1
|
Xue X, Wu D, Yao H, Wang K, Liu Z, Qu H. Mechanisms underlying the promotion of papillary thyroid carcinoma occurrence and progression by Hashimoto's thyroiditis. Front Endocrinol (Lausanne) 2025; 16:1551271. [PMID: 40230479 PMCID: PMC11994412 DOI: 10.3389/fendo.2025.1551271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC) co-occurrence raises significant questions regarding the immune microenvironment and molecular mechanisms in thyroid tumor development. This review synthesizes recent literature to explore the immune microenvironment and molecular characteristics of PTC patients with HT, and to analyze how these characteristics influence disease onset, progression, and treatment. We focused on the immunological and molecular biological mechanisms underlying the interaction between HT and PTC, particularly the recruitment and activation of immune cells and alterations in key signaling pathways. Studies indicate that PTC with HT exhibits distinctive immune microenvironmental features, such as the role of regulatory T cells (Tregs), activation of the IFN-γ-mediated CXCR3A-CXCL10 signaling axis, and NF-κB pathway activation. Additionally, thyroid-stimulating hormone (TSH) stimulation, RET/PTC gene rearrangements, and changes in STAT6 and DMBT1 gene expression levels also play significant roles in PTC development. Notably, while HT may increase the risk of PTC, patients with concurrent HT tend to have better prognoses. Future research should further elucidate the complex interplay between these two diseases to prevent the transformation of HT into PTC and offer more personalized treatment plans for PTC patients, including considerations for preoperative thyroidectomy and lymph node dissection strategies, as well as postoperative TSH suppression therapy risk assessment. This review underscores the importance of a deeper understanding of HT and PTC interactions and offers new perspectives for future research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaohui Xue
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Deqi Wu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hangyu Yao
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kainan Wang
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Department of Hepatobiliary Surgery, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijiang Qu
- Department of Thyroid and Breast Diagnosis and Treatment Center, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Masone S, Velotti N, Savastano S, Filice E, Serao R, Vitiello A, Berardi G, Schiavone V, Musella M. Morbid Obesity and Thyroid Cancer Rate. A Review of Literature. J Clin Med 2021; 10:1894. [PMID: 33925549 PMCID: PMC8123763 DOI: 10.3390/jcm10091894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 02/08/2023] Open
Abstract
In the past three decades, several recent studies have analyzed the alarming increase of obesity worldwide, and it has been well established that the risk of many types of malignancies is increased in obese individuals; in the same period, thyroid cancer has become the fastest growing cancer of all malignancies. We investigated the current literature to underline the presence of a connection between excess body weight or Body Mass Index (BMI) and risk of thyroid cancer. Previous studies stated that the contraposition between adipocytes and adipose-resident immune cells enhances immune cell production of multiple pro-inflammatory factors with subsequent induction of hyperlipidemia and vascular injury; these factors are all associated with oxidative stress and cancer development and/or progression. Moreover, recent studies made clear the mitogenic and tumorigenic action of insulin, carried out through the stimulation of mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase/AKT (PI3K/AKT) pathways, which is correlated to the hyperinsulinemia and hyperglycemia found in obese population. Our findings suggest that obesity and excess body weight are related to an increased risk of thyroid cancer and that the mechanisms that combine overweight with this cancer should be searched for in the adipokine pathways and chronic inflammation onset.
Collapse
Affiliation(s)
- Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (S.S.); (E.F.)
| | - Nunzio Velotti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (S.S.); (E.F.)
| | - Emanuele Filice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (S.S.); (E.F.)
| | - Rossana Serao
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| | - Antonio Vitiello
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| | - Giovanna Berardi
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| | - Vincenzo Schiavone
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| | - Mario Musella
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini n. 5, 80131 Naples, Italy; (N.V.); (R.S.); (A.V.); (G.B.); (V.S.); (M.M.)
| |
Collapse
|
3
|
Allocca C, Cirafici AM, Laukkanen MO, Castellone MD. Serine 897 Phosphorylation of EPHA2 Is Involved in Signaling of Oncogenic ERK1/2 Drivers in Thyroid Cancer Cells. Thyroid 2021; 31:76-87. [PMID: 32762307 DOI: 10.1089/thy.2019.0728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Phosphorylation of the intracellular domain of the EPHA2 receptor tyrosine kinase (RTK) on serine 897 (S897) has been demonstrated to mediate EPHA2 oncogenic activity. Here, we show that in thyroid cancer cells harboring driver oncogenes that signal through the extracellular regulated kinase (ERK1/2) signaling pathway [rearranged RET RTK (RET/PTC), KRAS(G12R), or BRAFV600E oncogenes], EPHA2 is robustly phosphorylated on S897. EPHA2 S897 is embedded in a consensus sequence for phosphorylation by the AGC family kinases, including p90RSK (ribosomal protein S6 kinase), a direct ERK1/2 target. Methods: We show that recombinant p90RSK phosphorylates in vitro EPHA2 S897 and that treatment with chemical inhibitors targeting p90RSK or other components of the ERK1/2 pathway blunts S897 phosphorylation. Results: RNA interference-mediated knockdown combined with rescue experiments demonstrated that EPHA2 S897 phosphorylation mediates thyroid cancer cell proliferation and motility. Conclusions: These findings point to EPHA2 S897 as a crucial mediator of the oncogenic activity of the ERK1/2 signaling cascade in thyroid cancer.
