1
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Zhao M, Chauhan P, Sherman CA, Singh A, Kaileh M, Mazan-Mamczarz K, Ji H, Joy J, Nandi S, De S, Zhang Y, Fan J, Becker KG, Loke P, Zhou W, Sen R. NF-κB subunits direct kinetically distinct transcriptional cascades in antigen receptor-activated B cells. Nat Immunol 2023; 24:1552-1564. [PMID: 37524800 PMCID: PMC10457194 DOI: 10.1038/s41590-023-01561-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
The nuclear factor kappa B (NF-κB) family of transcription factors orchestrates signal-induced gene expression in diverse cell types. Cellular responses to NF-κB activation are regulated at the level of cell and signal specificity, as well as differential use of family members (subunit specificity). Here we used time-dependent multi-omics to investigate the selective functions of Rel and RelA, two closely related NF-κB proteins, in primary B lymphocytes activated via the B cell receptor. Despite large numbers of shared binding sites genome wide, Rel and RelA directed kinetically distinct cascades of gene expression in activated B cells. Single-cell RNA sequencing revealed marked heterogeneity of Rel- and RelA-specific responses, and sequential binding of these factors was not a major mechanism of protracted transcription. Moreover, nuclear co-expression of Rel and RelA led to functional antagonism between the factors. By rigorously identifying the target genes of each NF-κB subunit, these studies provide insights into exclusive functions of Rel and RelA in immunity and cancer.
Collapse
Affiliation(s)
- Mingming Zhao
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Prashant Chauhan
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Cheryl A Sherman
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Amit Singh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Mary Kaileh
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jaimy Joy
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Supriyo De
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Jinshui Fan
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Kevin G Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, USA
| | - Png Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
3
|
Deng B, Li A, Zhu Y, Zhou Y, Fei J, Miao Y. SHCBP1 contributes to the proliferation and self‑renewal of cervical cancer cells and activation of the NF‑κB signaling pathway through EIF5A. Oncol Lett 2023; 25:246. [PMID: 37153055 PMCID: PMC10161342 DOI: 10.3892/ol.2023.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/24/2023] [Indexed: 05/09/2023] Open
Abstract
Cervical cancer (CC) is the most common human papillomavirus-related disease. Continuous activation of the NF-κB signaling pathway has been observed in CC. SHC binding and spindle associated 1 (SHCBP1) contributes to tumorigenesis and activation of the NF-κB pathway in multiple cancer types, while its function in CC remains unclear. In the present study, three Gene Expression Omnibus datasets were used to identify differentially expressed genes (DEGs) in CC. Loss- and gain-of-function experiments were performed using stable SHCBP1-silenced and SHCBP1-overexpressing CC cells. To further explore the molecular mechanism of SHCBP1 in CC, small interfering RNA targeting eukaryotic translation initiation factor 5A (EIF5A) was transfected into stable SHCBP1-overexpressing CC cells. The results demonstrated that SHCBP1 was an upregulated DEG in CC tissues compared with healthy control cervical tissues. Functional experiments revealed the pro-proliferative and pro-stemness role of SHCBP1 in CC cells (CaSki and SiHa cells), in vitro. Furthermore, the NF-κB signaling pathway in CC cells was activated by SHCBP1. Increases in cell proliferation, stemness and activation of NF-κB, induced by SHCBP1 overexpression in CC cells, were reversed by EIF5A knockdown. Taken together, the results indicated that SHCBP1 serves an important role in regulation of CC cell proliferation, self-renewal and activation of NF-κB via EIF5A. The present study demonstrated a potential molecular mechanism underlying the progression of CC.
Collapse
Affiliation(s)
- Boya Deng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Correspondence to: Dr Boya Deng, Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng, Hangzhou, Zhejiang 310009, P.R. China, E-mail:
| | - Ailin Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medicine Science and The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Enkhnaran B, Zhang GC, Zhang NP, Liu HN, Wu H, Xuan S, Yu XN, Song GQ, Shen XZ, Zhu JM, Liu XP, Liu TT. microRNA-106b-5p Promotes Cell Growth and Sensitizes Chemosensitivity to Sorafenib by Targeting the BTG3/Bcl-xL/p27 Signaling Pathway in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1971559. [PMID: 35342408 PMCID: PMC8947873 DOI: 10.1155/2022/1971559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022]
Abstract
microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.
Collapse
Affiliation(s)
- Bilegsaikhan Enkhnaran
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hai-Ning Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Xuan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guang-Qi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of, Fudan University, Shanghai 200032, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Gong Y, Yang C, Wei Z, Liu J. SRPK1 promotes cell proliferation and tumor growth of osteosarcoma through activation of the NF-κB signaling pathway. Biol Chem 2021; 403:653-663. [PMID: 34964567 DOI: 10.1515/hsz-2020-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
To explore the expression and the functions of SRPK1 in osteosarcoma, we retrieved transcription profiling dataset by array of human bone specimens from patients with osteosarcoma from ArrayExpress (accession E-MEXP-3628) and from Gene Expression Omnibus (accession GSE16102) and analyzed expression level of SRPK1 and prognostic value in human osteosarcoma. Then we examined the effect of differential SRPK1 expression levels on the progression of osteosarcoma, including cell proliferation, cell cycle, apoptosis, and investigated its underlying molecular mechanism using in vitro osteosarcoma cell lines and in vivo nude mouse xenograft models. High expression level of SRPK1 was found in human osteosarcoma tissues and cell lines as compared to the normal bone tissues and osteoblast cells, and predicted poor prognosis of human osteosarcoma. Overexpression of SRPK1 in osteosarcoma U2OS cells led to cell proliferation but inhibition of apoptosis. In contrast, knockdown of SRPK1 in HOS cells impeded cell viability and induction of apoptosis. Moreover, silencing SRPK1 inhibited osteosarcoma tumor growth in nude mice. Mechanistic studies revealed that SRPK1 promoted cell cycle transition in osteosarcoma cells and activation of NF-κB is required for SRPK1 expression and its pro-survival signaling. SRPK1 promoted human osteosarcoma cell proliferation and tumor growth by regulating NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yubao Gong
- Department of Orthopedics, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
| | - Chen Yang
- Department of Orthopedics, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
| | - Zhengren Wei
- Department of Pharmacology, Basic Medical School, Jilin University, Changchun, China
| | - Jianguo Liu
- Department of Orthopedics, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun 130021, China
| |
Collapse
|
6
|
Kober-Hasslacher M, Oh-Strauß H, Kumar D, Soberon V, Diehl C, Lech M, Engleitner T, Katab E, Fernández-Sáiz V, Piontek G, Li H, Menze B, Ziegenhain C, Enard W, Rad R, Böttcher JP, Anders HJ, Rudelius M, Schmidt-Supprian M. c-Rel gain in B cells drives germinal center reactions and autoantibody production. J Clin Invest 2021; 130:3270-3286. [PMID: 32191641 DOI: 10.1172/jci124382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Single-nucleotide polymorphisms and locus amplification link the NF-κB transcription factor c-Rel to human autoimmune diseases and B cell lymphomas, respectively. However, the functional consequences of enhanced c-Rel levels remain enigmatic. Here, we overexpressed c-Rel specifically in mouse B cells from BAC-transgenic gene loci and demonstrate that c-Rel protein levels linearly dictated expansion of germinal center B (GCB) cells and isotype-switched plasma cells. c-Rel expression in B cells of otherwise c-Rel-deficient mice fully rescued terminal B cell differentiation, underscoring its critical B cell-intrinsic roles. Unexpectedly, in GCB cells transcription-independent regulation produced the highest c-Rel protein levels among B cell subsets. In c-Rel-overexpressing GCB cells this caused enhanced nuclear translocation, a profoundly altered transcriptional program, and increased proliferation. Finally, we provide a link between c-Rel gain and autoimmunity by showing that c-Rel overexpression in B cells caused autoantibody production and renal immune complex deposition.
