1
|
Damulewicz M, Mazzotta GM. A one-day journey to the suburbs: circadian clock in the Drosophila visual system. FEBS J 2025; 292:727-739. [PMID: 39484992 PMCID: PMC11839939 DOI: 10.1111/febs.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Living organisms, which are constantly exposed to cyclical variations in their environment, need a high degree of plasticity in their visual system to respond to daily and seasonal fluctuations in lighting conditions. In Drosophila melanogaster, the visual system is a complex tissue comprising different photoreception structures that exhibit daily rhythms in gene expression, cell morphology, and synaptic plasticity, regulated by both the central and peripheral clocks. In this review, we briefly summarize the structure of the circadian clock and the visual system in Drosophila and comprehensively describe circadian oscillations in visual structures, from molecules to behaviors, which are fundamental for the fine-tuning of visual sensitivity. We also compare some features of the rhythmicity in the visual system with that of the central pacemaker and hypothesize about the differences in the regulatory signals and mechanisms that control these two clocks.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and ImagingJagiellonian UniversityKrakówPoland
| | | |
Collapse
|
2
|
Lamparter T. Photosystems and photoreceptors in cyanobacterial phototaxis and photophobotaxis. FEBS Lett 2024; 598:1899-1908. [PMID: 38946046 DOI: 10.1002/1873-3468.14968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Cyanobacteria move by gliding motility on surfaces toward the light or away from it. It is as yet unclear how the light direction is sensed on the molecular level. Diverse photoreceptor knockout mutants have a stronger response toward the light than the wild type. Either the light direction is sensed by multiple photoreceptors or by photosystems. In a study on photophobotaxis of the filamentous cyanobacterium Phormidium lacuna, broad spectral sensitivity, inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and a highly sensitive response speaks for photosystems as light direction sensors. Here, it is discussed whether the photosystem theory could hold for phototaxis of other cyanobacteria.
Collapse
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology KIT, Joseph Gottlieb Kölreuter Institut für Pflanzenwissenschaften, Karlsruhe, Germany
| |
Collapse
|
3
|
Lim MCX, Loo CT, Wong CY, Lee CS, Koh RY, Lim CL, Kok YY, Chye SM. Prospecting bioactivity in Antarctic algae: A review of extracts, isolated compounds and their effects. Fitoterapia 2024; 176:106025. [PMID: 38768797 DOI: 10.1016/j.fitote.2024.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Algae and its metabolites have been a popular subject of research in numerous fields over the years. Various reviews have been written on algal bioactive components, but a specific focus on Antarctic-derived algae is seldom reviewed. Due to the extreme climate conditions of Antarctica, it is hypothesized that the acclimatized algae may have given rise to a new set of bioactive compounds as a result of adaptation. Although most studies done on Antarctic algae are based on ecological and physiological studies, as well as in the field of nanomaterial synthesis, some studies point out the potential therapeutic properties of these compounds. As an effort to shed light on a different application of Antarctic algae, this review focuses on evaluating its different medicinal properties, including antimicrobial, anticancer, antioxidative, anti-inflammatory, and skin protective effects.
Collapse
Affiliation(s)
- Mervyn Chen Xi Lim
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee Tou Loo
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Choy Sin Lee
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chooi Ling Lim
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Yih Yih Kok
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
4
|
Woodard G, Rosado JA, Li H. The physiological role of TRP channels in sleep and circadian rhythm. J Cell Mol Med 2024; 28:e18274. [PMID: 38676362 PMCID: PMC11053353 DOI: 10.1111/jcmm.18274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 04/28/2024] Open
Abstract
TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.
Collapse
Affiliation(s)
- Geoffrey Woodard
- Department of PsychiatryUniformed Services University of Health SciencesBethesdaMarylandUSA
| | - Juan A. Rosado
- Department of PhysiologyUniversity of ExtremaduraCaceresSpain
| | - He Li
- Department of PsychiatryUniformed Services University of Health SciencesBethesdaMarylandUSA
| |
Collapse
|
5
|
Islam Z, Kumar P. Inhibitors of riboflavin biosynthetic pathway enzymes as potential antibacterial drugs. Front Mol Biosci 2023; 10:1228763. [PMID: 37496776 PMCID: PMC10366380 DOI: 10.3389/fmolb.2023.1228763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Multiple drug resistance is the main obstacle in the treatment of bacterial diseases. Resistance against antibiotics demands the exploration of new antimicrobial drug targets. A variety of in silico and genetic approaches show that the enzymes of the riboflavin biosynthetic pathway are crucial for the survival of bacteria. This pathway is absent in humans thus enzymes of the riboflavin biosynthetic pathway are emerging drug targets for resistant pathogenic bacterial strains. Exploring the structural details, their mechanism of action, intermediate elucidation, and interaction analysis would help in designing suitable inhibitors of these enzymes. The riboflavin biosynthetic pathway consists of seven distinct enzymes, namely, 3,4-dihydroxy-2-butanone 4-phosphate synthase, GTP cyclohydrolase II, pyrimidine deaminase/reductase, phosphatase, lumazine synthase, and riboflavin synthase. The present review summarizes the research work that has been carried out on these enzymes in terms of their structures, active site architectures, and molecular mechanism of catalysis. This review also walks through small molecule inhibitors that have been developed against several of these enzymes.
Collapse
Affiliation(s)
- Zeyaul Islam
- Qatar Biomedical Research Institute (QBRI), Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Gadoury DM, Sapkota S, Cadle-Davidson L, Underhill A, McCann T, Gold KM, Gambhir N, Combs DB. Effects of Nighttime Applications of Germicidal Ultraviolet Light Upon Powdery Mildew ( Erysiphe necator), Downy Mildew ( Plasmopara viticola), and Sour Rot of Grapevine. PLANT DISEASE 2023:PDIS04220984RE. [PMID: 36281020 DOI: 10.1094/pdis-04-22-0984-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nighttime applications of germicidal ultraviolet were evaluated as a means to suppress three diseases of grapevine. In laboratory studies, UV-C light (peak 254 nm, FWHM 5 nm) applied during darkness strongly inhibited the germination of conidia of Erysiphe necator, and at a dose of 200 J/m2, germination was zero. Reciprocity of irradiance and duration of exposure with respect to conidial germination was confirmed for UV-C doses between 0 and 200 J/m2 applied at 4 or 400 s. When detached grapevine leaves were exposed during darkness to UV-C at 100 J/m2 up to 7 days before they were inoculated with zoospores of Plasmopara viticola, infection and subsequent sporulation was reduced by over 70% compared to untreated control leaves, indicating an indirect suppression of the pathogen exerted through the host. A hemicylindrical array of low-pressure discharge UV-C lamps configured for trellised grapevines was designed and fitted to both a tractor-drawn carriage and a fully autonomous robotic carriage for vineyard applications. In 2019, in a Chardonnay research vineyard with a history of high inoculum and severe disease, weekly nighttime applications of UV-C suppressed E. necator on leaves and fruit at doses of 100 and 200 J/m2. In the same vineyard in 2020, UV-C was applied once or twice weekly at doses of 70, 100, or 200 J/m2, and severity of E. necator on both leaves and fruit was significantly reduced compared to untreated controls; twice-weekly applications at 200 J/m2 provided suppression equivalent to a standard fungicide program. None of the foregoing UV-C treatments significantly reduced the severity of P. viticola on Chardonnay vines compared to the untreated control in 2020. However, twice-weekly applications of UV-C at 200 J/m2 to the more downy mildew-resistant Vitis interspecific hybrid cultivar Vignoles in 2021 significantly suppressed foliar disease severity. In commercial Chardonnay vineyards with histories of excellent disease control in Dresden, NY, E. necator remained at trace levels on foliage and was zero on fruit following weekly nighttime applications of UV-C at 200 J/m2 in 2020 and after weekly or twice-weekly application of UV-C at 100 or 200 J/m2 in 2021. In 2019, weekly nighttime applications of UV-C at 200 J/m2 also significantly reduced the severity of sour rot, a decay syndrome of complex etiology, on fruit of 'Vignoles' but not the severity of bunch rot caused by Botrytis cinerea. A similar level of suppression of sour rot was observed on 'Vignoles' vines treated twice-weekly with UV-C at 200 J/m2 in 2021. Nighttime UV-C applications did not produce detectable indications of metabolic abnormalities, phytotoxicity, growth reduction, or reductions of fruit yield or quality parameters, even at the highest doses and most frequent intervals employed.
