1
|
Lokapally A, Neuhaus H, Herfurth J, Hollemann T. Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. Cells 2020; 9:cells9071734. [PMID: 32698497 PMCID: PMC7409263 DOI: 10.3390/cells9071734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/26/2023] Open
Abstract
Tripartite motif 2 (TRIM2) drives neurite outgrowth and polarization, is involved in axon specification, and confers neuroprotective functions during rapid ischemia. The mechanisms controlling neuronal cell fate determination and differentiation are fundamental for neural development. Here, we show that in Xenopus, trim2 knockdown affects primary neurogenesis and neural progenitor cell survival. Embryos also suffer from severe craniofacial malformation, a reduction in brain volume, and the loss of motor sensory function. Using a high-throughput LC-MS/MS approach with GST-Trim2 as bait, we pulled down ALG-2 interacting protein X (Alix) from Xenopus embryonic lysates. We demonstrate that the expression of trim2/TRIM2 and alix/ALIX overlap during larval development and on a cellular level in cell culture. Interestingly, trim2 morphants showed a clustering and apoptosis of neural progenitors, which are phenotypic hallmarks that are also observed in Alix KO mice. Therefore, we propose that the interaction of Alix and Trim2 plays a key role in the determination and differentiation of neural progenitors via the modulation of cell proliferation/apoptosis during neurogenesis.
Collapse
Affiliation(s)
- Ashwin Lokapally
- Institute for Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle, Germany; (A.L.); (H.N.); (J.H.)
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Herbert Neuhaus
- Institute for Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle, Germany; (A.L.); (H.N.); (J.H.)
| | - Juliane Herfurth
- Institute for Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle, Germany; (A.L.); (H.N.); (J.H.)
| | - Thomas Hollemann
- Institute for Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Hollystrasse 1, 06114 Halle, Germany; (A.L.); (H.N.); (J.H.)
- Correspondence:
| |
Collapse
|
2
|
Hao C, Lu Z, Zhao Y, Chen Z, Shen C, Ma G, Chen L. Overexpression of GATA4 enhances the antiapoptotic effect of exosomes secreted from cardiac colony-forming unit fibroblasts via miRNA221-mediated targeting of the PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther 2020; 11:251. [PMID: 32586406 PMCID: PMC7318537 DOI: 10.1186/s13287-020-01759-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023] Open
Abstract
Background GATA4 is an early cardiac-specific transcription factor, and endogenous GATA4-positive cells play a critical role in cardioprotection after myocardial injury. As functional paracrine units of therapeutic cells, exosomes can partially reproduce the reparative properties of their parental cells. Here, we investigated the cardioprotective capabilities of exosomes derived from cardiac colony-forming unit fibroblasts (cCFU-Fs) overexpressing GATA4 (cCFU-FsGATA4) and the underlying mechanism through which these exosomes use microRNA (miRNA) delivery to regulate target proteins in myocardial infarction (MI). Methods Exosomes were harvested from cCFU-Fs by ultracentrifugation. miRNA arrays were performed to determine differential miRNA expression between exosomes derived from cCFU-FsGATA4 (GATA4-Exo) and control cCFU-Fs (NC-Exo). A dual-luciferase reporter assay confirmed that miR221 directly targets the 3′ untranslated region (UTR) of the phosphatase and tensin homolog on chromosome ten (PTEN) gene. Cardiac function and myocardial infarct size were evaluated by echocardiography and Masson trichrome staining, respectively. Results Compared with NC-Exo, GATA4-Exo increased the survival and reduced the apoptosis of H9c2 cells. Direct intramyocardial transplantation of GATA4-Exo at the border of the ischemic region following ligation of the left anterior descending (LAD) coronary artery significantly restored cardiac contractile function and reduced infarct size. Microarray analysis revealed significantly increased miR221 expression in GATA4-Exo. qPCR confirmed higher miR221 levels in H9c2 cells treated with GATA4-Exo than in those treated with NC-Exo. miR221 mimic-transfected H9c2 cells demonstrated a significantly higher survival rate following exposure to hypoxic conditions than those transfected with miR221 inhibitor. A dual-luciferase reporter gene assay confirmed the PTEN gene as a target of miR221. Western blot analysis showed that H9c2 cells treated with GATA4-Exo exhibited lower PTEN protein expression and higher p-Akt expression. Conclusion GATA4 overexpression enhances the protective effect of cCFU-F-derived exosomes on myocardial ischemic injury. In terms of the mechanism, it is at least partly due to the miR221 transferred by GATA4-Exo, which inhibits PTEN expression, activates the phosphatidylinositol 3 kinase (PI3K)/AKT signaling pathway, and subsequently alleviates apoptosis of myocardial cells (CMs).
Collapse
Affiliation(s)
- Chunshu Hao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Zhengri Lu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.,Medical School of Southeast University, Nanjing, China
| | - Zhong Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
| |
Collapse
|
3
|
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 2020; 219:e201904113. [PMID: 32049272 PMCID: PMC7054990 DOI: 10.1083/jcb.201904113] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III-dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.
Collapse
|
4
|
Lendenmann T, Schneider T, Dumas J, Tarini M, Giampietro C, Bajpai A, Chen W, Gerber J, Poulikakos D, Ferrari A, Panozzo D. Cellogram: On-the-Fly Traction Force Microscopy. NANO LETTERS 2019; 19:6742-6750. [PMID: 31538794 PMCID: PMC11157582 DOI: 10.1021/acs.nanolett.9b01505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Traction force microscopy (TFM) derives maps of cell-generated forces, typically in the nanonewton range, transmitted to the extracellular environment upon actuation of complex biological processes. In traditional approaches, force rendering requires a terminal, time-consuming step of cell deadhesion to obtain a reference image. A conceptually opposite approach is provided by reference-free methods, opening to the on-the-fly generation of force maps from an ongoing experiment. This requires an image processing algorithm keeping the pace of the biological phenomena under investigation. Here, we introduce an integrated software pipeline rendering force maps from single reference-free TFM images seconds to minutes after their acquisition. The algorithm tackles image processing, reference image estimation, and finite element analysis as a single problem, yielding a robust and fully automatic solution. The method's capabilities are demonstrated in two applications. First, the mechanical annihilation of cancer cells is monitored as a function of rising environmental temperature, setting a population threshold at 45 °C. Second, the fast temporal correlation of forces produced across individual cells is used to map physically connected adhesion points, yielding typical lengths that vary as a function of the cell cycle phase.
