1
|
Bougras-Cartron G, Nadaradjane A, Joalland MP, Lalier-Bretaudeau L, Raimbourg J, Cartron PF. Adenosine Methylation Level of miR-125a-5p Promotes Anti-PD-1 Therapy Escape through the Regulation of IGSF11/VSIG3 Expression. Cancers (Basel) 2023; 15:3188. [PMID: 37370798 DOI: 10.3390/cancers15123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Despite encouraging anti-tumour activity in lung cancer, anti-PD-1 therapy has encountered increasing resistance to treatment. Several companion diagnostic assays have been performed to identify patients who may benefit from this immunotherapy and to adapt this therapy in case of acquired resistance. METHODS A large panel of methods was used for the analysis of expression and methylation levels of miRNAs (qPCR, MemiRIP, …), protein/miRNA interactions (CLIP, oligo pull-down, …), and protein-protein interactions (CoIP) in cells and/or blood samples. RESULTS Our work highlights that the saturation of PD-1 by anti-PD1 therapies induces an immune escape phenomenon due to the overexpression of IGSF11 following adenosine methylation of miR-125a-5p. Mechanistically, we identify METTL3/KHDRBS3 and HuR as two crucial players in the methylation and the loss of the repressive function of this miRNA. Finally, our work shows that the adenosine methylation of miR-125a-5p is analyzable from EVs/exosomes from longitudinal blood samples and that such EVs/exosomes modulate the IGSF11/VSIG3 expression in lung cancer cells to promote an immune escape phenomenon. CONCLUSIONS Our data provide a biomarker (m6A-miR-125a-5p level) and two therapeutic solutions (anti-IGSF11 antibody and METTL3 inhibitor) that could potentially address the anti-PD1 therapy failure in the context of precision and personalized medicine.
Collapse
Affiliation(s)
- Gwenola Bougras-Cartron
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Arulraj Nadaradjane
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Marie-Pierre Joalland
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Lisenn Lalier-Bretaudeau
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Judith Raimbourg
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| | - Pierre-François Cartron
- CRCI2NA, INSERM, Université de Nantes, 44035 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint-Herblain, France
- SIRIC ILIAD, 44000 Nantes, France
| |
Collapse
|
2
|
Bryzgunova OE, Konoshenko MY, Laktionov PP. Concentration of cell-free DNA in different tumor types. Expert Rev Mol Diagn 2020; 21:63-75. [PMID: 33270495 DOI: 10.1080/14737159.2020.1860021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Cell-free DNA (cfDNA) circulates in the blood for a long time. The levels of cfDNA in the blood are assayed in cancer diagnostics because they are closely related to the tumor burden of patients.Areas covered: cfDNA escapes the action of DNA-hydrolyzing enzymes, being a part of supramolecular complexes or interacting with the plasma membrane of blood cells. cfDNA has heterogeneous size and composition, which impose various restrictions on both isolation methods and subsequent analysis. cfDNA concentration and structural changes with the development of diseases highlight the high potential of cfDNA as a diagnostic and prognostic marker. The concentration of cfDNA released in the blood by tumor cells determines the specificity of such diagnostics and the required blood volume. The present review aimed to synthesize the available data on cfDNA concentration in the cancer patient's blood as well as pre-analytical, analytical, and biological factors, which interfere with cfDNA concentration.Expert opinion: The concentration of cfDNA and tumor cell DNA (ctDNA), and the over-presentation of DNA loci in cfDNA must be considered when looking for tumor markers. Some inconsistent data on cfDNA concentrations (like those obtained by different methods) suggest that the study of cfDNA should be continued.
Collapse
Affiliation(s)
- O E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - M Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| | - P P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin Siberian Federal Biomedical Research Center, Ministry of Public Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
3
|
Shahkarami S, Zoghi S, Rezaei N. The Role of DNA Methylation in Cancer. CANCER IMMUNOLOGY 2020:491-511. [DOI: 10.1007/978-3-030-30845-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
5
|
Zhang T, Guan Y, Wang S, Wang L, Cheng M, Yuan C, Liu Y, Wang Z. Bisphenol A induced abnormal DNA methylation of ovarian steroidogenic genes in rare minnow Gobiocypris rarus. Gen Comp Endocrinol 2018; 269:156-165. [PMID: 30244057 DOI: 10.1016/j.ygcen.2018.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA), an ubiquitous environmental endocrine disruptor chemical, disturbs the mRNA expressions of steroidogenic genes and subsequently steroid hormone synthesis in mammals and aquatic species. However, the underlying regulation mechanisms are barely understood, especially in fish. To explore the regulation mechanism, we exposed female rare minnow Gobiocypris rarus (G. rarus) to BPA at a nominal concentration of 15 μg/L for 7 and 14 days in the present study. Results showed significant increase of gonad somatic index (GSI) and serum estradiol (E2) levels in response to BPA at day 14. The 7-day BPA exposure notably repressed the expression of two ovarian steroidogenic genes (star and hsd11b2) and suppressed their capacity of estrogen response elements (ERE) to recruit estrogen receptor (ER), while the 14-day BPA treatment remarkably induced transcript of hsd3b and enhanced the capacity of ERE to recruitment ER in ovaries. Furthermore, the 7-day BPA exposure caused DNA hypermethylation of star (CpGs: -742 bp and -719 bp) and hsd11b2 (CpG: -1788 bp). However, 14-day BPA exposure resulted in DNA hypomethylation of hsd3b (CpG: -181 bp). Correlation analysis revealed that the DNA methylation levels at specific CpGs in star, hsd3b and hsd11b2 were significantly correlated to their mRNA levels and ER-EREs interactions. These findings suggest that the disturbed steroidogenesis and the transcripts of ovarian steroidogenic genes might attribute to the altered DNA methylation status of these ovarian steroidogenic genes in response to BPA.