Collapse
Affiliation(s)
- David M Gadoury
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| | - Surya Sapkota
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| | | | - Anna Underhill
- USDA Grape Genetics Research Unit, Cornell AgriTech, Geneva, NY 14456
| | - Tyler McCann
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| | - Kaitlin M Gold
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| | - Nikita Gambhir
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| | - David B Combs
- Plant Pathology and Plant-Microbe Biology Section, Cornell AgriTech, Geneva, NY 14456
| |
Collapse
|
7
|
Mazzoccoli G. Chronobiology Meets Quantum Biology: A New Paradigm Overlooking the Horizon? Front Physiol 2022; 13:892582. [PMID: 35874510 PMCID: PMC9296773 DOI: 10.3389/fphys.2022.892582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Biological processes and physiological functions in living beings are featured by oscillations with a period of about 24 h (circadian) or cycle at the second and third harmonic (ultradian) of the basic frequency, driven by the biological clock. This molecular mechanism, common to all kingdoms of life, comprising animals, plants, fungi, bacteria, and protists, represents an undoubted adaptive advantage allowing anticipation of predictable changes in the environmental niche or of the interior milieu. Biological rhythms are the field of study of Chronobiology. In the last decade, growing evidence hints that molecular platforms holding up non-trivial quantum phenomena, including entanglement, coherence, superposition and tunnelling, bona fide evolved in biosystems. Quantum effects have been mainly implicated in processes related to electromagnetic radiation in the spectrum of visible light and ultraviolet rays, such as photosynthesis, photoreception, magnetoreception, DNA mutation, and not light related such as mitochondrial respiration and enzymatic activity. Quantum effects in biological systems are the field of study of Quantum Biology. Rhythmic changes at the level of gene expression, as well as protein quantity and subcellular distribution, confer temporal features to the molecular platform hosting electrochemical processes and non-trivial quantum phenomena. Precisely, a huge amount of molecules plying scaffold to quantum effects show rhythmic level fluctuations and this biophysical model implies that timescales of biomolecular dynamics could impinge on quantum mechanics biofunctional role. The study of quantum phenomena in biological cycles proposes a profitable “entanglement” between the areas of interest of these seemingly distant scientific disciplines to enlighten functional roles for quantum effects in rhythmic biosystems.
Collapse
|
8
|
Pegoraro M, Sayegh Rezek E, Fishman B, Tauber E. Nucleotide Variation in Drosophila cryptochrome Is Linked to Circadian Clock Function: An Association Analysis. Front Physiol 2022; 13:781380. [PMID: 35250608 PMCID: PMC8892179 DOI: 10.3389/fphys.2022.781380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Cryptochrome (CRY) is a conserved protein associated with the circadian clock in a broad range of organisms, including plants, insects, and mammals. In Drosophila, cry is a pleiotropic gene that encodes a blue light-dedicated circadian photoreceptor, as well as an electromagnetic field sensor and a geotaxis behavior regulator. We have generated a panel of nearly-isogenic strains that originated from various wild populations and which carry different natural alleles of cry. Sequencing of these alleles revealed substantial polymorphism, the functional role of which was elusive. To link this natural molecular diversity to gene function, we relied on association mapping. Such analysis revealed two major haplogroups consisting of six linked nucleotides associated with circadian phase (haplotypes All1/All2). We also generated a maximum-likelihood gene-tree that uncovered an additional pair of haplogroups (B1/B2). Behavioral analysis of the different haplotypes indicated significant effect on circadian phase and period, as well on the amount of activity and sleep. The data also suggested substantial epistasis between the All and B haplogroups. Intriguingly, circadian photosensitivity, assessed by light-pulse experiments, did not differ between the genotypes. Using CRISPR-mediated transgenic flies, we verified the effect of B1/B2 polymorphism on circadian phase. The transgenic flies also exhibited substantially different levels of cry transcription. We, moreover, analyzed the geographical distribution of the B1/B2 haplotypes, focusing on a 12 bp insertion/deletion polymorphism that differentiates the two haplotypes. Analysis of cry sequences in wild populations across Europe revealed a geographical cline of B1/B2 indel frequency, which correlated with seasonal bioclimatic variables. This spatial distribution of cry polymorphism reinforces the functional importance of these haplotypes in the circadian system and local adaptation.
Collapse
Affiliation(s)
- Mirko Pegoraro
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Genetics and Biology, University of Leicester, Leicester, United Kingdom
| | - Emily Sayegh Rezek
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eran Tauber
- Department of Genetics and Biology, University of Leicester, Leicester, United Kingdom
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
- *Correspondence: Eran Tauber,
| |
Collapse
|
9
|
Gadoury DM, Sapkota S, Cadle-Davidson L, Underhill A, McCann T, Gold KM, Gambhir N, Combs DB, Nyrop JP. Use of Germicidal UV Light to Suppress Grapevine Diseases and Arthropod Pests. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Transcriptomics Analysis of Primordium Formation in Pleurotus eryngii. Genes (Basel) 2021; 12:genes12121863. [PMID: 34946812 PMCID: PMC8700867 DOI: 10.3390/genes12121863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Primordium formation is an important stage preceding the growth and development of the Pleurotus eryngii fruiting body. However, the molecular mechanisms underlying primordium formation remain unclear. In the present study, comparative transcriptomics was performed between mature mycelia and primordium to analyze the transcriptional properties during primordium formation in P. eryngii. A total of 19,655 differentially expressed genes (10,718 upregulated genes and 8937 downregulated genes) were identified. These differentially expressed genes were involved in cell wall degradation, carbohydrate hydrolysis, light perception, and cAMP signal transduction. These results aid further understanding of the transcriptional changes and the molecular processes underlying primordium formation and differentiation, which may lay the foundation for improving the cultivation and quality control of P. eryngii.
