immune cells. CD95 signaling in humans can be inhibited by several mechanisms, including mutations in the gene encoding CD95. CD95 mutations lead to autoimmune disorders, such as autoimmune lymphoproliferative syndrome (ALPS). Gaining further insight into the reported mutations of CD95 and resulting alterations of its signaling networks may provide further understanding of their presumed role in certain autoimmune diseases. For illustrative purposes and to better understand the potential outcomes of CD95 mutations, here we assign their positions to the recently determined 3D structures of human CD95. Based on this, we make certain predictions and speculate on the putative role of CD95 mutation defects in CD95-mediated signaling for certain autoimmune diseases.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nikita V Ivanisenko
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Fabian Wohlfromm
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
5
|
Extranodal NK/T-Cell Lymphoma, Nasal Type: Genetic, Biologic, and Clinical Aspects with a Central Focus on Epstein-Barr Virus Relation. Microorganisms 2021; 9:microorganisms9071381. [PMID: 34202088 PMCID: PMC8304202 DOI: 10.3390/microorganisms9071381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Extranodal NK/T-Cell Lymphoma, nasal type (ENKTL-NT) has some salient aspects. The lymphoma is commonly seen in Eastern Asia, has progressive necrotic lesions in the nasal cavity, makes midfacial destructive lesions, and shows poor prognosis. The lymphoma cell is originated from either NK- or γδ T-cells, which express CD56. Since the authors first demonstrated the existence of Epstein–Barr virus (EBV) DNA and EBV oncogenic proteins in lymphoma cells, ENKTL-NT has been recognized as an EBV-associated malignancy. Because the angiocentric and polymorphous lymphoma cells are mixed with inflammatory cells on a necrotic background, the diagnosis of ENKTL-NT requires CD56 immunostaining and EBER in situ hybridization. In addition, serum the EBV DNA level is useful for the diagnosis and monitoring of ENKTL-NT. Although ENKTL-NT is refractory lymphoma, the prognosis is improved by the development of therapies such as concomitant chemoradiotherapy. The basic research reveals that a wide variety of intracellular/cell surface molecules, cytokines, chemokines, and micro RNAs are involved in lymphomagenesis, and some of them are related to EBV. Understanding lymphoma behavior introduces new therapeutic strategies, such as the usage of immune checkpoint inhibitors, peptide vaccines, and molecular targeting therapy. This review addresses recent advances in basic and clinical aspects of ENKTL-NT, especially its relation to EBV features.
Collapse
|
6
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
7
|
Küçük C, Wang J, Xiang Y, You H. Epigenetic aberrations in natural killer/T-cell lymphoma: diagnostic, prognostic and therapeutic implications. Ther Adv Med Oncol 2020; 12:1758835919900856. [PMID: 32127923 PMCID: PMC7036507 DOI: 10.1177/1758835919900856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that usually presents in the upper aerodigestive tract. This malignancy shows substantial geographic variability in incidence, and is characterized by Epstein-Barr virus (EBV) infections. Epigenetic aberrations may dysregulate the expression of genes involved in different hallmarks of cancer. A growing body of evidence underscores the importance of epigenetic aberrations in the pathogenesis of NKTCL. Promoter hypermethylation is a common epigenetic mechanism for the inactivation of tumour suppressor genes. Several epigenetically silenced tumour suppressor candidates (e.g. PRDM1, BIM) were identified in this aggressive cancer using locus-specific and genome-wide promoter methylation analyses. Importantly, genes involved in epigenetic modifications were identified to be mutated (e.g. KMT2D) or methylated (e.g. TET2) in NKTCL patients, which may contribute to pathogenesis through global alterations in chromatin states. Cancer-associated microRNAs, some of which are expressed by EBV, and long noncoding RNAs have been observed to be dysregulated in NKTCL. This review focuses on studies investigating epigenetic aberrations in NKTCL to bolster our overall understanding of the role of these abnormalities in disease pathobiology. We also discuss the potential of these epigenetic aberrations to improve diagnosis and prognosis as well as reveal novel targets of therapy for NKTCL.
Collapse
Affiliation(s)
- Can Küçük
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Junli Wang
- Department of Reproduction and Genetics, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ying Xiang
- Division of Hematology and Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou 510095, China
| |
Collapse
|
8
|
Masuda A, Isobe Y, Sugimoto K, Yoshimori M, Arai A, Komatsu N. Efficient recruitment of c-FLIP L to the death-inducing signaling complex leads to Fas resistance in natural killer-cell lymphoma. Cancer Sci 2020; 111:807-816. [PMID: 31908105 PMCID: PMC7060462 DOI: 10.1111/cas.14296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
Activation‐induced cell death (AICD) mediated by the Fas/Fas ligand (FasL) system plays a key role in regulating immune response. Although normal natural killer (NK) cells use this system for their homeostasis, malignant NK cells seem to disrupt the process. Extranodal NK/T‐cell lymphoma, nasal type (ENKL) is a rare but fatal disease, for which novel therapeutic targets need to be identified. We confirmed that ENKL‐derived NK cell lines NK‐YS and Hank1, and primary lymphoma cells expressed procaspase‐8/FADD‐like interleukin‐1β‐converting enzyme (FLICE) modulator and cellular FLICE‐inhibitory protein (c‐FLIP), along with Fas and FasL. Compared with Fas‐sensitive Jurkat cells, NK‐YS and Hank1 showed resistance to Fas‐mediated apoptosis in spite of the same expression levels of c‐FLIP and the death‐inducing signaling complex (DISC) formation. Unexpectedly, the long isoform of c‐FLIP (c‐FLIPL) was coimmunoprecipitated with Fas predominantly in both ENKL‐derived NK cell lines after Fas ligation. Indeed, c‐FLIPL was more sufficiently recruited to the DISC in both ENKL‐derived NK cell lines than in Jurkat cells after Fas ligation. Knockdown of c‐FLIPL per se enhanced autonomous cell death and restored the sensitivity to Fas in both NK‐YS and Hank1 cells. Although ENKL cells are primed for AICD, they constitutively express and efficiently utilize c‐FLIPL, which prevents their Fas‐mediated apoptosis. Our results show that c‐FLIPL could be a promising therapeutic target against ENKL.
Collapse
Affiliation(s)
- Azuchi Masuda
- Division of Hematology, Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Isobe
- Division of Hematology, Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan.,Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Koichi Sugimoto
- Division of Hematology, Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan.,Department of Hematology and Oncology, JR Tokyo General Hospital, Tokyo, Japan
| | - Mayumi Yoshimori
- Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Arai
- Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Hematological Therapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Dotlic S, Ponzoni M, King RL, Oschlies I, Ferry J, Calaminici M, Montes-Moreno S, Goodlad JR, Ott G, Traverse-Glehen A. The broad and challenging landscape of extranodal lymphoproliferations. Virchows Arch 2019; 476:633-646. [DOI: 10.1007/s00428-019-02702-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
|
10
|
Mei M, Zhang M. Non-coding RNAs in Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:515. [PMID: 31263681 PMCID: PMC6584837 DOI: 10.3389/fonc.2019.00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of non-Hodgkin's lymphoma that is associated with a poor outcome. Non-coding RNAs (ncRNAs), which account for 98% of human RNAs, lack the function of encoding proteins but instead have the important function of regulating gene expression, including transcription, translation, RNA splicing, editing, and turnover. However, the roles and mechanisms of aberrantly expressed ncRNAs in NKTCL are not fully clear. Aberrant expressions of microRNA (miRNAs) affect the PI3K/AKT signaling pathways (miRNA-21, miRNA-155, miRNA-150, miRNA-142, miRNA-494), NF-κB (miRNA-146a, miRNA-155) and cell cycle signaling pathways to regulate cell function. Moreover, Epstein-Barr virus (EBV) encoded miRNAs and EBV oncoprotein LMP-1 regulated the expression of cellular genes that induce invasion, metastasis, cell cycle progression and cellular transformation. In addition, NKTCL-associated Long non-coding RNA (lncRNA) ZFAS1 regulated certain pathways and lncRNA MALAT1 acted as a predictive marker. This review article provides an overview of ncRNAs associated with NKTCL, summarizes the function of significantly differentially expressed hotspot non-coding RNAs that contribute to the pathogenesis, diagnoses, treatment and prognosis of NKTCL and discusses the relevance of these ncRNAs to clinical practice.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
12
|
Abstract
Genetically engineered T cells have shown promising activity in the treatment of cancer. However, these cells are also potentially susceptible to immune-suppressive pathways in the tumor microenvironment that may limit their efficacy. In this issue of the JCI, Yamamoto et al. describe a new cellular engineering approach to prevent Fas-mediated inhibition of T cell function, which may be exploited to improve cellular therapy for cancer.
