1
|
Jiang X, Mortlock RD, Lomakin IB, Zhou J, Hu R, Cossio ML, Bunick CG, Choate KA. Autosomal dominant SLURP1 variants cause palmoplantar keratoderma and progressive symmetric erythrokeratoderma. Br J Dermatol 2025; 192:896-906. [PMID: 39913669 PMCID: PMC12036768 DOI: 10.1093/bjd/ljaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND Epidermal differentiation disorders [EDDs; ichthyosis and palmoplantar keratoderma (PPK)] are heritable skin conditions characterized by localized or generalized skin scaling and erythema. OBJECTIVES To identify novel genetic variants that cause PPK and progressive symmetric erythrokeratoderma (PSEK) phenotypes. METHODS We performed whole-exome sequencing in a large cohort of people with EDD, including PPK and PSEK phenotypes, to identify novel genetic variants. We investigated the variant consequence using in silico predictions, assays in patient keratinocytes, high-resolution spatial transcriptomics and quantitative cytokine profiling. RESULTS We identified three unrelated kindreds with autosomal dominant transmission of heterozygous SLURP1 variants affecting the same amino acid within the signal peptide (c.65C > A, p.A22D and c.65C > T, p.A22V). One (p.A22V) had isolated PPK; the other two (p.A22D) had PSEK and PPK. In silico modelling suggested that both variants alter pro-SLURP1 cleavage, appending two amino acids to the secreted protein, which we subsequently confirmed with mass spectrometry. In patient keratinocytes we found increased differentiation-induced SLURP1 expression and secretion compared to healthy control cells. Spatial transcriptomics revealed increased nuclear factor-κB (NF-κB) signalling and innate immune activity, which may contribute to epidermal hyperproliferation in dominant SLURP1-PPK/PSEK. CONCLUSIONS Our results expand the phenotypic spectrum of EDD due to SLURP1 pathogenic variants. While autosomal recessive Mal de Meleda is due to biallelic loss-of-function SLURP1 variants, our finding of autosomal dominant SLURP1 pathogenic variants in kindreds with PPK and PSEK suggests a novel mechanism of action. We found that heterozygous p.A22V and p.A22D SLURP1 variants append two amino acids to secreted SLURP1, increase differentiation-induced SLURP1 expression and secretion and upregulate NF-κB signalling in people with PSEK.
Collapse
Affiliation(s)
- Xingyuan Jiang
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryland D Mortlock
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ivan B Lomakin
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Zhou
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Ronghua Hu
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - María Laura Cossio
- Department of Dermatology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christopher G Bunick
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Xie C, Jin X, Li WW, Wang JH. Host factor Naf1 restricts HIV-1 infection of myeloid cells and compromises the capacity of dendritic cell to prime CD4 + T cell. Virol Sin 2025; 40:217-224. [PMID: 40139499 DOI: 10.1016/j.virs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Naf1 (Nef-associated factor 1) is a host protein that interacts with human immunodeficiency virus type 1 (HIV-1) Nef protein. We and others have previously demonstrated that Naf1 restricts HIV-1 infection of T-lymphocytes. Myeloid cells are targets for HIV infection, but Naf1 expression in myeloid cells and whether it also regulates HIV infection in these cells are not yet identified. In this study, we found that Naf1 had a higher expression in CD14+ monocytes than in monocyte-derived dendritic cells (MDDCs), and its expression in both types of cells could be induced by HIV-1 gp120 glycoproteins or viral particles. Importantly, the expression of Naf1 restricted HIV-1 infection in monocytes and MDDCs. Functional investigation showed that both the constitutive and the induced expression of Naf1 inhibited NF-κB signaling in MDDCs and reduced the basal level or LPS (Lipopolysaccharide)-stimulated production of cytokines. Moreover, Naf1 reduced the expression of ICAM-1 (intercellular cell adhesion molecule-1) on MDDCs and compromised their capacity to prime the activation of resting CD4+ T cells in co-culture. In light of the essential role of NF-κB signaling for HIV-1 transcription, Naf1-mediated inhibition of NF-κB signaling may hinder a robust viral replication in MDDCs and help maintain viral persistence. Furthermore, virus-induced Naf1 expression in MDDCs may diminish the cross-talk between DC (dendritic cell) and T cells, hence suppressing the activation of antiviral immune responses. Taken together, we identified the new function of Naf1 in myeloid cells. Those findings may facilitate the understanding for the host restriction of HIV-1 infection in myeloid cells.
Collapse
Affiliation(s)
- Chengzuo Xie
- Graduate School of Guangzhou Medical University, Guangzhou, 511436, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xia Jin
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wan-Wei Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Salisbury NJH, Amonkar S, Landazuri Vinueza J, Carter JJ, Roman A, Galloway DA. Polyomavirus ALTOs, but not MTs, downregulate viral early gene expression by activating the NF-κB pathway. Proc Natl Acad Sci U S A 2024; 121:e2403133121. [PMID: 39141346 PMCID: PMC11348336 DOI: 10.1073/pnas.2403133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Polyomaviruses are small, circular dsDNA viruses that can cause cancer. Alternative splicing of polyomavirus early transcripts generates large and small tumor antigens (LT, ST) that play essential roles in viral replication and tumorigenesis. Some polyomaviruses also express middle tumor antigens (MTs) or alternate LT open reading frames (ALTOs), which are evolutionarily related but have distinct gene structures. MTs are a splice variant of the early transcript whereas ALTOs are overprinted on the second exon of the LT transcript in an alternate reading frame and are translated via an alternative start codon. Merkel cell polyomavirus (MCPyV), the only human polyomavirus that causes cancer, encodes an ALTO but its role in the viral lifecycle and tumorigenesis has remained elusive. Here, we show MCPyV ALTO acts as a tumor suppressor and is silenced in Merkel cell carcinoma (MCC). Rescuing ALTO in MCC cells induces growth arrest and activates NF-κB signaling. ALTO activates NF-κB by binding SQSTM1 and TRAF2&3 via two N-Terminal Activating Regions (NTAR1+2), resembling Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1). Following activation, NF-κB dimers bind the MCPyV noncoding control region (NCCR) and downregulate early transcription. Beyond MCPyV, NTAR motifs are conserved in other polyomavirus ALTOs, which activate NF-κB signaling, but are lacking in MTs that do not. Furthermore, polyomavirus ALTOs downregulate their respective viral early transcription in an NF-κB- and NTAR-dependent manner. Our findings suggest that ALTOs evolved to suppress viral replication and promote viral latency and that MCPyV ALTO must be silenced for MCC to develop.
Collapse
Affiliation(s)
| | - Supriya Amonkar
- Human Biology Division, Fred Hutchinson Cancer Center Seattle, WA98109
| | - Joselyn Landazuri Vinueza
- Human Biology Division, Fred Hutchinson Cancer Center Seattle, WA98109
- Department of Microbiology, University of Washington, Seattle, WA98109
| | - Joseph J. Carter
- Human Biology Division, Fred Hutchinson Cancer Center Seattle, WA98109
| | - Ann Roman
- Human Biology Division, Fred Hutchinson Cancer Center Seattle, WA98109
- Department of Microbiology, University of Washington, Seattle, WA98109
| | - Denise A. Galloway
- Human Biology Division, Fred Hutchinson Cancer Center Seattle, WA98109
- Department of Microbiology, University of Washington, Seattle, WA98109
| |
Collapse
|
4
|
Salisbury NJH, Amonkar S, Vinueza JL, Carter JJ, Roman A, Galloway DA. Polyomavirus ALTOs, but not MTs, downregulate viral early gene expression by activating the NF-κB pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595774. [PMID: 38826197 PMCID: PMC11142227 DOI: 10.1101/2024.05.24.595774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Polyomaviruses are small, circular dsDNA viruses that can cause cancer. Alternative splicing of polyomavirus early transcripts generates large and small tumor antigens (LT, ST) that play essential roles in viral replication and tumorigenesis. Some polyomaviruses also express middle tumor antigens (MTs) or Alternate LT ORFs (ALTOs), which are evolutionarily related but have distinct gene structures. MTs are a splice variant of the early transcript whereas ALTOs are overprinted on the second exon of the LT transcript in an alternate reading frame and are translated via an alternative start codon. Merkel cell polyomavirus (MCPyV), the only human polyomavirus that causes cancer, encodes an ALTO but its role in the viral lifecycle and tumorigenesis has remained elusive. Here, we show MCPyV ALTO acts as a tumor suppressor and is silenced in Merkel cell carcinoma (MCC). Rescuing ALTO in MCC cells induces growth arrest and activates NF-κB signaling. ALTO activates NF-κB by binding SQSTM1 and TRAF2&3 via two N-Terminal Activating Regions (NTAR1+2), resembling Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1).. Following activation, NF-κB dimers bind the MCPyV non-coding control region (NCCR) and downregulate early transcription. Beyond MCPyV, NTAR motifs are conserved in other polyomavirus ALTOs, which activate NF-κB signaling, but are lacking in MTs that do not. Furthermore, polyomavirus ALTOs downregulate their respective viral early transcription in an NF-κB and NTAR dependent manner. Our findings suggest that ALTOs evolved to suppress viral replication and promote viral latency and that MCPyV ALTO must be silenced for MCC to develop.