Collapse
|
11
|
Neveselý T, Wienhold M, Molloy JJ, Gilmour R. Advances in the E → Z Isomerization of Alkenes Using Small Molecule Photocatalysts. Chem Rev 2021; 122:2650-2694. [PMID: 34449198 DOI: 10.1021/acs.chemrev.1c00324] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Geometrical E → Z alkene isomerization is intimately entwined in the historical fabric of organic photochemistry and is enjoying a renaissance (Roth et al. Angew. Chem., Int. Ed. Engl. 1989 28, 1193-1207). This is a consequence of the fundamental stereochemical importance of Z-alkenes, juxtaposed with frustrations in thermal reactivity that are rooted in microscopic reversibility. Accessing excited state reactivity paradigms allow this latter obstacle to be circumnavigated by exploiting subtle differences in the photophysical behavior of the substrate and product chromophores: this provides a molecular basis for directionality. While direct irradiation is operationally simple, photosensitization via selective energy transfer enables augmentation of the alkene repertoire to include substrates that are not directly excited by photons. Through sustained innovation, an impressive portfolio of tailored small molecule catalysts with a range of triplet energies are now widely available to facilitate contra-thermodynamic and thermo-neutral isomerization reactions to generate Z-alkene fragments. This review is intended to serve as a practical guide covering the geometric isomerization of alkenes enabled by energy transfer catalysis from 2000 to 2020, and as a logical sequel to the excellent treatment by Dugave and Demange (Chem. Rev. 2003 103, 2475-2532). The mechanistic foundations underpinning isomerization selectivity are discussed together with induction models and rationales to explain the counterintuitive directionality of these processes in which very small energy differences distinguish substrate from product. Implications for subsequent stereospecific transformations, application in total synthesis, regioselective polyene isomerization, and spatiotemporal control of pre-existing alkene configuration in a broader sense are discussed.
Collapse
Affiliation(s)
- Tomáš Neveselý
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Max Wienhold
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - John J Molloy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
12
|
Gornik SG, Bergheim BG, Morel B, Stamatakis A, Foulkes NS, Guse A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol Biol Evol 2021; 38:1744-1760. [PMID: 33226083 PMCID: PMC8097283 DOI: 10.1093/molbev/msaa304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicholas S Foulkes
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Milito A, Castellano I, Damiani E. From Sea to Skin: Is There a Future for Natural Photoprotectants? Mar Drugs 2021; 19:md19070379. [PMID: 34209059 PMCID: PMC8303403 DOI: 10.3390/md19070379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.
Collapse
Affiliation(s)
- Alfonsina Milito
- Centre for Research in Agricultural Genomics, Department of Molecular Genetics, Cerdanyola, 08193 Barcelona, Spain;
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (I.C.); (E.D.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of the Marche, Via Brecce Bianche, 60131 Ancona, Italy
- Correspondence: (I.C.); (E.D.)
| |
Collapse
|
14
|
Tsukada K, Yoshihara R, Hatakeyama S, Ichiishi A, Tanaka S. A partial photoreactivation defect phenotype is not due to unrepaired ultraviolet-induced pyrimidine dimers in ultraviolet-sensitive mutants of Neurospora crassa. Genes Genet Syst 2021; 95:281-289. [PMID: 33551431 DOI: 10.1266/ggs.20-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photoreactivation is a mechanism in which photolyase directly repairs either cyclobutane pyrimidine dimers (CPDs) or (6-4) photoproducts [(6-4) PPs] caused by ultraviolet (UV) light. In the filamentous fungus Neurospora crassa, some UV-sensitive mutants such as mus-44 have been reported to exhibit a partial photoreactivation defect (PPD) phenotype, but its mechanism has not been elucidated for a long time. In this study, the N. crassa CPD photolyase PHR was overexpressed in the Δmus-44 strain, but photoreactivation ability was not increased. Furthermore, Escherichia coli CPD photolyase or Arabidopsis thaliana (6-4) PP photolyase was also introduced into Δmus-44; however, the PPD phenotype was not complemented. These results suggested that the PPD phenotype in N. crassa is not caused by residual unrepaired pyrimidine dimers, which are the main type of DNA damage caused by UV irradiation. Finally, we revealed that Δmus-44, but not the Δmus-43 strain, which does not show the PPD phenotype, displayed higher sensitivity with increasing dose rate of UV. Moreover, Δmus-44 was also sensitive to an interstrand crosslinking agent. This indicates that the high dose of UV in our experimental condition induces DNA damage other than pyrimidine dimers, and that such damage is a likely cause of the PPD phenotype.
Collapse
Affiliation(s)
- Kotaro Tsukada
- Laboratory of Genetics, Development of Regulatory Biology, Faculty of Science, Saitama University
| | - Ryouhei Yoshihara
- Laboratory of Genetics, Development of Regulatory Biology, Faculty of Science, Saitama University
| | - Shin Hatakeyama
- Laboratory of Genetics, Development of Regulatory Biology, Faculty of Science, Saitama University
| | | | - Shuuitsu Tanaka
- Laboratory of Genetics, Development of Regulatory Biology, Faculty of Science, Saitama University
| |
Collapse
|
15
|
Guermonprez C, Declercq L, Decaux G, Grimaud JA. Safety and efficacy of a novel home-use device for light-potentiated (LED) skin treatment. JOURNAL OF BIOPHOTONICS 2020; 13:e202000230. [PMID: 32949447 DOI: 10.1002/jbio.202000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Skin structure and function results from a dynamic interplay between dermal and epidermal cell types. Optimizing skin health through an effective and long-lasting skin care regime therefore requires a global approach, encompassing various mechanisms to stimulate this interplay beyond the action scope of a classical topical solution. This study evaluates the impact of a novel home-use device combining a topical serum, light-emitting diodes and massage on the clinical signs of extrinsic skin aging. The innovative principle relies on potentiating the effect of active ingredients contained in the topical serum with visible and near infra-red photons to prevent extracellular matrix degradation and promote its reconstruction. After in vitro and ex vivo investigations, a clinical study assessed the safety and efficacy of a daily treatment with the home-use device for 28 days. A significant increases in skin density and radiance while reducing the wrinkles was obtained with no side effects.