Collapse
Affiliation(s)
- Ting Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Song Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengqian Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Basu P, Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother 2018; 107:1648-1666. [DOI: 10.1016/j.biopha.2018.08.100] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
|
7
|
Jonker PKC, Meyer VM, Kruijff S. Epigenetic dysregulation in adrenocortical carcinoma, a systematic review of the literature. Mol Cell Endocrinol 2018; 469:77-84. [PMID: 28830787 DOI: 10.1016/j.mce.2017.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine malignancy with a poor prognosis. Diagnosis and treatment of this tumor remains challenging. The Weiss score, the current gold standard for the histopathological diagnosis of ACC, lacks diagnostic accuracy of borderline tumors (Weiss score 2 or 3) and is subject to inter observer variability. Furthermore, adjuvant and palliative systemic therapy have limited effect and no proven overall survival benefit. A better insight in the molecular background of ACC might identify markers that improve diagnostic accuracy, predict treatment response or even provide novel therapeutic targets. This systematic review of the literature aims to provide an overview of alterations in DNA methylation, histone modifications and their potential clinical relevance in ACC.
Collapse
Affiliation(s)
- P K C Jonker
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - V M Meyer
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Concerted changes in transcriptional regulation of genes involved in DNA methylation, demethylation, and folate-mediated one-carbon metabolism pathways in the NCI-60 cancer cell line panel in response to cancer drug treatment. Clin Epigenetics 2016; 8:73. [PMID: 27347216 PMCID: PMC4919895 DOI: 10.1186/s13148-016-0240-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant patterns of DNA methylation are abundant in cancer, and epigenetic pathways are increasingly being targeted in cancer drug treatment. Genetic components of the folate-mediated one-carbon metabolism pathway can affect DNA methylation and other vital cell functions, including DNA synthesis, amino acid biosynthesis, and cell growth. RESULTS We used a bioinformatics tool, the Transcriptional Pharmacology Workbench, to analyze temporal changes in gene expression among epigenetic regulators of DNA methylation and demethylation, and one-carbon metabolism genes in response to cancer drug treatment. We analyzed gene expression information from the NCI-60 cancer cell line panel after treatment with five antitumor agents, 5-azacytidine, doxorubicin, vorinostat, paclitaxel, and cisplatin. Each antitumor agent elicited concerted changes in gene expression of multiple pathway components across the cell lines. Expression changes of FOLR2, SMUG1, GART, GADD45A, MBD1, MTR, MTHFD1, and CTH were significantly correlated with chemosensitivity to some of the agents. Among many genes with concerted expression response to individual antitumor agents were genes encoding DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, epigenetic and DNA repair factors MGMT, GADD45A, and MBD1, and one-carbon metabolism pathway members MTHFD1, TYMS, DHFR, MTR, MAT2A, SLC19A1, ATIC, and GART. CONCLUSIONS These transcriptional changes are likely to influence vital cellular functions of DNA methylation and demethylation, cellular growth, DNA biosynthesis, and DNA repair, and some of them may contribute to cytotoxic and apoptotic action of the drugs. This concerted molecular response was observed in a time-dependent manner, which may provide future guidelines for temporal selection of genetic drug targets for combination drug therapy treatment regimens.
Collapse
Affiliation(s)
- Julia Krushkal
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Yingdong Zhao
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Curtis Hose
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Anne Monks
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - James H. Doroshow
- />Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892 USA
| | - Richard Simon
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| |
Collapse
|
9
|
Pierre CC, Longo J, Mavor M, Milosavljevic SB, Chaudhary R, Gilbreath E, Yates C, Daniel JM. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1846-55. [PMID: 26073433 DOI: 10.1016/j.bbadis.2015.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joseph Longo
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Meaghan Mavor
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | | - Roopali Chaudhary
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ebony Gilbreath
- College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
10
|
Chmelarova M, Kos S, Dvorakova E, Spacek J, Laco J, Ruszova E, Hrochova K, Palicka V. Importance of promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. Clin Chem Lab Med 2015; 52:1229-34. [PMID: 24651021 DOI: 10.1515/cclm-2013-0162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Epigenetic changes are considered to be a frequent event during tumor development. Various methylation changes have been identified and show promise as potential cancer biomarkers. The aim of this study was to investigate promoter methylation of GATA4 and TP53 genes in endometrioid carcinoma of endometrium. METHODS To search for promoter methylation of GATA4 and TP53 genes we used methylation-specific PCR (MSP) to compare the methylation status of 54 patients with endometrioid carcinoma of endometrium and 18 patients with normal endometrial tissue. RESULTS In our study MSP revealed GATA4 promoter methylation in 44 of 54 in the carcinoma group (81.5%), and in none of the control group. No methylation was observed in TP53 gene. CONCLUSIONS In conclusion, our study showed that there is significantly higher methylation in GATA4 gene in the endometrial cancer group compared with samples of non-neoplastic endometrium. The finding suggests the importance of hypermethylation of this gene in endometrial carcinogenesis and could have implications for future diagnostic and therapeutic strategies for endometrial cancer based on epigenetic changes.