Collapse
Affiliation(s)
- Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies and #Institute for Mechanical Systems , ETH Zurich , Zurich 8092 , Switzerland
- Courant Institute of Mathematical Sciences , New York University , New York 10003 , United States
| | - Teseo Schneider
- Courant Institute of Mathematical Sciences , New York University , New York 10003 , United States
| | - Jérémie Dumas
- Courant Institute of Mathematical Sciences , New York University , New York 10003 , United States
- nTopology , New York 10013 , United States
| | - Marco Tarini
- Department of Computer Science , Università degli Studi di Milano , Milano 20133 , Italy
| | - Costanza Giampietro
- Swiss Federal Laboratories for Materials Science and Technology , EMPA , Dübendorf 8600 , Switzerland
| | - Apratim Bajpai
- Department of Mechanical and Aerospace Engineering , New York University , New York 11201 , United States
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering , New York University , New York 11201 , United States
| | - Julia Gerber
- Laboratory of Thermodynamics in Emerging Technologies and #Institute for Mechanical Systems , ETH Zurich , Zurich 8092 , Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies and #Institute for Mechanical Systems , ETH Zurich , Zurich 8092 , Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies and #Institute for Mechanical Systems , ETH Zurich , Zurich 8092 , Switzerland
- Swiss Federal Laboratories for Materials Science and Technology , EMPA , Dübendorf 8600 , Switzerland
| | - Daniele Panozzo
- Courant Institute of Mathematical Sciences , New York University , New York 10003 , United States
| |
Collapse
|
5
|
Herrero-Ruiz J, Mora-Santos M, Giráldez S, Sáez C, Japón MA, Tortolero M, Romero F. βTrCP controls the lysosome-mediated degradation of CDK1, whose accumulation correlates with tumor malignancy. Oncotarget 2015; 5:7563-74. [PMID: 25149538 PMCID: PMC4202144 DOI: 10.18632/oncotarget.2274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In mammals, cell cycle progression is controlled by cyclin-dependent kinases, among which CDK1 plays important roles in the regulation of the G2/M transition, G1 progression and G1/S transition. CDK1 is highly regulated by its association to cyclins, phosphorylation and dephosphorylation, changes in subcellular localization, and by direct binding of CDK inhibitor proteins. CDK1 steady-state protein levels are held constant throughout the cell cycle by a coordinated regulation of protein synthesis and degradation. We show that CDK1 is ubiquitinated by the E3 ubiquitin ligase SCFβTrCP and degraded by the lysosome. Furthermore, we found that DNA damage not only triggers the stabilization of inhibitory phosphorylation sites on CDK1 and repression of CDK1 gene expression, but also regulates βTrCP-induced CDK1 degradation in a cell type-dependent manner. Specifically, treatment with the chemotherapeutic agent doxorubicin in certain cell lines provokes CDK1 degradation and induces apoptosis, whereas in others it inhibits destruction of the protein. These observations raise the possibility that different tumor types, depending on their pathogenic spectrum mutations, may display different sensitivity to βTrCP-induced CDK1 degradation after DNA damage. Finally, we found that CDK1 accumulation in patients’ tumors shows a negative correlation with βTrCP and a positive correlation with the degree of tumor malignancy.
Collapse
Affiliation(s)
- Joaquín Herrero-Ruiz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Servando Giráldez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Miguel A Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Hashemi M, Yousefi J, Hashemi SM, Amininia S, Ebrahimi M, Taheri M, Ghavami S. Association between Programmed Cell Death 6 Interacting Protein Insertion/Deletion Polymorphism and the Risk of Breast Cancer in a Sample of Iranian Population. DISEASE MARKERS 2015; 2015:854621. [PMID: 26063962 PMCID: PMC4433669 DOI: 10.1155/2015/854621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/01/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
It has been suggested that genetic factors contribute to patients' vulnerability to breast cancer (BC). The programmed cell death 6 interacting protein (PDCD6IP) encodes for a protein that is known to bind to the products of the PDCD6 gene, which is involved in the apoptosis pathway. The aim of this case-control study is to investigate the relationship between the PDCD6IP 15 bp insertion/deletion (I/D) polymorphism (rs28381975) and BC risk in an Iranian population. A total of 491 females, including 266 BC patients and 225 control subjects without cancer, were enrolled into the study. Our findings revealed that the PDCD6IP 15 bp I/D polymorphism decreased the risk of BC in codominant (OR = 0.44, 95% CI = 0.31-0.65, p < 0.0001, I/D versus DD; OR = 0.39, 95% CI = 0.17-0.88, p = 0.030, I/I versus DD) and dominant (OR = 0.44, 95% CI = 0.30-0.63, p < 0.0001, D/I + I/I versus D/D) tested inheritance models. Also, the PDCD6IP I allele significantly decreased the risk of BC (OR = 0.59, 95% CI = 0.45-0.78, p < 0.001) compared to the D allele.
Collapse
Affiliation(s)
- Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javad Yousefi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mehdi Hashemi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shadi Amininia
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboubeh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
- Manitoba Institute of Child Health, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
- Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Kedracka-Krok S, Jankowska U, Elas M, Sowa U, Swakon J, Cierniak A, Olko P, Romanowska-Dixon B, Urbanska K. Proteomic analysis of proton beam irradiated human melanoma cells. PLoS One 2014; 9:e84621. [PMID: 24392146 PMCID: PMC3879347 DOI: 10.1371/journal.pone.0084621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022] Open
Abstract
Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Sylwia Kedracka-Krok
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Urszula Jankowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Urszula Sowa
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Jan Swakon
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Agnieszka Cierniak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pawel Olko
- Institute of Nuclear Physics, PAS, Kraków, Poland
| | - Bozena Romanowska-Dixon
- Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
8
|
Zhang K, Zhou B, Shi S, Song Y, Zhang L. Variations in the PDCD6 gene are associated with increased uterine leiomyoma risk in the Chinese. Genet Test Mol Biomarkers 2013; 17:524-8. [PMID: 23551056 DOI: 10.1089/gtmb.2012.0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death 6 (PDCD6) participates in T cell receptor, Fas, and glucocorticoid-induced programmed cell death. To test the relationship between PDCD6 polymorphisms and uterine leiomyomas (UL) risk, we investigated the association of two SNPs (rs4957014 and rs3756712) in PDCD6 with UL risk in a case-control study of 295 unrelated premenopausal UL patients and 436 healthy postmenopausal control subjects in a population of China. Genotypes of the two SNPs were determined with the use of PCR-restriction fragment length polymorphism assay. Significantly increased UL risks were found to be associated with the T allele of rs4957014 and the T allele of rs3756712 (p=0.016, odds ratio [OR]=1.325, 95% confidence intervals [CI]=1.053-1.668 for rs4957014; p<0.0001, OR=1.898, 95% CI=1.457-2.474 for rs3756712, respectively). Increased UL risks were associated with them in different genetic models. The present study provided evidence that rs4957014 and rs3756712 are associated with UL risk, the results indicated that genetic polymorphisms in PDCD6 may contribute to the development of UL.