Collapse
Affiliation(s)
| | | | | | - Jean-Alexis Grimaud
- LightInDerm R&D, Hôpital Cochin, Paris, France
- Matriscience, Hôpital Cochin, Paris, France
| |
Collapse
|
16
|
Molin M, Logg K, Bodvard K, Peeters K, Forsmark A, Roger F, Jörhov A, Mishra N, Billod JM, Amir S, Andersson M, Eriksson LA, Warringer J, Käll M, Blomberg A. Protein kinase A controls yeast growth in visible light. BMC Biol 2020; 18:168. [PMID: 33198745 PMCID: PMC7667738 DOI: 10.1186/s12915-020-00867-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 01/07/2023] Open
Abstract
Background A wide variety of photosynthetic and non-photosynthetic species sense and respond to light, having developed protective mechanisms to adapt to damaging effects on DNA and proteins. While the biology of UV light-induced damage has been well studied, cellular responses to stress from visible light (400–700 nm) remain poorly understood despite being a regular part of the life cycle of many organisms. Here, we developed a high-throughput method for measuring growth under visible light stress and used it to screen for light sensitivity in the yeast gene deletion collection. Results We found genes involved in HOG pathway signaling, RNA polymerase II transcription, translation, diphthamide modifications of the translational elongation factor eEF2, and the oxidative stress response to be required for light resistance. Reduced nuclear localization of the transcription factor Msn2 and lower glycogen accumulation indicated higher protein kinase A (cAMP-dependent protein kinase, PKA) activity in many light-sensitive gene deletion strains. We therefore used an ectopic fluorescent PKA reporter and mutants with constitutively altered PKA activity to show that repression of PKA is essential for resistance to visible light. Conclusion We conclude that yeast photobiology is multifaceted and that protein kinase A plays a key role in the ability of cells to grow upon visible light exposure. We propose that visible light impacts on the biology and evolution of many non-photosynthetic organisms and have practical implications for how organisms are studied in the laboratory, with or without illumination.
Collapse
Affiliation(s)
- Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. .,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Katarina Logg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Kristofer Bodvard
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Ken Peeters
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Annabelle Forsmark
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Friederike Roger
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Jörhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Neha Mishra
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Horizon Discovery, Cambridge, CB25 9TL, UK
| | - Jean-Marc Billod
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Bio-Me A/S, Oslo Science Park, Gaustadalléen, 210349, Oslo, Norway
| | - Sabiha Amir
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
17
|
Regulatory Impact of the C-Terminal Tail on Charge Transfer Pathways in Drosophila Cryptochrome. Molecules 2020; 25:molecules25204810. [PMID: 33086760 PMCID: PMC7587983 DOI: 10.3390/molecules25204810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
Interconnected transcriptional and translational feedback loops are at the core of the molecular mechanism of the circadian clock. Such feedback loops are synchronized to external light entrainment by the blue light photoreceptor cryptochrome (CRY) that undergoes conformational changes upon light absorption by an unknown photoexcitation mechanism. Light-induced charge transfer (CT) reactions in Drosophila CRY (dCRY) are investigated by state-of-the-art simulations that reveal a complex, multi-redox site nature of CT dynamics on the microscopic level. The simulations consider redox-active chromophores of the tryptophan triad (Trp triad) and further account for pathways mediated by W314 and W422 residues proximate to the C-terminal tail (CTT), thus avoiding a pre-bias to specific W-mediated CT pathways. The conducted dissipative quantum dynamics simulations employ microscopically derived model Hamiltonians and display complex and ultrafast CT dynamics on the picosecond timescale, subtly balanced by the electrostatic environment of dCRY. In silicio point mutations provide a microscopic basis for rationalizing particular CT directionality and demonstrate the degree of electrostatic control realized by a discrete set of charged amino acid residues. The predicted participation of CT states in proximity to the CTT relates the directionality of CT reactions to the spatial vicinity of a linear interaction motif. The results stress the importance of CTT directional charge transfer in addition to charge transfer via the Trp triad and call for the use of full-length CRY models including the interactions of photolyase homology region (PHR) and CTT domains.
Collapse
|
18
|
Pathak R, Ergon Å, Stensvand A, Gislerød HR, Solhaug KA, Cadle-Davidson L, Suthaparan A. Functional Characterization of Pseudoidium neolycopersici Photolyase Reveals Mechanisms Behind the Efficacy of Nighttime UV on Powdery Mildew Suppression. Front Microbiol 2020; 11:1091. [PMID: 32547521 PMCID: PMC7272715 DOI: 10.3389/fmicb.2020.01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Powdery mildews can be controlled by brief exposure to ultraviolet (UV) radiation with devastating effect on their developmental stages including conidia germination. The treatment effect can be impaired by subsequent exposure to UV-A/blue light. UV-A/blue light-activated photolyase may be responsible for this and therefore we tested the function of three cryptochrome/photolyase family (CPF)-like genes (OINE01015670_T110144, OINE01000912_T103440, and OINE01005061_T102555) identified in the obligate biotrophic fungus Pseudoidium neolycopersici, the cause of tomato powdery mildew. A photolyase-deficient mutant of Escherichia coli transformed with coding sequence of OINE01000912_T103440 and exposed to brief (UV)-C treatment (peak emission at 254 nm) showed photoreactivation and cell survival when exposed to subsequent blue light, indicating complementation of photolyase activity. In contrast, the same photolyase-deficient E. coli transformed with the coding sequences of other two CPF-like genes did not survive this treatment, even though their expression were confirmed at protein level. This confirmed that OINE01000912_T103440 is a gene encoding photolyase, here named PnPHR1, with functionality similar to the native photolyase in E. coli, and classified as a class I cyclobutane pyrimidine dimer (CPD) photolyase. Modeling of the 634-amino acid sequence of PnPHR1 suggested that it is capable of binding flavin adenine dinucleotide (FAD) and methenyltetrahydrofolate (MTHF). However, spectroscopic data of the protein produced in an E. coli expression system could only reveal the presence of a reduced form of FAD, i.e., FADH- as an intrinsic chromophore. Within the tested wavelength range of 365-525 nm, the survival of photolyase-deficient mutant E. coli transformed with PnPHR1 showed a broad action spectrum from 365 to 454 nm. This was very similar to the previously characterized action spectrum for survival of P. neolycopersici conidia that had been treated with UV-C. Quantitative RT-PCR revealed that the expression of PnPHR1 in P. neolycopersici conidia was induced by UV-C, and peak expression occurred 4 h after brief UV-C treatment. The expression of PnPHR1 was repressed when incubated in red light after the UV-C treatment, but not when incubated in UV-A/blue light. The results may explain why the disease-reducing effect of short wavelength UV is impaired by exposure to UV-A and blue light.
Collapse
Affiliation(s)
- Ranjana Pathak
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Åshild Ergon
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Hans Ragnar Gislerød
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Lance Cadle-Davidson
- Grape Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Geneva, NY, United States
| | - Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Steurer B, Turkyilmaz Y, van Toorn M, van Leeuwen W, Escudero-Ferruz P, Marteijn JA. Fluorescently-labelled CPD and 6-4PP photolyases: new tools for live-cell DNA damage quantification and laser-assisted repair. Nucleic Acids Res 2019; 47:3536-3549. [PMID: 30698791 PMCID: PMC6468286 DOI: 10.1093/nar/gkz035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/29/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023] Open
Abstract
UV light induces cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs), which can result in carcinogenesis and aging, if not properly repaired by nucleotide excision repair (NER). Assays to determine DNA damage load and repair rates are invaluable tools for fundamental and clinical NER research. However, most current assays to quantify DNA damage and repair cannot be performed in real time. To overcome this limitation, we made use of the damage recognition characteristics of CPD and 6-4PP photolyases (PLs). Fluorescently-tagged PLs efficiently recognize UV-induced DNA damage without blocking NER activity, and therefore can be used as sensitive live-cell damage sensors. Importantly, FRAP-based assays showed that PLs bind to damaged DNA in a highly sensitive and dose-dependent manner, and can be used to quantify DNA damage load and to determine repair kinetics in real time. Additionally, PLs can instantly reverse DNA damage by 405 nm laser-assisted photo-reactivation during live-cell imaging, opening new possibilities to study lesion-specific NER dynamics and cellular responses to damage removal. Our results show that fluorescently-tagged PLs can be used as a versatile tool to sense, quantify and repair DNA damage, and to study NER kinetics and UV-induced DNA damage response in living cells.