Collapse
Affiliation(s)
- Maike Kober-Hasslacher
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Hyunju Oh-Strauß
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dilip Kumar
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Valeria Soberon
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Carina Diehl
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Maciej Lech
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Eslam Katab
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vanesa Fernández-Sáiz
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Medicine III, School of Medicine, Technical University of Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Hongwei Li
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Björn Menze
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,Department of Informatics, Technical University of Munich, Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Oncology and Functional Genomics and
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany.,Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Zhang T, Sun J, Cheng J, Yin W, Li J, Miller H, Herrada AA, Gu H, Song H, Chen Y, Gong Q, Liu C. The role of ubiquitinase in B cell development and function. J Leukoc Biol 2020; 109:395-405. [PMID: 32816356 DOI: 10.1002/jlb.1mr0720-185rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
Ubiquitinases are a select group of enzymes that modify target proteins through ubiquitination, which plays a crucial role in the regulation of protein degradation, location, and function. B lymphocytes that originated from bone marrow hematopoietic stem cells (HSC), exert humoral immune functions by differentiating into plasma cells and producing antibodies. Previous studies have shown that ubiquitination is involved in the regulation of the cell cycle and signal transduction important for B lymphocyte development and function. In this review, how ubiquitinases regulate B cell development, activation, apoptosis, and proliferation is discussed, which could help in understanding the physiological processes and diseases related to B cells and also provides potential new targets for further studies.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Cheng
- Department of hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Li
- Department of hematology, Wuhan Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrés A Herrada
- Lymphatic and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Heng Gu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 1, Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Berry CT, Liu X, Myles A, Nandi S, Chen YH, Hershberg U, Brodsky IE, Cancro MP, Lengner CJ, May MJ, Freedman BD. BCR-Induced Ca 2+ Signals Dynamically Tune Survival, Metabolic Reprogramming, and Proliferation of Naive B Cells. Cell Rep 2020; 31:107474. [PMID: 32294437 PMCID: PMC7301411 DOI: 10.1016/j.celrep.2020.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
B cell receptor (BCR) engagement induces naive B cells to differentiate and perform critical immune-regulatory functions. Acquisition of functional specificity requires that a cell survive, enter the cell cycle, and proliferate. We establish that quantitatively distinct Ca2+ signals triggered by variations in the extent of BCR engagement dynamically regulate these transitions by controlling nuclear factor κB (NF-κB), NFAT, and mTORC1 activity. Weak BCR engagement induces apoptosis by failing to activate NF-κB-driven anti-apoptotic gene expression. Stronger signals that trigger more robust Ca2+ signals promote NF-κB-dependent survival and NFAT-, mTORC1-, and c-Myc-dependent cell-cycle entry and proliferation. Finally, we establish that CD40 or TLR9 costimulation circumvents these Ca2+-regulated checkpoints of B cell activation and proliferation. As altered BCR signaling is linked to autoimmunity and B cell malignancies, these results have important implications for understanding the pathogenesis of aberrant B cell activation and differentiation and therapeutic approaches to target these responses.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Satabdi Nandi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, PA 19104, USA; Department of Human Biology, Faculty of Sciences, University of Haifa, Haifa 3498838, Israel
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University of Pennsylvania Institute for Regenerative Medicine, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
10
|
Dawood M, Ooko E, Efferth T. Collateral Sensitivity of Parthenolide via NF-κB and HIF-α Inhibition and Epigenetic Changes in Drug-Resistant Cancer Cell Lines. Front Pharmacol 2019; 10:542. [PMID: 31164821 PMCID: PMC6536578 DOI: 10.3389/fphar.2019.00542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/30/2019] [Indexed: 12/18/2022] Open
Abstract
Parthenolide (PT) is a sesquiterpene lactone isolated from Tanacetum parthenium. In this study, PT showed varying cytotoxic effects against different solid tumor cell lines. HCT116 (p53+/+) colon carcinoma cells and their parental HCT116 knockout p53 (p53-/-) cell lines showed a resistance degree of 2.36. On the other hand, wild-type U87.MG cells or cells transfected with a deletion-activated EGFR cDNA (U87.MGΔEGFR) exhibited slight sensitivity toward PT. Multidrug-resistant MDA-MB-231-BCRP cells were even more sensitive toward PT than sensitive MDA-MB-231-pcDNA cells with a resistance degree of 0.07 (collateral sensitivity). To the best of our knowledge, hypersensitivity (collateral sensitivity) in MDA-MB-231-BCRP cell line is reported in this study for the first time. We attempted to identify the mechanism of collateral sensitivity. Firstly, we found that PT bound to IKK preventing IκBα degradation and eventually inhibition of the nuclear factor kappa B (NF-κB) pathway. Down-regulation of hypoxia inducing factor 1-alpha (HIF-1α) in MDA-MB-231-BCRP resistant cells may be a second mechanism, since it is a target gene of NF-κB. Moreover, PT also showed epigenetic effect by inhibition of HDAC activity as shown using both molecular docking and HDAC activity assay. Based on COMPARE and hierarchical cluster analyses, we found gene expression profiles that predicted sensitivity or resistance of 47 tumor cell lines toward PT. Interestingly, pathway analyses of gene expression profiles revealed NF-κB and HIF signaling as top networks of these genes, cellular functions and canonical pathways influencing the activity of PT against tumor cells. In conclusion, PT exerted profound cytotoxic activity against various cancer cell lines mainly against BCRP-overexpressing tumor cells, suggesting PT as novel candidate for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Edna Ooko