Collapse
Affiliation(s)
- Kui Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Suzuki K, Dashzeveg N, Lu ZG, Taira N, Miki Y, Yoshida K. Programmed cell death 6, a novel p53-responsive gene, targets to the nucleus in the apoptotic response to DNA damage. Cancer Sci 2012; 103:1788-94. [PMID: 22712728 DOI: 10.1111/j.1349-7006.2012.02362.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 12/16/2022] Open
Abstract
The cellular response to genotoxic stress is multifaceted in nature. Following DNA damage, the tumor suppressor gene p53 activates and plays critical roles in cell cycle arrest, activation of DNA repair and in the event of irreparable damage, induction of apoptosis. The breakdown of apoptosis causes the accumulation of mutant cells. The elucidation of the mechanism for the p53-dependent apoptosis will be crucial in applying the strategy for cancer patients. However, the mechanism of p53-dependent apoptosis remains largely unclear. Here, we carried out ChIP followed by massively parallel DNA sequencing assay (ChIP-seq) to uncover mechanisms of apoptosis. Using ChIP-seq, we identified PDCD6 as a novel p53-responsive gene. We determined putative p53-binding sites that are important for p53 regulation in response to DNA damage in the promoter region of PDCD6. Knockdown of PDCD6 suppressed p53-dependent apoptosis. We also observed that cytochrome c release and the cleavage of PARP by caspase-3 were suppressed by depletion of PDCD6. We further observed that PDCD6 localizes in the nucleus in response to DNA damage. We identified the nuclear localization signal of PDCD6 and, importantly, the nuclear accumulation of PDCD6 significantly induced apoptosis after genotoxic stress. Therefore, we conclude that a novel p53-responsive gene PDCD6 is accumulated in the nucleus and induces apoptosis in response to DNA damage.
Collapse
Affiliation(s)
- Kazuho Suzuki
- Department of Molecular Genetics, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Sette P, Mu R, Dussupt V, Jiang J, Snyder G, Smith P, Xiao TS, Bouamr F. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure 2011; 19:1485-95. [PMID: 21889351 PMCID: PMC3195861 DOI: 10.1016/j.str.2011.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 01/07/2023]
Abstract
Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical "boomerang" folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix.
Collapse
Affiliation(s)
- Paola Sette
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Ruiling Mu
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiansheng Jiang
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Greg Snyder
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Patrick Smith
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Tsan. Sam Xiao
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| |
Collapse
|
11
|
Ephexin4 and EphA2 mediate resistance to anoikis through RhoG and phosphatidylinositol 3-kinase. Exp Cell Res 2011; 317:1701-13. [PMID: 21621533 DOI: 10.1016/j.yexcr.2011.05.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 12/22/2022]
Abstract
Disruption of cell-extracellular matrix interaction causes epithelial cells to undergo apoptosis called anoikis, and resistance to anoikis has been suggested to be a critical step for cancer cells to metastasize. EphA2 is frequently overexpressed in a variety of human cancers, and recent studies have found that overexpression of EphA2 contributes to malignant cellular behavior, including resistance to anoikis, in several different types of cancer cells. Here we show that Ephexin4, a guanine nucleotide exchange factor for the small GTPase RhoG that interacts with EphA2, plays an important role in the regulation of anoikis. Knockdown of Ephexin4 promoted anoikis in HeLa cells, and experiments using a knockdown-rescue approach showed that activation of RhoG, phosphatidylinositol 3-kinase (PI3K), and Akt was required for the Ephexin4-mediated suppression of anoikis. Indeed, Ephexin4 knockdown caused a decrease in RhoG activity and Akt phosphorylation in HeLa cells cultured in suspension. In addition, Ephexin4 was involved in the EphA2-mediated suppression of anoikis. Taken together, these results suggest that Ephexin4 mediates resistance to anoikis through activation of RhoG and PI3K downstream of EphA2.
Collapse
|
12
|
Giannoni P, Narcisi R, De Totero D, Romussi G, Quarto R, Bisio A. The administration of demethyl fruticulin A from Salvia corrugata to mammalian cells lines induces "anoikis", a special form of apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:449-456. [PMID: 19682878 DOI: 10.1016/j.phymed.2009.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/01/2009] [Accepted: 07/09/2009] [Indexed: 05/28/2023]
Abstract
Recently demethyl fruticulin A was identified as the major diterpenoid component of the exudates produced by the trichomes of Salvia corrugata leafs. Given the documented apoptotic effects of some of the other known components of the exudates from Salvia species, we assessed if demethyl fruticulin A, once administered to mammalian cells, was involved in the onset of apoptosis and if its biological effects were exerted through the participation of a scavenger membrane receptor, CD36. Three model cell lines were chosen, one of which lacking CD36 expression. Functional availability of the receptor, or its transcriptional rate, were blocked/reduced with a specific antibody or by the administration of vitamin E. Immunodetection of cell cytoskeletal components and tunel analysis revealed that demethyl fruticulin A triggers the onset of anoikis, a special form of apoptosis induced by cell detachment from the substrate. Impairment of CD36 availability/transcription confirmed the receptor partial involvement in the intake of the substance and in anoikis, as also sustained by FACS analysis and by the downregulation of p95, a marker of anoikis, upon blockade of CD36 transcription. However, experiments with CD36-deficient cells suggested that alternate pathways, still to be determined, may take part in the biological effects exerted by demethyl fruticulin A.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Advanced Biotechnology Center, Largo R. Benzi 10, 16132 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc Natl Acad Sci U S A 2009; 106:22217-22. [PMID: 20018725 DOI: 10.1073/pnas.0909773106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control plays an important role in cell growth and tumorigenesis. Cap-dependent translation initiation of mammalian mRNAs with structured 5'UTRs requires the DExH-box protein, DHX29, in vitro. Here we show that DHX29 is important for translation in vivo. Down-regulation of DHX29 leads to impaired translation, resulting in disassembly of polysomes and accumulation of mRNA-free 80S monomers. DHX29 depletion also impedes cancer cell growth in culture and in xenografts. Thus, DHX29 is a bona fide translation initiation factor that potentially can be exploited as a target to inhibit cancer cell growth.