Collapse
Affiliation(s)
- Nicholas J. H. Salisbury
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
| | - Supriya Amonkar
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
| | - Joselyn Landazuri Vinueza
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
- University of Washington, Department of Microbiology, Seattle, WA, 98109, USA
| | - Joseph J. Carter
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
| | - Ann Roman
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
- University of Washington, Department of Microbiology, Seattle, WA, 98109, USA
| | - Denise A. Galloway
- Fred Hutchinson Cancer Center, Pathogen-Associated Malignancies Integrated Research Center, Seattle, WA, 98109 USA
- University of Washington, Department of Microbiology, Seattle, WA, 98109, USA
| |
Collapse
|
5
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
6
|
Harada M, Su-Harada K, Kimura T, Ono K, Ashida N. Sustained activation of NF-κB through constitutively active IKKβ leads to senescence bypass in murine dermal fibroblasts. Cell Cycle 2024; 23:308-327. [PMID: 38461418 PMCID: PMC11057680 DOI: 10.1080/15384101.2024.2325802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase β (IKKβ)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated β-galactosidase (SA-β-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKβ (IKKβ-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKβ-CA on senescence is largely mediated by NF-κB. We also found that IKKβ-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKβ-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.
Collapse
Affiliation(s)
- Masayuki Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Su-Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noboru Ashida
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Miller AL, Perurena N, Gardner A, Hinoue T, Loi P, Laird PW, Cichowski K. DAB2IP Is a Bifunctional Tumor Suppressor That Regulates Wild-Type RAS and Inflammatory Cascades in KRAS Mutant Colon Cancer. Cancer Res 2023; 83:1800-1814. [PMID: 36939385 PMCID: PMC10236151 DOI: 10.1158/0008-5472.can-22-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023]
Abstract
The DAB2IP tumor suppressor encodes a RAS GTPase-activating protein. Accordingly, DAB2IP has been shown to be mutated or suppressed in tumor types that typically lack RAS mutations. However, here we report that DAB2IP is mutated or selectively silenced in the vast majority of KRAS and BRAF mutant colorectal cancers. In this setting, DAB2IP loss promoted tumor development by activating wild-type H- and N-RAS proteins, which was surprisingly required to achieve robust activation of RAS effector pathways in KRAS-mutant tumors. DAB2IP loss also triggered production of inflammatory mediators and the recruitment of protumorigenic macrophages in vivo. Importantly, tumor growth was suppressed by depleting macrophages or inhibiting cytokine/inflammatory mediator expression with a JAK/TBK1 inhibitor. In human tumors, DAB2IP was lost at early stages of tumor development, and its depletion was associated with an enrichment of macrophage and inflammatory signatures. Together, these findings demonstrate that DAB2IP restrains the activation of the RAS pathway and inflammatory cascades in the colon and that its loss represents a common and unappreciated mechanism for amplifying these two critical oncogenic signals in colorectal cancer. SIGNIFICANCE DAB2IP is lost in early-stage tumors, which amplifies RAS signaling, triggers inflammatory mediators, and recruits macrophages in KRAS-mutant colon cancers.
Collapse
Affiliation(s)
- Abigail L. Miller
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Naiara Perurena
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alycia Gardner
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Patrick Loi
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Ishihara Y, Itoh K. Microglial inflammatory reactions regulated by oxidative stress. J Clin Biochem Nutr 2023; 72:23-27. [PMID: 36777074 PMCID: PMC9899914 DOI: 10.3164/jcbn.22-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 11/05/2022] Open
Abstract
Microglia are immune cells in the brain that can respond to endogenous and exogenous substrates to elicit inflammatory reactions. The transcription factor nuclear factor kappa-light-chain-enhancer of activated B induces proinflammatory gene expression in response to foreign matter via pattern recognition receptors; thus, nuclear factor kappa-light-chain-enhancer of activated B is a master regulator of inflammation. During the inflammatory process, very large amounts of reactive oxygen species are generated and promote the onset and progression of inflammation. Interestingly, nuclear factor kappa-light-chain-enhancer of activated B drives the transcription of superoxide dismutase 2 in many types of cells, including microglia. Superoxide dismutase 2 is an antioxidative enzyme that catalyzes the dismutation of superoxide anions into molecular oxygen and hydrogen peroxide. Of note, nuclear factor kappa-light-chain-enhancer of activated B can initiate inflammation to elicit proinflammatory gene expression, while its transcription product superoxide dismutase 2 can suppress inflammation. In this review, we use recent knowledge to describe the interaction between oxidative stress and nuclear factor kappa-light-chain-enhancer of activated B and discuss the complicated role of microglial superoxide dismutase 2 in inflammation.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8521, Japan,To whom correspondence should be addressed. E-mail:
| | - Kouichi Itoh
- Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
10
|
Fischietti M, Eckerdt F, Perez RE, Guillen Magaña JN, Mazewski C, Ho S, Gonzalez C, Streich LD, Beauchamp EM, Heimberger AB, Baran AH, Yue F, James CD, Platanias LC. SLFN11 Negatively Regulates Noncanonical NFκB Signaling to Promote Glioblastoma Progression. CANCER RESEARCH COMMUNICATIONS 2022; 2:966-978. [PMID: 36382088 PMCID: PMC9648417 DOI: 10.1158/2767-9764.crc-22-0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor in nearly all instances, whose disease progression is driven in part by the glioma stem cell (GSC) subpopulation. Here, we explored the effects of Schlafen family member 11 (SLFN11) in the molecular, cellular, and tumor biology of GBM. CRISPR/Cas9-mediated knockout of SLFN11 inhibited GBM cell proliferation and neurosphere growth and was associated with reduced expression of progenitor/stem cell marker genes, such as NES, SOX2, and CD44. Loss of SLFN11 stimulated expression of NFκB target genes, consistent with a negative regulatory role for SLFN11 on the NFκB pathway. Furthermore, our studies identify p21 as a direct transcriptional target of NFκB2 in GBM whose expression was stimulated by loss of SLFN11. Genetic disruption of SLFN11 blocked GBM growth and significantly extended survival in an orthotopic patient-derived xenograft model. Together, our results identify SLFN11 as a novel component of signaling pathways that contribute to GBM and GSC with implications for future diagnostic and therapeutic strategies.
Significance:
We identify a negative regulatory role for SLFN11 in noncanonical NFκB signaling that results in suppression of the cell-cycle inhibitor p21. We provide evidence that SLFN11 contributes to regulation of stem cell markers in GBM, promoting the malignant phenotype. In addition, SLFN11 targeting triggers p21 expression and antitumor responses. Our studies define a highly novel function for SLFN11 and identify it as a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Mariafausta Fischietti
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Candice Mazewski
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sang Ho
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Christopher Gonzalez
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Lukas D. Streich
- 4Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amy B. Heimberger
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aneta H. Baran
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Feng Yue
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 6Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C. David James
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C. Platanias
- 1Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- 2Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- 5Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Effect of Mortalin on Scar Formation in Human Dermal Fibroblasts and a Rat Incisional Scar Model. Int J Mol Sci 2022; 23:ijms23147918. [PMID: 35887263 PMCID: PMC9318157 DOI: 10.3390/ijms23147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Wound healing is a complicated cascading process; disequilibrium among reparative processes leads to the formation of pathologic scars. Herein, we explored the role of mortalin in scar formation and its association with the interleukin-1α receptor using in vitro and in vivo models. To investigate the effects of mortalin, we performed an MTT cell viability assay, qRT-PCR, and Western blot analyses, in addition to immunofluorescence and immunoprecipitation studies using cultured fibroblasts. A rat incisional wound model was used to evaluate the effect of a mortalin-specific shRNA (dE1-RGD/GFP/shMot) Ad vector in scar tissue. In vitro, the mortalin-treated human dermal fibroblast displayed a significant increase in proliferation of type I collagen, α-smooth muscle actin, transforming growth factor-β, phospho-Smad2/3-complex, and NF-κB levels. Immunofluorescence staining revealed markedly increased mortalin and interleukin-1α receptor protein in keloid tissue compared to those in normal tissue, suggesting that the association between mortalin and IL-1α receptor was responsible for the fibrogenic effect. In vivo, mortalin-specific shRNA-expressing Ad vectors significantly decreased the scar size and type-I-collagen, α-SMA, and phospho-Smad2/3-complex expression in rat incisional scar tissue. Thus, dE1-RGD/GEP/shMot can inhibit the TGF-β/α-SMA axis and NF-κB signal pathways in scar formation, and blocking endogenous mortalin could be a potential therapeutic target for keloids.