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
12
|
Miura Y, Morooka M, Sax N, Roychoudhuri R, Itoh-Nakadai A, Brydun A, Funayama R, Nakayama K, Satomi S, Matsumoto M, Igarashi K, Muto A. Bach2 Promotes B Cell Receptor-Induced Proliferation of B Lymphocytes and Represses Cyclin-Dependent Kinase Inhibitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2882-2893. [PMID: 29540581 DOI: 10.4049/jimmunol.1601863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
Abstract
BTB and CNC homology 2 (Bach2) is a transcriptional repressor that is required for the formation of the germinal center (GC) and reactions, including class switch recombination and somatic hypermutation of Ig genes in B cells, within the GC. Although BCR-induced proliferation is essential for GC reactions, the function of Bach2 in regulating B cell proliferation has not been elucidated. In this study, we demonstrate that Bach2 is required to sustain high levels of B cell proliferation in response to BCR signaling. Following BCR engagement in vitro, B cells from Bach2-deficient (Bach2-/-) mice showed lower incorporation of BrdU and reduced cell cycle progression compared with wild-type cells. Bach2-/- B cells also underwent increased apoptosis, as evidenced by an elevated frequency of sub-G1 cells and early apoptotic cells. Transcriptome analysis of BCR-engaged B cells from Bach2-/- mice revealed reduced expression of the antiapoptotic gene Bcl2l1 encoding Bcl-xL and elevated expression of cyclin-dependent kinase inhibitor (CKI) family genes, including Cdkn1a, Cdkn2a, and Cdkn2b Reconstitution of Bcl-xL expression partially rescued the proliferation defect of Bach2-/- B cells. Chromatin immunoprecipitation experiments showed that Bach2 bound to the CKI family genes, indicating that these genes are direct repression targets of Bach2. These findings identify Bach2 as a requisite factor for sustaining high levels of BCR-induced proliferation, survival, and cell cycle progression, and it promotes expression of Bcl-xL and repression of CKI genes. BCR-induced proliferation defects may contribute to the impaired GC formation observed in Bach2-/- mice.
Collapse
Affiliation(s)
- Yuichi Miura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Advanced Surgical Science and Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mizuho Morooka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nicolas Sax
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, CB22 3AT Cambridge, United Kingdom
| | - Ari Itoh-Nakadai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Andrey Brydun
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ryo Funayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keiko Nakayama
- Department of Cell Proliferation, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Susumu Satomi
- Division of Advanced Surgical Science and Technology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; and
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; and
| |
Collapse
|
13
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
14
|
Mohammadi SM, Mohammadnejad D, Hosseinpour Feizi AA, Movassaghpour AA, Montazersaheb S, Nozad Charoudeh H. Inhibition of c-REL using siRNA increased apoptosis and decreased proliferation in pre-B ALL blasts: Therapeutic implications. Leuk Res 2017; 61:53-61. [PMID: 28892661 DOI: 10.1016/j.leukres.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023]
Abstract
The c-Rel transcription factor is a unique member of the NF-kB family that has a role in apoptosis, proliferation and cell survival. Overexpression of c-Rel is detected in many human B cell tumors, including B-cell leukemia and several cancers. The study aimed to investigate the effects of c-Rel siRNA on the proliferation and apoptosis of relapsed pre-B acute leukemia cells. The c-Rel siRNA was transfected into Leukemia cells using an Amaxa cell line Nucleofector kit L (Lonza). Quantitative real-time RT-PCR (qRT-PCR) and western blot were done to measure the expression levels of mRNA and protein, respectively. The flow cytometry was used to analyze the effect of c-Rel siRNA on the apoptosis and proliferation of Leukemia cells. Observed c-Rel expression in the 5 pre-B Acute lymphoblastic leukemia (ALL) patients were higher than the normal cells. The c-Rel siRNA transfection significantly blocked the expression of c-Rel mRNA in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P<0.05). Our results demonstrated that c-Rel plays a fundamental role in the survival. Therefore, c-Rel can be considered as an attractive target for gene therapy in ALL patients. Also siRNA-mediated silencing of this gene may be a novel strategy in ALL treatment.
Collapse
Affiliation(s)
| | - Daryosh Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
15
|
de Valle E, Grigoriadis G, O'Reilly LA, Willis SN, Maxwell MJ, Corcoran LM, Tsantikos E, Cornish JKS, Fairfax KA, Vasanthakumar A, Febbraio MA, Hibbs ML, Pellegrini M, Banerjee A, Hodgkin PD, Kallies A, Mackay F, Strasser A, Gerondakis S, Gugasyan R. NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells. J Exp Med 2016; 213:621-41. [PMID: 27022143 PMCID: PMC4821646 DOI: 10.1084/jem.20151182] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
de Valle et al. show that, with age, NFκB1-deficient B cells spontaneously secrete IL-6 and cause a multiorgan autoimmune disease. We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1−/−) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity of Nfκb1−/− Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation, the formation of GC structures was severely disrupted in the Nfκb1−/− mice. Bone marrow chimeric mice revealed that the Fo B cell–intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels, which promotes the differentiation of Fo helper CD4+ T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM+Nfκb1−/− Fo B cells. We demonstrate that p50-NFκB1 represses Il-6 transcription in Fo B cells, with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription of Il-6. Collectively, our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation of Il-6 gene expression in Fo B cells.