Collapse
|
13
|
Harabuchi Y, Takahara M, Kishibe K, Nagato T, Kumai T. Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type: Basic Science and Clinical Progress. Front Pediatr 2019; 7:141. [PMID: 31041299 PMCID: PMC6476925 DOI: 10.3389/fped.2019.00141] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NNKTL) has very unique epidemiological, etiologic, histologic, and clinical characteristics. It is commonly observed in Eastern Asia, but quite rare in the United States and Europe. The progressive necrotic lesions mainly in the nasal cavity, poor prognosis caused by rapid local progression with distant metastases, and angiocentric and polymorphous lymphoreticular infiltrates are the main clinical and histologic features. Phenotypic and genotypic studies revealed that the lymphoma is originated from either NK- or γδ T-cell, both of which express CD56. In 1990, the authors first reported the presence of Epstein-Barr virus (EBV)-DNA and EBV-oncogenic proteins, and EBV has now been recognized to play an etiological role in NNKTL. in vitro studies revealed that a wide variety of cytokines, chemokines, and micro RNAs, which may be produced by EBV-oncogenic proteins in the lymphoma cells, play important roles for tumor progression in NNKTL, and could be therapeutic targets. In addition, it was revealed that the interaction between NNKTL cells and immune cells such as monocytes and macrophages in NNKTL tissues contribute to lymphoma progression. For diagnosis, monitoring the clinical course and predicting prognosis, the measurements of EBV-DNAs and EBV-micro RNAs in sera are very useful. For treatment with early stage, novel concomitant chemoradiotherapy such as DeVIC regimen with local radiotherapy and MPVIC-P regimen using intra-arterial infusion developed with concomitant radiotherapy and the prognosis became noticeably better. However, the prognosis of patients with advanced stage was still poor. Establishment of novel treatments such as the usage of immune checkpoint inhibitor or peptide vaccine with molecular targeting therapy will be necessary. This review addresses recent advances in the molecular understanding of NNKTL to establish novel treatments, in addition to the epidemiologic, clinical, pathological, and EBV features.
Collapse
Affiliation(s)
- Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
14
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
15
|
de Charette M, Houot R. Hide or defend, the two strategies of lymphoma immune evasion: potential implications for immunotherapy. Haematologica 2018; 103:1256-1268. [PMID: 30006449 PMCID: PMC6068015 DOI: 10.3324/haematol.2017.184192] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Evading immune eradication is a prerequisite for neoplastic progression and one of the hallmarks of cancer. Here, we review the different immune escape strategies of lymphoma and classify them into two main mechanisms. First, lymphoma cells may “hide” to become invisible to the immune system. This can be achieved by losing or downregulating MHC and/or molecules involved in antigen presentation (including antigen processing machinery and adhesion molecules), thereby preventing their recognition by the immune system. Second, lymphoma cells may “defend” themselves to become resistant to immune eradication. This can be achieved in several ways: by becoming resistant to apoptosis, by expressing inhibitory ligands that deactivate immune cells and/or by inducing an immunosuppressive (humoral and cellular) microenvironment. These immune escape mechanisms may have therapeutic implications. Their identification may be used to guide “personalized immunotherapy” for lymphoma.
Collapse
Affiliation(s)
| | - Roch Houot
- CHU Rennes, Service Hématologie Clinique, F-35033, France .,INSERM, U1236, F-35043, France
| |
Collapse
|
16
|
Yamaguchi M, Oguchi M, Suzuki R. Extranodal NK/T-cell lymphoma: Updates in biology and management strategies. Best Pract Res Clin Haematol 2018; 31:315-321. [PMID: 30213402 DOI: 10.1016/j.beha.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKL), is a rare lymphoma subtype of peripheral T/NK-cell lymphoma that is very common in East Asia and Latin America. Two-thirds of patients have localized disease in the nasal cavity or adjacent sites. Large retrospective studies have revealed the clinicopathologic features of ENKL patients, identified risk factors for short survival time, and developed prognostic models. Next-generation sequencing studies have provided a comprehensive list of recurrent mutations in ENKL. Since the early 2000s, disease-specific therapeutic approaches have been developed, and the standard of care for ENKL has markedly changed. Non-anthracycline-containing chemotherapy with or without radiotherapy is the current standard approach for ENKL treatment. Emerging therapies, including the use of immune checkpoint inhibitors, are being investigated.
Collapse
Affiliation(s)
- Motoko Yamaguchi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Masahiko Oguchi
- Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, Japan
| |
Collapse
|
17
|
de Mel S, Soon GST, Mok Y, Chung TH, Jeyasekharan AD, Chng WJ, Ng SB. The Genomics and Molecular Biology of Natural Killer/T-Cell Lymphoma: Opportunities for Translation. Int J Mol Sci 2018; 19:E1931. [PMID: 29966370 PMCID: PMC6073933 DOI: 10.3390/ijms19071931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTL), is an aggressive malignancy with a poor prognosis. While the introduction of L-asparaginase in the treatment of this disease has significantly improved the prognosis, the outcome of patients relapsing after asparaginase-based chemotherapy, which occurs in up to 50% of patients with disseminated disease, remains dismal. There is hence an urgent need for effective targeted therapy especially in the relapsed/refractory setting. Gene expression profiling studies have provided new perspectives on the molecular biology, ontogeny and classification of ENKTL and further identified dysregulated signaling pathways such as Janus associated kinase (/Signal Transducer and activation of transcription (JAK/STAT), Platelet derived growth factor (PDGF), Aurora Kinase and NF-κB, which are under evaluation as therapeutic targets. Copy number analyses have highlighted potential tumor suppressor genes such as PR Domain Zinc Finger Protein 1 (PRDM1) and protein tyrosine phosphatase kappa (PTPRK) while next generation sequencing studies have identified recurrently mutated genes in pro-survival and anti-apoptotic pathways. The discovery of epigenetic dysregulation and aberrant microRNA activity has broadened our understanding of the biology of ENKTL. Importantly, immunotherapy via Programmed Cell Death -1 (PD-1) and Programmed Cell Death Ligand1 (PD-L1) checkpoint signaling inhibition is emerging as an attractive therapeutic strategy in ENKTL. Herein, we present an overview of the molecular biology and genomic landscape of ENKTL with a focus on the most promising translational opportunities.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
| | - Gwyneth Shook-Ting Soon
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Yingting Mok
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Hospital, National University Health System, Singapore 110974, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 110974, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
18
|
Dufva O, Kankainen M, Kelkka T, Sekiguchi N, Awad SA, Eldfors S, Yadav B, Kuusanmäki H, Malani D, Andersson EI, Pietarinen P, Saikko L, Kovanen PE, Ojala T, Lee DA, Loughran TP, Nakazawa H, Suzumiya J, Suzuki R, Ko YH, Kim WS, Chuang SS, Aittokallio T, Chan WC, Ohshima K, Ishida F, Mustjoki S. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 2018; 9:1567. [PMID: 29674644 PMCID: PMC5908809 DOI: 10.1038/s41467-018-03987-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies. Aggressive natural killer-cell leukemia (ANKL) has few targeted therapies. Here ANKL patients are reported to harbor STAT3, RAS-MAPK pathway, DDX3X and epigenetic modifier mutations; and drug sensitivity profiling uncovers the importance of the JAK-STAT pathway, revealing potential ANKL therapeutic targets.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Tiina Kelkka
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Nodoka Sekiguchi
- Department of Comprehensive Cancer Therapy, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shady Adnan Awad
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Samuli Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Bhagwan Yadav
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Heikki Kuusanmäki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Emma I Andersson
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Paavo Pietarinen
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland
| | - Leena Saikko
- Department of Pathology, HUSLAB and Haartman Institute, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, University of Helsinki and Helsinki University Hospital, FIN-00290, Helsinki, Finland
| | - Teija Ojala
- Pharmacology, Faculty of Medicine, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Dean A Lee
- Nationwide Children's Hospital, Division of Hematology, Oncology, and BMT, Columbus, OH, 43205, USA
| | - Thomas P Loughran
- Department of Medicine, University of Virginia, Charlottesville, VA, 22908-0334, USA
| | - Hideyuki Nakazawa
- Division of Hematology, Internal Medicine, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, 693-8501, Japan
| | - Ritsuro Suzuki
- Department of Oncology/Hematology, Shimane University Hospital, Izumo, 693-8501, Japan
| | - Young Hyeh Ko
- Department of Pathology, Samsung Medical Center, Seoul, 0635, South Korea
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, 0635, South Korea
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, 71004, Taiwan
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014, Helsinki, Finland
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Fumihiro Ishida
- Department of Biomedical Laboratory Sciences, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, FIN-00290, Helsinki, Finland. .,Department of Clinical Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland.