Collapse
Affiliation(s)
- Chiara Allocca
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Anna Maria Cirafici
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" (IEOS), CNR, Naples, Italy
| | | | | |
Collapse
|
4
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
5
|
Flavin R, Smyth P, Crotty P, Finn S, Cahill S, Denning K, O'Regan E, O'Leary J, Sheils O. BRAF T1799A Mutation Occurring in a Case of Malignant Struma Ovarii. Int J Surg Pathol 2016; 15:116-20. [PMID: 17478764 DOI: 10.1177/1066896906299131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Struma ovarii is an extremely rare tumor that occasionally undergoes malignant transformation. Because struma ovarii is composed of thyroid tissue, it is conceivable that the pathogenetic events involved in thyroid follicular transformation may take place also in struma ovarii. The authors describe a case of a classical variant of papillary thyroid carcinoma arising in a struma ovarii of a 22-year-old female. The tumor was heterozygous for BRAF T1799A mutation. No ret/ PTC-1 or ret/PTC-3 rearrangements were detected. This finding would suggest that malignant struma ovarii is similar histologically and genetically to primary papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Richard Flavin
- Departments of Histopathology, St. James's Hospital, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ward LS. Immune response in thyroid cancer: widening the boundaries. SCIENTIFICA 2014; 2014:125450. [PMID: 25328756 PMCID: PMC4190695 DOI: 10.1155/2014/125450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/19/2014] [Indexed: 05/10/2023]
Abstract
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy.
Collapse
Affiliation(s)
- Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessália Vieira de Camargo 126, Barão Geraldo,
13083-970 Campinas, SP, Brazil
- *Laura Sterian Ward:
| |
Collapse
|
7
|
Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol 2013; 5:a009233. [PMID: 24296167 DOI: 10.1101/cshperspect.a009233] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RET (rearranged during transfection) is a receptor tyrosine kinase involved in the development of neural crest derived cell lineages, kidney, and male germ cells. Different human cancers, including papillary and medullary thyroid carcinomas, lung adenocarcinomas, and myeloproliferative disorders display gain-of-function mutations in RET. Accordingly, RET protein has become a promising molecular target for cancer treatment.
Collapse
Affiliation(s)
- Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Universita' degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | |
Collapse
|
8
|
Abstract
Specific thyroid cancer histotypes, such as papillary and medullary thyroid carcinoma, display genetic rearrangements or point mutations of the RET gene, resulting in its oncogenic conversion. The molecular mechanisms mediating RET rearrangement with other genes and the role of partner genes in tumorigenesis have been described. In addition, the RET protein has become a molecular target for medullary thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Francesca Carlomagno
- *Francesca Carlomagno, Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, IT–80123 Napoli (Italy), Tel. +39 081 746 3603, E-Mail
| |
Collapse
|
9
|
Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. J Biosci 2011; 36:639-48. [DOI: 10.1007/s12038-011-9100-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Gonçalves AP, Videira A, Soares P, Máximo V. Orthovanadate-induced cell death in RET/PTC1-harboring cancer cells involves the activation of caspases and altered signaling through PI3K/Akt/mTOR. Life Sci 2011; 89:371-7. [DOI: 10.1016/j.lfs.2011.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 06/06/2011] [Accepted: 07/06/2011] [Indexed: 01/15/2023]
|
11
|
Cunha LL, Ferreira RC, Marcello MA, Vassallo J, Ward LS. Clinical and pathological implications of concurrent autoimmune thyroid disorders and papillary thyroid cancer. J Thyroid Res 2011; 2011:387062. [PMID: 21403889 PMCID: PMC3043285 DOI: 10.4061/2011/387062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/26/2010] [Accepted: 12/16/2010] [Indexed: 01/13/2023] Open
Abstract
Cooccurrences of chronic lymphocytic thyroiditis (CLT) and thyroid cancer (DTC) have been repeatedly reported. Both CLT and DTC, mainly papillary thyroid carcinoma (PTC), share some epidemiological and molecular features. In fact, thyroid lymphocytic inflammatory reaction has been observed in association with PTC at variable frequency, although the precise relationship between the two diseases is still debated. It also remains a matter of debate whether the association with a CLT or even an autoimmune disorder could influence the prognosis of PTC. A better understanding about clinical implications of autoimmunity in concurrent thyroid cancer could raise new insights of thyroid cancer immunotherapy. In addition, elucidating the molecular mechanisms involved in autoimmune disease and concurrent cancer allowed us to identify new therapeutic strategies against thyroid cancer. The objective of this article was to review recent literature on the association of these disorders and its potential significance.
Collapse
Affiliation(s)
- L L Cunha
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), 126 Tessalia Vieira de Camargo St., Cidade Universitária, Barão Geraldo, Campinas, 13083-970 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
12
|
Russo MA, Arciuch VGA, Di Cristofano A. Mouse models of follicular and papillary thyroid cancer progression. Front Endocrinol (Lausanne) 2011; 2:119. [PMID: 22654848 PMCID: PMC3356054 DOI: 10.3389/fendo.2011.00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/30/2011] [Indexed: 12/15/2022] Open
Abstract
A significant number of well-differentiated thyroid cancers progress or recur, becoming resistant to current therapeutic options. Mouse models recapitulating the genetic and histological features of advanced thyroid cancer have been an invaluable tool to dissect the mechanisms involved in the progression from indolent, well differentiated tumors to aggressive, poorly differentiated carcinomas, and to identify novel therapeutic targets. In this review, we focus on the lessons learned from models of epithelial cell-derived thyroid cancer showing progression from hyperplastic lesions to locally invasive and metastatic carcinomas.
Collapse
Affiliation(s)
- Marika A. Russo
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Valeria G. Antico Arciuch
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineBronx, NY, USA
- *Correspondence: Antonio Di Cristofano, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Price Center for Genetic and Translational Medicine, 1301 Morris Park Avenue, Room 302, Bronx, NY 10461, USA. e-mail:
| |
Collapse
|
13
|
Abstract
Ras GTPases are best known for their ability to serve as molecular switches regulating cell growth, differentiation and survival. Gene mutations that result in expression of constitutively active forms of Ras have been linked to oncogenesis in animal models and humans. However, over the past two decades, evidence has gradually accumulated to support a paradoxical role for Ras proteins in the initiation of cell death pathways. In this review we survey the literature pointing to the ability of activated Ras to promote cell death under conditions where cancer cells encounter apoptotic stimuli or Ras is ectopically expressed. In some of these cases Ras acts through known effectors and well defined apoptotic death pathways. However, in other cases it appears that Ras operates by triggering novel non-apoptotic death mechanisms that are just beginning to be characterized. Understanding these mechanisms and the factors that go into changing the nature of Ras signaling from pro-survival to pro-death could set the stage for development of novel therapeutic approaches aimed at manipulating pro-death Ras signaling pathways in cancer.