Collapse
Affiliation(s)
- Elisha de Valle
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - George Grigoriadis
- School of Clinical Sciences, Monash University, Melbourne, VIC 3004, Australia Center for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia Clinical Haematology, Monash and Alfred Health, Melbourne, VIC 3168, Australia
| | - Lorraine A O'Reilly
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Simon N Willis
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mhairi J Maxwell
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Lynn M Corcoran
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Evelyn Tsantikos
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jasper K S Cornish
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kirsten A Fairfax
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Ajithkumar Vasanthakumar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Mark A Febbraio
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Margaret L Hibbs
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Ashish Banerjee
- Center for Cancer Research, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| | - Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Axel Kallies
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Fabienne Mackay
- Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Steve Gerondakis
- Infection and Immunity Program, Monash Biomedical Discovery Institute, Monash University, Melbourne, VIC 3004, Australia Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3004, Australia
| | - Raffi Gugasyan
- Burnet Institute, Melbourne, VIC 3004, Australia Immunology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
16
|
Naik E, Dixit VM. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3438-51. [PMID: 26936881 DOI: 10.4049/jimmunol.1403165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/09/2016] [Indexed: 11/19/2022]
Abstract
To achieve a durable adaptive immune response, lymphocytes must undergo clonal expansion and induce a survival program that enables the persistence of Ag-experienced cells and the development of memory. During the priming phase of this response, CD4(+)T lymphocytes either remain tolerized or undergo clonal expansion. In this article, we show that Usp9X functions as a positive regulatory switch during T lymphocyte priming through removal of inhibitory monoubiquitination from ZAP70. In the absence of Usp9X, an increased amount of ZAP70 localized to early endosomes consistent with the role of monoubiquitin in endocytic sorting. Usp9X becomes competent to deubiquitinate ZAP70 through TCR-dependent phosphorylation and enhancement of its catalytic activity and association with the LAT signalosome. In B lymphocytes, Usp9X is required for the induction of PKCβ kinase activity after BCR-dependent activation. Accordingly, inUsp9Xknockout B cells, there was a significant reduction in phospho-CARMA1 levels that resulted in reduced CARMA1/Bcl-10/MALT-1 complex formation and NF-κB-dependent cell survival. The pleiotropic effect of Usp9X during Ag-receptor signaling highlights its importance for the development of an effective and durable adaptive immune response.
Collapse
Affiliation(s)
- Edwina Naik
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, CA 94080
| |
Collapse
|
17
|
MicroRNA-302/367 cluster governs hESC self-renewal by dually regulating cell cycle and apoptosis pathways. Stem Cell Reports 2015; 4:645-57. [PMID: 25801506 PMCID: PMC4400607 DOI: 10.1016/j.stemcr.2015.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/31/2023] Open
Abstract
miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle and apoptosis in dose-dependent manner. Gene profiling and functional studies identified key targets of the miR-302/367 cluster in regulating hESC self-renewal and apoptosis. We demonstrate that in addition to its role in cell cycle regulation, miR-302/367 cluster conquers apoptosis by downregulating BNIP3L/Nix (a BH3-only proapoptotic factor) and upregulating BCL-xL expression. Furthermore, we show that butyrate, a natural compound, upregulates miR-302/367 cluster expression and alleviates hESCs from apoptosis induced by knockdown of miR-302/367 cluster. In summary, our findings provide new insights in molecular mechanisms of how miR-302/367 cluster regulates hESCs. Knockdown of the endogenous miR-302/367 cluster attenuates hESC self-renewal Endogenous miR-302/367 cluster dually regulates cell cycle and apoptosis in hESCs miR-302/367 cluster regulates hESC self-renewal by inhibiting apoptosis pathway Butyrate suppresses BNIP3L/Nix expression via miR-302/367 cluster
Collapse
|
18
|
Sasaki Y, Iwai K. Roles of the NF-κB Pathway in B-Lymphocyte Biology. Curr Top Microbiol Immunol 2015; 393:177-209. [PMID: 26275874 DOI: 10.1007/82_2015_479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NF-κB was originally identified as a family of transcription factors that bind the enhancer of the immunoglobulin κ light-chain gene. Although its function in the regulation of immunoglobulin κ light-chain gene remains unclear, NF-κB plays critical roles in development, survival, and activation of B lymphocytes. In B cells, many receptors, including B-cell antigen receptor (BCR), activate NF-κB pathway, and the molecular mechanism of receptor-mediated activation of IκB kinase (IKK) complex has been partially revealed. In addition to normal B lymphocytes, NF-κB is also involved in the growth of some types of B-cell lymphomas, and many oncogenic mutations involved in constitutive activation of the NF-κB pathway were recently identified in such cancers. In this review, we first summarize the function of NF-κB in B-cell development and activation, and then describe recent progress in understanding the molecular mechanism of receptor-mediated activation of the IKK complex, focusing on the roles of the ubiquitin system. In the last section, we describe oncogenic mutations that induce NF-κB activation in B-cell lymphoma.
Collapse
Affiliation(s)
- Yoshiteru Sasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Almaden JV, Tsui R, Liu YC, Birnbaum H, Shokhirev MN, Ngo KA, Davis-Turak JC, Otero D, Basak S, Rickert RC, Hoffmann A. A pathway switch directs BAFF signaling to distinct NFκB transcription factors in maturing and proliferating B cells. Cell Rep 2014; 9:2098-111. [PMID: 25497099 PMCID: PMC4889572 DOI: 10.1016/j.celrep.2014.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 11/27/2022] Open
Abstract
BAFF, an activator of the noncanonical NFκB pathway, provides critical survival signals during B cell maturation and contributes to B cell proliferation. We found that the NFκB family member RelB is required ex vivo for B cell maturation, but cRel is required for proliferation. Combined molecular network modeling and experimentation revealed Nfkb2 p100 as a pathway switch; at moderate p100 synthesis rates in maturing B cells, BAFF fully utilizes p100 to generate the RelB:p52 dimer, whereas at high synthesis rates, p100 assembles into multimeric IκBsome complexes, which BAFF neutralizes in order to potentiate cRel activity and B cell expansion. Indeed, moderation of p100 expression or disruption of IκBsome assembly circumvented the BAFF requirement for full B cell expansion. Our studies emphasize the importance of p100 in determining distinct NFκB network states during B cell biology, which causes BAFF to have context-dependent functional consequences.