| |
Collapse
|
19
|
Baytak E, Gong Q, Akman B, Yuan H, Chan WC, Küçük C. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1. Tumour Biol 2017; 39:1010428317701648. [PMID: 28468592 DOI: 10.1177/1010428317701648] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Natural killer/T-cell lymphoma is a rare but aggressive neoplasm with poor prognosis. Despite previous reports that showed potential tumor suppressors, such as PRDM1 or oncogenes associated with the etiology of this malignancy, the role of long non-coding RNAs in natural killer/T-cell lymphoma pathobiology has not been addressed to date. Here, we aim to identify cancer-associated dysregulated long non-coding RNAs and signaling pathways or biological processes associated with these long non-coding RNAs in natural killer/T-cell lymphoma cases and to identify the long non-coding RNAs transcriptionally regulated by PRDM1. RNA-Seq analysis revealed 166 and 66 long non-coding RNAs to be significantly overexpressed or underexpressed, respectively, in natural killer/T-cell lymphoma cases compared with resting or activated normal natural killer cells. Novel long non-coding RNAs as well as the cancer-associated ones such as SNHG5, ZFAS1, or MIR155HG were dysregulated. Interestingly, antisense transcripts of many growth-regulating genes appeared to be transcriptionally deregulated. Expression of ZFAS1, which is upregulated in natural killer/T-cell lymphoma cases, showed association with growth-regulating pathways such as stabilization of P53, regulation of apoptosis, cell cycle, or nuclear factor-kappa B signaling in normal and neoplastic natural killer cell samples. Consistent with the tumor suppressive role of PRDM1, we identified MIR155HG and TERC to be transcriptionally downregulated by PRDM1 in two PRDM1-null NK-cell lines when it is ectopically expressed. In conclusion, this is the first study that identified long non-coding RNAs whose expression is dysregulated in natural killer/T-cell lymphoma cases. These findings suggest that ZFAS1 and other dysregulated long non-coding RNAs may be involved in natural killer/T-cell lymphoma pathobiology through regulation of cancer-related genes, and loss-of-PRDM1 expression in natural killer/T-cell lymphomas may contribute to overexpression of MIR155HG; thereby promoting tumorigenesis.
Collapse
Affiliation(s)
- Esra Baytak
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey.,2 Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Qiang Gong
- 3 Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Burcu Akman
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey
| | - Hongling Yuan
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey
| | - Wing C Chan
- 3 Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Can Küçük
- 1 İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylul University, İzmir, Turkey.,2 Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
20
|
Abstract
This article will focus on the cutaneous lymphoproliferative disorders associated with EBV, with an emphasis on the upcoming changes in the revised 4th Edition of the WHO classification of tumors of the hematopoietic system, many of which deal with cutaneous disorders derived from NK-cells or T-cells. Extranodal NK/T-cell lymphoma usually presents in the upper aerodigestive tract, but can involve the skin secondarily. EBV-associated T- and NK-cell lymphoproliferative disorders (LPD) in the pediatric age group include the systemic diseases, chronic active EBV infection (CAEBV) and systemic EBV+ T-cell lymphoma of childhood. Hydroa vacciniforme (HV)-like LPD is a primarily cutaneous form of CAEBV and encompasses the lesions previously referred to as HV and HV-like lymphoma (HVLL). All the T/NK-cell-EBV-associated diseases occur with higher frequency in Asians, and indigenous populations from Central and South America and Mexico. Among the B-cell EBV-associated LPD two major changes have been introduced in the WHO. The previously designated EBV-positive diffuse large B-cell lymphoma (EBV-DLBCL) of the elderly, has been changed to EBV-DLBCL with 'not otherwise specified' as a modifier (NOS). A new addition to the WHO system is the more recently identified EBV+ mucocutaneous ulcer, which involves skin and mucosal-associated sites.
Collapse
Affiliation(s)
- Alejandro A Gru
- Pathology & Dermatology, Hematopathology and Dermatopathology Sections, University of Virginia, Charlottesville, VA, USA.
| | - Elaine S Jaffe
- Hematopathology, National Cancer Institute (NCI), Bethesda, MD, USA
| |
Collapse
|
21
|
Abstract
Understanding the molecular pathogenesis of peripheral T cell lymphomas (PTCLs) has lagged behind that of B cell lymphomas due to disease rarity. However, novel approaches are gradually clarifying these mechanisms, and gene profiling has identified specific signaling pathways governing PTCL cell survival and growth. For example, genetic alterations have been discovered, including signal transducer and activator of transcription (STAT)3 and STAT5b mutations in several PTCLs, disease-specific ras homolog family member A (RHOA) mutations in angioimmunoblastic T cell lymphoma (AITL), and recurrent translocations at the dual specificity phosphatase 22 (DUSP22) locus in anaplastic lymphoma receptor tyrosine kinase (ALK)-negative anaplastic large cell lymphomas (ALCLs). Intriguingly, some PTCL-relevant mutations are seen in apparently normal blood cells as well as tumor cells, while others are confined to tumor cells. These data have dramatically changed our understanding of PTCL origins: once considered to originate from mature T lymphocytes, some PTCLs are now believed to emerge from immature hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
22
|
Spadigam A, Dhupar A, Syed S, Saluja TS. Diabetes, Epstein-Barr virus and extranodal natural killer/T-cell lymphoma in India: Unravelling the plausible nexus. Indian J Med Paediatr Oncol 2016; 37:6-13. [PMID: 27051150 PMCID: PMC4795379 DOI: 10.4103/0971-5851.177002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The International Diabetes Federation Diabetes Atlas estimates a staggering 590 million people affected with diabetes mellitus (DM) within the next two decades globally, of which Type 2 DM will constitute more than 90%. The associated insulin resistance, hyperinsulinemia, and hyperglycemia pose a further significant risk for developing diverse malignant neoplasms. Diabetes and malignancy are multifactorial heterogeneous diseases. The immune dysfunction secondary to Type 2 diabetes also reactivates latent infections with high morbidity and mortality rates. Epstein-Barr virus (EBV), a ubiquitous human herpes virus-4, is an oncogenic virus; its recrudescence in the immunocompromised condition activates the expression of EBV latency genes, thus immortalizing the infected cell and giving rise to lymphomas and carcinomas. Extranodal natural killer/T-cell lymphoma (ENKTCL), common in South-East Asia and Latin America; is a belligerent type of non-Hodgkin lymphoma (NHL) almost invariably associated with EBV. An analysis of articles sourced from the PubMed database and Google Scholar web resource until February 2014, suggests an increasing incidence of NHL in Asia/India and of ENKTCL in India, over the last few decades. This article reviews the epidemiological evidence linking various neoplasms with Type 2 DM and prognosticates the emergence of ENKTCL as a common lymphoreticular malignancy secondary to Type 2 diabetes, in the Indian population in the next few decades.