Collapse
Affiliation(s)
- Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | |
Collapse
|
14
|
Guarino V, Castellone MD, Avilla E, Melillo RM. Thyroid cancer and inflammation. Mol Cell Endocrinol 2010; 321:94-102. [PMID: 19835928 DOI: 10.1016/j.mce.2009.10.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 01/22/2023]
Abstract
Some cancer types are strongly associated with chronic inflammatory or infectious diseases whereas others are not, but an inflammatory component is present in most human neoplastic lesions. This review focuses on various aspects of thyroid cancer and inflammation. The incidence of thyroid cancer, in particular of well-differentiated papillary thyroid carcinomas (PTCs), is increased in autoimmune thyroid diseases such as Hashimoto's thyroiditis. Thyroid cancer often has an inflammatory cell infiltrate, which includes lymphocytes, macrophages, dendritic cells and mast cells, whose role in thyroid cancer is still not completely understood. However, most experimental evidence suggests these cells exert a protumorigenic function. Moreover, oncoproteins typically expressed in human PTCs, such as RET/PTC, RAS, and BRAF, trigger a proinflammatory programme in thyreocytes. These data suggest that inflammatory molecules are promising targets for thyroid cancer therapy.
Collapse
Affiliation(s)
- Valentina Guarino
- Dipartimento di Biologia e Patologia Cellulare e Molecolare/Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G. Salvatore, Italy
| | | | | | | |
Collapse
|
15
|
Lodyga M, De Falco V, Bai XH, Kapus A, Melillo RM, Santoro M, Liu M. XB130, a tissue-specific adaptor protein that couples the RET/PTC oncogenic kinase to PI 3-kinase pathway. Oncogene 2008; 28:937-49. [PMID: 19060924 DOI: 10.1038/onc.2008.447] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
XB130 is a recently cloned 130 kDa-adaptor protein and Src kinase substrate, structurally similar to actin-filament-associated protein. Here we show that XB130 is predominantly expressed in the thyroid. Given that XB130 is a thyroid-specific tyrosine kinase substrate, we asked whether it is targeted by RET/PTC, a genetically rearranged, constitutively active, thyroid-specific tyrosine kinase that plays a pathogenic role in papillary thyroid cancer. RET/PTC induced robust tyrosine phosphorylation of XB130, which promoted its subsequent association with the p85alpha subunit of phosphatidylinositol 3-kinase (PI 3-kinase). We identified tyrosine 54 of XB130 as the major target of RET/PTC-mediated phosphorylation and a critical binding site for the SH2 domains of p85alpha. Importantly, downregulation of XB130 in TPC1 papillary thyroid cancer cells, harboring the RET/PTC1 kinase, strongly reduced Akt activity without altering ERK1/2 phosphorylation, and concomitantly inhibited cell-cycle progression and survival in suspension. In conclusion, XB130 is a novel substrate of the RET/PTC kinase that links RET/PTC signaling to PI 3-kinase activation, and thereby plays an important role in sustaining proliferation and survival of thyroid tumor cells.
Collapse
Affiliation(s)
- M Lodyga
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Numerous biologic processes and such diseases as cancer depend on activation of tyrosine kinase receptors. The RET tyrosine kinase receptor was discovered two decades ago as a transforming gene and was subsequently implicated in the formation of papillary and medullary thyroid carcinoma. This article examines the data about the mechanism of activation of downstream signal transduction pathways by RET oncoproteins. Collectively, these findings have advanced the understanding of the processes underlying thyroid carcinoma formation.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G Salvatore, Università di Napoli Federico II, Naples, Italy
| | | |
Collapse
|
17
|
Mariggiò S, Filippi BM, Iurisci C, Dragani LK, De Falco V, Santoro M, Corda D. Cytosolic phospholipase A2 alpha regulates cell growth in RET/PTC-transformed thyroid cells. Cancer Res 2007; 67:11769-78. [PMID: 18089807 DOI: 10.1158/0008-5472.can-07-1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modulation of cytosolic phospholipase A(2) (PLA(2)) expression levels and production of its metabolites have been reported in several tumor types, indicating involvement of arachidonic acid and its derivatives in tumorigenesis. Following our demonstration that the PLA(2) group IV isoform alpha (PLA(2)IV alpha) controls TSH-independent growth of normal thyroid (PCCl(3)) cells, we have investigated the mitogenic role of PLA(2)IV alpha in rat thyroid cells transformed by the RET/PTC oncogenes (PC-PTC cells). We now report that PLA(2)IV alpha acts downstream of the RET/PTC oncogenes in a novel pathway controlling RET-dependent cell proliferation. In addition, we show that PLA(2)IV alpha is in its phosphorylated/active form not only in RET/PTC-transformed cells and in cells derived from human papillary carcinomas but also in lysates from tumor tissues, thus relating constitutive activation of PLA(2)IV alpha to RET/PTC-dependent tumorigenesis. Moreover, p38 stress-activated protein kinase is the downstream effector of RET/PTC that is responsible for PLA(2)IV alpha phosphorylation and activity. In summary, our data elucidate a novel mechanism in the control of thyroid tumor cell growth that is induced by the RET/PTC oncogenes and which is distinguishable from that of other oncogenes, such as BRAF. This mechanism is mediated by PLA(2)IV alpha and should be amenable to targeted pharmacologic intervention.
Collapse
Affiliation(s)
- Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Minopoli G, Passaro F, Aloia L, Carlomagno F, Melillo RM, Santoro M, Forzati F, Zambrano N, Russo T. Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein. NEURODEGENER DIS 2007; 4:94-100. [PMID: 17596703 DOI: 10.1159/000101833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.