Collapse
|
12
|
Suppression of heparan sulfation re-sensitizes YAP1-driven melanoma to MAPK pathway inhibitors. Oncogene 2022; 41:3953-3968. [PMID: 35798875 PMCID: PMC9355870 DOI: 10.1038/s41388-022-02400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Accumulating evidence identifies non-genetic mechanisms substantially contributing to drug resistance in cancer patients. Preclinical and clinical data implicate the transcriptional co-activators YAP1 and its paralog TAZ in resistance to multiple targeted therapies, highlighting the strong need for therapeutic strategies overcoming YAP1/TAZ-mediated resistance across tumor entities. Here, we show particularly high YAP1/TAZ activity in MITFlow/AXLhigh melanomas characterized by resistance to MAPK pathway inhibition and broad receptor tyrosine kinase activity. To uncover genetic dependencies of melanoma cells with high YAP1/TAZ activity, we used a genome-wide CRISPR/Cas9 functional screen and identified SLC35B2, the 3′-phosphoadenosine-5′-phosphosulfate transporter of the Golgi apparatus, as an essential gene for YAP1/TAZ-driven drug resistance. SLC35B2 expression correlates with tumor progression, and its loss decreases heparan sulfate expression, reduces receptor tyrosine kinase activity, and sensitizes resistant melanoma cells to BRAF inhibition in vitro and in vivo. Thus, targeting heparan sulfation via SLC35B2 represents a novel approach for breaking receptor tyrosine kinase-mediated resistance to MAPK pathway inhibitors.
Collapse
|
13
|
Abstract
UVB is a causative factor for severe skin damage, such as cell aging, death, and inflammation. UVB easily permeates into the epidermis layer of human skin, which is mainly composed of keratinocyte cells. In previous results, we found that purple corn silk (PCS) extract showed the potential to inhibit keratinocyte damages of UVB-treated cells. Thus, in this study, we aimed to evaluate the preventive effects of PCS extract against the inflammation of UVB-induced keratinocyte cells using the HaCaT cell line. HaCaT cells were treated with PCS extract at various concentrations for 1 h, then exposed to 25 mJ/cm2 UVB before subsequent experiments. Fragmented DNA was observed using flow cytometry. The inflammatory response was investigated through NF-κB activity by immunofluorescence staining and related protein expression by Western blotting. The results demonstrated that PCS extract decreased the sub-G1 DNA content. Interestingly, PCS extract attenuated NF-κB activity via suppressed NF-κB nuclear translocation and protein expression. Moreover, PCS extract remarkably decreased c-Jun phosphorylation and decreased proinflammatory cytokines, along with iNOS and COX-2 levels in UVB-treated cells compared to the UVB-control group. This finding exhibited that PCS extract minimized inflammation in keratinocyte cells induced by UVB radiation.
Collapse
|
14
|
Davis JL, Thaler R, Cox L, Ricci B, Zannit HM, Wan F, Faccio R, Dudakovic A, van Wijnen AJ, Veis DJ. Constitutive activation of NF-κB inducing kinase (NIK) in the mesenchymal lineage using Osterix (Sp7)- or Fibroblast-specific protein 1 (S100a4)-Cre drives spontaneous soft tissue sarcoma. PLoS One 2021; 16:e0254426. [PMID: 34292968 PMCID: PMC8297882 DOI: 10.1371/journal.pone.0254426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Aberrant NF-κB signaling fuels tumor growth in multiple human cancer types including both hematologic and solid malignancies. Chronic elevated alternative NF-κB signaling can be modeled in transgenic mice upon activation of a conditional NF-κB-inducing kinase (NIK) allele lacking the regulatory TRAF3 binding domain (NT3). Here, we report that expression of NT3 in the mesenchymal lineage with Osterix (Osx/Sp7)-Cre or Fibroblast-Specific Protein 1 (FSP1)-Cre caused subcutaneous, soft tissue tumors. These tumors displayed significantly shorter latency and a greater multiple incidence rate in Fsp1-Cre;NT3 compared to Osx-Cre;NT3 mice, regardless of sex. Histological assessment revealed poorly differentiated solid tumors with some spindled patterns, as well as robust RelB immunostaining, confirming activation of alternative NF-κB. Even though NT3 expression also occurs in the osteolineage in Osx-Cre;NT3 mice, we observed no bony lesions. The staining profiles and pattern of Cre expression in the two lines pointed to a mesenchymal tumor origin. Immunohistochemistry revealed that these tumors stain strongly for alpha-smooth muscle actin (αSMA), although vimentin staining was uniform only in Osx-Cre;NT3 tumors. Negative CD45 and S100 immunostains precluded hematopoietic and melanocytic origins, respectively, while positive staining for cytokeratin 19 (CK19), typically associated with epithelia, was found in subpopulations of both tumors. Principal component, differential expression, and gene ontology analyses revealed that NT3 tumors are distinct from normal mesenchymal tissues and are enriched for NF-κB related biological processes. We conclude that constitutive activation of the alternative NF-κB pathway in the mesenchymal lineage drives spontaneous sarcoma and provides a novel mouse model for NF-κB related sarcomas.
Collapse
Affiliation(s)
- Jennifer L. Davis
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Linda Cox
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Biancamaria Ricci
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Heather M. Zannit
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Fei Wan
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Roberta Faccio
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO, United States of America
- Shriners Hospitals for Children–St. Louis, St. Louis, MO, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Deborah J. Veis
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, United States of America
- Shriners Hospitals for Children–St. Louis, St. Louis, MO, United States of America
| |
Collapse
|
15
|
Hudson L, Begg M, Wright B, Cheek T, Jahoda CAB, Reynolds NJ. Dominant effect of gap junction communication in wound-induced calcium-wave, NFAT activation and wound closure in keratinocytes. J Cell Physiol 2021; 236:8171-8183. [PMID: 34180060 DOI: 10.1002/jcp.30488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Wounding induces a calcium wave and disrupts the calcium gradient across the epidermis but mechanisms mediating calcium and downstream signalling, and longer-term wound healing responses are incompletely understood. As expected, live-cell confocal imaging of Fluo-4-loaded normal human keratinocytes showed an immediate increase in [Ca2+ ]i at the wound edge that spread as a calcium wave (8.3 µm/s) away from the wound edge with gradually diminishing rate of rise and amplitude. The amplitude and area under the curve of [Ca2+ ]i flux was increased in high (1.2 mM) [Ca2+ ]o media. 18α-glycyrrhetinic acid (18αGA), a gap-junction inhibitor or hexokinase, an ATP scavenger, blocked the wound-induced calcium wave, dependent in part on [Ca2+ ]o . Wounding in a high [Ca2+ ]o increased nuclear factor of activated T-cells (NFAT) but not NFkB activation, assessed by dual-luciferase receptor assays compared to unwounded cells. Treatment with 18αGA or the store-operated channel blocker GSK-7975A inhibited wound-induced NFAT activation, whereas treatment with hexokinase did not. Real-time cell migration analysis, measuring wound closure rates over 24 h, revealed that 18αGA essentially blocked wound closure whereas hexokinase and GSK-7975A showed relatively minimal effects. Together these data indicate that while both gap-junction communication and ATP release from damaged cells are important in regulating the wound-induced calcium wave, long-term transcriptional and functional responses are dominantly regulated by gap-junction communication.