Collapse
|
11
|
Bryzgunova O, Laktionov P. Generation of blood circulating DNA: the sources, peculiarities of circulation and structure. ACTA ACUST UNITED AC 2015; 61:409-26. [DOI: 10.18097/pbmc20156104409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Extracellular nucleic acids (exNA) were described in blood of both healthy and illness people as early as in 1948, but staied overlooked until middle 60-th. Starting from the beginning of new millennium and mainly in the last 5 years exNA are intensively studied. Main attention is directed to investigation of exNA as the source of diagnostic material whereas the mechanisms of their generation, as well as mechanisms to providing long-term circulation of exNA in the bloodstream are not established unambiguously. According to some authors, the main source of circulating nucleic acids in blood are the processes of apoptosis and necrosis, while others refer to the possible nucleic acid secretion by healthy and tumor cells. Circulating DNA were found to be stable in the blood for a long time, escaping from the action of DNA hydrolyzing enzymes and are apparently packed in different supramolecular complexes. This review presents the opinions of various authors and evidence in favor of all the theories describingappearance of extracellular DNA, the features of the circulation and structure of the extracellular DNA and factors affecting the time of DNA circulation in blood
Collapse
Affiliation(s)
- O.E. Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - P.P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| |
Collapse
|
12
|
Abstract
In today's world, the pursuit of a novel anti-cancer agent remains top priority because of the fact that the global burden of this malady is continuously increasing. Our work is no different from others in searching for new therapeutic solutions. To achieve this, we are looking into Epigenetics, the phenomenon governed by hypermethylation and hypomethylation of tumor suppressor genes and oncogenes, respectively. Our target for this study is an important intermediary methyl-CpG binding protein named kaiso. In our study, we have used the X-ray crystallographic structure of Kaiso for virtual screening and molecular dynamics simulations to study the binding modes of possible inhibitors. The C2H2 domain comprising LYS539 was used for screening the inter bio screen Database having 48,531 natural compounds. Our approach of using computer-aided drug designing methods helped us to remove the execrable compounds and narrowed our focus on a selected few for molecular simulation studies. The top ranked compound (chem. ID 28127) exhibited the highest binding affinity and was also found to be stable throughout the 20 ns timeframe. This compound is therefore a good starting point for developing strong inhibitors.
Collapse
Affiliation(s)
- Naveed Anjum Chikan
- a Medical Biotechnology Division, School of Bio Sciences and Technology , VIT University , Vellore 632014 , Tamilnadu , India
| | | |
Collapse
|
13
|
Meng G, Lv Y, Dai H, Zhang X, Guo QN. Epigenetic silencing of methyl-CpG-binding protein 2 gene affects proliferation, invasion, migration, and apoptosis of human osteosarcoma cells. Tumour Biol 2014; 35:11819-27. [DOI: 10.1007/s13277-014-2336-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
|
14
|
Shukla S, Meeran SM, Katiyar SK. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 2014; 355:9-17. [PMID: 25236912 DOI: 10.1016/j.canlet.2014.09.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
The growing interest in cancer epigenetics is largely due to the reversible nature of epigenetic changes which tend to alter during the course of carcinogenesis. Major epigenetic changes including DNA methylation, chromatin modifications and miRNA regulation play important roles in tumorigenic process. There are several epigenetically active synthetic molecules such as DNA methyltransferase (DNMTs) and histone deacetylases (HDACs) inhibitors, which are either approved or, are under clinical trials for the treatment of various cancers. However, most of the synthetic inhibitors have shown adverse side effects, narrow in their specificity and also expensive. Hence, bioactive phytochemicals, which are widely available with lesser toxic effects, have been tested for their role in epigenetic modulatory activities in gene regulation for cancer prevention and therapy. Encouragingly, many bioactive phytochemicals potentially altered the expression of key tumor suppressor genes, tumor promoter genes and oncogenes through modulation of DNA methylation and chromatin modification in cancer. These bioactive phytochemicals either alone or in combination with other phytochemicals showed promising results against various cancers. Here, we summarize and discuss the role of some commonly investigated phytochemicals and their epigenetic targets that are of particular interest in cancer prevention and cancer therapy.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Cancer Epigenetic Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226021, India
| | - Syed M Meeran
- Cancer Epigenetic Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226021, India
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
15
|
Bryzgunova OE, Laktionov PP. Generation of blood circulating DNAs: Sources, features of struction and circulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2014. [DOI: 10.1134/s1990750814030020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Montenegro MF, Sánchez-del-Campo L, Fernández-Pérez MP, Sáez-Ayala M, Cabezas-Herrera J, Rodríguez-López JN. Targeting the epigenetic machinery of cancer cells. Oncogene 2014; 34:135-43. [PMID: 24469033 DOI: 10.1038/onc.2013.605] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Cancer is characterized by uncontrolled cell growth and the acquisition of metastatic properties. In most cases, the activation of oncogenes and/or deactivation of tumour suppressor genes lead to uncontrolled cell cycle progression and inactivation of apoptotic mechanisms. Although the underlying mechanisms of carcinogenesis remain unknown, increasing evidence links aberrant regulation of methylation to tumourigenesis. In addition to the methylation of DNA and histones, methylation of nonhistone proteins, such as transcription factors, is also implicated in the biology and development of cancer. Because the metabolic cycling of methionine is a key pathway for many of these methylating reactions, strategies to target the epigenetic machinery of cancer cells could result in novel and efficient anticancer therapies. The application of these new epigenetic therapies could be of utility in the promotion of E2F1-dependent apoptosis in cancer cells, in avoiding metastatic pathways and/or in sensitizing tumour cells to radiotherapy.