Collapse
Affiliation(s)
- Giuseppina Minopoli
- CEINGE Biotecnologie Avanzate, Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, Batt D, Fagin JA. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res 2006; 12:1785-93. [PMID: 16551863 DOI: 10.1158/1078-0432.ccr-05-1729] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Papillary thyroid carcinomas are associated with nonoverlapping activating mutations of RET, NTRK, RAS and BRAF, which altogether are present in approximately 70% of cases. We postulated that compounds that inhibit a distal effector in the mitogen-activated protein kinase (MAPK) pathway would inhibit growth and tumorigenicity of human thyroid cancer cell lines with mutations of RET or BRAF. EXPERIMENTAL DESIGN AND RESULTS We first examined the effects of AAL-881 and LBT-613, two inhibitors of RAF kinase activity, on RAF-MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK activation in thyroid PCCL3 cells after conditional induction of expression of H-RAS(G12V) or BRAF(V600E). Both compounds blocked RAS and RAF-dependent MEK and ERK phosphorylation. They also potently blocked MEK phosphorylation in human thyroid cancer cell lines with either RET/PTC1 (TPC1) or BRAF(V600E) (NPA, ARO, and FRO) mutations. Inhibition of ERK phosphorylation was transient in TPC1 and ARO cells, with recovery of ERK phosphorylation associated with concomitant down-regulation of the MAPK phosphatases MKP-3 and DUSP5. Both compounds inhibited growth of all cell lines, with LBT-613 being approximately 10-fold more potent than AAL-881. TPC1 cells were more sensitive to growth inhibition (IC50 0.1-0.25 and approximately 0.05 micromol/L for AAL-881 and LBT-613, respectively) than BRAF + lines (IC50 2.5-5 and 0.1-0.5 micromol/L, respectively). Growth inhibition was associated with G1 arrest, and induction of cell death. Growth of ARO and NPA tumor xenografts was inhibited by LBT-613 or AAL-881. MEK and ERK phosphorylation was inhibited by both compounds in ARO but not in NPA cell xenografts. CONCLUSIONS Compounds that inhibit kinase activity are effective growth inhibitors for poorly differentiated thyroid cancer cell lines with either RET or RAF mutations, and hold promise for treatment of most forms of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Bin Ouyang
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0547, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mesa C, Mirza M, Mitsutake N, Sartor M, Medvedovic M, Tomlinson C, Knauf JA, Weber GF, Fagin JA. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 2006; 66:6521-9. [PMID: 16818623 DOI: 10.1158/0008-5472.can-06-0739] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Papillary thyroid cancers (PTC) are associated with nonoverlapping mutations of genes coding for mitogen-activated protein kinase signaling effectors (i.e., the TK receptors RET or NTRK and the signaling proteins RAS and BRAF). We examined the pattern of gene expression after activation of these oncoproteins in thyroid PCCL3 cells, with the goal of identifying pathways or gene subsets that may account for the phenotypic differences observed in human cancers. We hybridized cDNA from cells treated with or without doxycycline to induce expression of BRAF(V600E), RET/PTC3, or RET/PTC3 with small interfering RNA-mediated knockdown of BRAF, respectively, to slides arrayed with a rat 70-mer oligonucleotide library consisting of 27,342 oligos. Among the RET/PTC3-induced genes, 2,552 did not require BRAF as they were similarly regulated by RET/PTC3 with or without BRAF knockdown and not by expression of BRAF(V600E). Immune response and IFN-related genes were highly represented in this group. About 24% of RET/PTC3-regulated genes were BRAF dependent, as they were similarly modified by RET/PTC3 and BRAF(V600E) but not in cells expressing RET/PTC3 with knockdown of BRAF. A gene cluster coding for components of the mitochondrial electron transport chain pathway was down-regulated in this group, potentially altering regulation of cell viability. Metalloproteinases were also preferentially induced by BRAF, particularly matrix metalloproteinase 3 (MMP3), MMP9, and MMP13. Accordingly, conditional expression of BRAF was associated with markedly increased invasion into Matrigel compared with cells expressing RET/PTC3. The preferential induction of MMPs by BRAF could explain in part the more invasive behavior of thyroid cancers with BRAF mutations.
Collapse
Affiliation(s)
- Cleo Mesa
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Falco V, Guarino V, Malorni L, Cirafici AM, Troglio F, Erreni M, Pelicci G, Santoro M, Melillo RM. RAI(ShcC/N-Shc)-dependent recruitment of GAB 1 to RET oncoproteins potentiates PI 3-K signalling in thyroid tumors. Oncogene 2005; 24:6303-13. [PMID: 15940252 DOI: 10.1038/sj.onc.1208776] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RAI, also named ShcC/N-Shc, one of the members of the Shc proteins family, is a substrate of the RET receptor tyrosine kinase. Here, we show that RAI forms a protein complex with both RET/MEN 2 A and RET/PTC oncoproteins. By co-immunoprecipitation, we found that RAI associates with the Grb 2-associated binder 1 (GAB 1) adapter. This association is constitutive, but, in the presence of RET oncoproteins, both RAI and GAB 1 are tyrosine-phosphorylated, and the stoichiometry of this interaction remarkably increases. Consequently, the p 85 regulatory subunit of phosphatidylinositol-3 kinase (PI-3 K) is recruited to the complex, and its downstream effector Akt is activated. We show that human thyroid cancer cell lines derived from papillary or medullary thyroid carcinoma (PTC or MTC) carrying, respectively, RET/PTC and RET/MEN 2 A oncoproteins express RAI proteins. We also show that human PTC samples express higher levels of RAI, when compared to normal thyroid tissue. In thyroid cells expressing RET/PTC 1, ectopic expression of RAI protects cells from apoptosis; on the other hand, the silencing of endogenous RAI by small inhibitory duplex RNAs in a PTC cell line that expresses endogenous RET/PTC 1, increases the rate of spontaneous apoptosis. These data suggest that RAI is a critical substrate for RET oncoproteins in thyroid carcinomas.