Collapse
Affiliation(s)
- Jonathan V Almaden
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rachel Tsui
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yi C Liu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Harry Birnbaum
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Maxim N Shokhirev
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kim A Ngo
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Jeremy C Davis-Turak
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Dennis Otero
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Robert C Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory and San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90025, USA.
| |
Collapse
|
20
|
Neo WH, Lim JF, Grumont R, Gerondakis S, Su IH. c-Rel regulates Ezh2 expression in activated lymphocytes and malignant lymphoid cells. J Biol Chem 2014; 289:31693-31707. [PMID: 25266721 DOI: 10.1074/jbc.m114.574517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The polycomb group protein Ezh2 is a histone methyltransferase that modifies chromatin structure to alter gene expression during embryonic development, lymphocyte activation, and tumorigenesis. The mechanism by which Ezh2 expression is regulated is not well defined. In the current study, we report that c-Rel is a critical activator of Ezh2 transcription in lymphoid cells. In activated primary murine B and T cells, plus human leukemia and multiple myeloma cell lines, recruitment of c-Rel to the first intron of the Ezh2 locus promoted Ezh2 mRNA expression. This up-regulation was abolished in activated c-Rel-deficient lymphocytes and by c-Rel knockdown in Jurkat T cells. Treatment of malignant cells with the c-Rel inhibitor pentoxifylline not only reduced c-Rel nuclear translocation and Ezh2 expression, but also enhanced their sensitivity to the Ezh2-specific drug, GSK126 through increased growth inhibition and cell death. In summary, our demonstration that c-Rel regulates Ezh2 expression in lymphocytes and malignant lymphoid cells reveals a novel transcriptional network in transformed lymphoid cells expressing high levels of Ezh2 that provides a molecular justification for combinatorial drug therapy.
Collapse
Affiliation(s)
- Wen Hao Neo
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Jun Feng Lim
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and
| | - Raelene Grumont
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Steve Gerondakis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore 637551, Republic of Singapore and.
| |
Collapse
|
21
|
Abstract
The NF-κB (nuclear factor κB) transcription factor family is a pleiotropic regulator of many cellular pathways, providing a mechanism for the cell to respond to a wide variety of stimuli and environmental challenges. It is not surprising therefore that an important component of NF-κB's function includes regulation of the cell cycle. However, this aspect of its behaviour is often overlooked and receives less attention than its ability to induce inflammatory gene expression. In the present article, we provide an updated review of the current state of our knowledge about integration of NF-κB activity with cell cycle regulation, including newly characterized direct and indirect target genes in addition to the mechanisms through which NF-κB itself can be regulated by the cell cycle.
Collapse
|
22
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
23
|
Györy I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E, Grosschedl R. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev 2012; 26:668-82. [PMID: 22431510 DOI: 10.1101/gad.187328.112] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The transcription factor Ebf1 is an important determinant of early B lymphopoiesis. To gain insight into the functions of Ebf1 at distinct stages of differentiation, we conditionally inactivated Ebf1. We found that Ebf1 is required for the proliferation, survival, and signaling of pro-B cells and peripheral B-cell subsets, including B1 cells and marginal zone B cells. The proliferation defect of Ebf1-deficient pro-B cells and the impaired expression of multiple cell cycle regulators are overcome by transformation with v-Abl. The survival defect of transformed Ebf1(fl/fl) pro-B cells can be rescued by the forced expression of the Ebf1 targets c-Myb or Bcl-x(L). In mature B cells, Ebf1 deficiency interferes with signaling via the B-cell-activating factor receptor (BAFF-R)- and B-cell receptor (BCR)-dependent Akt pathways. Moreover, Ebf1 is required for germinal center formation and class switch recombination. Genome-wide analyses of Ebf1-mediated gene expression and chromatin binding indicate that Ebf1 regulates both common and distinct sets of genes in early and late stage B cells. By regulating important components of transcription factor and signaling networks, Ebf1 appears to be involved in the coordination of cell proliferation, survival, and differentiation at multiple stages of B lymphopoiesis.
Collapse
Affiliation(s)
- Ildiko Györy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Valentín-Acevedo A, Sinquett FL, Covey LR. c-Rel deficiency increases caspase-4 expression and leads to ER stress and necrosis in EBV-transformed cells. PLoS One 2011; 6:e25467. [PMID: 21984918 PMCID: PMC3184984 DOI: 10.1371/journal.pone.0025467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/05/2011] [Indexed: 01/03/2023] Open
Abstract
LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death.
Collapse
Affiliation(s)
- Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Frank L. Sinquett
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
25
|
Direct Rel/NF-κB inhibitors: structural basis for mechanism of action. Future Med Chem 2011; 1:1683-707. [PMID: 21425986 DOI: 10.4155/fmc.09.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Rel/NF-κB transcription factors have emerged as novel therapeutic targets for a variety of human diseases and pathological conditions, including inflammation, autoimmune diseases, cancer, ischemic injury, osteoporosis, transplant rejection and neurodegeneration. Several US FDA-approved drugs may, in part, attribute their therapeutic effects to the inhibition of the Rel/NF-κB pathway. Strategies for blocking the Rel/NF-κB signaling pathway have inspired the pharmaceutical industry to develop inhibitors for I-κB kinase, however, this article focuses instead on identifying natural compounds that directly target and inhibit DNA binding and transcription activity of Rel/NF-κB. These include compounds containing a quinone core, an α,β unsaturated carbonyl and a benzene diamine. By investigating the mechanisms of action of existing natural inhibitors, novel strategies and synthetic approaches can be devised that will facilitate the development of novel and selective Rel/NF-κB inhibitors with better safety profiles.