Collapse
Affiliation(s)
- M F Montenegro
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - L Sánchez-del-Campo
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M P Fernández-Pérez
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - M Sáez-Ayala
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| | - J Cabezas-Herrera
- Translational Cancer Research Group, University Hospital Virgen de la Arrixaca (IMIB), Murcia, Spain
| | - J N Rodríguez-López
- Department of Biochemistry and Molecular Biology A, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 2013; 16:23-31. [PMID: 23593078 PMCID: PMC3625766 DOI: 10.4048/jbc.2013.16.1.23] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/27/2013] [Indexed: 02/08/2023] Open
Abstract
Purpose The DNA methylation mediated by specific DNA methyltransferases (DNMTs), results in the epigenetic silencing of multiple genes which are implicated in human breast cancer. We hypothesized that the natural compounds modulate the expression of DNMTs and their associated proteins in the breast cancer cell lines and affect the methylation mediated gene silencing. Methods The DNMTs transcript expression was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) in the tumors and the adjacent normal breast tissues of the patients with invasive ductal breast carcinoma. We tested the hypothesis that the natural compounds, viz., epigallocatechin gallate (EGCG), genistein, withaferin A, curcumin, resveratrol, and guggulsterone, have demethylation potential. To investigate this hypothesis, we analyzed the DNMTs expression at the transcript levels, followed by the analysis of DNMT1 and its associated proteins (HDAC1, MeCP2, and MBD2). Results The increased DNMTs transcripts expression, viz., DNMT1, DNMT3a, and DNMT3b, in the breast cancer tissues suggest involvement of the DNMTs in the breast carcinogenesis. Quantitative RT-PCR analysis revealed that the treatment with natural compounds, viz., EGCG, genistein, withaferin A, curcumin, resveratrol, and guggulsterone, resulted in a significant decrease in the transcript levels of all the DNMTs investigated. Importantly, these natural compounds decreased the protein levels of DNMT1, HDAC1, and MeCP2. Conclusion Our results demonstrate that the natural compounds, EGCG, genistein, withaferin A, curcumin, resveratrol, and guggulsterone, have the potential to reverse the epigenetic changes. Moreover, their lack of toxicity makes these natural compounds promising candidates for the chemoprevention of the breast cancer. In-depth future mechanistic studies aimed to elucidate how these compounds affect the gene transcription are warranted.
Collapse
Affiliation(s)
- Sameer Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
18
|
Xiong XR, Li J, Fu M, Gao C, Wang Y, Zhong JC. Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development. Theriogenology 2012. [PMID: 23186945 DOI: 10.1016/j.theriogenology.2012.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer.
Collapse
Affiliation(s)
- X R Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
19
|
Pandey M, Shukla S, Gupta S. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 2010; 126:2520-33. [PMID: 19856314 DOI: 10.1002/ijc.24988] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epigenetic silencing of gluthathione-S-transferase pi (GSTP1) is recognized as being a molecular hallmark of human prostate cancer. We investigated the effects of green tea polyphenols (GTPs) on GSTP1 re-expression and further elucidated its mechanism of action and long-term safety, compared with nucleoside-analog inhibitor of DNA methyltransferase (DNMT), 5-aza-2'-deoxycitidine. Exposure of human prostate cancer LNCaP cells to 1-10 microg/ml of GTP for 1-7 days caused a concentration- and time-dependent re-expression of GSTP1, which correlated with DNMT1 inhibition. Methyl-specific-PCR and sequencing revealed extensive demethylation in the proximal GSTP1 promoter and regions distal to the transcription factor binding sites. GTP exposure in a time-dependent fashion diminished the mRNA and protein levels of MBD1, MBD4 and MeCP2; HDAC 1-3 and increased the levels of acetylated histone H3 (LysH9/18) and H4. Chromatin immunoprecipitation assays demonstrated that cells treated with GTP have reduced MBD2 association with accessible Sp1 binding sites leading to increased binding and transcriptional activation of the GSTP1 gene. Exposure of cells to GTP did not result in global hypomethylation, as demonstrated by methyl-specific PCR for LINE-1 promoter; rather GTP promotes maintenance of genomic integrity. Furthermore, exposure of cells to GTP did not cause activation of the prometaststic gene S100P, a reverse response noted after exposure of cells to 5-aza-2'deoxycitidine. Our results, for the first time, demonstrate that GTP has dual potential to alter DNA methylation and chromatin modeling, the 2 global epigenetic mechanisms of gene regulation and their lack of toxicity makes them excellent candidates for the chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urology, The James and Eilleen Dicke Research Laboratory, Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | | |
Collapse
|
20
|
Lan J, Hua S, He X, Zhang Y. DNA methyltransferases and methyl-binding proteins of mammals. Acta Biochim Biophys Sin (Shanghai) 2010; 42:243-52. [PMID: 20383462 DOI: 10.1093/abbs/gmq015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In mammals, DNA methylation, characterized by the transfer of the methyl group from S-adenosylmethionines to a base (mainly referred to cytosine), acts as a major epigenetic modification. In parallel to DNA sequences arrangement, modification of methylation to DNA sequences has far-reaching influence on biological functions and activities, for it involves controlling gene transcription, regulating chromatin structure, sustaining genome stability and integrity, maintaining parental imprinting and X-chromosome inactivation, suppressing homologous recombination as well as limiting transposable elements, during which DNA methyltransferases (DNMTs) and methyl-binding proteins play important roles. Their aberrance can give rise to dysregulation of gene expression, cell maltransformation and so on. Hence, it is necessary to gain a good understanding of these two important kinds of proteins, which will help to better investigate the epigenetic mechanisms and manipulate the modifications according to our will based on its reversibility. Here we briefly review our current understanding of DNMTs and methyl-binding proteins in mammals.