Collapse
Affiliation(s)
- Barbara Steurer
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Yasemin Turkyilmaz
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Wessel van Leeuwen
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Paula Escudero-Ferruz
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
21
|
Holub D, Kubař T, Mast T, Elstner M, Gillet N. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD. Phys Chem Chem Phys 2019; 21:11956-11966. [PMID: 31134233 DOI: 10.1039/c9cp00694j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolyases (PL) and cryptochromes (CRY) are light-sensitive flavoproteins, respectively, involved in DNA repair and signal transduction. Their activation is triggered by an electron transfer process, which partially or fully reduces the photo-activated FAD cofactor. The full reduction additionally requires a proton transfer to the isoalloxazine ring. In plant CRY, an efficient proton transfer takes place within several μs, enabled by a conserved aspartate working as a proton donor, whereas in E. coli PL a proton transfer occurs in the 4 s timescale without any obvious proton donor, indicating the presence of a long-range proton transfer pathway. Unexpectedly, the insertion of an aspartate as a proton donor in a suitable position for proton transfer in E. coli PL does not initiate a transfer process similar to plant CRY, but even prevents the formation of a protonated FAD. In the present work, thanks to a combination of classical molecular dynamics and state-of-the-art DFTB3/MM simulations, we identify a proton transfer pathway from bulk to FAD in E. coli PL associated with a free energy profile in agreement with the experimental kinetics data. The free energy profiles of the proton transfer between aspartate and FAD show an inversion of the driving force between plant CRY and E. coli PL mutants. In the latter, the proton transfer from the aspartate is faster than in plant CRY but also thermodynamically disfavoured, in agreement with the experimental data. Our results further illustrate the fine tuning of the electrostatic FAD environment and the adaptability of the FAD pocket to ensure the divergent functions of the members of the PL-CRY family.
Collapse
Affiliation(s)
- Daniel Holub
- Department for Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute for Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
22
|
Tedeschi F, Rizzo P, Huong BTM, Czihal A, Rutten T, Altschmied L, Scharfenberg S, Grosse I, Becker C, Weigel D, Bäumlein H, Kuhlmann M. EFFECTOR OF TRANSCRIPTION factors are novel plant-specific regulators associated with genomic DNA methylation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:261-278. [PMID: 30252137 PMCID: PMC6585611 DOI: 10.1111/nph.15439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/01/2018] [Indexed: 05/02/2023]
Abstract
Plant-specific EFFECTORS OF TRANSCRIPTION (ET) are characterised by a variable number of highly conserved ET repeats, which are involved in zinc and DNA binding. In addition, ETs share a GIY-YIG domain, involved in DNA nicking activity. It was hypothesised that ETs might act as epigenetic regulators. Here, methylome, transcriptome and phenotypic analyses were performed to investigate the role of ET factors and their involvement in DNA methylation in Arabidopsis thaliana. Comparative DNA methylation and transcriptome analyses in flowers and seedlings of et mutants revealed ET-specific differentially expressed genes and mostly independently characteristic, ET-specific differentially methylated regions. Loss of ET function results in pleiotropic developmental defects. The accumulation of cyclobutane pyrimidine dimers after ultraviolet stress in et mutants suggests an ET function in DNA repair.
Collapse
Affiliation(s)
- Francesca Tedeschi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Paride Rizzo
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Bui Thi Mai Huong
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Andreas Czihal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | | | - Ivo Grosse
- Department of BioinformaticsMartin‐Luther‐University06120HalleGermany
| | - Claude Becker
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
- Gregor Mendel Institute of Molecular Plant Biology1030ViennaAustria
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental Biology72076TübingenGermany
| | - Helmut Bäumlein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)06466Seeland OT GaterslebenGermany
| |
Collapse
|
23
|
|
24
|
Serna-Galvis EA, Troyon JA, Giannakis S, Torres-Palma RA, Minero C, Vione D, Pulgarin C. Photoinduced disinfection in sunlit natural waters: Measurement of the second order inactivation rate constants between E. coli and photogenerated transient species. WATER RESEARCH 2018; 147:242-253. [PMID: 30315992 DOI: 10.1016/j.watres.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
This work uncovers the implications of the estimation of exogenous inactivation rates for E. coli after the initial lag phase, and presents a strategy for the determination of the second-order inactivation rate constants (k2nd) of these bacteria with relevant transient species promoted by solar light in natural waters. For this purpose, specific precursors were considered (nitrate ion, rose bengal, anthraquinone-2-sulfonate) as well as the respective photo-generated transient species (i.e., hydroxyl radical (•OH), singlet oxygen (1O2) and triplet excited states). Under these conditions and by using suitable reference compounds (acesulfame K and 2,4,6-trimethylphenol in different series of experiments), the k2nd values were obtained after developing a proper competition kinetics methodology. The k2nd values were (2.5 ± 0.9) × 1011, (3.8 ± 1.6) × 107 and (1.8 ± 0.7) × 1010 M-1 s-1 for the inactivation of E. coli by •OH, 1O2 and the triplet state of anthraquinone-2-sulfonate (3AQ2S*), respectively. The measurement of a reaction rate constant that is higher than the diffusion-control limit for small molecules in aqueous solution implies that bacteria behave differently from molecules, e.g., because of the large size difference between bacteria and the transients. The obtained k2nd values were used for the modeling of the bacteria inactivation kinetics in outdoor systems (both water bodies and SODIS bottles), limited to the exponential decay phase that follows the initial lag time. Afterwards, the role of dissolved organic matter (DOM) as precursor of transient species for bacterial elimination was systematically studied. The interaction of different sunlight wavelength regions (UVB, UV-A, blue, green and yellow light) with Suwannee river (SW) and Nordic Lake organic matter (ND) was tested, and the photoinduced disinfection exerted by DOM isolates (SW DOM, Suwannee River Humic Acid, Suwannee River Fulvic Acid or Pony Lake Fulvic Acid) was compared. It was not possible to achieve a complete differentiation of the individual contributions of DOM triplet states (3DOM*) and 1O2 to bacterial inactivation. However, the application of competition kinetics to E. coli under solar irradiation in the presence of SW led to a k2nd value of (2.17 ± 0.40) × 1010 M-1 s-1, which is very near the value for inactivation by 3AQ2S* and suggests that the latter behaved very similar to SW-3DOM* and was a good 3DOM* proxy in the present case. The determination of the second-order inactivation rate constants of E. coli with •OH, 3DOM* and 1O2 represents a significant progress in the understanding of the external inactivation pathways of bacteria. It also allows predicting that, after the lag phase, 1O2 would contribute to photoinactivation to a far lesser extent than •OH and 3DOM*.