Collapse
Affiliation(s)
- Laura Hudson
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Malcolm Begg
- Medicines Research Centre, GlaxoSmithKline, London, UK
| | - Blythe Wright
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Tim Cheek
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK.,Department of Dermatology, Royal Victoria Infirmary and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Pillai VB, Samant S, Hund S, Gupta M, Gupta MP. The nuclear sirtuin SIRT6 protects the heart from developing aging-associated myocyte senescence and cardiac hypertrophy. Aging (Albany NY) 2021; 13:12334-12358. [PMID: 33934090 PMCID: PMC8148452 DOI: 10.18632/aging.203027] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Sirtuins have been shown to regulate the aging process. We have previously demonstrated that Sirt6 blocks the pressure overload-induced cardiac hypertrophy in mice. Here, we show that Sirt6 can also mitigate aging-induced cardiomyocyte senescence and cardiac hypertrophy. We found that aging is associated with altered Sirt6 activity along with development of cardiac hypertrophy and fibrosis. Compared to young mice (4-months), the hearts of aged mice (24-months) showed increased levels of mitochondrial DNA damage, shortened telomere length, and increased accumulation of 8-oxo-dG adducts, which are hallmarks of aging. The aged hearts also showed reduced levels of NAD+ and altered levels of mitochondrial fusion-fission proteins. Similar characteristics were observed in the hearts of Sirt6 deficient mice. Additionally, we found that doxorubicin (Dox) induced cardiomyocyte senescence, as measured by expression of p16INK4a, p53, and β-galactosidase, was associated with loss of Sirt6. However, Sirt6 overexpression protected cardiomyocytes from developing Dox-induced senescence. Further, compared to wild-type mice, the hearts of Sirt6.Tg mice showed reduced expression of aging markers, and the development of aging-associated cardiac hypertrophy and fibrosis. Our data suggest that Sirt6 is a critical anti-aging molecule that regulates various cellular processes associated with aging and protects the heart from developing aging-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sadhana Samant
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Hund
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Madhu Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Basic Science Division, The Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Kolmus K, Erdenebat P, Szymańska E, Stewig B, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Concurrent depletion of Vps37 proteins evokes ESCRT-I destabilization and profound cellular stress responses. J Cell Sci 2021; 134:134/1/jcs250951. [PMID: 33419951 DOI: 10.1242/jcs.250951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Molecular details of how endocytosis contributes to oncogenesis remain elusive. Our in silico analysis of colorectal cancer (CRC) patients revealed stage-dependent alterations in the expression of 112 endocytosis-related genes. Among them, transcription of the endosomal sorting complex required for transport (ESCRT)-I component VPS37B was decreased in the advanced stages of CRC. Expression of other ESCRT-I core subunits remained unchanged in the investigated dataset. We analyzed an independent cohort of CRC patients, which also showed reduced VPS37A mRNA and protein abundance. Transcriptomic profiling of CRC cells revealed non-redundant functions of Vps37 proteins. Knockdown of VPS37A and VPS37B triggered p21 (CDKN1A)-mediated inhibition of cell proliferation and sterile inflammatory response driven by the nuclear factor (NF)-κB transcription factor and associated with mitogen-activated protein kinase signaling. Co-silencing of VPS37C further potentiated activation of these independently induced processes. The type and magnitude of transcriptional alterations correlated with the differential ESCRT-I stability upon individual and concurrent Vps37 depletion. Our study provides novel insights into cancer cell biology by describing cellular stress responses that are associated with ESCRT-I destabilization.
Collapse
Affiliation(s)
- Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Purevsuren Erdenebat
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Blair Stewig
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
18
|
Liu X, Wei L, Dong Q, Liu L, Zhang MQ, Xie Z, Wang X. A large-scale CRISPR screen and identification of essential genes in cellular senescence bypass. Aging (Albany NY) 2020; 11:4011-4031. [PMID: 31219803 PMCID: PMC6628988 DOI: 10.18632/aging.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022]
Abstract
Cellular senescence is an important mechanism of autonomous tumor suppression, while its consequence such as the senescence-associated secretory phenotype (SASP) may drive tumorigenesis and age-related diseases. Therefore, controlling the cell fate optimally when encountering senescence stress is helpful for anti-cancer or anti-aging treatments. To identify genes essential for senescence establishment or maintenance, we carried out a CRISPR-based screen with a deliberately designed single-guide RNA (sgRNA) library. The library comprised of about 12,000 kinds of sgRNAs targeting 1378 senescence-associated genes selected by integrating the information of literature mining, protein-protein interaction network, and differential gene expression. We successfully detected a dozen gene deficiencies potentially causing senescence bypass, and their phenotypes were further validated with a high true positive rate. RNA-seq analysis showed distinct transcriptome patterns of these bypass cells. Interestingly, in the bypass cells, the expression of SASP genes was maintained or elevated with CHEK2, HAS1, or MDK deficiency; but neutralized with MTOR, CRISPLD2, or MORF4L1 deficiency. Pathways of some age-related neurodegenerative disorders were also downregulated with MTOR, CRISPLD2, or MORF4L1 deficiency. The results demonstrated that disturbing these genes could lead to distinct cell fates as a consequence of senescence bypass, suggesting that they may play essential roles in cellular senescence.
Collapse
Affiliation(s)
- Xuehui Liu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Present address: State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Qiongye Dong
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Present address: Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Liyang Liu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX 75080, USA
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Lei Q, Gu H, Li L, Wu T, Xie W, Li M, Zhao N. TNIP1-mediated TNF-α/NF-κB signalling cascade sustains glioma cell proliferation. J Cell Mol Med 2019; 24:530-538. [PMID: 31691497 PMCID: PMC6933386 DOI: 10.1111/jcmm.14760] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
As a malignant tumour of the central nervous system, glioma exhibits high incidence and poor prognosis. Although TNIP1 and the TNF‐α/NF‐κB axis play key roles in immune diseases and inflammatory responses, their relationship and role in glioma remain unknown. Here, we revealed high levels of TNIP1 and TNF‐α/NF‐κB in glioma tissue. Glioma cell proliferation was activated with TNF‐α treatment and showed extreme sensitivity to the TNF receptor antagonist. Furthermore, loss of TNIP1 disbanded the A20 complex responsible for IκB degradation and NF‐κB nucleus translocation, and consequently erased TNFα‐induced glioma cell proliferation. Thus, our investigation uncovered a vital function of the TNIP1‐mediated TNF‐α/NF‐κB axis in glioma cell proliferation and provides novel insight into glioma pathology and diagnosis.
Collapse
Affiliation(s)
- Qingchun Lei
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Pu'er City People's Hospital, Pu'er, China
| | - Huan Gu
- Biochemistry and Molecular Biology Laboratory, School of Life Sciences, Yunnan University, Kunming, China
| | - Lei Li
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tingting Wu
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wentao Xie
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Meizhang Li
- Biochemistry and Molecular Biology Laboratory, School of Life Sciences, Yunnan University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Kim JW, Abudayyeh OO, Yeerna H, Yeang CH, Stewart M, Jenkins RW, Kitajima S, Konieczkowski DJ, Medetgul-Ernar K, Cavazos T, Mah C, Ting S, Van Allen EM, Cohen O, Mcdermott J, Damato E, Aguirre AJ, Liang J, Liberzon A, Alexe G, Doench J, Ghandi M, Vazquez F, Weir BA, Tsherniak A, Subramanian A, Meneses-Cime K, Park J, Clemons P, Garraway LA, Thomas D, Boehm JS, Barbie DA, Hahn WC, Mesirov JP, Tamayo P. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States. Cell Syst 2019; 5:105-118.e9. [PMID: 28837809 DOI: 10.1016/j.cels.2017.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/01/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms.
Collapse
Affiliation(s)
- Jong Wook Kim
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Omar O Abudayyeh
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Huwate Yeerna
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Chen-Hsiang Yeang
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Michelle Stewart
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Russell W Jenkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shunsuke Kitajima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David J Konieczkowski
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kate Medetgul-Ernar
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Taylor Cavazos
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Clarence Mah
- School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Stephanie Ting
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Eliezer M Van Allen
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ofir Cohen
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John Mcdermott
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Emily Damato
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew J Aguirre
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Jonathan Liang
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Arthur Liberzon
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gabriella Alexe
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA
| | - John Doench
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mahmoud Ghandi
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Francisca Vazquez
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Barbara A Weir
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviad Tsherniak
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aravind Subramanian
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Karina Meneses-Cime
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Jason Park
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Paul Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142, USA
| | - Levi A Garraway
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - David Thomas
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jesse S Boehm
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - David A Barbie
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William C Hahn
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jill P Mesirov
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA
| | - Pablo Tamayo
- Cancer Program, Eli and Edythe Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
21
|
scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 2019; 571:419-423. [DOI: 10.1038/s41586-019-1369-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/10/2019] [Indexed: 11/08/2022]
|
22
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
23
|
Ranoa DRE, Widau RC, Mallon S, Parekh AD, Nicolae CM, Huang X, Bolt MJ, Arina A, Parry R, Kron SJ, Moldovan GL, Khodarev NN, Weichselbaum RR. STING Promotes Homeostasis via Regulation of Cell Proliferation and Chromosomal Stability. Cancer Res 2018; 79:1465-1479. [PMID: 30482772 DOI: 10.1158/0008-5472.can-18-1972] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Given the integral role of stimulator of interferon genes (STING, TMEM173) in the innate immune response, its loss or impairment in cancer is thought to primarily affect antitumor immunity. Here we demonstrate a role for STING in the maintenance of cellular homeostasis through regulation of the cell cycle. Depletion of STING in human and murine cancer cells and tumors resulted in increased proliferation compared with wild-type controls. Microarray analysis revealed genes involved in cell-cycle regulation are differentially expressed in STINGko compared with WT MEFs. STING-mediated regulation of the cell cycle converged on NFκB- and p53-driven activation of p21. The absence of STING led to premature activation of cyclin-dependent kinase 1 (CDK1), early onset to S-phase and mitosis, and increased chromosome instability, which was enhanced by ionizing radiation. These results suggest a pivotal role for STING in maintaining cellular homeostasis and response to genotoxic stress. SIGNIFICANCE: These findings provide clear mechanistic understanding of the role of STING in cell-cycle regulation, which may be exploited in cancer therapy because most normal cells express STING, while many tumor cells do not.See related commentary by Gius and Zhu, p. 1295.