Collapse
Affiliation(s)
- Anita Spadigam
- Department of Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Bambolim, Goa, India
| | - Anita Dhupar
- Department of Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Bambolim, Goa, India
| | - Shaheen Syed
- Department of Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Bambolim, Goa, India
| | - Tajindra Singh Saluja
- Department of Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Bambolim, Goa, India
| |
Collapse
|
23
|
Couronné L, Bastard C, Gaulard P, Hermine O, Bernard O. [Molecular pathogenesis of peripheral T cell lymphoma (2): extranodal NK/T cell lymphoma, nasal type, adult T cell leukemia/lymphoma and enteropathy associated T cell lymphoma]. Med Sci (Paris) 2015; 31:1023-33. [PMID: 26576610 DOI: 10.1051/medsci/20153111017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCL) belong to the group of non-Hodgkin lymphoma and particularly that of mature T /NK cells lymphoproliferative neoplasms. The 2008 WHO classification describes different PTCL entities with varying prevalence. With the exception of histologic subtype "ALK positive anaplastic large cell lymphoma", PTCL are characterized by a poor prognosis. The mechanisms underlying the pathogenesis of these lymphomas are not yet fully understood, but development of genomic high-throughput analysis techniques now allows to extensively identify the molecular abnormalities present in tumor cells. This review aims to summarize the current knowledge and recent advances about the molecular events occurring at the origin or during the natural history of main entities of PTCL. The first part published in the October issue was focused on the three more frequent entities, i.e. angioimmunoblastic T-cell lymphoma, peripheral T-cell lymphoma, not otherwise specified, and anaplastic large cell lymphoma. The second part presented herein will describe other subtypes less frequent and of poor prognosis : extranodal NK/T-cell lymphoma, nasal type, adult T-cell leukemia/lymphoma, and enteropathy-associated T-cell lymphoma.
Collapse
Affiliation(s)
- Lucile Couronné
- Service d'hématologie adultes, Assistance publique-Hôpitaux de Paris (APHP), Hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Christian Bastard
- Département de pathologie, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Créteil, France ; Université Paris-Est, Faculté de médecine, Créteil, France ; Inserm U955, Institut Mondor de recherche biomédicale, Créteil, France
| | - Philippe Gaulard
- Inserm U918 ; Université de Rouen ; Centre Henri Becquerel, Rouen, France
| | - Olivier Hermine
- Service d'hématologie adultes, Assistance publique-Hôpitaux de Paris (APHP), Hôpital Necker, Paris, France - Inserm UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France - Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Olivier Bernard
- UMR 1170 ; Institut Gustave Roussy, 94805, Villejuif ; Université Paris Sud 11, Orsay, France
| |
Collapse
|
24
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
Küçük C, Jiang B, Hu X, Zhang W, Chan JKC, Xiao W, Lack N, Alkan C, Williams JC, Avery KN, Kavak P, Scuto A, Sen E, Gaulard P, Staudt L, Iqbal J, Zhang W, Cornish A, Gong Q, Yang Q, Sun H, d'Amore F, Leppä S, Liu W, Fu K, de Leval L, McKeithan T, Chan WC. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun 2015; 6:6025. [PMID: 25586472 DOI: 10.1038/ncomms7025] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/02/2014] [Indexed: 02/05/2023] Open
Abstract
Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy.
Collapse
Affiliation(s)
- Can Küçük
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Bei Jiang
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Xiaozhou Hu
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Wenyan Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Maryland 20993, USA
| | - Nathan Lack
- Department of Pharmacology, Koc University, Istanbul 34450, Turkey
| | - Can Alkan
- Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey
| | - John C Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Kendra N Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | - Pınar Kavak
- Department of Computer Engineering, Boğaziçi University, İstanbul 34342, Turkey
| | - Anna Scuto
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Emel Sen
- Department of Pharmacology, Koc University, Istanbul 34450, Turkey
| | - Philippe Gaulard
- Département de Pathologie, Groupe Henri-Mondor Albert-Chenevier, Inserm U955, Université Paris Est, Créteil 94000, France
| | - Lou Staudt
- Molecular Biology of Lymphoid Malignancies Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Adam Cornish
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA
| | - Qiang Gong
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qunpei Yang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong Sun
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Central Hospital, PO Box 180, Helsinki 00029, Finland
| | - Weiping Liu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kai Fu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Laurence de Leval
- Pathologie Clinique Institut, Universitaire de Pathologie rue du Bugnon 25, CH 1011 Lausanne, Switzerland
| | - Timothy McKeithan
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| | - Wing C Chan
- Department of Pathology, City of Hope Medical Center, Duarte, California 91010, USA
| |
Collapse
|
26
|
ZHENG YAN, JIA JINJING, LI WENSHENG, WANG JUAN, TIAN QIONG, LI ZHENGXIAO, YANG JING, DONG XINYU, PAN PING, XIAO SHENGXIANG. Extranodal natural killer/T-cell lymphoma, nasal type, involving the skin, misdiagnosed as nasosinusitis and a fungal infection: A case report and literature review. Oncol Lett 2014; 8:2253-2262. [PMID: 25289105 PMCID: PMC4186554 DOI: 10.3892/ol.2014.2509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/07/2014] [Indexed: 01/16/2023] Open
Abstract
The present study reports a case of extranodal natural killer (NK)/T-cell lymphoma, nasal type, involving the skin. The clinical manifestations, pathological characteristics, treatment and prognosis of the case were analyzed to improve the clinical diagnosis and treatment for this disease. The patient was a 56-year-old male, presenting with dark red nodules and plaques that had been visible on the nose for half a year. Based on the skin lesions and histopathological and immunohistochemical examination results, the patient was diagnosed with extranodal NK/T-cell lymphoma, nasal type. This disease has unique histopathological and immunohistochemical features and a high malignancy. The condition tends to be misdiagnosed and has a poor prognosis, but seldom involves the skin. In the present case, only radiotherapy was performed, with no relapse occurring within 6 months.
Collapse
Affiliation(s)
- YAN ZHENG
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - JINJING JIA
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - WENSHENG LI
- Department of Pathology, The Third Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710068, P.R. China
| | - JUAN WANG
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - QIONG TIAN
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - ZHENGXIAO LI
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - JING YANG
- Department of Dermatology, Chang’an Hospital, Xi’an, Shaanxi 710016, P.R. China
| | - XINYU DONG
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - PING PAN
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| | - SHENGXIANG XIAO
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, P.R. China
| |
Collapse
|
27
|
JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 2013; 28:338-48. [PMID: 23689514 DOI: 10.1038/leu.2013.157] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022]
Abstract
Extranodal, nasal-type natural killer (NK)/T-cell lymphoma (NKCL) is an aggressive malignancy with poor prognosis in which, usually, signal transducer and activator of transcription 3 (STAT3) is constitutively activated and oncogenic. Here, we demonstrate that STAT3 activation mostly results from constitutive Janus kinase (JAK)3 phosphorylation on tyrosine 980, as observed in three of the four tested NKCL cell lines and in 20 of the 23 NKCL tumor samples under study. In one of the cell lines and in 4 of 19 (21%) NKCL primary tumor samples, constitutive JAK3 activation was related to an acquired mutation (A573V or V722I) in the JAK3 pseudokinase domain. We then show that constitutive activation of the JAK3/STAT3 pathway has a major role in NKCL cell growth and survival and in the invasive phenotype. Indeed, NKCL cell growth was slowed down in vitro by targeting JAK3 with chemical inhibitors or small-interfering RNAs. In a human NKCL xenograft mouse model, tumor growth was significantly delayed by the JAK3 inhibitor CP-690550. Altogether, the constitutive activation of JAK3, which can result from JAK3-activating mutations, is a frequent feature of NKCL that deserves to be tested as a therapeutic target.