Collapse
Affiliation(s)
- Valentina De Falco
- Instituto di Endocrinologia ed Oncologia Sperimentale del CNR 'G. Salvatore', c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Judy L Meinkoth
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
24
|
Domingues R, Mendonça E, Sobrinho L, Bugalho MJ. Searching for RET/PTC rearrangements and BRAF V599E mutation in thyroid aspirates might contribute to establish a preoperative diagnosis of papillary thyroid carcinoma. Cytopathology 2005; 16:27-31. [PMID: 15859312 DOI: 10.1111/j.1365-2303.2004.00223.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Searching for multiple molecular markers in thyroid aspirates appears to be a promising approach for establishing a preoperative diagnosis of papillary thyroid carcinoma (PTC). METHODS Based on this hypothesis, a total of 63 samples from 55 patients, were collected at random. RNA was extracted from the residue cells inside the needle used for fine needle aspiration cytology (FNAC) and thereafter molecular analysis was carried out both for RETrearrangements (type 1, 2, 3) and BRAF codon 599 mutation molecule. Results were compared with the cytological and histopathological diagnoses in 24 patients submitted to surgery. RESULTS 58% PTCs presented a genetic alteration either RET/PTC rearrangement, BRAF V599E mutation or both: three cases of PTCs (25%) presented a RET/PTC rearrangement; three cases of PTCs (25%) presented a BRAF V599E mutation and in one case (8%) both alterations were identified. CONCLUSIONS The present results suggest that searching for multiple molecular markers in thyroid aspirates may enhance the accuracy of FNAC and refine preoperative diagnosis of PTC.
Collapse
Affiliation(s)
- R Domingues
- Centro de Investigação de Patobiologia Molecular, Instituto Português de Oncologia Francisco Gentil, Centro Regional de Oncologia de Lisboa, SA, Lisboa, Portugal.
| | | | | | | |
Collapse
|
25
|
Santiago-Walker AE, Fikaris AJ, Kao GD, Brown EJ, Kazanietz MG, Meinkoth JL. Protein kinase C delta stimulates apoptosis by initiating G1 phase cell cycle progression and S phase arrest. J Biol Chem 2005; 280:32107-14. [PMID: 16051606 DOI: 10.1074/jbc.m504432200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of protein kinase C delta (PKCdelta) stimulates apoptosis in a wide variety of cell types through a mechanism that is incompletely understood. PKCdelta-deficient cells are impaired in their response to DNA damage-induced apoptosis, suggesting that PKCdelta is required to mount an appropriate apoptotic response under conditions of stress. The mechanism through which it does so remains elusive. In addition to effects on cell survival, PKCdelta elicits pleiotropic effects on cellular proliferation. We now provide the first evidence that the ability of PKCdelta to stimulate apoptosis is intimately linked to its ability to stimulate G(1) phase cell cycle progression. Using an adenoviral-based expression system to express PKCalpha,-delta, and -epsilon in epithelial cells, we demonstrate that a modest increase in PKCdelta activity selectively stimulates quiescent cells to initiate G(1) phase cell cycle progression. Rather than completing the cell cycle, PKCdelta-infected cells arrest in S phase, an event that triggers caspase-dependent apoptotic cell death. Apoptosis was preceded by the activation of cell cycle checkpoints, culminating in the phosphorylation of Chk-1 and p53. Strikingly, blockade of S phase entry using the phosphatidylinositol 3-kinase inhibitor LY294002 prevented checkpoint activation and apoptosis. In contrast, inhibitors of mitogen-activated protein kinase cascades failed to prevent apoptosis. These findings demonstrate that the biological effects of PKCdelta can be extended to include positive regulation of G(1) phase cell cycle progression. Importantly, they reveal the existence of a novel, cell cycle-dependent mechanism through which PKCdelta stimulates cell death.
Collapse
Affiliation(s)
- Ademi E Santiago-Walker
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6061, USA
| | | | | | | | | | | |
Collapse
|
26
|
Knauf JA, Ma X, Smith EP, Zhang L, Mitsutake N, Liao XH, Refetoff S, Nikiforov YE, Fagin JA. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res 2005; 65:4238-45. [PMID: 15899815 DOI: 10.1158/0008-5472.can-05-0047] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The BRAFT1799A mutation is the most common genetic alteration in papillary thyroid carcinomas (PTC). It is also found in a subset of papillary microcarcinomas, consistent with a role in tumor initiation. PTCs with BRAFT1799A are often invasive and present at a more advanced stage. BRAFT1799A is found with high prevalence in tall-cell variant PTCs and in poorly differentiated and undifferentiated carcinomas arising from PTCs. To explore the role of BRAFV600E in thyroid cancer pathogenesis, we targeted its expression to thyroid cells of transgenic FVB/N mice with a bovine thyroglobulin promoter. Two Tg-BRAFV600E lines (Tg-BRAF2 and Tg-BRAF3) were propagated for detailed analysis. Tg-BRAF2 and Tg-BRAF3 mice had increased thyroid-stimulating hormone levels (>7- and approximately 2-fold, respectively). This likely resulted from decreased expression of thyroid peroxidase, sodium iodine symporter, and thyroglobulin. All lines seemed to successfully compensate for thyroid dysfunction, as serum thyroxine/triiodothyronine and somatic growth were normal. Thyroid glands of transgenic mice were markedly enlarged by 5 weeks of age. In Tg-BRAF2 mice, PTCs were present at 12 and 22 weeks in 14 of 15 and 13 of 14 animals, respectively, with 83% exhibiting tall-cell features, 83% areas of invasion, and 48% foci of poorly differentiated carcinoma. Tg-BRAF3 mice also developed PTCs, albeit with lower prevalence (3 of 12 and 4 of 9 at 12 and 22 weeks, respectively). Tg-BRAF2 mice had a 30% decrease in survival at 5 months. In summary, thyroid-specific expression of BRAFV600E induces goiter and invasive PTC, which transitions to poorly differentiated carcinomas. This closely recapitulates the phenotype of BRAF-positive PTCs in humans and supports a key role for this oncogene in its pathogenesis.