Collapse
|
26
|
Liou HC, Smith KA. The roles of c-rel and interleukin-2 in tolerance: a molecular explanation of self-nonself discrimination. Immunol Cell Biol 2010; 89:27-32. [PMID: 20975733 DOI: 10.1038/icb.2010.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The molecular mechanisms responsible for the exquisite discrimination between self and nonself molecules have remained enigmatic despite intense investigation. However, with the availability of adequate amounts of anergic lymphocytes produced by double transgenic mice, large numbers of immature B cells from sublethaly irradiated, hematopoietically-synchronized mice, as well as critical gene-deleted mice, it has been possible for the first time to uncover plausible molecular mechanisms that lead to tolerance versus immunity. The Rel family of transcription factors is expressed at different stages of lymphocyte maturation and differentiation. C-Rel is not activated by immature lymphocytes, which undergo either anergy or apoptosis when triggered by antigen receptors, but c-Rel is activated in mature lymphocytes. Antigen receptor triggering induces c-Rel-dependent survival and proliferative genetic programs. In T cells, a critical c-Rel-dependent gene encodes the T-cell growth factor interleukin-2 (IL-2). Thus, T cells from c-Rel gene-deleted mice produce inadequate quantities of IL-2, which renders them immunocompromised and unable to mount normal T-cell proliferative and differentiative responses. In the face of absolute IL-2 deficiency from birth, severe, multiorgan autoimmunity gradually ensues. Also, with more subtle IL-2 deficiency, organ/tissue-specific autoimmune disease becomes evident. Accordingly, both c-Rel and IL-2 appear to be key molecules for tolerance versus immunity, and doubtless will become foci for continued investigation, as well as future therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
27
|
Chen G, Hardy K, Bunting K, Daley S, Ma L, Shannon MF. Regulation of the IL-21 gene by the NF-κB transcription factor c-Rel. THE JOURNAL OF IMMUNOLOGY 2010; 185:2350-9. [PMID: 20639489 DOI: 10.4049/jimmunol.1000317] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-21 is a member of the common gamma-chain-dependent cytokine family and is a key modulator of lymphocyte development, proliferation, and differentiation. IL-21 is highly expressed in activated CD4(+) T cells and plays a critical role in the expansion and differentiation of the Th cell subsets, Th17 and follicular helper T (T(FH)) cells. Because of its potent activity in both myeloid and lymphoid cell immune responses, it has been implicated in a number of autoimmune diseases and has also been used as a therapeutic agent in the treatment of some cancers. In this study, we demonstrate that c-Rel, a member of the NF-kappaB family of transcription factors, is required for IL-21 gene expression in T lymphocytes. IL-21 mRNA and protein levels are reduced in the CD4(+) cells of rel(-/-) mice when compared with rel(+/+) mice in both in vitro and in vivo models. A c-Rel binding site identified in the proximal promoter of il21 is confirmed to bind c-Rel in vitro and in vivo and to regulate expression from the il21 promoter in T cells. Downstream of IL-21 expression, Th17, T(FH), and germinal center B cell development are also impaired in rel(-/-) mice. The administration of IL-21 protein rescued the development of T(FH) cells but not germinal center B cells. Taken together, c-Rel plays an important role in the expression of IL-21 in T cells and subsequently in IL-21-dependent T(FH) cell development.
Collapse
Affiliation(s)
- Guobing Chen
- Gene Expression and Epigenomics Group, Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
29
|
Tian W, Liou HC. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS One 2009; 4:e5028. [PMID: 19347041 PMCID: PMC2661141 DOI: 10.1371/journal.pone.0005028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/05/2009] [Indexed: 12/13/2022] Open
Abstract
c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Cheng S, Hsia CY, Feng B, Liou ML, Fang X, Pandolfi PP, Liou HC. BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res 2009; 19:196-207. [PMID: 18781138 DOI: 10.1038/cr.2008.284] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.
Collapse
Affiliation(s)
- Shuhua Cheng
- Department of Medicine, Division of Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
NF-kappaB1 and c-Rel cooperate to promote the survival of TLR4-activated B cells by neutralizing Bim via distinct mechanisms. Blood 2008; 112:5063-73. [PMID: 18805964 DOI: 10.1182/blood-2007-10-120832] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) pathway is crucial for the survival of B cells stimulated through Toll-like receptors (TLRs). Here, we show that the heightened death of TLR4-activated nfkb1(-/-) B cells is the result of a failure of the Tpl(2)/MEK/ERK pathway to phosphorylate the proapo-ptotic BH3-only protein Bim and target it for degradation. ERK inactivation of Bim after TLR4 stimulation is accompanied by an increase in A1/Bim and Bcl-x(L)/Bim complexes that we propose represents a c-Rel-dependent mechanism for neutralizing Bim. Together these findings establish that optimal survival of TLR4-activated B cells depends on the NF-kappaB pathway neutralizing Bim through a combination of Bcl-2 prosurvival protein induction and Tpl2/ERK-dependent Bim phosphorylation and degradation.
Collapse
|
32
|
Allen C, Saigal K, Nottingham L, Arun P, Chen Z, Van Waes C. Bortezomib-induced apoptosis with limited clinical response is accompanied by inhibition of canonical but not alternative nuclear factor-{kappa}B subunits in head and neck cancer. Clin Cancer Res 2008; 14:4175-85. [PMID: 18593997 DOI: 10.1158/1078-0432.ccr-07-4470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nuclear factor-kappaB (NF-kappaB)/REL transcription factors promote cancer cell survival and progression. The canonical (NF-kappaB1/RELA or cREL) and alternate (NF-kappaB2/RELB) pathways require the proteasome for cytoplasmic-nuclear translocation, prompting the investigation of bortezomib for cancer therapy. However, limited clinical activity of bortezomib has been observed in many epithelial malignancies, suggesting this could result from incomplete inhibition of NF-kappaB/RELs or other prosurvival signal pathways. EXPERIMENTAL DESIGN To examine these possibilities, matched biopsies from 24 h posttreatment were obtained from accessible tumors of patients who received low-dose bortezomib (0.6 mg/m(2)) before reirradiation in a phase I trial for recurrent head and neck squamous cell carcinoma (HNSCC). Effects of bortezomib on apoptosis and proliferation by TUNEL and Ki67 staining were compared with nuclear staining for all five NF-kappaB subunits, phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated signal transducers and activators of transcription 3 (STAT3) in tumor biopsies, and by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTP) and DNA binding assay for the five NF-kappaB subunits in HNSCC cell lines. RESULTS HNSCC showed increased nuclear staining for all five NF-kappaB subunits, phosphorylated ERK1/2, and phosphorylated STAT3. Bortezomib treatment significantly enhanced apoptosis with inhibition of nuclear RELA in three of four tumors, but other NF-kappaB subunits, ERK1/2, and STAT3 were variably or not affected, and tumor progression was observed within 3 months. In HNSCC cell lines, 10(-8) mol/L bortezomib inhibited cell density while inhibiting tumor necrosis factor-alpha-induced and partially inhibiting basal activation of NF-kappaB1/RELA, but not NF-kappaB2/RELB. CONCLUSIONS Although low-dose bortezomib inhibits activation of subunits of the canonical pathway, it does not block nuclear activation of the noncanonical NF-kappaB or other prosurvival signal pathways, which may contribute to the heterogeneous responses observed in HNSCC.