Collapse
|
28
|
Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 2013; 26:57-74. [DOI: 10.1016/j.beha.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Tauzin S, Debure L, Moreau JF, Legembre P. CD95-mediated cell signaling in cancer: mutations and post-translational modulations. Cell Mol Life Sci 2012; 69:1261-77. [PMID: 22042271 PMCID: PMC11115069 DOI: 10.1007/s00018-011-0866-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 01/20/2023]
Abstract
Apoptosis has emerged as a fundamental process important in tissue homeostasis, immune response, and during development. CD95 (also known as Fas), a member of the tumor necrosis factor receptor (TNF-R) superfamily, has been initially cloned as a death receptor. Its cognate ligand, CD95L, is mainly found at the plasma membrane of activated T-lymphocytes and natural killer cells where it contributes to the elimination of transformed and infected cells. According to its implication in the immune homeostasis and immune surveillance, and since several malignant cells of various histological origins exhibit loss-of-function mutations, which cause resistance towards the CD95-mediated apoptotic signal, CD95 has been classified as a tumor suppressor gene. Nevertheless, this assumption has been recently challenged, as in certain pathophysiological contexts, CD95 engagement transmits non-apoptotic signals that promote inflammation, carcinogenesis or liver/peripheral nerve regeneration. The focus of this review is to discuss these apparent contradictions of the known function(s) of CD95.
Collapse
Affiliation(s)
- Sébastien Tauzin
- Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Laure Debure
- IRSET, Team “Death Receptors and Tumor Escape”, 2 Av du Prof. Léon Bernard, 35043 Rennes, France
| | - Jean-François Moreau
- Université de Bordeaux-2, UMR CNRS 5164, 146 rue Léo Saignat, 33076 Bordeaux, France
| | - Patrick Legembre
- University of Rennes-1, IRSET (Institut de Recherche sur la Santé l’Environnement et le Travail), Team “Death Receptors and Tumor Escape”, 2 av Prof Léon Bernard, 35043 Rennes cedex, France
| |
Collapse
|
30
|
Abstract
Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of more than 20 neoplastic entities derived from mature T cells and natural killer (NK) cells involved in innate and adaptive immunity. With few exceptions these malignancies, which may present as disseminated, predominantly extranodal or cutaneous, or predominantly nodal diseases, are clinically aggressive and have a dismal prognosis. Their diagnosis and classification is hampered by several difficulties, including a significant morphological and immunophenotypic overlap across different entities, and the lack of characteristic genetic alterations for most of them. Although there is increasing evidence that the cell of origin is a major determinant for the delineation of several PTCL entities, however, the cellular derivation of most entities remains poorly characterized and/or may be heterogeneous. The complexity of the biology and pathophysiology of PTCLs has been only partly deciphered. In recent years, novel insights have been gained from genome-wide profiling analyses. In this review, we will summarize the current knowledge on the pathobiological features of peripheral NK/T-cell neoplasms, with a focus on selected disease entities manifesting as tissue infiltrates primarily in extranodal sites and lymph nodes.
Collapse
|
31
|
Extranodal NK/T-cell lymphoma: toward the identification of clinical molecular targets. J Biomed Biotechnol 2011; 2011:790871. [PMID: 21541194 PMCID: PMC3085502 DOI: 10.1155/2011/790871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/24/2011] [Indexed: 02/08/2023] Open
Abstract
Extranodal natural killer (NK)/T-cell lymphoma of nasal type (NKTCL) is a malignant disorder of cytotoxic lymphocytes of NK or more rarely T cells associated with clonal Epstein-Barr virus infection. Extranodal NKTCL is rare in Western countries, but in Asia and Central and South America it can account for up to 10% of non-Hodgkin's lymphomas. It is an aggressive neoplasm with very poor prognosis. Although the pathogenesis of extranodal NKTCL remains poorly understood, some insights have been gained in the recent years, especially from genome-wide studies. Based on our own experience and knowledge of the literature, we here review some of the genomic and functional pathway alterations observed in NKTCL that could provide a rationale for the development of innovative therapeutic strategies.
Collapse
|
32
|
Li L, Zhang R, Chen Z, Xue S, Wang X, Ruan C. Over-expressed Fas improves the apoptosis of malignant T-cells in vitro and vivo. Mol Biol Rep 2011; 38:5371-7. [PMID: 21390503 DOI: 10.1007/s11033-011-0689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/26/2011] [Indexed: 11/26/2022]
Abstract
Fas play a critical role in T-cell apoptosis by functioning as a major cell-surface death receptor. To explore a potential method that can improve the sensitivity to Fas-mediated apoptosis in malignant precursor T-cells. Fas gene was stable transfected into Jurkat cells to establish a new cell line named Jurkat-Fas with over-expressed Fas. RT-PCR, real-time RT-PCR, flow cytometry, and confocal microscopy assay were performed to detect the Fas level of mRNA and protein in the two cell lines. The sensitivities to Fas-mediated apoptosis of the two cell lines were evaluated by flow cytometry with Alexa Fluor 488 annexin V/PI staining in vitro. Tumor xenograft models were prepared with Jurkat and Jurkat-Fas cells for in vivo study. Fas mRNA and protein levels in Jurkat-Fas cell line were higher than that in Jurkat cell line. Compared to Jurkat cells, apoptosis rates of Jurkat-Fas cells were remarkably higher in vitro, and the tumor growth of Jurkat-Fas cells in nude mice was significantly inhibited in vivo. Stable over-expression of extrinsic Fas gene can significantly ameliorate the sensitivity to Fas-mediated apoptosis in human malignant T-cell, which indicates a novel strategy to improve therapeutic effects on precursor T-cell malignancy.
Collapse
Affiliation(s)
- Linghao Li
- Department of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No 188 Shizi Street, Suzhou 215006, China
| | | | | | | | | | | |
Collapse
|
33
|
Ng SB, Selvarajan V, Huang G, Zhou J, Feldman AL, Law M, Kwong YL, Shimizu N, Kagami Y, Aozasa K, Salto-Tellez M, Chng WJ. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol 2011; 223:496-510. [PMID: 21294123 DOI: 10.1002/path.2823] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022]
Abstract
We performed comprehensive genome-wide gene expression profiling (GEP) of extranodal nasal-type natural killer/T-cell lymphoma (NKTL) using formalin-fixed, paraffin-embedded tissue (n = 9) and NK cell lines (n = 5) in comparison with normal NK cells, with the objective of understanding the oncogenic pathways involved in the pathogenesis of NKTL and to identify potential therapeutic targets. Pathway and network analysis of genes differentially expressed between NKTL and normal NK cells revealed significant enrichment for cell cycle-related genes and pathways, such as PLK1, CDK1, and Aurora-A. Furthermore, our results demonstrated a pro-proliferative and anti-apoptotic phenotype in NKTL characterized by activation of Myc and nuclear factor kappa B (NF-κB), and deregulation of p53. In corroboration with GEP findings, a significant percentage of NKTLs (n = 33) overexpressed c-Myc (45.4%), p53 (87.9%), and NF-κB p50 (67.7%) on immunohistochemistry using a tissue microarray containing 33 NKTL samples. Notably, overexpression of survivin was observed in 97% of cases. Based on our findings, we propose a model of NKTL pathogenesis where deregulation of p53 together with activation of Myc and NF-κB, possibly driven by EBV LMP-1, results in the cumulative up-regulation of survivin. Down-regulation of survivin with Terameprocol (EM-1421, a survivin inhibitor) results in reduced cell viability and increased apoptosis in tumour cells, suggesting that targeting survivin may be a potential novel therapeutic strategy in NKTL.