Collapse
Affiliation(s)
- Efraim A Serna-Galvis
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland; Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jean A Troyon
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Stefanos Giannakis
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquía UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Claudio Minero
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via P. Giuria 5, 10125, Torino, Italy.
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Institute of Chemical Science and Engineering (ISIC), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Sorigué D, Légeret B, Cuiné S, Blangy S, Moulin S, Billon E, Richaud P, Brugière S, Couté Y, Nurizzo D, Müller P, Brettel K, Pignol D, Arnoux P, Li-Beisson Y, Peltier G, Beisson F. An algal photoenzyme converts fatty acids to hydrocarbons. Science 2018; 357:903-907. [PMID: 28860382 DOI: 10.1126/science.aan6349] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 12/31/2022]
Abstract
Although many organisms capture or respond to sunlight, few enzymes are known to be driven by light. Among these are DNA photolyases and the photosynthetic reaction centers. Here, we show that the microalga Chlorella variabilis NC64A harbors a photoenzyme that acts in lipid metabolism. This enzyme belongs to an algae-specific clade of the glucose-methanol-choline oxidoreductase family and catalyzes the decarboxylation of free fatty acids to n-alkanes or -alkenes in response to blue light. Crystal structure of the protein reveals a fatty acid-binding site in a hydrophobic tunnel leading to the light-capturing flavin adenine dinucleotide (FAD) cofactor. The decarboxylation is initiated through electron abstraction from the fatty acid by the photoexcited FAD with a quantum yield >80%. This photoenzyme, which we name fatty acid photodecarboxylase, may be useful in light-driven, bio-based production of hydrocarbons.
Collapse
Affiliation(s)
- Damien Sorigué
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Bertrand Légeret
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphan Cuiné
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Stéphanie Blangy
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Solène Moulin
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Emmanuelle Billon
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pierre Richaud
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Sabine Brugière
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, CEA and INSERM, BIG-BGE, F-38000, Grenoble, France
| | - Didier Nurizzo
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Pavel Müller
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Sud, University Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - David Pignol
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Pascal Arnoux
- BIAM, CEA, CNRS and Aix-Marseille University, UMR 7265 LBC, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Yonghua Li-Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Fred Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), CNRS and Aix-Marseille University, UMR 7265 LB3M, CEA Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
26
|
Shostak A. Human Clock Genes and Cancer. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Beal AP, Martin FD, Hale MC. Using RNA-seq to determine patterns of sex-bias in gene expression in the brain of the sex-role reversed Gulf Pipefish (Syngnathus scovelli). Mar Genomics 2018; 37:120-127. [DOI: 10.1016/j.margen.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
28
|
HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi. Sci Rep 2018; 8:605. [PMID: 29330515 PMCID: PMC5766585 DOI: 10.1038/s41598-017-19103-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/22/2017] [Indexed: 11/22/2022] Open
Abstract
The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.
Collapse
|
29
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Kavakli IH, Baris I, Tardu M, Gül Ş, Öner H, Çal S, Bulut S, Yarparvar D, Berkel Ç, Ustaoğlu P, Aydın C. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Photochem Photobiol 2017; 93:93-103. [DOI: 10.1111/php.12669] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Ibrahim Halil Kavakli
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Mehmet Tardu
- Department of Computational Science and Engineering; Koc University; Sariyer Istanbul Turkey
| | - Şeref Gül
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Haşimcan Öner
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Sibel Çal
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Selma Bulut
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Darya Yarparvar
- Department of Chemical and Biological Engineering; Koc University; Sariyer Istanbul Turkey
| | - Çağlar Berkel
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Pınar Ustaoğlu
- Department of Molecular Biology and Genetics; Koc University; Sariyer Istanbul Turkey
| | - Cihan Aydın
- Department of Molecular Biology and Genetics; Istanbul Medeniyet University; Uskudar Istanbul
| |
Collapse
|
31
|
Gong J, Yuan Y, Ward A, Kang L, Zhang B, Wu Z, Peng J, Feng Z, Liu J, Xu XZS. The C. elegans Taste Receptor Homolog LITE-1 Is a Photoreceptor. Cell 2016; 167:1252-1263.e10. [PMID: 27863243 PMCID: PMC5388352 DOI: 10.1016/j.cell.2016.10.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 09/05/2016] [Accepted: 10/28/2016] [Indexed: 01/20/2023]
Abstract
Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.
Collapse
Affiliation(s)
- Jianke Gong
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yiyuan Yuan
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Ward
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Kang
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bi Zhang
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaoyang Feng
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jianfeng Liu
- College of Life Science and Technology, Collaborative Innovation Center for Brain Science, and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - X Z Shawn Xu
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Shimomura A, Naka A, Miyazaki N, Moriuchi S, Arima S, Sato S, Hirakawa H, Hayashi M, Maymon M, Hirsch AM, Suzuki A. Blue Light Perception by Both Roots and Rhizobia Inhibits Nodule Formation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:786-796. [PMID: 27611874 DOI: 10.1094/mpmi-03-16-0048-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In many legumes, roots that are exposed to light do not form nodules. Here, we report that blue light inhibits nodulation in Lotus japonicus roots inoculated with Mesorhizobium loti. Using RNA interference, we suppressed the expression of the phototropin and cryptochrome genes in L. japonicus hairy roots. Under blue light, plants transformed with an empty vector did not develop nodules, whereas plants exhibiting suppressed expression of cry1 and cry2 genes formed nodules. We also measured rhizobial growth to investigate whether the inhibition of nodulation could be caused by a reduced population of rhizobia in response to light. Although red light had no effect on rhizobial growth, blue light had a strong inhibitory effect. Rhizobial growth under blue light was partially restored in signature-tagged mutagenesis (STM) strains in which LOV-HK/PAS- and photolyase-related genes were disrupted. Moreover, when Ljcry1A and Ljcry2B-silenced plants were inoculated with the STM strains, nodulation was additively increased. Our data show that blue light receptors in both the host plant and the symbiont have a profound effect on nodule development. The exact mechanism by which these photomorphogenetic responses function in the symbiosis needs further study, but they are clearly involved in optimizing legume nodulation.
Collapse
Affiliation(s)
- Aya Shimomura
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Ayumi Naka
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Nobuyuki Miyazaki
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Sayaka Moriuchi
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Susumu Arima
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| | - Shusei Sato
- 3 Department of Environmental Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideki Hirakawa
- 4 Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Makoto Hayashi
- 5 RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | - Maskit Maymon
- 6 Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095-1606, U.S.A.; and
| | - Ann M Hirsch
- 6 Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095-1606, U.S.A.; and
- 7 Molecular Biology Institute, University of California-Los Angeles
| | - Akihiro Suzuki
- 1 United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
- 2 Department of Agro-Environmental Sciences, Faculty of Agriculture, Saga University, Honjyo-machi, Saga, Saga 840-8502, Japan
| |
Collapse
|
33
|
Urban L, Charles F, de Miranda MRA, Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:1-11. [PMID: 27064192 DOI: 10.1016/j.plaphy.2016.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 05/01/2023]
Abstract
There is an abundant literature about the biological and physiological effects of UV-B light and the signaling and metabolic pathways it triggers and influences. Much less is known about UV-C light even though it seems to have a lot of potential for being effective in less time than UV-B light. UV-C light is known since long to exert direct and indirect inhibitory and damaging effects on living cells and is therefore commonly used for disinfection purposes. More recent observations suggest that UV-C light can also be exploited to stimulate the production of health-promoting phytochemicals, to extent shelf life of fruits and vegetables and to stimulate mechanisms of adaptation to biotic and abiotic stresses. Clearly some of these effects may be related to the stimulating effect of UV-C light on the production of reactive oxygen species (ROS) and to the stimulation of antioxidant molecules and mechanisms, although UV-C light could also trigger and regulate signaling pathways independently from its effect on the production of ROS. Our review clearly underlines the high potential of UV-C light in agriculture and therefore advocates for more work to be done to improve its efficiency and also to increase our understanding of the way UV-C light is perceived and influences the physiology of plants.