Collapse
Affiliation(s)
- Jeffrey A Knauf
- Division of Endocrinology and Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0547, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Smyth P, Finn S, Cahill S, O'Regan E, Flavin R, O'Leary JJ, Sheils O. ret/PTC and BRAF act as distinct molecular, time-dependant triggers in a sporadic Irish cohort of papillary thyroid carcinoma. Int J Surg Pathol 2005; 13:1-8. [PMID: 15735849 DOI: 10.1177/106689690501300101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to assess BRAF mutation rates in various thyroid tissues and to investigate if concomitant mutations with ret/PTC activation occurred in inflammatory and neoplastic lesions. To this end, we developed a novel Taqman based screening assay for the common T1799A BRAF mutation. Heterozygous T1799A mutations were detected in 13 of 34 (44%) papillary thyroid carcinomas (PTCs) tested. No such mutations were detected in the other tissue types tested. Concomitant presence of both oncogenes was reported in 5 of the 34 PTCs. A significant temporal trend was observed, with ret/PTC chimera detected for the most part before 1997 and BRAF mutations being more prevalent after 1997. The results suggest that some environmental/etiological agent(s) may have influenced the pathobiology of thyroid tumor development, among the population examined, over time.
Collapse
Affiliation(s)
- P Smyth
- Department of Histopathology, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Six multiple endocrine neoplasia (MEN) syndromes have received a level of attention that might seem disproportionate to their low prevalence. The attention has been given because their hormonal excesses cause striking metabolic expressions and because they might clarify pathways disrupted in more common tumours. The recent discovery of the main gene in each MEN syndrome has furthered our understanding of not only hereditary but also sporadic tumours and has fostered new avenues of research.
Collapse
Affiliation(s)
- Stephen J Marx
- National Institutes of Health, Building 10, Room 9C-101, Bethesda, Maryland 20892-1802, USA.
| |
Collapse
|
29
|
Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A, Santoro M. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 2005. [DOI: 10.1172/jci200522758] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
30
|
Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A, Santoro M. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 2005; 115:1068-81. [PMID: 15761501 PMCID: PMC1062891 DOI: 10.1172/jci22758] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 01/25/2005] [Indexed: 12/30/2022] Open
Abstract
In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade.
Collapse
Affiliation(s)
- Rosa Marina Melillo
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G. Salvatore, Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Venkateswaran A, Marsee DK, Green SH, Jhiang SM. Forskolin, 8-Br-3',5'-cyclic adenosine 5'-monophosphate, and catalytic protein kinase A expression in the nucleus increase radioiodide uptake and sodium/iodide symporter protein levels in RET/PTC1-expressing cells. J Clin Endocrinol Metab 2004; 89:6168-72. [PMID: 15579773 DOI: 10.1210/jc.2004-1414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RET/PTC1, a thyroid-specific oncogene, has been reported to down-regulate sodium/iodide symporter (NIS) expression and function in vitro and in vivo. Recently, RET/PTC1 has been shown to interfere with TSH signaling at multiple levels in thyroid cells. The objective of this study was to investigate whether RET/PTC1-mediated NIS reduction can be rescued by activating cAMP-protein kinase A (PKA) pathways. We showed that both forskolin and 8-Br-cAMP increase radioiodide uptake and NIS protein in RET/PTC1-expressing cells to the same extent as the parental PC Cl 3 cells. We found that RET/PTC1 decreases nuclear localization of catalytic PKA, and forskolin treatment was able to counteract this RET/PTC1 effect. Furthermore, transient expression of catalytic PKA in the nucleus increased radioiodide uptake and NIS protein in RET/PTC1-expressing cells. Taken together, these studies suggest that RET/PTC1 down-regulates NIS expression by interrupting TSH/cAMP signaling, and this RET/PTC1 effect can be reversed by activating cAMP-PKA pathways.
Collapse
Affiliation(s)
- Anjli Venkateswaran
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
32
|
Hwang ES, Kim DW, Hwang JH, Jung HS, Suh JM, Park YJ, Chung HK, Song JH, Park KC, Park SH, Yun HJ, Kim JM, Shong M. Regulation of Signal Transducer and Activator of Transcription 1 (STAT1) and STAT1-Dependent Genes by RET/PTC (Rearranged in Transformation/Papillary Thyroid Carcinoma) Oncogenic Tyrosine Kinases. Mol Endocrinol 2004; 18:2672-84. [PMID: 15297606 DOI: 10.1210/me.2004-0168] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Chimeric RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncoproteins are constitutively active tyrosine kinases found in thyroid papillary carcinoma and nonneoplastic Hashimoto’s thyroiditis. Although several proteins have been identified to be substrates of RET/PTC kinases, the pathogenic roles played by RET/PTC in malignant and benign thyroid diseases and the molecular mechanisms that are involved are not fully understood. We found that RET/PTC expression phosphorylates the Y701 residue of STAT1, a type II interferon (IFN)-responsive protein. RET/PTC-mediated signal transducer and activator of transcription 1 (STAT1) phosphorylation requires RET/PTC kinase activity to be intact but other tyrosine kinases, such as Janus kinases or c-Src, are not involved. RET/PTC-induced STAT1 transcriptional activation was not inhibited by suppressor of cytokine signaling-1 or -3, or protein inhibitors of activated STAT3 [(protein inhibitor of activated STAT (PIAS3)], but PIAS1 strongly repressed the RET/PTC-induced transcriptional activity of STAT1. RET/PTC-induced STAT1 activation caused IFN regulatory factor-1 expression. We found that STAT1 and IFN regulatory factor-1 cooperated to significantly increase transcription from type IV IFN-γresponsive promoters of class II transactivator genes. Significantly, cells stably expressing RET/PTC expressed class II transactivator and showed enhanced de novo membrane expression of major histocompatibility complex (MHC) class II proteins. Furthermore, RET/PTC1-bearing papillary thyroid carcinoma cells strongly expressed MHC class II (human leukocyte-associated antigen-DRα) genes, whereas the surrounding normal tissues did not. Thus, RET/PTC is able to phosphorylate and activate STAT1. This may lead to enhanced MHC class II expression, which may explain why the tissues surrounding RET/PTC-positive cancers are infiltrated with lymphocytes. Such immune response-promoting activity of RET/PTC may also relate to the development of Hashimoto’s thyroiditis.