Collapse
Affiliation(s)
- Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review aims to summarize recent advances in the mechanisms through which the activation of the transcription factor NF-kappaB contributes to the pathogenesis of multiple myeloma. RECENT FINDINGS This transcription factor regulates expression of numerous genes involved in multiple myeloma pathogenesis, including growth, survival, immortalization, angiogenesis and metastasis. Recently, mutations of NF-kappaB signaling molecules have been identified in multiple myeloma cells. In addition, interactions between multiple myeloma cells and the bone marrow environment play critical roles in NF-kappaB activation as well as in multiple myeloma pathogenesis. Moreover, several drugs that are effective against multiple myeloma, including bortezomib, thalidomide, lenalidomide and arsenic trioxide, have been found to block activation of NF-kappaB. The combination of conventional chemotherapeutic drugs and those that block NF-kappaB activation has now proven to be effective in the treatment of multiple myeloma. SUMMARY Recent studies further underscore the critical role of NF-kappaB in multiple myeloma pathogenesis and have provided the rationale for multiple myeloma therapy with NF-kappaB-specific inhibitors combined with conventional chemotherapeutic drugs.
Collapse
|
34
|
Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, Svojanovsky S, Wang HG, Li B. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Prostate 2008; 68:453-61. [PMID: 18196538 DOI: 10.1002/pros.20723] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recently we reported that silencing the androgen receptor (AR) gene reduced Bcl-xL expression that was associated with a profound apoptotic cell death in prostate cancer cells. In this study we further investigated AR-regulated Bcl-xL expression. METHODS Prostate cancer cell line LNCaP and its sublines, LNCaP/PURO and LNCaP/Bclxl, were used for cell proliferation assay and xenograft experiments in nude mice. Luciferase gene reporters driven by mouse or human bcl-x gene promoter were used to determine androgen regulation of Bcl-xL expression. RT-PCR and Western blot assays were conducted to assess Bcl-xL gene expression. Chromatin immunoprecipitation assay was performed to determine AR interaction with Bcl-xL promoter. Bcl-xL-induced alteration of gene expression was examined using cDNA microarray assay. RESULTS In cultured prostate cancer LNCaP cells, androgen treatment significantly increased Bcl-xL expression at mRNA and protein levels via an AR-dependent mechanism. Promoter analyses demonstrated that the AR mediated androgen-stimulated bcl-x promoter activation and that the AR interacted with bcl-x promoter. Enforced expression of Bcl-xL gene dramatically increased cell proliferation in vitro and promoted xenograft tumor growth in vivo. Genome-wide gene profiling analysis revealed that Bcl-xL expression was significantly higher in metastatic and castration-resistant diseases compared to normal prostate tissues or primary cancers. Bcl-xL overexpression significantly increased the expression of cyclin D2, which might be responsible for Bcl-xL-induced cell proliferation and tumor growth. CONCLUSIONS Taken together, our data strongly suggest that androgen stimulates Bcl-xL expression via the AR and that increased Bcl-xL expression plays a versatile role in castration-resistant progression of prostate cancer.
Collapse
Affiliation(s)
- Aijing Sun
- Department of Pathology, Shaoxing People's Hospital & the First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gupta N, Delrow J, Drawid A, Sengupta AM, Fan G, Gélinas C. Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) is important for lymphocyte transformation by rel proteins. Cancer Res 2008; 68:808-14. [PMID: 18245482 DOI: 10.1158/0008-5472.can-07-3169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistent Rel/nuclear factor-kappaB (NF-kappaB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformation-impacting genes regulated by NF-kappaB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin lambda light chain (Ig lambda), and is accompanied by a block in BCR-mediated activation of extracellular signal-regulated kinase, Akt, and c-Jun-NH(2)-kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-kappaB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-kappaB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that down-regulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
Collapse
Affiliation(s)
- Nupur Gupta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gerondakis S, Grumont RJ, Banerjee A. Regulating B‐cell activation and survival in response to TLR signals. Immunol Cell Biol 2007; 85:471-5. [PMID: 17637697 DOI: 10.1038/sj.icb.7100097] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Following encounters with microbes, cellular activation programs that involve the control of proliferation and survival are initiated in follicular B cells either via the B-cell receptor in a specific antigen-defined manner, or through Toll-like receptors (TLRs) that recognize specific microbial products. This review summarizes and discusses recent findings that shed light on how the nuclear factor kappaB pathway controls and coordinates B-cell division and survival following TLR4 engagement.
Collapse
Affiliation(s)
- Steve Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
37
|
Saibil SD, Jones RG, Deenick EK, Liadis N, Elford AR, Vainberg MG, Baerg H, Woodgett JR, Gerondakis S, Ohashi PS. CD4+ and CD8+ T cell survival is regulated differentially by protein kinase Ctheta, c-Rel, and protein kinase B. THE JOURNAL OF IMMUNOLOGY 2007; 178:2932-9. [PMID: 17312138 DOI: 10.4049/jimmunol.178.5.2932] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An effective immune response requires the expansion and survival of a large number of activated T cells. This study compared the role of protein kinase C (PKC)theta and associated signaling molecules in the survival of activated primary CD4+ vs CD8+ murine T cells. We demonstrate that the absence of PKCtheta resulted in a moderate survival defect in CD4+ T cells and a striking survival defect of CD8+ T lymphocytes. CD8+ T cells lacking the c-Rel, but not the NF-kappaB1/p50, member of the NF-kappaB family of transcription factors displayed a similar impairment in cell survival as PKCtheta(-/-) CD8(+) T lymphocytes. This implicates c-Rel as a key target of PKCtheta-mediated survival signals in CD8+ T cells. In addition, both c-Rel(-/-) and PKCtheta(-/-) T cells also displayed impaired expression of the antiapoptotic Bcl-x(L) protein upon activation. Changes in Bcl-x(L) expression, however, did not correlate with the survival of CD4+ or CD8+ lymphocytes. The addition of protein kinase B-mediated survival signals could restore partially CD4+ T cell viability, but did not dramatically influence CD8+ survival. Active protein kinase B was also unable to restore proliferative responses in CD8+ PKCtheta(-/-) T cells. The survival of CD4+ and CD8+ T cells deficient in either PKCtheta or c-Rel, however, was promoted by the addition of IL-2. Collectively, these data demonstrate that CD4+ and CD8+ T cell survival signals are differentially programmed.