Collapse
Affiliation(s)
- Laurent Urban
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France.
| | - Florence Charles
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France
| | - Maria Raquel Alcântara de Miranda
- Laboratório de Fisiologia e Bioquímica de Frutos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Av. Mr. Hull 2297 Bl. 907, Campus do Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - Jawad Aarrouf
- Unité Mixte de Recherche Qualisud, Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays de Vaucluse, 301 rue Baruch de Spinoza, BP 2139 - 84916, Avignon cedex 9, France
| |
Collapse
|
34
|
Thompson CL, Selby CP, Van Gelder RN, Blaner WS, Lee J, Quadro L, Lai K, Gottesman ME, Sancar A. Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice. J Biol Rhythms 2016; 19:504-17. [PMID: 15523112 DOI: 10.1177/0748730404270519] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mice exhibit multiple nonvisual responses to light, including 1) photoentrainment of circadian rhythm; 2) “masking,” which refers to the acute effect of light on behavior, either negative (activity suppressing) or positive (activity inducing); and 3) pupillary constriction. In mammals, the eye is the sole photosensory organ for these responses, and it contains only 2 known classes of pigments: opsins and cryptochromes. No individual opsin or cryptochrome gene is essential for circadian photoreception, gene photoinduction, or masking. Previously, the authors found that mice lacking retinol-binding protein, in which dietary depletion of ocular retinaldehyde can be achieved, had normal light signaling to the SCN, as determined by per gene photoinduction. In the present study, the authors analyzed phototransduction to the SCN in vitamin A-replete and vitamin A-depleted rbp-/- and rbp-/-cry1-/-cry2-/- mice using molecular and behavioral end points. They found that vitamin A-depleted rbp-/- mice exhibit either normal photoentrainment or become diurnal. In contrast, while vitamin A-replete rbp-/-cry1-/-cry2-/- mice are light responsive (with reduced sensitivity), vitamin A-depleted rbp-/-cry1-/-cry2-/- mice, which presumably lack functional opsins and cryptochromes, lose most behavioral and molecular responses to light. These data demonstrate that both cryptochromes and opsins regulate nonvisual photoresponses.
Collapse
Affiliation(s)
- Carol L Thompson
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
36
|
Mei Q, Sadovy Y, Dvornyk V. Molecular evolution of cryptochromes in fishes. Gene 2015; 574:112-20. [PMID: 26238701 DOI: 10.1016/j.gene.2015.07.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/03/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
Abstract
Circadian rhythmicity is an endogenous biological cycle of about 24h, which exists in cyanobacteria and fungi, plants and animals. Circadian rhythms improve the adaptability of organisms in both constant and changing environments. The cryptochrome (CRY) is a key element of the circadian system in various animal groups including fishes. We studied evolution of cryptochromes in the phylogenetically and ecologically diverse fish taxa. The phylogenetic tree of fish Cry features two major clades: Cry1 and Cry2. Teleosts possess extra copies of Cry1 due to the genome duplication, which resulted in 3 main paralogous subfamilies (1A, 1B and 1C). Cry1 experienced further diversification through additional duplications in some taxa. 1A of Cry1 is more conserved than the other paralogs (dN=0.010 ± 0.003, π=0.119 ± 0.058). The analysis of selection indicated that, while the Cry homologs in fish evolved under the different levels of selection pressure, strong purifying selection (average ω=0.017) dominated in their evolution.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yvonne Sadovy
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, University of Hong Kong, Pokfulam Rd., Hong Kong, SAR, People's Republic of China; Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Chang J, Lu Y, Boswell WT, Boswell M, Caballero KL, Walter RB. Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:104-115. [PMID: 26460196 PMCID: PMC4662885 DOI: 10.1016/j.cbpc.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
Xiphophorus fishes represent a model often utilized to study UVB induced tumorigenesis. Recently, varied genetic responses to UVB exposure have been documented in the skin of female and male Xiphophorus, as have differences in UVB response in the skin of different parental species and for interspecies hybrids produced from crossing them. Additionally, it has been shown that exposure to "cool white" fluorescent light induces a shift in the genetic profiles of Xiphophorus skin that is nearly as robust as the UVB response, but involves a fundamentally different set of genes. Given these results and the use of Xiphophorus interspecies hybrids as an experimental model for UVB inducible melanoma, it is of interest to characterize genes that may be transcriptionally modulated in a wavelength specific manner. The global molecular genetic response of skin upon exposure of the intact animal to specific wavelengths of light has not been investigated. Herein, we report results of RNA-Seq experiments from the skin of male Xiphophorus maculatus Jp 163 B following exposure to varied 50nm wavelengths of light ranging from 300-600nm. We identify two specific wavelength regions, 350-400nm (88 genes) and 500-550nm (276 genes), that exhibit transcriptional modulation of a significantly greater number of transcripts than any of the other 50nm regions in the 300-600nm range. Observed functional sets of genes modulated within these two transcriptionally active light regions suggest different mechanisms of gene modulation.
Collapse
Affiliation(s)
- Jordan Chang
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Yuan Lu
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - William T Boswell
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Mikki Boswell
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Kaela L Caballero
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Ronald B Walter
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
38
|
van Wilderen LJGW, Silkstone G, Mason M, van Thor JJ, Wilson MT. Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen. FEBS Open Bio 2015; 5:885-92. [PMID: 26649273 PMCID: PMC4643184 DOI: 10.1016/j.fob.2015.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022] Open
Abstract
The flavin chromophore of the photoreceptor cryptochrome is reduced by light. The neutral flavin semiquinone is accumulated under anaerobic conditions. Fully-reduced flavin forms in presence of external reductant (anaerobic conditions). Stopped-flow experiments reveal light-independent recovery of the ground state. The dark recovery process requires molecular oxygen.
Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence (see P. Müller and M. Ahmad (2011) J. Biol. Chem. 286, 21033–21040 [1]). In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADH•. Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH−). Reaction of this with dioxygen leads to transient radical (FADH•) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer.