Collapse
Affiliation(s)
- Diana Rose E Ranoa
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Ryan C Widau
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Stephen Mallon
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Akash D Parekh
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xiaona Huang
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Michael J Bolt
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Renate Parry
- Translational Medicine, Varian Medical Systems Inc., Palo Alto, California
| | - Stephen J Kron
- Department of Molecular Genetics and Cellular Biology, The University of Chicago, Chicago, Illinois.,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. .,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois. .,The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Lin W, Yip YL, Jia L, Deng W, Zheng H, Dai W, Ko JMY, Lo KW, Chung GTY, Yip KY, Lee SD, Kwan JSH, Zhang J, Liu T, Chan JYW, Kwong DLW, Lee VHF, Nicholls JM, Busson P, Liu X, Chiang AKS, Hui KF, Kwok H, Cheung ST, Cheung YC, Chan CK, Li B, Cheung ALM, Hau PM, Zhou Y, Tsang CM, Middeldorp J, Chen H, Lung ML, Tsao SW. Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nat Commun 2018; 9:4663. [PMID: 30405107 PMCID: PMC6220246 DOI: 10.1038/s41467-018-06889-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 09/25/2018] [Indexed: 12/30/2022] Open
Abstract
The lack of representative nasopharyngeal carcinoma (NPC) models has seriously hampered research on EBV carcinogenesis and preclinical studies in NPC. Here we report the successful growth of five NPC patient-derived xenografts (PDXs) from fifty-eight attempts of transplantation of NPC specimens into NOD/SCID mice. The take rates for primary and recurrent NPC are 4.9% and 17.6%, respectively. Successful establishment of a new EBV-positive NPC cell line, NPC43, is achieved directly from patient NPC tissues by including Rho-associated coiled-coil containing kinases inhibitor (Y-27632) in culture medium. Spontaneous lytic reactivation of EBV can be observed in NPC43 upon withdrawal of Y-27632. Whole-exome sequencing (WES) reveals a close similarity in mutational profiles of these NPC PDXs with their corresponding patient NPC. Whole-genome sequencing (WGS) further delineates the genomic landscape and sequences of EBV genomes in these newly established NPC models, which supports their potential use in future studies of NPC. The lack of appropriate models restricts pre-clinical research for nasopharyngeal carcinoma (NPC). Here the authors report the development and characterization of NPC patient-derived xenografts (PDXs), and EBV positive NPC cell line from patient tumor, and suggest their potential use in future NPC research.
Collapse
Affiliation(s)
- Weitao Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yim Ling Yip
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen Deng
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Center for Biomedical Informatics Research, Stanford University, Stanford, 94305, CA, USA
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Josephine Mun Yee Ko
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Tin Yun Chung
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Sau-Dan Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tengfei Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jimmy Yu-Wai Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John Malcolm Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pierre Busson
- Gustave Roussy, Paris-Saclay University, CNRS, UMR8126, Villejuif, F-94805, France
| | - Xuefeng Liu
- Center for Cell Reprogramming, Department of Pathology, Georgetown University Medical Center, Washington, 20057, DC, USA.,Department of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Alan Kwok Shing Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwai Fung Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hin Kwok
- Center for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Siu Tim Cheung
- Department of Surgery and Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuk Chun Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Keung Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Annie Lai-Man Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pok Man Hau
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuan Zhou
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaap Middeldorp
- VU University Medical Center, Department of Pathology, Cancer Center Amsterdam, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Honglin Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Maria Li Lung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Park C, Jeong J. Synergistic cellular responses to heavy metal exposure: A minireview. Biochim Biophys Acta Gen Subj 2018; 1862:1584-1591. [PMID: 29631058 DOI: 10.1016/j.bbagen.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Metal-responsive transcription factor 1 (MTF-1) induces the expression of metallothioneins (MTs) which bind and sequester labile metal ions. While MTF-1 primarily responds to excess metal exposure, additional stress response mechanisms are activated by excess metals. Evidence suggests potential crosstalk between responses mediated by MTF-1 and stress signaling enhances cellular tolerance to metal exposure. SCOPE OF REVIEW This review aims to summarize the current understanding of interaction between the stress response mediated by MTF-1 and other cellular mechanisms, notably the nuclear factor κB (NF-κB) and heat shock response (HSR). MAJOR CONCLUSIONS Crosstalk between MTF-1 mediated metal response and NF-κB signaling or HSR can modulate expression of stress proteins in response to metal exposure via effects on precursor signals or direct interaction of transcriptional activators. The interaction between stress signaling pathways can enhance cell survival and tolerance through a unified response system. GENERAL SIGNIFICANCE Elucidating the interactions between MTF-1 and cell stress response mechanisms is critical to a comprehensive understanding of metal-based cellular effects. Co-activation of HSR and NF-κB signaling allows the cell to detect metal contamination in the environment and improve survival outcomes.
Collapse
Affiliation(s)
- Chanyoung Park
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Jeeyon Jeong
- Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States; Department of Biology, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
26
|
Bell R, Barraclough R, Vasieva O. Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers. Curr Mol Med 2018; 17:200-210. [PMID: 28782484 PMCID: PMC5748874 DOI: 10.2174/1566524017666170807144946] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022]
Abstract
Background: Breast cancer metastasis is a highly prevalent cause of death for European females. DNA microarray analysis has established that primary tumors, which remain localized, differ in gene expression from those that metastasize. Cross-analysis of these studies allow to revile the differences that may be used as predictive in the disease prognosis and therapy. Objective: The aim of the project was to validate suggested prognostic and therapeutic markers using meta-analysis of data on gene expression in metastatic and primary breast cancer tumors. Method: Data on relative gene expression values from 12 studies on primary breast cancer and breast cancer metastasis were retrieved from Genevestigator (Nebion) database. The results of the data meta-analysis were compared with results of literature mining for suggested metastatic breast cancer markers and vectors and consistency of their reported differential expression. Results: Our analysis suggested that transcriptional expression of the COX2 gene is significantly downregulated in metastatic tissue compared to normal breast tissue, but is not downregulated in primary tumors compared with normal breast tissue and may be used as a differential marker in metastatic breast cancer diagnostics. RRM2 gene expression decreases in metastases when compared to primary breast cancer and could be suggested as a marker to trace breast cancer evolution. Our study also supports MMP1, VCAM1, FZD3, VEGFC, FOXM1 and MUC1 as breast cancer onset markers, as these genes demonstrate significant differential expression in breast neoplasms compared with normal breast tissue. Conclusion: COX2 and RRM2 are suggested to be prominent markers for breast cancer metastasis. The crosstalk between upstream regulators of genes differentially expressed in primary breast tumors and metastasis also suggests pathways involving p53, ER1, ERB-B2, TNF and WNT, as the most promising regulators that may be considered for new complex drug therapeutic interventions in breast cancer metastatic progression.
Collapse
Affiliation(s)
- R Bell
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - R Barraclough
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - O Vasieva
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| |
Collapse
|
27
|
Liu Y, Tan X, Liu W, Chen X, Hou X, Shen D, Ding Y, Yin J, Wang L, Zhang H, Yu Y, Hou J, Thompson TC, Cao G. Follistatin-like protein 1 plays a tumor suppressor role in clear-cell renal cell carcinoma. CHINESE JOURNAL OF CANCER 2018; 37:2. [PMID: 29357946 PMCID: PMC5778637 DOI: 10.1186/s40880-018-0267-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously showed that the expression of follistatin-like protein 1 (FSTL1) was significantly down-regulated in metastatic clear-cell renal cell carcinoma (ccRCC). In this study, we aimed to characterize the role of FSTL1 in the development of ccRCC. METHODS The effects of FSTL1 on cell activity and cell cycle were investigated in ccRCC cell lines with altered FSTL1 expression. Gene expression microarray assays were performed to identify the major signaling pathways affected by FSTL1 knockdown. The expression of FSTL1 in ccRCC and its effect on postoperative prognosis were estimated in a cohort with 89 patients. RESULTS FSTL1 knockdown promoted anchorage-independent growth, migration, invasion, and cell cycle of ccRCC cell lines, whereas FSTL1 overexpression attenuated cell migration. FSTL1 knockdown up-regulated nuclear factor-κB (NF-κB) and hypoxia-inducible factor (HIF) signaling pathways, increased epithelial-to-mesenchymal transition, up-regulated interleukin-6 expression, and promoted tumor necrosis factor-α-induced degradation of NF-κB inhibitor (IκBα) in ccRCC cell lines. FSTL1 immunostaining was selectively positive in epithelial cytoplasm in the loop of Henle, and positive rate of FSTL1 was significantly lower in ccRCC tissues than in adjacent renal tissues (P < 0.001). The multivariate Cox regression analysis showed that the intratumoral FSTL1 expression conferred a favorable independent prognosis with a hazard ratio of 0.325 (95% confidence interval 0.118-0.894). HIF-2α expression was negatively correlated with FSTL1 expression in ccRCC specimens (r = - 0.229, P = 0.044). Intratumoral expression of HIF-2α, rather than HIF-1α, significantly predicted an unfavorable prognosis in ccRCC (log-rank, P = 0.038). CONCLUSIONS FSTL1 plays a tumor suppression role possibly via repressing the NF-κB and HIF-2α signaling pathways. To increase FSTL1 expression might be a candidate therapeutic strategy for metastatic ccRCC.