Collapse
Affiliation(s)
- Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ham MF, Ko YH. Natural killer cell neoplasm: biology and pathology. Int J Hematol 2010; 92:681-9. [PMID: 21132576 DOI: 10.1007/s12185-010-0738-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/13/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cell neoplasm is a heterogeneous disease group. In the latest World Health Organization (WHO) classification of tumours of hematopoietic and lymphoid tissues (2008), disease entities considered as NK-cell derivation include NK-lymphoblastic leukemia/lymphoma, chronic lymphoproliferative disorders of NK cells, aggressive NK-cell leukemia, and extranodal NK-cell lymphoma, nasal-type. Despite recent advances in NK-cell research, which have expanded our understanding of the biology of NK-cell neoplasm, it cannot yet be sharply delineated from myeloid neoplasms and T-cell neoplasms even in some "well-known" entity, such as extranodal NK/T-cell lymphoma. This review describes current knowledge of the biology of NK cells and pathology of NK neoplasms as classified in the 2008 WHO classification of tumours of hematopoietic and lymphoid tissues.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Anatomic Pathology, University of Indonesia/Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia.
| | | |
Collapse
|
35
|
Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2009; 115:1226-37. [PMID: 19965620 DOI: 10.1182/blood-2009-05-221275] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biopsies and cell lines of natural killer/T-cell lymphoma, nasal type (NKTCL) were subject to combined gene expression profiling and array-based comparative genomic hybridization analyses. Compared with peripheral T-cell lymphoma, not otherwise specified, NKTCL had greater transcript levels for NK-cell and cytotoxic molecules, especially granzyme H. Compared with normal NKcells, tumors were closer to activated than resting cells and overexpressed several genes related to vascular biology, Epstein-Barr Virus-induced genes, and PDGFRA. Notably, platelet-derived growth factor receptor alpha and its phosphorylated form were confirmed at the protein level, and in vitro the MEC04 NKTCL cell line was sensitive to imatinib. Deregulation of the AKT, Janus kinase-signal transducers and activators of transcription, and nuclear factor-kappaB pathways was corroborated by nuclear expression of phosphorylated AKT, signal transducers and activators of transcription 3, and RelA in NKTCL, and several deregulated genes in these pathways mapped to regions of recurrent copy number aberrations (AKT3 [1q44], IL6R [1q21.3], CCL2 [17q12], TNFRSF21 [6p12.3]). Several features of NKTCL uncovered by this analysis suggest perturbation of angiogenic pathways. Integrative analysis also evidenced deregulation of the tumor suppressor HACE1 in the frequently deleted 6q21 region. This study highlights emerging oncogenic pathways in NKTCL and identifies novel diagnostic and therapeutic targets.
Collapse
|
36
|
Downregulation of Fas gene expression in Sézary syndrome is associated with promoter hypermethylation. J Invest Dermatol 2009; 130:1116-25. [PMID: 19759548 DOI: 10.1038/jid.2009.301] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sézary Syndrome (SS) is an aggressive leukemic variant of primary cutaneous T-cell lymphoma characterized by the presence of tumor or Sézary cells that generally display a mature memory T-cell immunophenotype. Sézary cells proliferate poorly and therefore their accumulation may be due to defective T-cell homeostasis involving resistance to apoptosis. In this study, we analyzed Fas expression in CD4+ lymphocytes at the mRNA and protein levels in a large cohort of SS patients as compared with healthy controls. Fas mRNA expression was dysregulated in 34/47 patients, with significant under- and overexpression of Fas mRNA detected in 21 and 13 patients respectively (P<0.01). Examination of cell-surface Fas expression showed correlation with the observed downregulation of mRNA in CD4+ T cells. Mutational analysis demonstrated that functional FAS gene mutations are rare. Moreover, 16 SS patients who showed significant under-expression of Fas mRNA also showed significant positional hypermethylation within the FAS CpG island, which was not present in healthy controls or SS patients determined to have normal or overexpression of Fas mRNA. These data demonstrate that dysregulation of Fas expression is a common feature of SS, and provide a rationale for targeted therapies to restore the extrinsic Fas-dependent apoptotic pathway in this malignancy.
Collapse
|
37
|
Harabuchi Y, Takahara M, Kishibe K, Moriai S, Nagato T, Ishii H. Nasal natural killer (NK)/T-cell lymphoma: clinical, histological, virological, and genetic features. Int J Clin Oncol 2009; 14:181-90. [DOI: 10.1007/s10147-009-0882-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Indexed: 10/20/2022]
|
38
|
XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway. Oncogene 2009; 28:3081-92. [PMID: 19543321 DOI: 10.1038/onc.2009.154] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Colorectal cancers with mutations in the p53 gene have an invasive property, but its underlying mechanism is not fully understood. Through the screening of two data sets of the genome-wide expression profile, one for p53-introduced cells and the other for the numbers of cancer tissues, we report here X-linked ectodermal dysplasia receptor (XEDAR), a member of the TNFR superfamily, as a novel p53 target that has a crucial role in colorectal carcinogenesis. p53 upregulated XEDAR expression through two p53-binding sites within intron 1 of the XEDAR gene. We also found a significant correlation between decreased XEDAR expressions and p53 gene mutations in breast and lung cancer cell lines (P=0.0043 and P=0.0122, respectively). Furthermore, promoter hypermethylation of the XEDAR gene was detected in 20 of 20 colorectal cancer cell lines (100%) and in 6 of 12 colorectal cancer tissues (50%), respectively. Thus, the XEDAR expression was suppressed to <25% of surrounding normal tissues in 12 of 18 colorectal cancer tissues (66.7%) due to either its epigenetic alterations and/or p53 mutations. We also found that XEDAR interacted with and subsequently caused the accumulation of FAS protein, another member of p53-inducible TNFR. Moreover, XEDAR negatively regulated FAK, a central component of focal adhesion. As a result, inactivation of XEDAR resulted in the enhancement of cell adhesion and spreading, as well as resistance to p53-induced apoptosis. Taken together, our findings showed that XEDAR is a putative tumor suppressor that could prevent malignant transformation and tumor progression by regulating apoptosis and anoikis.
Collapse
|
39
|
STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 2009; 23:1667-78. [PMID: 19421230 DOI: 10.1038/leu.2009.91] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nasal-type natural killer (NK) cell lymphoma is an infrequent aggressive malignant disease with very poor prognosis. We aimed to explore the possible role of the transcription factor STAT3 in the pathophysiology of this malignancy, as it was involved in oncogenesis and chemoresistance. For this, we established and characterized a continuous interleukin 2-dependent NK cell line (MEC04) from a patient with a fatal nasal-type NK-cell lymphoma. Cells harbored poor cytotoxic activity against K562 cells, and spontaneously secreted interferon-gamma, interleukin-10 and vascular-endothelium growth factor in vitro. STAT3 was phosphorylated in Y705 dimerization residue in MEC04 cells and restricted to the nucleus. Y705 STAT3 phosphorylation involved JAK2, as exposure of cells to AG490 inhibitor inhibited Y705 STAT3 phosphorylation. By using recombinant transducible TAT-STAT3-beta (beta isoform), TAT-STAT3Y705F (a STAT3 protein mutated on Y705 residue, which prevents STAT3 dimerization) and peptides inhibiting specifically STAT3 dimerization, we inhibited STAT3 phosphorylation and cell growth, with cell death induction. Finally, STAT3 was phosphorylated in Y705 residue in the nuclei of lymphoma cells in eight/nine patients with nasal-type NK/T-cell lymphoma and in YT, another NK cell line. Our results suggest that STAT3 protein has a major role in the oncogenic process of nasal-type NK-cell lymphomas, and may represent a promising therapeutical target.