Collapse
|
14
|
Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. J Biol Chem 2009; 284:34308-20. [PMID: 19833732 DOI: 10.1074/jbc.m109.045021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) adhesion is essential for protection of epithelial cells against apoptosis, but the underlying mechanism is incompletely understood. Here we show that migfilin, an integrin-proximal adaptor protein, interacts with Src and contributes to cell-ECM-mediated survival signaling. Loss of cell-ECM adhesion markedly reduces the migfilin level in untransformed epithelial cells and concomitantly induces apoptosis. Overexpression of migfilin substantially desensitizes cell detachment-induced apoptosis. Conversely, depletion of migfilin promotes apoptosis despite the presence of cell-ECM adhesion. At the molecular level migfilin directly interacts with Src, and the migfilin binding surface overlaps with the inhibitory intramolecular interaction sites in Src. Consequently, the binding of migfilin activates Src, resulting in suppression of apoptosis. Our results reveal a novel mechanism by which cell-ECM adhesion regulates Src activation and survival signaling. This migfilin-mediated signaling pathway is dysfunctional in multiple types of carcinoma cells, which likely contributes to aberrant Src activation and anoikis resistance in the cancerous cells.
Collapse
Affiliation(s)
- Jianping Zhao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ji H, Greening DW, Kapp EA, Moritz RL, Simpson RJ. Secretome-based proteomics reveals sulindac-modulated proteins released from colon cancer cells. Proteomics Clin Appl 2009; 3:433-51. [DOI: 10.1002/prca.200800077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Ammer AG, Weed SA. Cortactin branches out: roles in regulating protrusive actin dynamics. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:687-707. [PMID: 18615630 PMCID: PMC2561250 DOI: 10.1002/cm.20296] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery in the early 1990's, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures.
Collapse
Affiliation(s)
- Amanda Gatesman Ammer
- Department of Neuroscience and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | |
Collapse
|
17
|
Pan S, Wang R, Zhou X, Corvera J, Kloc M, Sifers R, Gallick GE, Lin SH, Kuang J. Extracellular Alix regulates integrin-mediated cell adhesions and extracellular matrix assembly. EMBO J 2008; 27:2077-90. [PMID: 18636094 DOI: 10.1038/emboj.2008.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/19/2008] [Indexed: 01/12/2023] Open
Abstract
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in alpha5beta1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes alpha5beta1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605-709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Davis LM, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, Bocklage T, Doeden K, Hall B, Alsobrook J, Rabinowitz I, Williams TM, Hozier J. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn 2007; 9:327-36. [PMID: 17591932 PMCID: PMC1899419 DOI: 10.2353/jmoldx.2007.060079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently used clinical and histopathological parameters imprecisely define the risk of distant recurrence in breast cancer, underscoring the need for more informative prognostic markers. In the present fluorescence in situ hybridization study of archived surgical specimens, we derived an algorithm for computing a prognostic index (PI) from DNA copy numbers of three genomic regions (CYP24, PDCD6IP, and BIRC5) for estrogen/progesterone receptor-positive (ER/PR+) cancers and a distinct PI (based on NR1D1, SMARCE1, and BIRC5) for estrogen/progesterone receptor-negative (ER/PR-) cancers. Among independent test cases stratified by PI, recurrence rates were significantly higher among high-risk patients than low-risk patients for both ER/PR+ (odds ratio = 9.52, 95% confidence interval >2.12, P = 0.0024) and ER/PR- (odds ratio = 12.3, 95% confidence interval >1.45, P = 0.0188) cancers. Among the entire population, recurrences were significantly more prevalent for cases with PI above the medians for both ER/PR+ (Fisher's exact, P = 1.19 x 10(-5)) and ER/PR- (P = 0.0025) patients and for the node-negative subsets (ER/PR+ node-negative, P = 0.042 and ER/PR- node-negative, P = 0.039). In conclusion, these markers perform well in comparison with other criteria for recurrence risk assessment and can be used with routinely formalin-fixed, paraffin-embedded surgical specimens.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Breast Neoplasms/diagnosis
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/therapy
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Disease-Free Survival
- Female
- Follow-Up Studies
- Gene Amplification
- Gene Dosage
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence
- Lymphatic Metastasis
- Middle Aged
- Prognosis
- Receptors, Estrogen/genetics
- Receptors, Progesterone/genetics
- Recurrence
Collapse
|
19
|
Feng Z, Wu CF, Zhou X, Kuang J. Alternative polyadenylation produces two major transcripts of Alix. Arch Biochem Biophys 2007; 465:328-35. [PMID: 17673164 PMCID: PMC4104816 DOI: 10.1016/j.abb.2007.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/21/2007] [Accepted: 06/21/2007] [Indexed: 01/23/2023]
Abstract
The mammalian adaptor protein Alix participates in multiple cellular processes. Since mouse Alix cDNA detects two distinct transcripts of approximately 3.5 and approximately 7.0 kb in various mouse tissues, it is possible that there exist isoforms of Alix protein that perform varied biological functions. In this study, we first demonstrate that four different anti-Alix monoclonal antibodies immunoblot the single Alix protein in nine different mouse tissues. We then show that the two transcripts of 3.2 and 6.4 kb are widely expressed in various human tissues and cell lines. These two transcripts are generated from the same Alix gene localizing at 3p22.3 via alternative polyadenylation, thus containing an identical open reading frame. However, the 3.2-kb transcript is much more active in translation than the 6.4-kb transcript in a randomly selected cell line. These results eliminate the possibility that the two transcript variants encode different isoforms of Alix protein and suggest that alternative polyadenylation is one of the mechanisms controlling Alix protein expression.
Collapse
Affiliation(s)
| | | | - Xi Zhou
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Jian Kuang
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
20
|
la Cour JM, Høj BR, Mollerup J, Simon R, Sauter G, Berchtold MW. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability. Mol Oncol 2007; 1:431-9. [PMID: 19383317 DOI: 10.1016/j.molonc.2007.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 11/19/2022] Open
Abstract
The apoptosis linked gene-2 (ALG-2), discovered as a proapoptotic calcium binding protein, has recently been found upregulated in lung cancer tissue indicating that this protein may play a role in the pathology of cancer cells and/or may be a tumor marker. Using immunohistochemistry on tissue microarrays we analysed the expression of ALG-2 in 7371 tumor tissue samples of various origin as well as in 749 normal tissue samples. Most notably, ALG-2 was upregulated in mesenchymal tumors. No correlation was found between ALG-2 staining intensity and survival of patients with lung, breast or colon cancer. siRNA mediated ALG-2 downregulation led to a significant reduction in viability of HeLa cells indicating that ALG-2 may contribute to tumor development and expansion.