Collapse
Affiliation(s)
- Yan Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Dan Shen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yibo Ding
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Hongwei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Jianguo Hou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Timothy C Thompson
- Genitourinary Medical Oncology-Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, P. R. China.
| |
Collapse
|
28
|
Cai H, Li Y, Wang R, Cui Y. The effects of NF-κB signal pathway on the process of anastomotic stricture after the radical resection of esophageal carcinoma. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218777593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this article is to identify the relationship between the nuclear factor κB (NF-κB) signal pathway expression and the anastomotic stricture. It particularly focuses on the expression of p65, bcl-2, and cIAP-1 in the anastomotic stricture formation after radical resection of esophageal cancer. A total of 82 esophageal squamous carcinoma patients who had undergone esophagectomy by Ivor Lewis procedure were enrolled in the study. Tissues were collected from the patients who developed the anastomotic stricture after the operation, while para anastomotic tissues served as the control. The protein expression of p65, bcl-2, and cIAP-1 was analyzed by immunohistochemistry and western blot analyses, while the messenger RNA (mRNA) levels of p65, bcl-2, and cIAP-1 were evaluated by reverse transcription polymerase chain reaction (RT-PCR). The results showed that lower expression of p65, bcl-2, and cIAP-1 proteins was observed in the para anastomotic tissue; in the esophageal stricture’s tissue, the expression of these proteins was significantly higher ( P < 0.05). The mRNA levels of P56, bcl-2, and cIAP-1 in the stricture tissue were remarkably increased ( P < 0.05) compared with the para anastomotic tissues, and the mRNA levels in the sample of grade 3 dysphagia were higher ( P < 0.05) than the levels of grade 1 and 2. In the normal esophageal epithelial cell of stricture patients was upregulated compared with that of no stricture patients. We can confirm that the anastomotic stricture has the relationship with the NF-κB signal pathway. The bcl-2 and cIAP-1, located downstream of NF-κB signal pathway, could be a new preventive and therapeutic target for the anastomotic stricture.
Collapse
Affiliation(s)
- Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Lv D, Li Y, Zhang W, Alvarez AA, Song L, Tang J, Gao WQ, Hu B, Cheng SY, Feng H. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat Commun 2017; 8:1454. [PMID: 29129908 PMCID: PMC5682287 DOI: 10.1038/s41467-017-01731-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/12/2017] [Indexed: 12/17/2022] Open
Abstract
Aberrant amplification and mutations of epidermal growth factor receptor (EGFR) are the most common oncogenic events in glioblastoma (GBM), but the mechanisms by which they promote aggressive pathogenesis are not well understood. Here, we determine that non-canonical histone signature acetylated H3 lysine 23 (H3K23ac)-binding protein tripartite motif-containing 24 (TRIM24) is upregulated in clinical GBM specimens and required for EGFR-driven tumorigenesis. In multiple glioma cell lines and patient-derived glioma stem cells (GSCs), EGFR signaling promotes H3K23 acetylation and association with TRIM24. Consequently, TRIM24 functions as a transcriptional co-activator and recruits STAT3, leading to stabilized STAT3-chromatin interactions and subsequent activation of STAT3 downstream signaling, thereby enhancing EGFR-driven tumorigenesis. Our findings uncover a pathway in which TRIM24 functions as a signal relay for oncogenic EGFR signaling and suggest TRIM24 as a potential therapeutic target for GBM that are associated with EGFR activation. EGF receptor (EGFR) amplification and mutation are major drivers in glioma tumorigenesis but this mechanism is not well understood. Here, the authors show EGFR-upregulated H3K23ac binds TRIM24 which recruits STAT3, leading to activation of STAT3 signaling, enhancing EGFR-driven tumorigenesis.
Collapse
Affiliation(s)
- Deguan Lv
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 310000, China
| | - Yanxin Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Angel A Alvarez
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lina Song
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianming Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bo Hu
- Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shi-Yuan Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Neurology, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Gu Y, Ampofo E, Menger MD, Laschke MW. miR‐191 suppresses angiogenesis by activation of NF‐kB signaling. FASEB J 2017; 31:3321-3333. [DOI: 10.1096/fj.201601263r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yuan Gu
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental SurgerySaarland University Homburg/Saar Germany
| |
Collapse
|
31
|
Kim DE, Procopio MG, Ghosh S, Jo SH, Goruppi S, Magliozzi F, Bordignon P, Neel V, Angelino P, Dotto GP. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation. J Exp Med 2017; 214:2349-2368. [PMID: 28684431 PMCID: PMC5551580 DOI: 10.1084/jem.20170724] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/11/2017] [Accepted: 05/31/2017] [Indexed: 12/02/2022] Open
Abstract
Activation of cancer-associated fibroblasts (CAFs) promotes tumorigenesis. Kim et al. show that ATF3 and CSL converge in negative regulation of CAF activation through long-distance chromatin control. Bromodomain and extra-terminal (BET) inhibitors counteract the effects of ATF3 and CSL loss in CAF activation and cancer–stromal cell expansion. Cancer-associated fibroblasts (CAFs) are important for tumor initiation and promotion. CSL, a transcriptional repressor and Notch mediator, suppresses CAF activation. Like CSL, ATF3, a stress-responsive transcriptional repressor, is down-modulated in skin cancer stromal cells, and Atf3 knockout mice develop aggressive chemically induced skin tumors with enhanced CAF activation. Even at low basal levels, ATF3 converges with CSL in global chromatin control, binding to few genomic sites at a large distance from target genes. Consistent with this mode of regulation, deletion of one such site 2 Mb upstream of IL6 induces expression of the gene. Observed changes are of translational significance, as bromodomain and extra-terminal (BET) inhibitors, unlinking activated chromatin from basic transcription, counteract the effects of ATF3 or CSL loss on global gene expression and suppress CAF tumor-promoting properties in an in vivo model of squamous cancer–stromal cell expansion. Thus, ATF3 converges with CSL in negative control of CAF activation with epigenetic changes amenable to cancer- and stroma-focused intervention.
Collapse
Affiliation(s)
- Dong Eun Kim
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | | | - Soumitra Ghosh
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Seung-Hee Jo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA
| | - Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA
| | | | - Pino Bordignon
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland
| | - Victor Neel
- Department of Dermatology, Massachusetts General Hospital, Boston, MA
| | - Paolo Angelino
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Épalinges, Switzerland .,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
32
|
Stem cell plasticity enables hair regeneration following Lgr5+ cell loss. Nat Cell Biol 2017; 19:666-676. [DOI: 10.1038/ncb3535] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/19/2017] [Indexed: 12/22/2022]
|
33
|
Gong YF, Zhang XM, Yu J, Huang TY, Wang ZZ, Liu F, Huang XY. Effect of recombinant human endostatin on hypertrophic scar fibroblast apoptosis in a rabbit ear model. Biomed Pharmacother 2017; 91:680-686. [PMID: 28499239 DOI: 10.1016/j.biopha.2017.04.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Hypertrophic scar (HS) is a dermal fibroproliferative disorder characterized by the excessive proliferation of fibroblasts and is thought to result from a cellular imbalance caused by the increased growth and reduced apoptosis of hypertrophic scar fibroblasts (HSFs). Our recent study demonstrated that recombinant human endostatin (rhEndostatin) plays a key role in the inhibition of HSF proliferation in vitro, with a resulting decrease in dermal thickness and scar hypertrophy. However, the effect of this protein on HSF apoptosis is unknown. The present study was undertaken to directly examine the effect of rhEndostatin on HSF apoptosis in the rabbit ear model. Transmission electron microscopy and flow cytometry were used to investigate HSF apoptosis in scar tissues and cultured HSFs in vitro, respectively. The expression levels of the c-jun, c-fos, NF-κB, fas, caspase-3, and bcl-2 gene products in HSFs were quantified using real-time PCR and Western blotting assays. Our data reveal that rhEndostatin (2.5 or 5mg/ml) induces HSF apoptotic cell death in scar tissue. Additionally, HSFs treated with rhEndostatin (100mg/L) in vitro accumulated in early and late apoptosis and displayed significantly decreased expression of c-jun, c-fos, NF-κB, fas, caspase-3 and bcl-2. In sum, these results demonstrate that rhEndostatin induces HSF apoptosis, and this phenotypeis partially due to downregulation of NF-κB and bcl-2. These findings suggest that rhEndostatin may have an inhibitory effect on scar hypertrophy in vivo via HSF apoptotic induction and therefore has potential therapeutic use for the treatment of HS.