Collapse
|
40
|
Wang J, Hasui K, Jia X, Matsuyama T, Eizuru Y. Possible Role for External Environmental Stimuli in Nasopharyngeal NK/T-Cell Lymphomas in the Northeast of China with EBV Infection-Related Autophagic Cell Death : A Pathoepidemiological Analysis. J Clin Exp Hematop 2009; 49:97-108. [DOI: 10.3960/jslrt.49.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Ko HJ, Yang MY, Kim HJ, Yun JA, Kim HJ, Lee SC, Bae SB, Kim CK, Lee NS, Park SK, Lee KT, Won JH, Hong DS, Park HS, Kim HK. A Case of Solitary Involved NK-T Cell Lymphoma on the Gallbladder. THE KOREAN JOURNAL OF HEMATOLOGY 2009. [DOI: 10.5045/kjh.2009.44.4.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hee Ja Ko
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Mi Yean Yang
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Han Jo Kim
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Jin A Yun
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Hyun Jung Kim
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Sang Cheol Lee
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Sang Byung Bae
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Chan Kyu Kim
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Nam Su Lee
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Seong Kyu Park
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Kyu Teak Lee
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Jong Ho Won
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Dae Sik Hong
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Hee Sook Park
- Department of Internal Medicine, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| | - Hee Kyung Kim
- Department of Pathology, University of Soonchunhyang Collage of Medicine, Bucheon, Korea
| |
Collapse
|
42
|
Nasal NK/T-cell lymphoma: epidemiology and pathogenesis. Int J Hematol 2008; 87:110-117. [PMID: 18256789 PMCID: PMC2276242 DOI: 10.1007/s12185-008-0021-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 01/09/2023]
Abstract
Nasal NK/T-cell lymphoma (NKTCL) is an uncommon disease, but usually shows a highly aggressive clinical course. The disease is much more frequent in Asian and Latin American countries than in Western countries, and is universally associated with Epstein–Barr virus (EBV) infection. Analyses of gene mutations, especially p53 and c-KIT, revealed the different frequencies by district. Epidemiological studies revealed the changes of the disease frequency in Korea during the period from 1977–1989 to 1990–1996. Case-control study showed that the exposure to pesticides and chemical solvents could be causative of NKTCL. Further studies including HLA antigen typing of patients is necessary to further clarify the disease mechanism.
Collapse
|
43
|
Ko YH, Park S, Jin H, Woo H, Lee H, Park C, Kim K. Granzyme B leakage-induced apoptosis is a crucial mechanism of cell death in nasal-type NK/T-cell lymphoma. J Transl Med 2007; 87:241-50. [PMID: 17260002 DOI: 10.1038/labinvest.3700517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study aims to investigate the role of granzyme B in the apoptosis of nasal-type NK/T-cell lymphoma. Twenty-four nasal-type NK/T-cell lymphomas were examined by TdT-mediated deoxyuridine triphosphate (dUTP)-biotin nick-end labeling (TUNEL) assay and immunohistochemical staining for active caspase 3, poly(ADP-ribose) polymerase (PARP-1/p85)/p85, and Bcl-2. In addition, HANK-1 and NKL cell lines were analyzed using Western blot analysis. Immunoprecipitation was performed to identify the binding of granzyme B and intrinsic serpin proteinase inhibitor 9 (PI-9). To localize granzyme B, immunogold labeling and immunofluorescence staining were performed. The expression level of granzyme B in tumor tissue was correlated with the apoptosis rate (P=0.015), degree of necrosis (P=0.002), and the levels of active caspase 3 (P=0.036) and poly ADP-ribose polymerase (PARP)-1/p85 (P=0.040). The granzyme B-positive HANK-1 cell line showed increased spontaneous cell death compared to the granzyme B-negative NKL cell line. The untreated HANK-1 cells released cytochrome c into the cytosol with cleavage of caspase 3 and PARP-1. Treatment with granzyme B inhibitor and caspase inhibitor decreased the cleavage of PARP-1. By performing immunogold labeling, granzyme B was identified within the cytolytic granules as well as in the cytosol. Confocal microscopy and immunoprecipitation assays confirmed the colocalization of PI-9 and granzyme B, which formed an SDS-resistant complex. These results suggested that granzyme B leakage induces cell death in NK/T-cell lymphomas via both caspase-dependent and -independent mechanisms, and this leads to the extensive necrosis that is commonly seen in NK/T-cell lymphoma.
Collapse
Affiliation(s)
- Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
44
|
Al-Hakeem DA, Fedele S, Carlos R, Porter S. Extranodal NK/T-cell lymphoma, nasal type. Oral Oncol 2006; 43:4-14. [PMID: 17064952 DOI: 10.1016/j.oraloncology.2006.03.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 03/13/2006] [Accepted: 03/20/2006] [Indexed: 11/19/2022]
Abstract
Extranodal NK/T-cell lymphoma, nasal type (ENKTCL), previously known as lethal midline granuloma is a distinct clinico-pathological entity associated with Epstein-Barr virus that typically causes destruction of the midface, palatal and orbital walls. In addition, ENKTCL can involve the skin, soft tissue, testes, gastrointestinal and upper respiratory tract. ENKTCL neoplastic cells express some T-cell associated antigens, most commonly CD2 and cytoplasmic CD3epsilon and, in favour of an NK-cell origin, CD56. Early stage disease may respond to radiotherapy alone, however late stage disease does not respond well to any available therapies. Overall, patients with ENKTCL have a cumulative probability of survival at 5 years ranging from 37.9% to 45.3%.