Collapse
Affiliation(s)
- Jonas M la Cour
- Copenhagen Biocenter, Department of Molecular Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | | | | | | | | | | |
Collapse
|
21
|
Yamaki N, Negishi M, Katoh H. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism. Exp Cell Res 2007; 313:2821-32. [PMID: 17570359 DOI: 10.1016/j.yexcr.2007.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 04/10/2007] [Accepted: 05/14/2007] [Indexed: 01/18/2023]
Abstract
In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.
Collapse
Affiliation(s)
- Nao Yamaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
22
|
Mattei S, Klein G, Satre M, Aubry L. Trafficking and developmental signaling: Alix at the crossroads. Eur J Cell Biol 2007; 85:925-36. [PMID: 16766083 DOI: 10.1016/j.ejcb.2006.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alix is a phylogenetically conserved protein that participates in mammals in programmed cell death in association with ALG-2, a penta-EF-hand calciprotein. It contains an N-terminal Bro1 domain, a coiled-coil region and a C-terminal proline-rich domain containing several SH3- and WW-binding sites that contribute to its scaffolding properties. Recent data showed that by virtue of its Bro1 domain, Alix is functionally associated to the ESCRT complexes involved in the biogenesis of the multivesicular body and sorting of transmembrane proteins within this specific endosomal compartment. In Dictyostelium, an alx null strain shows a markedly perturbed starvation-induced morphogenetic program while ALG-2 disruptants remain unaffected. This review summarizes Dictyostelium data on Alix and ALG-2 homologues and evaluates whether known functions of Alix in other organisms can account for the developmental arrest of the alx null mutant and how Dictyostelium studies can substantiate the current understanding of the function(s) of this versatile and conserved signaling molecule.
Collapse
Affiliation(s)
- Sara Mattei
- Laboratoire de Biochimie et Biophysique des Systemes Integres, DRDC/BBSI, UMR 5092 CNRS-CEA-UJF, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
23
|
Lennartsson J, Wardega P, Engström U, Hellman U, Heldin CH. Alix facilitates the interaction between c-Cbl and platelet-derived growth factor beta-receptor and thereby modulates receptor down-regulation. J Biol Chem 2006; 281:39152-8. [PMID: 17082185 DOI: 10.1074/jbc.m608489200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Alix (ALG-2-interacting protein X) is an adaptor protein involved in down-regulation and sorting of cell surface receptors through the endosomal compartments toward the lysosome. In this study, we show that Alix interacts with the C-terminal region of the platelet-derived growth factor (PDGF) beta-receptor (PDGFRbeta) and becomes transiently tyrosine-phosphorylated in response to PDGF-BB stimulation. Increased expression levels of Alix resulted in a reduced rate of PDGFRbeta removal from the cell surface following receptor activation, and this was associated with decreased receptor degradation. Furthermore, Alix was found to co-immunoprecipitate with the ubiquitin ligase c-Cbl, and elevated Alix levels increased the interaction between c-Cbl and PDGFRbeta. Interestingly, Alix interacted constitutively with both c-Cbl and PDGFRbeta. Moreover, c-Cbl was found to be hyperphosphorylated in cells engineered to overexpress Alix compared with control cells. The increased c-Cbl phosphorylation correlated with enhanced proteasomal degradation of c-Cbl, which in turn correlated with a decreased ubiquitination of PDGFRbeta. Our data suggest that Alix inhibits down-regulation of PDGFRbeta by modulating the interaction between c-Cbl and the receptor, thereby affecting the ubiquitination of the receptor.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
24
|
Pan S, Wang R, Zhou X, He G, Koomen J, Kobayashi R, Sun L, Corvera J, Gallick GE, Kuang J. Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly. J Biol Chem 2006; 281:34640-50. [PMID: 16966331 DOI: 10.1074/jbc.m602263200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with alpha-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of alpha-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, University of Texas, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Alix/AIP1 (ALG-2-interacting protein X/apoptosis-linked-gene-2-interacting protein 1) is an adaptor protein that was first described for its capacity to bind to the calcium-binding protein ALG-2 (apoptosis-linked gene 2), the expression of which seemed necessary for cell death. Over-expression of truncated forms of Alix blocks caspase-dependent and -independent mechanisms of cell death. Numerous observations in yeast and in mammalian cells suggest that Alix controls the making of and trafficking through endosomes called MVBs (multivesicular bodies), which are crucial intermediates within the endolysosomal system. In particular, deletion of Bro1, one of the yeast homologues of Alix, leads to an impairment in the function of MVBs, leading to mis-sorting of proteins normally destined to the vacuole. Mammalian Alix may have a similar function and has been shown to bind to lyso(bis)phosphatidic acid, ESCRT (endosomal sorting complex required for transport) proteins, endophilins and CIN85 (Cbl-interacting protein of 85 kDa), which are all main regulators of the endosomal system. EIAV (equine infectious anaemia virus) and HIV late domains use Alix to recruit the ESCRT machinery in order to bud from the cell surface, underscoring the crucial role of the protein in orchestrating membrane deformation. In this review I develop the hypothesis that the normal function of Alix in the endolysosomal system may be deviated by ALG-2 towards a destructive role during active cell death.
Collapse
Affiliation(s)
- Rémy Sadoul
- Neurodégénérescence et Plasticité, E0108, INSERM/Université Joseph Fourier, Grenoble, France.
| |
Collapse
|
26
|
Ichioka F, Horii M, Katoh K, Terasawa Y, Shibata H, Maki M. Identification of Rab GTPase-activating protein-like protein (RabGAPLP) as a novel Alix/AIP1-interacting protein. Biosci Biotechnol Biochem 2005; 69:861-5. [PMID: 15849434 DOI: 10.1271/bbb.69.861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alix/AIP1 is a multifunctional adaptor protein involved in endocytosis, cell adhesion, and cell death. By yeast two-hybrid screening we identified a novel Alix/AIP1-interacting protein named Rab GTPase-activating protein-like protein (RabGAPLP). Interaction between Alix and RabGAPLP was confirmed by pull-down assays using fusion proteins of either glutathione-S-transferase (GST) or chitin-binding domain (CBD) and lysates of cultured mammalian cells expressing the respective proteins. Partial colocalization of FLAG-tagged RabGAPLP and green fluorescent protein (GFP)-fused Alix was observed at cell edges and filopodia-like structures by fluorescence confocal laser scanning microscopic analysis. The identity of RabGAPLP to merlin-associated protein (MAP), one of the interacting partners of neurofibromatosis type 2 (NF2) tumor suppressor gene product (merlin), implies cross-talk of membrane traffic and cell adhesion.