Collapse
Affiliation(s)
- Luuk J G W van Wilderen
- Division of Molecular Biosciences, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Gary Silkstone
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Maria Mason
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| | - Jasper J van Thor
- Division of Molecular Biosciences, Faculty of Natural Sciences, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Michael T Wilson
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, United Kingdom
| |
Collapse
|
39
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
40
|
Mei Q, Dvornyk V. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes. PLoS One 2015; 10:e0135940. [PMID: 26352435 PMCID: PMC4564169 DOI: 10.1371/journal.pone.0135940] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth. RESULTS We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6-4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000-541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth's geological history.
Collapse
Affiliation(s)
- Qiming Mei
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Volodymyr Dvornyk
- School of Biological Sciences, the University of Hong Kong, Pokfulam Rd., Hong Kong SAR, People’s Republic of China
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
- * E-mail:
| |
Collapse
|
41
|
Das S, Ganeriwal S, Mangwani N, Patel B. Survival and expression of DNA repair genes in marine bacteria Pseudomonas pseudoalcaligenes NP103 and P. aeruginosa N6P6 in response to environmental stressors. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes. DNA Repair (Amst) 2015; 28:37-47. [DOI: 10.1016/j.dnarep.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 12/27/2022]
|
43
|
Mo M, Yokawa K, Wan Y, Baluška F. How and why do root apices sense light under the soil surface? FRONTIERS IN PLANT SCIENCE 2015; 6:775. [PMID: 26442084 PMCID: PMC4585147 DOI: 10.3389/fpls.2015.00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/10/2015] [Indexed: 05/18/2023]
Abstract
Light can penetrate several centimeters below the soil surface. Growth, development and behavior of plant roots are markedly affected by light despite their underground lifestyle. Early studies provided contrasting information on the spatial and temporal distribution of light-sensing cells in the apical region of root apex and discussed the physiological roles of plant hormones in root responses to light. Recent biological and microscopic advances have improved our understanding of the processes involved in the sensing and transduction of light signals, resulting in subsequent physiological and behavioral responses in growing root apices. Here, we review current knowledge of cellular distributions of photoreceptors and their signal transduction pathways in diverse root tissues and root apex zones. We are discussing also the roles of auxin transporters in roots exposed to light, as well as interactions of light signal perceptions with sensing of other environmental factors relevant to plant roots.
Collapse
Affiliation(s)
- Mei Mo
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Yinglang Wan, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, 100083 Beijing, China, ; František Baluška, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany,
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
- *Correspondence: Yinglang Wan, College of Biological Sciences and Biotechnology, Beijing Forestry University, Qinghua East Road No. 35, 100083 Beijing, China, ; František Baluška, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany,
| |
Collapse
|
44
|
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:42-54. [PMID: 25087009 DOI: 10.1016/j.jplph.2014.06.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.
Collapse
Affiliation(s)
- Antonio Emidio Fortunato
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Rossella Annunziata
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Marianne Jaubert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| | - Angela Falciatore
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France; CNRS, UMR 7238, Computational and Quantitative Biology, F-75006 Paris, France.
| |
Collapse
|
45
|
DNA repair pathways in trypanosomatids: from DNA repair to drug resistance. Microbiol Mol Biol Rev 2014; 78:40-73. [PMID: 24600040 DOI: 10.1128/mmbr.00045-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All living organisms are continuously faced with endogenous or exogenous stress conditions affecting genome stability. DNA repair pathways act as a defense mechanism, which is essential to maintain DNA integrity. There is much to learn about the regulation and functions of these mechanisms, not only in human cells but also equally in divergent organisms. In trypanosomatids, DNA repair pathways protect the genome against mutations but also act as an adaptive mechanism to promote drug resistance. In this review, we scrutinize the molecular mechanisms and DNA repair pathways which are conserved in trypanosomatids. The recent advances made by the genome consortiums reveal the complete genomic sequences of several pathogens. Therefore, using bioinformatics and genomic sequences, we analyze the conservation of DNA repair proteins and their key protein motifs in trypanosomatids. We thus present a comprehensive view of DNA repair processes in trypanosomatids at the crossroads of DNA repair and drug resistance.
Collapse
|
46
|
Vass IZ, Kós PB, Knoppová J, Komenda J, Vass I. The cry-DASH cryptochrome encoded by the sll1629 gene in the cyanobacterium Synechocystis PCC 6803 is required for Photosystem II repair. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:318-26. [DOI: 10.1016/j.jphotobiol.2013.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
|
47
|
Deng Y, Yao J, Wang X, Guo H, Duan D. Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One 2012; 7:e39704. [PMID: 22761876 PMCID: PMC3384632 DOI: 10.1371/journal.pone.0039704] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/24/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Light has significant effect on the growth and development of Saccharina japonica, but there are limited reports on blue light mediated physiological responses and molecular mechanism. In this study, high-throughput paired-end RNA-sequencing (RNA-Seq) technology was applied to transcriptomes of S. japonica exposed to blue light and darkness, respectively. Comparative analysis of gene expression was designed to correlate the effect of blue light and physiological mechanisms on the molecular level. PRINCIPAL FINDINGS RNA-seq analysis yielded 70,497 non-redundant unigenes with an average length of 538 bp. 28,358 (40.2%) functional transcripts encoding regions were identified. Annotation through Swissprot, Nr, GO, KEGG, and COG databases showed 25,924 unigenes compared well (E-value <10(-5)) with known gene sequences, and 43 unigenes were putative BL photoreceptor. 10,440 unigenes were classified into Gene Ontology, and 8,476 unigenes were involved in 114 known pathways. Based on RPKM values, 11,660 (16.5%) differentially expressed unigenes were detected between blue light and dark exposed treatments, including 7,808 upregulated and 3,852 downregulated unigenes, suggesting S. japonica had undergone extensive transcriptome re-orchestration during BL exposure. The BL-specific responsive genes were indentified to function in processes of circadian rhythm, flavonoid biosynthesis, photoreactivation and photomorphogenesis. SIGNIFICANCE Transcriptome profiling of S. japonica provides clues to potential genes identification and future functional genomics study. The global survey of expression changes under blue light will enhance our understanding of molecular mechanisms underlying blue light induced responses in lower plants as well as facilitate future blue light photoreceptor identification and specific responsive pathways analysis.
Collapse
Affiliation(s)
- Yunyan Deng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jianting Yao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiuliang Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Guo
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Delin Duan
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
48
|
Kholmurodov K, Dushanov E, Yasuoka K. Molecular dynamics simulations of a DNA photolyase protein: High-mobility and conformational changes of the FAD molecule at low temperatures. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.33025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS One 2010; 5:e12632. [PMID: 20856823 PMCID: PMC2939397 DOI: 10.1371/journal.pone.0012632] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 08/14/2010] [Indexed: 11/19/2022] Open
Abstract
Background Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts. Principal Findings Four CRY2 SNPs spanning from intron 2 to downstream 3′UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006−0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3−1.4, P = 0.03−0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes. Conclusions We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.
Collapse
|
50
|
Carolaing Gabaldón M, Labrador L, Arraiz G, Concepción JL, Avilan L. Trypanosoma cruzi: A kinetoplast-associated protein of the photolyase/cryptochrome family. Exp Parasitol 2010; 124:350-6. [DOI: 10.1016/j.exppara.2009.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
|