Collapse
Affiliation(s)
- Dalal Abdullah Al-Hakeem
- Oral Medicine Unit, Division of Maxillofacial Diagnostic, Medical and Surgical Sciences, UCL Eastman Dental Institute for Oral Health Care Sciences, 256 Gray's Inn Road, London WC1X 8LD, UK
| | | | | | | |
Collapse
|
45
|
Eser B, Sari I, Canoz O, Altuntas F, Cakmak E, Ozturk A, Ozkan M, Er O, Cetin M, Unal A. Prognostic significance of Fas (CD95/APO-1) positivity in patients with primary nodal diffuse large B-cell lymphoma. Am J Hematol 2006; 81:307-314. [PMID: 16628716 DOI: 10.1002/ajh.20564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fas (CD95/APO-1) is a protein that is mainly related to apoptosis of lymphoid cells. The increment of Fas expression is associated with long-term survival in various malignancies. However, there are limited studies regarding the effect of Fas expression on the course and prognosis of non-Hodgkin's lymphoma. The aim of this study was to investigate the significance of immunohistochemical Fas expression on the prognosis of nodal diffuse large B-cell lymphoma. A total of 63 patients with primary nodal diffuse large B-cell lymphoma diagnosed in the Erciyes University Department of Hematology between 1990 and 2003 were included in the study. The median age of the patients was 55 years old (range 19-102 years old). The median follow-up period was 19 months (2-132 months). Histopathological sections were stained immunohistochemically and evaluated by light microscopy for Fas, bcl-2, and p53. Clinical and laboratory parameters including Fas, bcl-2, and p53 positivity, age, sex, performance status, clinical stage, presence of B symptoms, bone marrow involvement, extranodal involvement, and lactic dehydrogenase levels were evaluated to compare overall survival. Complete remission was obtained in 28 patients (44.4%) after first-line chemotherapy. Fas positivity, male gender, good performance status, clinical stage I-II, absence of B symptoms, normal lactic dehydrogenase value, and absence of bone marrow involvement were favorable prognostic factors for complete remission in statistical analysis. Multivariate analysis revealed that positive Fas expression and ECOG performance status were independent prognostic factors for overall survival. Also, Fas-positive patients had significantly prolonged progression-free survival. Immunohistochemical Fas positivity was a favorable prognostic factor for complete remission and overall and progression-free survival in primary nodal diffuse large B-cell lymphoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease-Free Survival
- Female
- Humans
- Immunohistochemistry
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/mortality
- Lymphoma, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Middle Aged
- Multivariate Analysis
- Neoplasm Staging
- Predictive Value of Tests
- fas Receptor/analysis
- fas Receptor/biosynthesis
Collapse
Affiliation(s)
- Bulent Eser
- Department of Hematology-Oncology, Erciyes University School of Medicine, M.K. Dedeman Oncology Hospital, Kayseri, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jeon YK, Kim H, Park SO, Choi HY, Kim YA, Park SS, Kim JE, Kim YN, Kim CW. Resistance to Fas-mediated apoptosis is restored by cycloheximide through the downregulation of cellular FLIPL in NK/T-cell lymphoma. J Transl Med 2005; 85:874-84. [PMID: 15924153 DOI: 10.1038/labinvest.3700291] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Extranodal NK/T-cell lymphoma (NKTL), nasal type, is a highly aggressive neoplasm and is strongly associated with Epstein-Barr virus (EBV). In this study, we demonstrate that EBV-positive NKTL cell lines, namely, Hank-1, NK-YS, and NK-L, are resistant to Fas-mediated apoptosis induced by anti-Fas antibodies despite high levels of Fas surface expression and no mutation in the Fas gene. Fas stimulation of Hank-1 and NK-YS cells showed little processing of caspase 8, caspase 3, or bid, although the proximal signaling molecules of the death-inducing signaling complex, namely, Fas, Fas-associated protein with a death domain, caspase 8, and bid were present in these cells. Consistent with previous reports on the hypermethylation of death associated protein (DAP) kinase in NKTLs, the promoter of DAP kinase was methylated and its mRNA not detected in Hank-1 cells. However, the restoration of DAP kinase expression by 5-aza-2'-deoxycytidine did not sensitize Hank-1 to Fas-mediated apoptosis, indicating that DAP kinase deficiency does not contribute to resistance to Fas-mediated apoptosis. Since etoposide-induced apoptosis involved caspase 3 activation in Hank-1 and NK-YS cells, the caspase 3-dependent apoptotic machinery appears to be intact. Interestingly, cotreatment of Hank-1 with cycloheximide, a protein synthesis inhibitor, markedly sensitized cells to Fas-mediated apoptosis along with caspase 8 activation and c-FLIP(L) (cellular FLICE inhibitory protein long form) downregulation. Moreover, immunohistochemistry on paraffin-embedded tissue revealed c-FLIP expression in 39% (14 of 36) of NKTL patients. Taken together, these findings indicate that c-FLIP(L)-mediated resistance to Fas contributes to the development and progression of NKTLs. This study also suggests that agents capable of downregulating c-FLIP(L) could be used to treat NKTL.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi YL, Moriuchi R, Osawa M, Iwama A, Makishima H, Wada T, Kisanuki H, Kaneda R, Ota J, Koinuma K, Ishikawa M, Takada S, Yamashita Y, Oshimi K, Mano H. Retroviral expression screening of oncogenes in natural killer cell leukemia. Leuk Res 2005; 29:943-9. [PMID: 15978945 DOI: 10.1016/j.leukres.2005.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Accepted: 01/22/2005] [Indexed: 11/20/2022]
Abstract
Aggressive natural killer cell leukemia (ANKL) is an intractable malignancy that is characterized by the outgrowth of NK cells. To identify transforming genes in ANKL, we constructed a retroviral cDNA expression library from an ANKL cell line KHYG-1. Infection of 3T3 cells with recombinant retroviruses yielded 33 transformed foci. Nucleotide sequencing of the DNA inserts recovered from these foci revealed that 31 of them encoded KRAS2 with a glycine-to-alanine mutation at codon 12. Mutation-specific PCR analysis indicated that the KRAS mutation was present only in KHYG-1 cells, not in another ANKL cell line or in clinical specimens (n=8).
Collapse
Affiliation(s)
- Young Lim Choi
- Division of Functional Genomics, Jichi Medical School, 3311-1 Yakushiji, Kawachigun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peter ME, Legembre P, Barnhart BC. Does CD95 have tumor promoting activities? Biochim Biophys Acta Rev Cancer 2005; 1755:25-36. [PMID: 15907590 DOI: 10.1016/j.bbcan.2005.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 11/14/2004] [Accepted: 01/04/2005] [Indexed: 01/12/2023]
Abstract
CD95 (APO-1/Fas) is an important inducer of the extrinsic apoptosis signaling pathway and therapy induced apoptosis of many tumor cells has been linked to the activity of CD95. Changes in the expression of CD95 and/or its ligand CD95L are frequently found in human cancer. The downregulation or mutation of CD95 has been proposed as a mechanism by which cancer cells avoid destruction by the immune system through reduced apoptosis sensitivity. CD95 has therefore been viewed as a tumor suppressor. Furthermore, increased CD95L concentration in tumor patients has been linked to tumor cells killing infiltrating lymphocytes in a process called "the tumor counter-attack". Recent data have illuminated unknown activities of CD95 in tumor cells with downregulated or mutated CD95 in the presence of increased CD95L. Under these conditions the stimulation of CD95 signals nonapoptotic pathways, activating NF-kappaB and MAP kinases for example, which may result in the induction of tumorigenic or prosurvival genes. A new model of CD95 functions is proposed in which CD95 is converted from a tumor suppressor to a tumor promotor by a single point mutation in one of the CD95 alleles, a situation frequently found in advanced human cancer, resulting in apoptosis resistance and activation of tumorigenic pathways.
Collapse
Affiliation(s)
- Marcus E Peter
- The Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
49
|
|
50
|
Nagasawa T, Takakuwa T, Takayama H, Dong Z, Miyagawa S, Itami S, Yoshikawa K, Aozasa K. Fas gene mutations in mycosis fungoides: analysis of laser capture-microdissected specimens from cutaneous lesions. Oncology 2004; 67:130-4. [PMID: 15539917 DOI: 10.1159/000080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 02/12/2004] [Indexed: 12/27/2022]
Abstract
Fas (APO-1/CD95) is a transmembrane protein which mediates programmed cell death (apoptosis). Cells with a mutated Fas gene are resistant to apoptosis and thus accumulate in lesional tissues. This might provide a basis for the development of neoplasias. Genomic DNA selectively obtained from Pautrier's microabscesses in 16 cases of mycosis fungoides (MF) using a laser capture microdissection method was analyzed. Fas gene mutations were detected in 3 of 16 cases of MF (18.8%); 1 was silent and 2 were missense mutations located in exon 9. One of the 2 missense mutations involved the death domain of the Fas gene, which is essential for apoptotic signal transduction. The missense mutations resulted in the substitution of Ala with Asp at codon 220 and Ile with Thr at codon 314. Mouse T cell lymphoma cells transfected with mutant genes were resistant to apoptosis induced by the anti-Fas antibody, indicating that the missense mutations found in MF were loss-of-function mutations, thus causing the accumulation of cells in the cutaneous lesions. These findings suggest that the accumulation of lymphoid cells with Fas mutations provides, in part, a basis for the development or maintenance of MF.
Collapse
Affiliation(s)
- Tomohiko Nagasawa
- Department of Pathology, Osaka University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|