Collapse
Affiliation(s)
- Fumitaka Ichioka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Deng M, Liu J, Pelak CN, Lancto CA, Abrahamsen MS. Regulation of apoptotic pathways in bovine γ/δ T cells. Vet Immunol Immunopathol 2005; 105:15-23. [PMID: 15797471 DOI: 10.1016/j.vetimm.2004.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 11/08/2004] [Accepted: 11/22/2004] [Indexed: 01/22/2023]
Abstract
T lymphocytes bearing gamma/delta TCRs are a major population of T cells in neonatal calves and discrete subsets of gamma/delta T cells display tissue-specific accumulation and responsiveness to infection. To enhance our understanding of the immunobiology of gamma/delta T cells, we characterized the gene expression profile of circulating bovine gamma/delta T cells following stimulation with recombinant human IL-2 and ConA. Statistical analysis of microarray data identified 108 genes with significantly altered expression, including four genes associated with apoptosis. Real-time reverse transcription-PCR (RT-PCR) analysis of 15 genes related to apoptotic pathways showed that both the Fas-mediated and the mitochondrial apoptotic pathways were repressed in circulating bovine gamma/delta T cells in response to mitogen activation, indicating that stimulated peripheral bovine gamma/delta T cells are resistant to activation-induced apoptosis.
Collapse
Affiliation(s)
- Mingqi Deng
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
28
|
Mattei S, Ryves WJ, Blot B, Sadoul R, Harwood AJ, Satre M, Klein G, Aubry L. Dd-Alix, a conserved endosome-associated protein, controls Dictyostelium development. Dev Biol 2005; 279:99-113. [PMID: 15708561 DOI: 10.1016/j.ydbio.2004.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/30/2004] [Accepted: 12/03/2004] [Indexed: 11/21/2022]
Abstract
We have characterized the Dictyostelium homolog of the mammalian protein Alix. Dd-Alix is encoded by a single gene and is expressed during vegetative growth and multicellular development. We showed that the alx null strain fails to complete its developmental program. Past the tight aggregate stage, morphogenesis is impaired, leading to markedly aberrant structures containing vacuolated and undifferentiated cells but no mature spores. The developmental defect is cell-autonomous as most cells remain of the PstB type even when mixed with wild-type cells. Complementation analysis with different Alix constructs allowed the identification of a 101-residue stretch containing a coiled-coil domain essential for Alix function. In addition, we showed that the protein associates in part with vesicular structures and that its distribution on a Percoll gradient overlaps that of the endocytic marker Vamp7. Dd-Alix also co-localizes with Dd-Vps32. In view of our data, and given the role of Vps32 proteins in membrane protein sorting and multivesicular body formation in yeast and mammals, we hypothesize that the developmental defects of the alx null strain result from abnormal trafficking of cell-surface receptors.
Collapse
Affiliation(s)
- Sara Mattei
- The Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), DRDC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohkouchi S, Saito H, Aruga F, Maeda T, Shibata H, Maki M. Dictyostelium discoideumrequires an Alix/AIP1 homolog, DdAlix, for morphogenesis in alkaline environments. FEBS Lett 2005; 579:1745-50. [PMID: 15757670 DOI: 10.1016/j.febslet.2005.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 01/31/2005] [Accepted: 02/08/2005] [Indexed: 11/30/2022]
Abstract
Alix and its homologs are involved in various phenomena such as endosomal protein-sorting and adaptation to stress conditions. In this study, we found that development of Dictyostelium discoideum Alix (DdAlix) deletion mutant (alx-) cells was impaired in alkaline pH environments. The fruiting body formation efficiency of alx- cells at pH 9.0 was significantly lower than that of wild-type cells (6.8+/-4.2% vs 93+/-6.3%). The alkaline-sensitive phenotype of alx- cells was rescued by addition of salt. The phenotype was rescued by exogenous expression of human Alix as well as DdAlix but not by that of either Saccharomyces cerevisiae Alix homolog Rim20 or Bro1. DdAlix may be, structurally and functionally, more related to human Alix than to yeast Rim20 and Bro1.
Collapse
Affiliation(s)
- Susumu Ohkouchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Schmidt MHH, Dikic I, Bögler O. Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J Biol Chem 2004; 280:3414-25. [PMID: 15557335 PMCID: PMC1180480 DOI: 10.1074/jbc.m409839200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alix/AIP1 is an adaptor protein involved in regulating the function of receptor and cytoskeleton-associated tyrosine kinases. Here, we investigated its interaction with and regulation by Src. Tyr319 of Alix bound the isolated Src homology-2 (SH2) domain and was necessary for interaction with intact Src. A proline-rich region in the C terminus of Alix bound the Src SH3 domain, but this interaction was dependent on the release of the Src SH2 domain from its Src internal ligand either by interaction with Alix Tyr319 or by mutation of Src Tyr527. Src phosphorylated Alix at a C-terminal region rich in tyrosines, an activity that was stimulated by the presence of the Alix binding partner SETA/CIN85. Phosphorylation of Alix by Src caused it to translocate from the membrane and cytoskeleton to the cytoplasm and reduced its interaction with binding partners SETA/CIN85, epidermal growth factor receptor, and Pyk2. As a consequence of this, Src antagonized the negative regulation of receptor tyrosine kinase internalization and cell adhesion by Alix. We propose a model whereby Src antagonizes the effects of Alix by phosphorylation of its C terminus, leading to the disruption of interactions with target proteins.