Collapse
Affiliation(s)
- Jie Lan
- Institution of biotechnology, Northwest Sci-Tech University of Agriculture and Forestry, Yangling, China.
| | | | | | | |
Collapse
|
21
|
Lopes EC, Valls E, Figueroa ME, Mazur A, Meng FG, Chiosis G, Laird PW, Schreiber-Agus N, Greally JM, Prokhortchouk E, Melnick A. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res 2008; 68:7258-63. [PMID: 18794111 DOI: 10.1158/0008-5472.can-08-0344] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aberrant CpG methylation of tumor suppressor gene regulatory elements is associated with transcriptional silencing and contributes to malignant transformation of different tissues. It is presumed that methylated DNA sequences recruit repressor machinery to actively shutdown gene expression. The Kaiso protein is a transcriptional repressor expressed in human and murine colorectal tumors that can bind to methylated clusters of CpG dinucleotides. We show here that Kaiso represses methylated tumor suppressor genes and can bind in a methylation-dependent manner to the CDKN2A in human colon cancer cell lines. The contribution of Kaiso to epigenetic silencing was underlined by the fact that Kaiso depletion induced tumor suppressor gene expression without affecting DNA methylation levels. As a consequence, colon cancer cells became susceptible to cell cycle arrest and cell death mediated by chemotherapy. The data suggest that Kaiso is a methylation-dependent "opportunistic" oncogene that silences tumor suppressor genes when they become hypermethylated. Because Kaiso inactivation sensitized colon cancer cell lines to chemotherapy, it is possible that therapeutic targeting of Kaiso could improve the efficacy of current treatment regimens.
Collapse
Affiliation(s)
- Eloisi C Lopes
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Microarray-based methods to identify DNA methylation in cancer. YI CHUAN = HEREDITAS 2008; 30:295-303. [DOI: 10.3724/sp.j.1005.2008.00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Kaput J, Dawson K. Complexity of type 2 diabetes mellitus data sets emerging from nutrigenomic research: a case for dimensionality reduction? Mutat Res 2007; 622:19-32. [PMID: 17559889 PMCID: PMC1994901 DOI: 10.1016/j.mrfmmm.2007.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/13/2007] [Indexed: 02/07/2023]
Abstract
Nutrigenomics promises personalized nutrition and an improvement in preventing, delaying, and reducing the symptoms of chronic diseases such as diabetes. Nutritional genomics is the study of how foods affect the expression of genetic information in an individual and how an individual's genetic makeup affects the metabolism and response to nutrients and other bioactive components in food. The path to those promises has significant challenges, from experimental designs that include analysis of genetic heterogeneity to the complexities of food and environmental factors. One of the more significant complications in developing the knowledge base and potential applications is how to analyze high-dimensional datasets of genetic, nutrient, metabolomic (clinical), and other variables influencing health and disease processes. Type 2 diabetes mellitus (T2DM) is used as an illustration of the challenges in studying complex phenotypes with nutrigenomics concepts and approaches.