Collapse
Affiliation(s)
- Eun Suk Hwang
- Laboratory of Endocrine Cell Biology, National Research Laboratory Program, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Castellone MD, Guarino V, De Falco V, Carlomagno F, Basolo F, Faviana P, Kruhoffer M, Orntoft T, Russell JP, Rothstein JL, Fusco A, Santoro M, Melillo RM. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 2004; 23:5958-67. [PMID: 15184868 DOI: 10.1038/sj.onc.1207790] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To identify genes involved in the transformation of thyroid follicular cells, we explored, using DNA oligonucleotide microarrays, the transcriptional response of PC Cl3 rat thyroid epithelial cells to the ectopic expression of the RET/PTC oncogenes. We found that RET/PTC was able to induce the expression of CXCR4, the receptor for the chemokine CXCL12/SDF-1alpha/beta. We observed that CXCR4 expression correlated with the transforming ability of the oncoprotein and depended on the integrity of the RET/PTC-RAS/ERK signaling pathway. We found that CXCR4 was expressed in RET/PTC-positive human thyroid cancer cell lines, but not in normal thyroid cells. Furthermore, we found CXCR4 expression in human thyroid carcinomas, but not in normal thyroid samples by immunohistochemistry. Since CXCR4 has been recently implicated in tumor proliferation, motility and invasiveness, we asked whether treatment with SDF-1alpha was able to induce a biological response in thyroid cells. We observed that SDF-1alpha induced S-phase entry and survival of thyroid cells. Invasion through a reconstituted extracellular matrix was also supported by SDF-1alpha and inhibited by a blocking antibody to CXCR4. Taken together, these results suggest that human thyroid cancers bearing RET/PTC rearrangements may use the CXCR4/SDF-1alpha receptor-ligand pathway to proliferate, survive and migrate.
Collapse
Affiliation(s)
- Maria D Castellone
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR G Salvatore, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Castellone MD, Celetti A, Guarino V, Cirafici AM, Basolo F, Giannini R, Medico E, Kruhoffer M, Orntoft TF, Curcio F, Fusco A, Melillo RM, Santoro M. Autocrine stimulation by osteopontin plays a pivotal role in the expression of the mitogenic and invasive phenotype of RET/PTC-transformed thyroid cells. Oncogene 2004; 23:2188-96. [PMID: 14981541 DOI: 10.1038/sj.onc.1207322] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Papillary thyroid carcinomas are characterized by rearrangements of the RET receptor tyrosine kinase generating RET/PTC oncogenes. Here we show that osteopontin (OPN), a secreted glycoprotein, is a major RET/PTC-induced transcriptional target in PC Cl 3 thyroid follicular cells. OPN upregulation depended on the integrity of the RET/PTC kinase and tyrosines Y1015 and Y1062, two major RET/PTC autophosphorylation sites. RET/PTC also induced a strong overexpression of CD44, a cell surface signalling receptor for OPN. Upregulation of CD44 was dependent on RET/PTC Y1062, as well. Constitutive OPN overexpression or treatment with exogenous recombinant OPN sharply increased proliferation, Matrigel invasion and spreading in collagen gels of RET/PTC-transformed PC Cl 3 cells. These effects were impaired by the treatment of PC Cl 3-RET/PTC cells with OPN- and CD44-locking antibodies. Thus, RET/PTC signalling triggers an autocrine loop involving OPN and CD44 that sustains proliferation and invasion of transfomed PC Cl 3 thyrocytes.
Collapse
Affiliation(s)
- Maria Domenica Castellone
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II c/o Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Celetti A, Cerrato A, Merolla F, Vitagliano D, Vecchio G, Grieco M. H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene 2004; 23:109-21. [PMID: 14712216 DOI: 10.1038/sj.onc.1206981] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human thyroid papillary carcinomas are characterized by rearrangements of the RET protooncogene with a number of heterologous genes, which generate the RET/papillary thyroid carcinoma (PTC) oncogenes. One of the most frequent variants of these recombination events is the fusion of the intracellular kinase-encoding domain of RET to the first 101 amino acids of a gene named H4(D10S170). We have characterized the H4(D10S170) gene product, showing that it is a ubiquitously expressed 55 KDa nuclear and cytosolic protein that is phosphorylated following serum stimulation. This phosphorylation was found to depend on mitogen-activated protein kinase (MAPK) Erk1/2 activity and to be associated to the relocation of H4(D10S170) from the nucleus to the cytosol. Overexpression of the H4(D10S170) gene was able to induce apoptosis of thyroid follicular epithelial cells; conversely a carboxy-terminal truncated H4(D10S170) mutant H4(1-101), corresponding to the portion included in the RET/PTC1 oncoprotein, behaved as dominant negative on the proapoptotic function and nuclear localization of H4(D10S170). Furthermore, conditional expression of the H4(D10S170)-dominant negative truncated mutant protected cells from stress-induced apoptosis. The substitution of serine 244 with alanine abrogated the apoptotic function of H4(D10S170). These data suggest that loss of the H4(D10S170) gene function might have a role in thyroid carcinogenesis by impairing apoptosis.