Collapse
Affiliation(s)
- Mirko H. H. Schmidt
- From the William and Karen Davidson Laboratory of Brain Tumor Biology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202 and the
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Oliver Bögler
- From the William and Karen Davidson Laboratory of Brain Tumor Biology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan 48202 and the
- || To whom correspondence should be addressed: Dept. of Neurosurgery, Henry Ford Hospital, E&R 3096, 2799 W. Grand Blvd., Detroit, MI 48202. Tel.: 313-916-7293; Fax: 425-732-8379; E-mail:
| |
Collapse
|
31
|
Subramanian L, Polans AS. Cancer-related diseases of the eye: the role of calcium and calcium-binding proteins. Biochem Biophys Res Commun 2004; 322:1153-65. [PMID: 15336963 DOI: 10.1016/j.bbrc.2004.07.109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 11/19/2022]
Abstract
The eye provides unique opportunities to study complex biochemical pathways and to describe how components of these pathways contribute to the molecular basis of disease. In this article, the role of calcium-binding proteins in cancer-related diseases of the eye is reviewed. First, paraneoplastic syndromes, or so-called remote effects of cancer, arise from damage to tissues distant from any tumor or its metastases. Many of these syndromes are believed to be immune-mediated. Cancer-associated retinopathy (CAR), a blinding disease due to the degeneration of retinal photoreceptor cells, is one of the best characterized of the paraneoplastic syndromes. The CAR autoantigen has been identified as recoverin, a calcium-binding protein of the EF-hand superfamily. Its features as a calcium-binding protein, along with its function in photoreceptor cells and its role as the CAR autoantigen, are discussed. Next, unlike visual symptoms instigated by a distant tumor, ocular melanoma is the primary malignancy originating in the eye. ALG-2 encodes a pro-apoptotic calcium-binding protein that is down-regulated in ocular melanoma, thus providing these tumor cells with a selective advantage. In addition to background discussion of ALG-2, data describing the expression, cellular localization, and dimerization characteristics of ALG-2 in melanoma cells are presented. Biochemical studies of ALG-2 and its interactions with its target Alix/AIP1 also are presented. Finally, the function of ALG-2 in calcium-induced cell death is discussed. Additional calcium-binding proteins in retina and in ocular tumors are described in relation to different disease entities. Such proteins and their expression in the eye provide valuable examples bridging studies of protein chemistry, cellular function, and human disease.
Collapse
Affiliation(s)
- Lalita Subramanian
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison WI 53792, USA
| | | |
Collapse
|
32
|
Ohkouchi S, El-Halawany MS, Aruga F, Shibata H, Hitomi K, Maki M. DdAlix, an Alix/AIP1 homolog in Dictyostelium discoideum, is required for multicellular development under low Ca2+ conditions. Gene 2004; 337:131-9. [PMID: 15276209 DOI: 10.1016/j.gene.2004.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/22/2004] [Indexed: 11/20/2022]
Abstract
Apoptosis-linked gene 2 (ALG-2) interacting protein X (Alix), also called AIP1, is a widely conserved protein in eukaryotes. Alix and its homologs are involved in various phenomena such as apoptosis, regulation of cell adhesion, protein sorting, adaptation to stress conditions, and budding of human immunodeficiency virus (HIV). To investigate the role of Alix in development, we identified an Alix homolog in the cellular slime mold Dictyostelium discoideum and disrupted the gene by homologous recombination. The growth of DdAlix deletion mutant (alx-) cells was significantly impaired in the presence of 5 mM Li+. On an agar plate, alx- cells underwent normal development and formed fruiting bodies indistinguishable from those formed by wild-type cells. However, alx- cells could not form fruiting bodies in the presence of 5 mM Li+. Similar results were obtained when cells were developed in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), which is an antagonist of intracellular Ca2+ store. Furthermore, when the extracellular free Ca2+ was reduced to 10 nM, the ability of alx- cells, but not that of wild-type cells, to form fruiting bodies was impaired. The results indicate that DdAlix is essential for development under low Ca2+ conditions and suggest that DdAlix is involved in Ca2+ signaling during development.
Collapse
Affiliation(s)
- Susumu Ohkouchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Hemming FJ, Fraboulet S, Blot B, Sadoul R. Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration. Neuroscience 2004; 123:887-95. [PMID: 14751282 DOI: 10.1016/j.neuroscience.2003.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis-linked gene-2 interacting protein X (Alix) is thought to be involved in both cell death and vesicular trafficking. We examined Alix expression 2 h, 6 h and 24 h after triggering seizure-dependent neuronal death by i.p. kainic acid injection. In the hippocampus, intense, transient immunolabelling was observed in the strata lucidum, oriens and radiatum, areas of high synaptic activity. The similarity of this distribution to those of synaptophysin and endophilin suggests a presynaptic localisation. Alix labelling was increased in neuronal cell bodies in kainate-sensitive regions before or concomitant with the first signs of oedema and/or neuronal eosinophilia. The increase persisted 24 h after kainate-injection in CA3 and the piriform cortex which are areas with massive swelling and numerous pyknotic neurons. This suggests that Alix may play an early role in the mechanisms leading to cell death. Taken together, our results suggest that Alix may be a molecular link between synaptic functioning and neuronal death.
Collapse
Affiliation(s)
- F J Hemming
- Neurodégénérescence et Plasticité, EMI 0108, INSERM/UJF, Hôpital A. Michallon, CHU, BP 217, 38043 Grenoble 9, France.
| | | | | | | |
Collapse
|
34
|
Katoh K, Shibata H, Hatta K, Maki M. CHMP4b is a major binding partner of the ALG-2-interacting protein Alix among the three CHMP4 isoforms. Arch Biochem Biophys 2004; 421:159-65. [PMID: 14678797 DOI: 10.1016/j.abb.2003.09.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ALG-2-interacting protein Alix has recently been demonstrated to associate with CHMP4b that is a human homologue of yeast Snf7p (also named Vps32p) and a member of the family of small coiled-coil proteins named CHMP implicated in playing roles in multivesicular body sorting. In addition to the previously isolated cDNAs for two CHMP4 proteins (CHMP4a and CHMP4b), we isolated a cDNA for a new member of the CHMP4 subfamily (designated CHMP4c). Northern blot analyses revealed different expression patterns of the mRNAs for the three CHMP4 isoforms in human tissues. CHMP4b messages were expressed at higher levels in all 12 tissues tested in comparison with the CHMP4a and CHMP4c transcripts, particularly in heart and skeletal muscle. The interaction with Alix was detected for each CHMP4 isoform by co-immunoprecipitation experiments using lysates of HEK293 cells expressing each epitope-tagged CHMP4 protein and Alix fused with green fluorescent protein. Further, using recombinant glutathione S-transferase (GST) fusion protein of truncated Alix (amino acids 1-423) and thioredoxin-tagged CHMP4 proteins, the direct interactions were detected by a GST pull-down assay, where CHMP4b showed a stronger interaction than other CHMP4 isoforms. These results suggest that CHMP4b is a major binding partner of Alix among the three CHMP4 isoforms.