Collapse
Affiliation(s)
- Jim Kaput
- Center of Excellence in Nutritional Genomics, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
24
|
Singh M, Lavelle D, Vaitkus K, Mahmud N, Hankewych M, DeSimone J. The gamma-globin gene promoter progressively demethylates as the hematopoietic stem progenitor cells differentiate along the erythroid lineage in baboon fetal liver and adult bone marrow. Exp Hematol 2007; 35:48-55. [PMID: 17198873 DOI: 10.1016/j.exphem.2006.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the difference in gamma-globin gene promoter methylation in terminal erythroblasts at the fetal and adult stages of development is a result of fetal stage-specific demethylation or adult stage-specific de novo methylation during erythropoiesis. MATERIALS AND METHODS Fetal liver- (FL, n = 2) and adult bone marrow- (ABM, n = 3) derived hematopoietic stem/progenitor cells and mature erythroblasts were purified by passage through a Miltenyi Magnetic Column followed by fluorescein-activated cell sorting (FACS) into subpopulations, defined by expression of CD34 and CD36 antigens. CD34(+)CD36(-), CD34(+)CD36(+), and CD34(-)CD36(+) subpopulations were purified by FACS and their degree of differentiation verified using the colony-forming cell assay. The methylation pattern of 5 CpG sites in the gamma-globin promoter region of these purified cell populations was determined using bisulfite sequencing. RESULTS The gamma-globin promoter was highly methylated in the earliest stage of hematopoietic stem progenitor cells (CD34(+)CD36(-)) and methylation progressively decreased as erythroid differentiation progressed in FL and appears so in ABM as well. CONCLUSIONS These data support a model in which differences in the methylation pattern of the gamma-globin gene in differentiating erythroblasts at different stages of development is the result of fetal stage-specific demethylation associated with transcriptional activation, rather than de novo methylation in the adults. The difference in the extent of gamma-globin gene demethylation in FL and ABM is correlated with the difference in gamma-globin expression at these developmental stages.
Collapse
Affiliation(s)
- Mahipal Singh
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Lyst MJ, Nan X, Stancheva I. Regulation of MBD1-mediated transcriptional repression by SUMO and PIAS proteins. EMBO J 2006; 25:5317-28. [PMID: 17066076 PMCID: PMC1636622 DOI: 10.1038/sj.emboj.7601404] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 10/05/2006] [Indexed: 12/31/2022] Open
Abstract
In mammalian cells, DNA methylation is associated with heritable and stable gene repression, mediated in part by methyl-CpG-binding domain (MBD) proteins that recruit corepressors to modify chromatin. MBD1 protein, a member of the MBD family, forms a complex with SETDB1 histone methylase to silence transcription at target promoters by methylation of lysine 9 of histone H3. How MBD1-mediated transcriptional repression is regulated is currently unknown. Here we show that MBD1 is a target for sumoylation by PIAS1 (Protein Inhibitors of Activated STAT 1) and PIAS3 E3 SUMO (small ubiquitin-like modifier)-ligases, at two conserved lysine residues within the C-terminus of MBD1. Although sumoylated MBD1 binds to methylated DNA, it does not incorporate into a complex with SETDB1 and does not efficiently repress transcription of a target gene, p53BP2, in HeLa cells. Our data suggest that transcriptional silencing by MBD1 is regulated by a PIAS-mediated conjugation of SUMO1, which antagonizes the formation of a repressive complex with SETDB1.
Collapse
Affiliation(s)
- Matthew J Lyst
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Xinsheng Nan
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Irina Stancheva
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Mayfield Road, Edinburgh EH9 3JR, UK. Tel.: +44 131 650 7029; Fax: +44 131 650 7360; E-mail:
| |
Collapse
|
26
|
Abstract
Recent years have seen major advances in elucidating the complexity of chromatin and its role as an epigenetic regulator of gene expression in eukaryotes. We now have a basic understanding of chromatin control and the enzymatic modifications that impart diverse regulatory cues to the functional activity of the genome. Most importantly, although research into chromatin has uncovered fascinating insights into the control of gene expression, it has also generated a large body of information that is being harnessed to develop new therapeutic modalities for treating cancer. Here, we discuss recent advances that support the contention that future generations of chromatin-modulating drugs will provide a significant group of new, mechanism-based therapeutics for cancer.
Collapse
Affiliation(s)
- Adam G Inche
- Division of Medical Sciences, University of Oxford, OX3 9DU, UK
| | | |
Collapse
|
27
|
Jang JS, Lee SJ, Choi JE, Cha SI, Lee EB, Park TI, Kim CH, Lee WK, Kam S, Choi JY, Kang YM, Park RW, Kim IS, Cho YL, Jung TH, Han SB, Park JY. Methyl-CpG binding domain 1 gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 2006; 14:2474-80. [PMID: 16284366 DOI: 10.1158/1055-9965.epi-05-0423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The methyl-CpG binding domain 1 (MBD1) protein plays an important role for transcriptional regulation of gene expression. Polymorphisms and haplotypes of the MBD1 gene may have an influence on MBD1 activity on gene expression profiles, thereby modulating an individual's susceptibility to lung cancer. To test this hypothesis, we investigated the association of MBD1 -634G>A, -501delT (-501 T/T, T/-, -/-), and Pro(401)Ala genotypes and their haplotypes with the risk of lung cancer in a Korean population. The MBD1 genotype was determined in 432 lung cancer patients and in 432 healthy control subjects who were frequency matched for age and gender. The -634GG genotype was associated with a significantly increased risk of overall lung cancer compared with the -634AA genotype [adjusted odds ratio (OR), 3.10; 95% confidence interval (95% CI), 1.24-7.75; P = 0.016]. When analyses were stratified according to the tumor histology, the -634GG genotype was associated with a significantly increased risk of adenocarcinoma compared with the -634AA genotype (adjusted OR, 4.72; 95% CI, 1.61-13.82; P = 0.005). For the MBD1 -501delT and Pro(401)Ala polymorphisms, the -501 T/T genotype was associated with a marginal significantly increased risk of adenocarcinoma compared with the -501(-/-) genotype (adjusted OR, 2.07; 95% CI, 1.02-4.20; P = 0.045), and the Pro/Pro genotype was associated with a significantly increased risk of adenocarcinoma compared with the Ala/Ala genotype (adjusted OR, 3.41; 95% CI, 1.21-9.60; P = 0.02). Consistent with the genotyping analyses, the -634G/-501T/(401)Pro haplotype was associated with a significantly increased risk of overall lung cancer and adenocarcinoma compared with the -634A/-501(-)/(401)Ala haplotype (adjusted OR, 1.44; 95% CI, 1.08-1.91; P = 0.012 and P(c) = 0.048; adjusted OR, 1.75; 95% CI, 1.20-2.56; P = 0.004 and P(c) = 0.016, respectively). On a promoter assay, the -634A allele had significantly higher promoter activity compared with the -634G allele in the Chinese hamster ovary cells and A549 cells (P < 0.05 and P < 0.001, respectively), but the -501delT polymorphism did not have an effect on the promoter activity. When comparing the promoter activity of the MBD1 haplotypes, the -634A/-501(-) haplotype had a significantly higher promoter activity than the -634G/-501T haplotype (P < 0.001). These results suggest that the MBD1 -634G>A, -501delT, and Pro(401)Ala polymorphisms and their haplotypes contribute to the genetic susceptibility for lung cancer and particularly for adenocarcinoma.