Collapse
Affiliation(s)
- Yong-Fang Gong
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiao-Ming Zhang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jian Yu
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Tian-Yu Huang
- Grade 2016, The First Department of Clinical Medicine, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China
| | - Zhen-Zhen Wang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Fei Liu
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xue-Ying Huang
- Department of Anatomy, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
34
|
Sun H, Lin DC, Cao Q, Pang B, Gae DD, Lee VKM, Lim HJ, Doan N, Said JW, Gery S, Chow M, Mayakonda A, Forscher C, Tyner JW, Koeffler HP. Identification of a Novel SYK/c-MYC/MALAT1 Signaling Pathway and Its Potential Therapeutic Value in Ewing Sarcoma. Clin Cancer Res 2017; 23:4376-4387. [DOI: 10.1158/1078-0432.ccr-16-2185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/05/2016] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
35
|
Vaine CA, Shin D, Liu C, Hendriks WT, Dhakal J, Shin K, Sharma N, Bragg DC. X-linked Dystonia-Parkinsonism patient cells exhibit altered signaling via nuclear factor-kappa B. Neurobiol Dis 2016; 100:108-118. [PMID: 28017799 DOI: 10.1016/j.nbd.2016.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/17/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
X-linked Dystonia-Parkinsonism (XDP) is a progressive neurodegenerative disease involving the loss of medium spiny neurons within the striatum. An XDP-specific haplotype has been identified, consisting of seven sequence variants which cluster around the human TAF1 gene, but a direct relationship between any of these variants and disease pathogenesis has not yet been demonstrated. Because the pathogenic gene lesion remains unclear, it has been difficult to predict cellular pathways which are affected in XDP cells. To address that issue, we assayed expression of defined gene sets in XDP vs. control fibroblasts to identify networks of functionally-related transcripts which may be dysregulated in XDP patient cells. That analysis derived a 51-gene signature distinguishing XDP vs. control fibroblasts which mapped strongly to nuclear factor-kappa B (NFκB), a transcription factor pathway also implicated in the pathogenesis of other neurodegenerative diseases, including Parkinson's (PD) and Huntington's disease (HD). Constitutive and TNFα-evoked NFκB signaling was further evaluated in XDP vs. control fibroblasts based on luciferase reporter activity, DNA binding of NFκB subunits, and endogenous target gene transcription. Compared to control cells, XDP fibroblasts exhibited decreased basal NFκB activity and decreased levels of the active NFκB p50 subunit, but increased target gene expression in response to TNFα. NFκB signaling was further examined in neural stem cells differentiated from XDP and control induced pluripotent stem cell (iPSC) lines, revealing a similar pattern of increased TNFα responses in the patient lines compared to controls. These data indicate that an NFκB signaling phenotype is present in both patient fibroblasts and neural stem cells, suggesting this pathway as a site of dysfunction in XDP.
Collapse
Affiliation(s)
- Christine A Vaine
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - David Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Christina Liu
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - William T Hendriks
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Jyotsna Dhakal
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Kyle Shin
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA
| | - Nutan Sharma
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - D Cristopher Bragg
- The Collaborative Center for X-linked Dystonia Parkinsonism, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Brain Science Initiative, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Ankers JM, Awais R, Jones NA, Boyd J, Ryan S, Adamson AD, Harper CV, Bridge L, Spiller DG, Jackson DA, Paszek P, Sée V, White MR. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation. eLife 2016; 5. [PMID: 27185527 PMCID: PMC4869934 DOI: 10.7554/elife.10473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/13/2016] [Indexed: 01/07/2023] Open
Abstract
Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.001 Investigating how cells adapt to the constantly changing environment inside the body is vitally important for understanding how the body responds to an injury or infection. One of the ways in which human cells adapt is by dividing to produce new cells. This takes place in a repeating pattern of events, known as the cell cycle, through which a cell copies its DNA (in a stage known as S-phase) and then divides to make two daughter cells. Each stage of the cell cycle is tightly controlled; for example, a family of proteins called E2 factors control the entry of the cell into S phase. “Inflammatory” signals produced by a wound or during an infection can activate a protein called Nuclear Factor-kappaB (NF-κB), which controls the activity of genes that allow cells to adapt to the situation. Research shows that the activity of NF-κB is also regulated by the cell cycle, but it has not been clear how this works. Here, Ankers et al. investigated whether the stage of the cell cycle might affect how NF-κB responds to inflammatory signals. The experiments show that the NF-κB response was stronger in cells that were just about to enter S-phase than in cells that were already copying their DNA. An E2 factor called E2F-1 –which accumulates in the run up to S-phase – interacts with NF-κB and can alter the activity of certain genes. However, during S-phase, another E2 factor family member called E2F-4 binds to NF-κB and represses its activation. Next, Ankers et al. used a mathematical model to understand how these protein interactions can affect the response of cells to inflammatory signals. These findings suggest that direct interactions between E2 factor proteins and NF-κB enable cells to decide whether to divide or react in different ways to inflammatory signals. The research tools developed in this study, combined with other new experimental techniques, will allow researchers to accurately predict how cells will respond to inflammatory signals at different points in the cell cycle. DOI:http://dx.doi.org/10.7554/eLife.10473.002
Collapse
Affiliation(s)
- John M Ankers
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Raheela Awais
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Nicholas A Jones
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - James Boyd
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Sheila Ryan
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom.,Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Antony D Adamson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Claire V Harper
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Lloyd Bridge
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom.,Department of Mathematics, University of Swansea, Swansea, United Kingdom
| | - David G Spiller
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Dean A Jackson
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Pawel Paszek
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| | - Violaine Sée
- Centre for Cell Imaging, Institute of Integrative Biology, Liverpool, United Kingdom
| | - Michael Rh White
- Systems Microscopy Centre, Faculty of Life Sciences, Manchester, United Kingdom
| |
Collapse
|
38
|
Lorenz VN, Schön MP, Seitz CS. c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation. J Invest Dermatol 2016; 136:1090-1096. [PMID: 27032306 DOI: 10.1016/j.jid.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 12/19/2022]
Abstract
To maintain proper skin barrier function, epidermal homeostasis requires a subtly governed balance of proliferating and differentiating keratinocytes. While differentiation takes place in the suprabasal layers, proliferation, including mitosis, is usually restricted to the basal layer. Only recently identified as an important regulator of epidermal homeostasis, c-Rel, an NF-κB transcription factor subunit, affects the viability and proliferation of epidermal keratinocytes. In human keratinocytes, decreased expression of c-Rel causes a plethora of dysregulated cellular functions including impaired cell viability, increased apoptosis, and abnormalities during mitosis and cell cycle regulation. On the other hand, c-Rel shows aberrant expression in many epidermal tumors. Here, in the context of its role in different cell types and compared with other NF-κB subunits, we discuss the putative function of c-Rel as a regulator of epidermal homeostasis and mitotic progression. In addition, implications for disease pathophysiology with perturbed c-Rel function and abnormal homeostasis, such as epidermal carcinogenesis, will be discussed.
Collapse
Affiliation(s)
- Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany.
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| |
Collapse
|
39
|
Schlaermann P, Toelle B, Berger H, Schmidt SC, Glanemann M, Ordemann J, Bartfeld S, Mollenkopf HJ, Meyer TF. A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut 2016; 65:202-13. [PMID: 25539675 PMCID: PMC4752654 DOI: 10.1136/gutjnl-2014-307949] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Helicobacter pylori is the causative agent of gastric diseases and the main risk factor in the development of gastric adenocarcinoma. In vitro studies with this bacterial pathogen largely rely on the use of transformed cell lines as infection model. However, this approach is intrinsically artificial and especially inappropriate when it comes to investigating the mechanisms of cancerogenesis. Moreover, common cell lines are often defective in crucial signalling pathways relevant to infection and cancer. A long-lived primary cell system would be preferable in order to better approximate the human in vivo situation. METHODS Gastric glands were isolated from healthy human stomach tissue and grown in Matrigel containing media supplemented with various growth factors, developmental regulators and apoptosis inhibitors to generate long-lasting normal epithelial cell cultures. RESULTS Culture conditions were developed which support the formation and quasi-indefinite growth of three dimensional (3D) spheroids derived from various sites of the human stomach. Spheroids could be differentiated to gastric organoids after withdrawal of Wnt3A and R-spondin1 from the medium. The 3D cultures exhibit typical morphological features of human stomach tissue. Transfer of sheared spheroids into 2D culture led to the formation of dense planar cultures of polarised epithelial cells serving as a suitable in vitro model of H. pylori infection. CONCLUSIONS A robust and quasi-immortal 3D organoid model has been established, which is considered instrumental for future research aimed to understand the underlying mechanisms of infection, mucosal immunity and cancer of the human stomach.