Collapse
Affiliation(s)
- Angela Celetti
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o, University Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Knowledge of the molecular events that govern human thyroid tumorigenesis has grown considerably in the past ten years. Key genetic alterations and new oncogenic pathways have been identified. Molecular genetic aberrations in thyroid carcinomas bear noteworthy resemblance to those in acute myelogenous leukemias. Thyroid carcinomas and myeloid leukemias both possess transcription factor gene rearrangements-PPARgamma-related translocations in thyroid carcinoma and RARalpha-related and CBF-related translocations (amongst others) in myeloid leukemia. PPARgamma and RARalpha are closely related members ofthe same nuclear receptor subfamily, and the PML-RARalpha and PAX8-PPARgamma fusion proteins both function as dominant negative inhibitors of their wild-type parent proteins. Thyroid carcinomas and myeloid leukemias also both harbor NRAS mutations (15-25% of both cancers) and receptor tyrosine kinase mutations--RET mutations in thyroid carcinomas and FLT3 mutations in myeloid leukemias. The NRAS and tyrosine receptor kinase mutations are not observed in the same thyroid carcinoma or leukemia patients, suggesting that multiple initiating pathways exist in both. Lastly, thyroid carcinomas and myeloid leukemias possess p53 mutations at relatively low frequency (10-15%) in patients who tend to be older and have more aggressive, therapy resistant disease. Such parallels are unlikely to occur by chance alone and argue that common mechanisms underlie these diverse epithelial and hematologic cancers. The comparison of thyroid carcinomas and myeloid leukemias may highlight areas of thyroid cancer investigation worthy of further focus. For example, few collaborating mutations have been defined in thyroid carcinomas even though they play a clear role in myeloid leukemias, as exemplified by RARalpha rearrangements and FLT3 mutations that together dictate the promyleocytic leukemia phenotype. Functional interactions between collaborating mutations are possible at multiple levels, and it is tempting to speculate that some thyroid carcinomas might develop through an unique combination or co-activation of RET and RAS and/or RET and PPARgamma (and/or other) signaling systems. In fact, the ELE1-RET (PTC3) fusion protein contains the ELE1 nuclear receptor co-activator domain and it appears to physically associate with and inhibit wild-type PPARgamma in some papillary carcinomas. The similarities of the fusion proteins in thyroid carcinoma and myeloid leukemia suggest that a more directed search for fusion genes in non-thyroid carcinomas is warranted. In fact, novel fusion genes have been identified recently in aggressive midline, secretory breast, and renal cell carcinomas, although the epithelial nature of the latter is not well-documented. Interestingly, these cancers all tend to present more frequently in adolescence and young adulthood in a manner similar to thyroid and myeloid malignancies that have fusion genes. The analyses of cancers that present earlier in life may enhance fusion gene recognition in other carcinoma types. Definition and biologic characterization of the precursor cells that give rise to thyroid carcinoma will also be important. Myeloid leukemias are thought to arise from stem/progenitor cells that acquire disturbed self-renewal and differentiation capacities but retain characteristics of the myeloid lineages. Although the presence of comparable stem/progenitor cells in the thyroid are not defined, distinct thyroid cancer lineages and patterns of differentiation exist and candidate stem/progenitor cells such as the p63-immunoreactive solid cell nests are apparent. A last important area is development of molecular-based therapies for thyroid carcinoma patients resistant to standard radio-iodine treatment. Treatments for such cancers are limited and pathways defined by thyroid cancer mutations are prime targets for pharmacologic interventions with molecular inhibitors. Tyrosine kinase inhibitors and nuclear receptor ligands have proven dramatically effective in some myeloid leukemia patients. Various molecular inhibitors are being investigated now in thyroid cancer models. Such developments predict that the thyroid cancer model will continue to provide biologic insights into human carcinoma biology and that improved pathologic diagnosis and treatment for thyroid cancer patients sit on the not too distant horizon.
Collapse
Affiliation(s)
- Todd G Kroll
- Department of Pathology, Endocrinology Division, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Knauf JA, Ouyang B, Croyle M, Kimura E, Fagin JA. Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCɛ in PCCL3 thyroid cells. Oncogene 2003; 22:6830-8. [PMID: 14534528 DOI: 10.1038/sj.onc.1206829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most papillary thyroid carcinomas (PTC) have an isozyme-specific reduction of protein kinase C (PKC)epsilon, which occurs through a post-transcriptional mechanism. Here, we test whether the oncoprotein RET/PTC could be responsible for this effect, since RET/PTC rearrangements are quite prevalent in PTC and RET/PTC activates PLCgamma, an upstream modulator of PKCs. At 3 h after induction of RET/PTC1 or RET/PTC3 expression, there was evidence of PKCepsilon activation. Activation was restricted to PKCepsilon, as acute expression of RET/PTC did not change the subcellular distribution of other PKC isozymes expressed in PCCL3 cells. Prolonged RET/PTC expression (2-6 days) produced an isozyme-specific change in PKCepsilon subcellular localization and a decrease in total PKCepsilon levels. The expression of RET/PTC3(Y541F), which does not interact with PLCgamma, but signals normally through other RET effectors, had no effect on PKCepsilon distribution at any of the time points examined. However, downregulation of total PKCepsilon levels was only partially prevented by expression of RET/PTC(Y541F). Cells with decreased PKCepsilon following prolonged expression of RET/PTC were relatively resistant to doxorubicin-induced apoptosis. Based on our previous observation that PCCL3 cells expressing a dominant-negative PKCepsilon are also markedly resistant to apoptosis, we propose that selective downregulation of PKCepsilon following prolonged RET/PTC activation promotes cell survival and clonal expansion.
Collapse
Affiliation(s)
- Jeffrey A Knauf
- Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, Mail Location 0547, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
38
|
Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Máximo V, Botelho T, Seruca R, Sobrinho-Simões M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003; 22:4578-80. [PMID: 12881714 DOI: 10.1038/sj.onc.1206706] [Citation(s) in RCA: 468] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rearrangement of RET proto-oncogene is the major event in the etiopathogenesis of papillary thyroid carcinoma (PTC). We report a high prevalence of BRAF(V599E) mutation in sporadic PTC and in PTC-derived cell lines. The BRAF(V599E) mutation was detected in 23 of 50 PTC (46%) and in three of four PTC-derived cell lines. The prevalence of the BRAF(V599E) mutation in PTC is the highest reported to date in human carcinomas, being only exceeded by melanoma. PTC with RET/PTC rearrangement as well as the TPC-1 cell line (the only one harboring RET/PTC rearrangement) did not show the BRAF(V599E) mutation. BRAF(V599E) mutation was not detected in any of 23 nodular goiters, 51 follicular adenomas and 18 follicular carcinomas. A distinct mutation in BRAF (codon K600E) was detected in a follicular adenoma. Activating mutations in RAS genes were detected in 15% of FA, 33% of FTC and 7% of PTC. BRAF(V599E) mutation did not coexist with alterations in any of the RAS genes in any of the tumors. These results suggest that BRAF(V599E) mutation is frequent in the etiopathogenesis of PTC. The BRAF(V599E) mutation appears to be an alternative event to RET/PTC rearrangement rather than to RAS mutations, which are rare in PTC. BRAF(V599E) may represent an alternative pathway to oncogenic MAPK activation in PTCs without RET/PTC activation.
Collapse
Affiliation(s)
- Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto, (IPATIMUP), Rua Roberto Frias s/n, 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|