Collapse
Affiliation(s)
- Jin-Sung Jang
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Samduk 2Ga 50, Daegu, 700-412, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, Hendrich B, Melnick A, Prokhortchouk E, Clarke A, Bird A. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol 2006; 26:199-208. [PMID: 16354691 PMCID: PMC1317619 DOI: 10.1128/mcb.26.1.199-208.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/09/2005] [Accepted: 10/10/2005] [Indexed: 12/31/2022] Open
Abstract
Kaiso is a BTB domain protein that associates with the signaling molecule p120-catenin and binds to the methylated sequence mCGmCG or the nonmethylated sequence CTGCNA to modulate transcription. In Xenopus laevis, xKaiso deficiency leads to embryonic death accompanied by premature gene activation in blastulae and upregulation of the xWnt11 gene. Kaiso has also been proposed to play an essential role in mammalian synapse-specific transcription. We disrupted the Kaiso gene in mice to assess its role in mammalian development. Kaiso-null mice were viable and fertile, with no detectable abnormalities of development or gene expression. However, when crossed with tumor-susceptible Apc(Min/+) mice, Kaiso-null mice showed a delayed onset of intestinal tumorigenesis. Kaiso was found to be upregulated in murine intestinal tumors and is expressed in human colon cancers. Our data suggest that Kaiso plays a role in intestinal cancer and may therefore represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Anna Prokhortchouk
- Wellcome Trust Centre for Cell Biology, The King's Buildings, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wynter CVA. The dialectics of cancer: A theory of the initiation and development of cancer through errors in RNAi. Med Hypotheses 2005; 66:612-35. [PMID: 16359827 DOI: 10.1016/j.mehy.2005.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 10/07/2005] [Indexed: 12/11/2022]
Abstract
The recent discoveries of the RNA-mediated interference system in cells could explain all of the known features of human carcinogenesis. A key, novel idea, proposed here, is that the cell has the ability to recognise a mutated protein and/or mRNA. Secondly, the cell can generate its own short interfering RNA (siRNA) using an RNA polymerase to destroy mutated mRNA, even when only a single base pair in the gene has mutated. The anti-sense strand of the short RNA molecule (called sicRNA), targets the mutated mRNA of an oncogene or a tumour suppressor. The resulting double stranded RNA, using the RNA-induced silencing complex in the cytoplasm dices the mutated mRNA. In cancer-prone tissues, during cell mitosis, the sicRNA complex can move into the nucleus to target the mutated gene. The sicRNA, possibly edited by dsRNA-specific adenosine deaminase, converting adenosines to inosines, can be retained in the nucleus, with enhanced destructive capability. The sicRNA triggers the assembly of protein complexes leading to epigenetic modification of the promoter site of the mutant gene, specifically methylation of cytosines. In some instances, instead of methylation, the homologous DNA is degraded, leading to loss of heterozygosity. The factors controlling these two actions are unknown but the result is gene silencing or physical destruction of the mutant gene. The cell survives dependent on the functioning of the single, wild-type allele. An error in RNAi defence occurs when the sicRNA enters the nucleus and targets the sense strand of the wrong DNA. The sicRNA, because of the similarity of its short sequence and relaxed stringency, can target other RNAs, which are being transcribed. This can result in the methylation of the wrong promoter site of a gene or LOH of that region. In the vast majority of these cases, the aberrant hybridisations will have no effect on cell function or apoptosis eliminates non-viable cells. On a rare occasion, a preneoplastic cell is initiated when aberrant hybridisations switches on/off a gene involved in apoptosis, as well as a gene involved in cell proliferation and DNA damage surveillance. Genetic instability results when the sicRNA competes for a repeat sequence in the centromere or telomere, leading to gross chromosomal rearrangements. A malignancy develops when the sicRNAs fortuitously targets a microRNA (miRNA) or activates a transcription factor, resulting in the translation of a large number of new genes, alien to that tissue. This leads to dedifferentiation of the tissue, a resculpting of the histone code, chromosomal rearrangements, along a number of specific pathways, the gain of immortality and the dissemination of a metastatic cancer.