Collapse
Affiliation(s)
- Philipp Schlaermann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Benjamin Toelle
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sven C Schmidt
- Clinics for General, Visceral and Transplant Surgery, Charité University Medicine, Berlin, Germany
| | - Matthias Glanemann
- Clinics for General, Visceral and Transplant Surgery, Charité University Medicine, Berlin, Germany
| | - Jürgen Ordemann
- Center of Bariatric and Metabolic Surgery, Charité University Medicine, Berlin, Germany
| | - Sina Bartfeld
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Hubrecht Institute/KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans J Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
40
|
Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015; 16:1235-44. [PMID: 26502405 PMCID: PMC4653079 DOI: 10.1038/ni.3290] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Detian Yuan
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Achim Weber
- Institute of Surgical Pathology, University and University-Hospital Zurich, Zurich, Switzerland
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München, Ingolstädter-Landstrasse, Neuherberg, Germany
| | - Jeffrey L Browning
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology &Hepatology Geneva University Hospital, Geneva, Switzerland
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Michael Berger
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Yinon Ben-Neriah
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
41
|
G'Sell RT, Gaffney PM, Powell DW. A20-Binding Inhibitor of NF-κB Activation 1 is a Physiologic Inhibitor of NF-κB: A Molecular Switch for Inflammation and Autoimmunity. Arthritis Rheumatol 2015; 67:2292-302. [PMID: 26097105 DOI: 10.1002/art.39245] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/09/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Rachel T G'Sell
- University of Louisville School of Medicine, Louisville, Kentucky
| | | | - David W Powell
- University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
42
|
Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, Browning JL, Goossens N, Nakagawa S, Gunasekaran G, Schwartz ME, Kobayashi M, Kumada H, Berger M, Pappo O, Rajewsky K, Hoshida Y, Karin M, Heikenwalder M, Ben-Neriah Y, Pikarsky E. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015. [PMID: 26502405 DOI: 10.1038/ni.3290.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Detian Yuan
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Ilan Stein
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Achim Weber
- Institute of Surgical Pathology, University and University-Hospital Zurich, Zurich, Switzerland
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz-Zentrum München, Ingolstädter-Landstrasse, Neuherberg, Germany
| | - Jeffrey L Browning
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA.,Division of Gastroenterology &Hepatology Geneva University Hospital, Geneva, Switzerland
| | - Shigeki Nakagawa
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ganesh Gunasekaran
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Myron E Schwartz
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Michael Berger
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany.,Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Yinon Ben-Neriah
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Zhang J, Pan C, Xu T, Niu Z, Ma C, Xu C. Interleukin 18 augments growth ability via NF-κB and p38/ATF2 pathways by targeting cyclin B1, cyclin B2, cyclin A2, and Bcl-2 in BRL-3A rat liver cells. Gene 2015; 563:45-51. [DOI: 10.1016/j.gene.2015.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
|
44
|
Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia 2015; 29:2270-3. [PMID: 25921246 DOI: 10.1038/leu.2015.109] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
46
|
Haley JA, Haughney E, Ullman E, Bean J, Haley JD, Fink MY. Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models. Front Oncol 2014; 4:344. [PMID: 25538889 PMCID: PMC4259114 DOI: 10.3389/fonc.2014.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background: The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. Experimental design: We have modeled trans-differentiation and cancer stemness in inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of cellular signaling not apparent in their epithelial counterparts. We employed large-scale quantitative phosphoproteomic, proteomic, protein–protein interaction, RNA-Seq, and network function prediction approaches to dissect the molecular events associated with the establishment and maintenance of the mesenchymal state. Results: Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2, MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways. Enrichment correlations also indicated marked decrease in cell cycling, which occurred early in the EMT process. RNA abundance time course studies also indicated early expression of epigenetic and chromatin regulators within 8–24 h, including CITED4, RUNX3, CMBX1, and SIRT4. Conclusion: Multiple transcription and epigenetic pathways where altered between epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1, HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhibition of pathway regulators, notably factors controlling epithelial cell state. Through large-scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation can promote diversification of signaling networks potentially important in resistance to cancer therapies.
Collapse
Affiliation(s)
- John A Haley
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| | | | - Erica Ullman
- Regeneron Pharmaceuticals Inc. , Tarrytown, NY , USA
| | - James Bean
- Infectious Disease Division, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - John D Haley
- Department of Pathology, Cancer Center, Stony Brook School of Medicine , Stony Brook, NY , USA
| | - Marc Y Fink
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| |
Collapse
|
47
|
Verstrepen L, Carpentier I, Beyaert R. The biology of A20-binding inhibitors of NF-kappaB activation (ABINs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:13-31. [PMID: 25302363 DOI: 10.1007/978-1-4939-0398-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The family of A20-Binding Inhibitors of NF-kappaB (ABINs) consists of three proteins, ABIN-1, ABIN-2 and ABIN-3, which were originally identified as A20-binding proteins and inhibitors of cytokines and Lipopolysaccharide (LPS) induced NF-kappaB activation. ABIN family members have limited sequence homology in a number of short regions that mediate A20-binding, ubiquitin-binding, and NF-kappaB inhibition. The functional role of A20 binding to ABINs remains unclear, although an adaptor function has been suggested. ABIN-1 and ABIN-3 expression is upregulated when cells are triggered by NF-kappaB-activating stimuli, suggesting a role for these ABINs in a negative feedback regulation of NF-kappaB signaling. Additional ABIN functions have been reported such as inhibition of TNF-induced hepatocyte apoptosis, regulation of HIV-1 replication for ABIN-1, and Tumor Progression Locus 2 (TPL-2)-mediated Extracellular signal-Regulated Kinase (ERK) activation for ABIN-2. In mice, ABIN-1 overexpression reduces allergic airway inflammation and TNF-mediated liver injury, ABIN-2 overexpression delays liver regeneration, and ABIN-3 overexpression partially protects against LPS-induced acute liver failure. Analysis of mice deficient in ABIN-1 or ABIN-2 demonstrates the important immune regulatory function of ABINs. Future studies should clarify the functional implication of the A20-ABIN interaction in supporting ABINs' mechanisms of action.
Collapse
|
48
|
Abstract
The NF-κB (nuclear factor κB) transcription factor family is a pleiotropic regulator of many cellular pathways, providing a mechanism for the cell to respond to a wide variety of stimuli and environmental challenges. It is not surprising therefore that an important component of NF-κB's function includes regulation of the cell cycle. However, this aspect of its behaviour is often overlooked and receives less attention than its ability to induce inflammatory gene expression. In the present article, we provide an updated review of the current state of our knowledge about integration of NF-κB activity with cell cycle regulation, including newly characterized direct and indirect target genes in addition to the mechanisms through which NF-κB itself can be regulated by the cell cycle.
Collapse
|
49
|
Szlavicz E, Szabo K, Bata-Csorgo Z, Kemeny L, Szell M. What have we learned about non-involved psoriatic skin from large-scale gene expression studies? World J Dermatol 2014; 3:50-57. [DOI: 10.5314/wjd.v3.i3.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/10/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder; its genetic background has been widely studied in recent decades. Recognition of novel factors contributing to the pathogenesis of this disorder was facilitated by potent molecular biology tools developed during the 1990s. Large-scale gene expression studies, including differential display and microarray, have been used in experimental dermatology to a great extent; moreover, skin was one of the first organs analyzed using these methods. We performed our first comprehensive gene expression analysis in 2000. With the help of differential display and microarray, we have discovered several novel factors contributing to the inherited susceptibility for psoriasis, including the EDA+ fibronectin splice variant and PRINS. The long non-coding PRINS RNA is expressed at higher levels in non-involved skin compared to healthy and involved psoriatic epidermis and might be a factor contributing cellular stress responses and, specifically, to the development of psoriatic symptoms. This review summarizes the most important results of our large-scale gene expression studies.
Collapse
|
50
|
Blumenberg M. Skinomics: past, present and future for diagnostic microarray studies in dermatology. Expert Rev Mol Diagn 2014; 13:885-94. [PMID: 24151852 DOI: 10.1586/14737159.2013.846827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Easily accessible, skin was among the first targets analyzed using 'omics' and dermatology embraced the approaches very early. Microarrays have been used to define disease markers, identify transcriptional changes and even trace the course of treatment. Melanoma and psoriasis have been explored using microarrays. Particularly noteworthy is the multinational mapping of psoriasis susceptibility loci. The transcriptional changes in psoriasis have been identified using hundreds of biopsies. Epidermal keratinocytes have been studied because they respond to UV light, infections, inflammatory and immunomodulating cytokines, toxins and so on. Epidermal differentiation genes are being characterized and are expressed in human epidermal stem cells. Exciting discoveries defining human skin microbiomes have opened a new field of research with great medical potential. Specific to dermatology, the non-invasive skin sampling for microarray studies, using tape stripping, has been developed; it promises to advance dermatology toward 'omics' techniques directly applicable to the personalized medicine of the future.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, the NYU Cancer Institute, NYU Langone Medical Center, NYU School of Medicine, 455 First Avenue, P.H.B. Room 874, New York NY 10016, USA
| |
Collapse
|