Collapse
Affiliation(s)
- Keiichi Katoh
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
35
|
Trioulier Y, Torch S, Blot B, Cristina N, Chatellard-Causse C, Verna JM, Sadoul R. Alix, a Protein Regulating Endosomal Trafficking, Is Involved in Neuronal Death. J Biol Chem 2004; 279:2046-52. [PMID: 14585841 DOI: 10.1074/jbc.m309243200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alix/AIP1 is a cytoplasmic protein, which was first characterized as an interactor of ALG-2, a calcium-binding protein necessary for cell death. Alix has also recently been defined as a regulator of the endo-lysosomal system. Here we have used post-mitotic cerebellar neurons to test Alix function in caspase-dependent and -independent cell death. Indeed, these neurons survived when cultured in 25 mm potassium-containing medium but underwent apoptosis soon after the extracellular potassium was lowered to 5 mm. In agreement with other studies, we show that caspases are activated after K+ deprivation, but that inhibition of these proteases, using the pancaspase inhibitor boc-aspartyl(OMe)-fluoromethylketone, has no effect on cell survival. Transfection experiments demonstrated that Alix overexpression is sufficient to induce caspase activation, whereas overexpression of its C-terminal half, Alix-CT, blocks caspase activation and cell death after K+ deprivation. We also define a 12-amino acid PXY repeat of the C-terminal proline-rich domain necessary for binding ALG-2. Deletion of this domain in Alix or in Alix-CT abolished the effects of the overexpressed proteins on neuronal survival, demonstrating that the ALG-2-binding region is crucial for the death-modulating function of Alix. Overall, these findings define the Alix/ALG-2 complex as a regulator of cell death controlling both caspase-dependent and -independent pathways. They also suggest a molecular link between the endo-lysosomal system and the effectors of the cell death machinery.
Collapse
Affiliation(s)
- Yaël Trioulier
- Laboratoire Neurodégénérescence et Plasticité, INSERM-UJF, Pavillon de Neurologie, Hopital A. Michallon, 38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T, Maki M. The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 2003; 278:39104-13. [PMID: 12860994 DOI: 10.1074/jbc.m301604200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alix (ALG-2-interacting protein X) is a 95-kDa protein that interacts with an EF-hand type Ca(2+)-binding protein, ALG-2 (apoptosis-linked gene 2), through its C-terminal proline-rich region. In this study, we searched for proteins that interact with human AlixDeltaC (a truncated form not containing the C-terminal region) by using a yeast two-hybrid screen, and we identified two similar human proteins, CHMP4a and CHMP4b (chromatin-modifying protein; charged multivesicular body protein), as novel binding partners of Alix. The interaction of Alix with CHMP4b was confirmed by a glutathione S-transferase pull-down assay and by co-immunoprecipitation experiments. Fluorescence microscopic analysis revealed that CHMP4b transiently expressed in HeLa cells mainly exhibited a punctate distribution in the perinuclear area and co-localized with co-expressed Alix. The distribution of CHMP4b partly overlapped the distributions of early and late endosomal marker proteins, EEA1 (early endosome antigen 1) and Lamp-1 (lysosomal membrane protein-1), respectively. Transient overexpression of CHMP4b induced the accumulation of ubiquitinated proteins as punctate patterns that were partly overlapped with the distribution of CHMP4b and inhibited the disappearance of endocytosed epidermal growth factor. In contrast, stably expressed CHMP4b in HEK293 cells was observed diffusely in the cytoplasm. Transient overexpression of AlixDeltaC in stably CHMP4b-expressing cells, however, induced formation of vesicle-like structures in which CHMP4b and AlixDeltaC were co-localized. SKD1(E235Q), a dominant negative form of the AAA type ATPase SKD1 that plays critical roles in the endocytic pathway, was co-immunoprecipitated with CHMP4b. Furthermore, CHMP4b co-localized with SKD1(E235Q) as punctate patterns in the perinuclear area, and Alix was induced to exhibit dot-like distributions overlapped with SKD1(E235Q) in HeLa cells. These results suggest that CHMP4b and Alix participate in formation of multivesicular bodies by cooperating with SKD1.
Collapse
Affiliation(s)
- Keiichi Katoh
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt MHH, Chen B, Randazzo LM, Bogler O. SETA/CIN85/Ruk and its binding partner AIP1 associate with diverse cytoskeletal elements, including FAKs, and modulate cell adhesion. J Cell Sci 2003; 116:2845-55. [PMID: 12771190 DOI: 10.1242/jcs.00522] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The adaptor protein SETA/CIN85/Ruk is involved in regulating diverse signal transduction pathways, including the internalization of tyrosine kinase receptors via the Cbl ubiquitin ligases, and attenuating PI3K activity by interaction with its regulatory subunit. Here we present evidence for a new aspect of SETA function, based on the initial observation that it co-localizes with actin in microfilaments and at focal adhesions, and with microtubules. Although there was no evidence for direct molecular interactions between SETA and cytoskeletal proteins, the SETA-interacting protein AIP1, which is a rat ortholog of the Xenopus src substrate Xp95, strongly interacted with structural proteins of the cytoskeleton, including actin and tubulins. Both SETA and AIP1 interacted with focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (PYK-2), and c-Cbl interacted with PYK-2. AIP1, which interacted more strongly than either SETA or c-Cbl, required an intact consensus tyrosine kinase phosphorylation sequence at Y319 to bind to focal adhesion kinases, which suggests that phosphorylation is an important mediator of this complex. SETA, which interacted as a dimer with focal adhesion kinases, promoted the interaction between PYK-2 and AIP1. Direct analysis of the impact of these proteins on cell adhesion, by use of an electrical cell-substrate impedance sensor (ECIS), showed that SETA promoted cell adhesion while AIP1 and c-Cbl reduced it. Furthermore, the ability of AIP1 and AIP1 mutants to decrease cell adhesion in ECIS analysis correlated with their presence in PYK-2 complexes, providing a direct link between AIP1-mediated molecular interactions and cellular behavior. Transfection of AIP1 also reduced the level of phosphorylation of endogenous PYK-2 and FAK, suggesting that this protein may directly regulate focal adhesion kinases, and thereby cell adhesion. These data are the first to implicate the adaptor protein SETA and its binding partner AIP1 as being involved with the cytoskeleton and in the regulation of cell adhesion, and suggest that they may be part of the focal adhesion kinase regulatory complex.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- William and Karen Davidson Laboratory of Brain Tumor Biology, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|