Collapse
Affiliation(s)
- Coral V A Wynter
- Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4029, Australia.
| |
Collapse
|
30
|
Zerbini LF, Libermann TA. GADD45 deregulation in cancer: frequently methylated tumor suppressors and potential therapeutic targets. Clin Cancer Res 2005; 11:6409-13. [PMID: 16166414 DOI: 10.1158/1078-0432.ccr-05-1475] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luiz F Zerbini
- Beth Israel Deaconess Medical Center Genomics Center, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
31
|
Danam RP, Howell SR, Brent TP, Harris LC. Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.61.4.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Transcriptional silencing of the DNA repair gene, O6-methylguanine-DNA methyltransferase (MGMT) in a proportion of transformed cell lines is associated with methylated CpG hotspots in the MGMT 5′ flank. The goal of the study was to evaluate the mechanism by which CpG methylation of theMGMT promoter region influenced silencing of the gene. Analysis of histone acetylation status in two regions of the promoter using chromatin immunoprecipitation assay showed that a higher level of histone acetylation was associated with expression in three MGMT-expressing cell lines (HeLa CCL2, HT29, and Raji) compared with three MGMT-silenced cell lines (HeLa S3, BE, and TK6). To determine how the modulation of CpG methylation and histone acetylation influenced MGMT expression, we exposed the cells to 5-aza-2′deoxycytidine (5-Aza-dC), inhibitor of DNA methylation, which strongly up-regulated MGMT expression in three MGMT-silenced cell lines whereas trichostatin A, inhibitor of histone deacetylase, weakly induced MGMT. However, combined treatment with 5-Aza-dC and trichostatin A significantly up-regulated MGMT RNA expression to a greater extent than in cells treated with either agent alone suggesting that histone deacetylation plays a role in MGMT silencing but that CpG methylation has a dominant effect. Consistent with enhanced MGMT expression, 5-Aza-dC increased the association of acetylated histone H3 and H4 bound to the MGMT promoter. Chromatin immunoprecipitation analysis of methyl-CpG binding domain containing proteins detected a greater amount of MeCP2, MBD1, and CAF-1 bound to the MGMT promoter in MGMT-silenced cells. Our findings implicate specific MBD proteins in methylation-mediated transcriptional silencing of MGMT.
Collapse
Affiliation(s)
- Rebecca P. Danam
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sherie R. Howell
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas P. Brent
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda C. Harris
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
32
|
Abstract
DNA methylation is an important regulator of gene transcription, and its role in carcinogenesis has been a topic of considerable interest in the last few years. Alterations in DNA methylation are common in a variety of tumors as well as in development. Of all epigenetic modifications, hypermethylation, which represses transcription of the promoter regions of tumor suppressor genes leading to gene silencing, has been most extensively studied. However, global hypomethylation has also been recognized as a cause of oncogenesis. New information concerning the mechanism of methylation and its control has led to the discovery of many regulatory proteins and enzymes. The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation. As methylation occurs early and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining the prognosis. Because DNA methylation is reversible, drugs like 5'-azacytidine, decitabine, and histone deacetylase inhibitors are being used to treat a variety of tumors. Novel demethylating agents such as antisense DNA methyl transferase and small interference RNA are being developed, making the field of DNA methylation wider and more exciting.
Collapse
Affiliation(s)
- Partha M Das
- Department of Medicine, Miami VA Medical Center, Miami, FL, USA
| | | |
Collapse
|
33
|
Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang THM, Esteller M. Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 2004; 22:6335-45. [PMID: 14633992 PMCID: PMC291845 DOI: 10.1093/emboj/cdg604] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methyl-CpG binding proteins (MBDs) mediate histone deacetylase-dependent transcriptional silencing at methylated CpG islands. Using chromatin immunoprecitation (ChIP) we have found that gene-specific profiles of MBDs exist for hypermethylated promoters of breast cancer cells, whilst a common pattern of histone modifications is shared. This unique distribution of MBDs is also characterized in chromosomes by comparative genomic hybridization of immunoprecipitated DNA and immunolocalization. Most importantly, we demonstrate that MBD association to methylated DNA serves to identify novel targets of epigenetic inactivation in human cancer. We combined the ChIP assay of MBDs with a CpG island microarray (ChIP on chip). The scenario revealed shows that, while many genes are regulated by multiple MBDs, others are associated with a single MBD. These target genes displayed methylation- associated transcriptional silencing in breast cancer cells and primary tumours. The candidates include the homeobox gene PAX6, the prolactin hormone receptor, and dipeptidylpeptidase IV among others. Our results support an essential role for MBDs in gene silencing and, when combined with genomic strategies, their potential to 'catch' new hypermethylated genes in cancer.
Collapse
Affiliation(s)
- Esteban Ballestar
- Epigenetics Laboratory, Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|