Collapse
Affiliation(s)
- Samuel D Saibil
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
B cells maintain homeostasis by balancing cell viability and cell death. B lymphocytes are susceptible to mitochondria- and receptor-initiated cell death at various stages of peripheral differentiation and during immune responses. The inducible transcription factor NF-kappaB enhances cell viability by activating genes that counteract both cell-death pathways. This review uses characteristic features of NF-kappaB activation and downregulation to provide insight into the regulation of B cell apoptosis in the periphery. In particular, the temporal patterns of NF-kappaB induction, differences between Rel family members, and the intersection between canonical and noncanonical signaling pathways in keeping B cells alive are discussed.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore, Maryland 21224, USA.
| |
Collapse
|
39
|
Gerondakis S, Grumont R, Gugasyan R, Wong L, Isomura I, Ho W, Banerjee A. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 2006; 25:6781-99. [PMID: 17072328 DOI: 10.1038/sj.onc.1209944] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nuclear factor-kappaB (NF-kappaB) signalling pathway serves a crucial role in regulating the transcriptional responses of physiological processes that include cell division, cell survival, differentiation, immunity and inflammation. Here we outline studies using mouse models in which the core components of the NF-kappaB pathway, namely the IkappaB kinase subunits (IKKalpha, IKKbeta and NEMO), the IkappaB proteins (IkappaBalpha, IkappaBbeta, IkappaBvarepsilon and Bcl-3) and the five NF-kappaB transcription factors (NF-kappaB1, NF-kappaB2, c-Rel, RelA and RelB), have been genetically manipulated using transgenic and knockout technology.
Collapse
Affiliation(s)
- S Gerondakis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lu KT, Sinquett FL, Dryer RL, Song C, Covey LR. c-Rel plays a key role in deficient activation of B cells from a non-X-linked hyper-IgM patient. Blood 2006; 108:3769-76. [PMID: 16896156 PMCID: PMC1895478 DOI: 10.1182/blood-2006-03-008839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous results demonstrated that B cells from a patient (pt1) with non-X-linked hyper-IgM syndrome (HIGM) possess an atypical CD23(lo) phenotype that is unaffected by CD40-mediated activation. To investigate the molecular mechanism underlying defective CD23 expression in pt1 B cells, we used lymphoblastoid cell lines that express LMP1 under the control of a tetracycline-inducible promoter (LCL(tet)). Our analysis revealed that the CD23(lo) phenotype in the pt1-LCL(tet) cells is a direct consequence of diminished CD23 transcription. We demonstrate a marked decrease in c-Rel-containing complexes that bind to the proximal CD23a/b promoters in pt1-LCL(tet) extracts, resulting from an overall lower expression of c-Rel in pt1-LCL(tet) cells. Analysis of c-Rel mRNA revealed relatively equal amounts in pt1-LCL(tet) and control LCL(tet) cells, indicating that diminished c-Rel protein expression is unrelated to decreased transcription. Finally, a critical role for c-Rel in CD23 regulation was demonstrated by effectively altering c-Rel expression that resulted in the direct modulation of CD23 surface expression. Collectively, these findings demonstrate that low levels of c-Rel are the underlying cause of aberrant CD23 expression in pt1 B cells and are likely to play a critical role in the pathophysiology of this form of HIGM.
Collapse
Affiliation(s)
- Kristina T Lu
- Dept of Cell Biology and Neuroscience, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, 604 Allison Rd, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
41
|
Dietz GPH, Dietz B, Bähr M. Bcl-xL increases axonal numbers but not axonal elongation from rat retinal explants. Brain Res Bull 2006; 70:117-23. [PMID: 16782502 DOI: 10.1016/j.brainresbull.2006.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/10/2006] [Accepted: 03/23/2006] [Indexed: 01/12/2023]
Abstract
The Bcl-2 family of proteins has been characterized as a key regulator of cell death programs. In addition, these proteins also play important roles in cellular differentiation, such as axonal growth. The role of Bcl-2 family members on axonal regeneration and neurite extension has been controversial so far. Here, we examine the influence of Bcl-x(L) on axonal regeneration from adult retina explants in vitro. We delivered recombinant Bcl-x(L) into retinal tissue, mediated by the Tat-protein transduction domain, and observed its effect on retinal axon extension. We found that Bcl-x(L) increased the number of regenerating neurites, but did not increase their length. Our results indicate that Bcl-x(L) stimulates axonal initiation but not axonal elongation after crush injury to retinal explants, without altering the number of surviving neurons.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- DFG Research Center for Molecular Physiology of the Brain (CMPB), Neurologische Universitätsklinik, Waldweg 33, 37073 Göttingen, Germany.
| | | | | |
Collapse
|
42
|
Abstract
IkappaB kinase plays a central role in regulating NF-kappaB, is a key signaling molecule involved in controlling cell proliferation, survival, antiapoptosis, and tumorigenesis. Alternative pathways can also regulate NF-kappaB in an IkappaB kinase-independent manner. Emerging evidence indicates that IKK phosphorylates and inactivates forkhead box, class O (FOXO)-3a and promotes cell growth and tumorigenesis. Moreover, IKK and NF-kappaB play an important role in linking inflammation and tumorigenesis, and facilitate tumor maintenance and invasion. Thus, IKK and NF-kappaB are promising targets for drug discovery, and agents targeting the IKK/NF-kappaB and FOXO pathways may become therapeutic intervention for those patients with IKK/NF-kappaB-overexpressing cancers in the future.
Collapse
Affiliation(s)
- Mickey C-T Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
43
|
Tian W, Nunez R, Cheng S, Ding Y, Tumang J, Lyddane C, Roman C, Liou HC. C-type lectin OCILRP2/Clr-g and its ligand NKRP1f costimulate T cell proliferation and IL-2 production. Cell Immunol 2005; 234:39-53. [PMID: 15963483 DOI: 10.1016/j.cellimm.2005.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/14/2005] [Accepted: 04/25/2005] [Indexed: 01/01/2023]
Abstract
We are reporting the identification of a novel C-type lectin receptor-ligand pair that is involved in T cell costimulation. The receptor, OCILRP2/Clr-g, is rapidly induced following T cell activation and maintained at a substantial level of up to 72 h. The ligand, NKRP1f, is predominantly expressed on dendritic cells (DC). The soluble OCILRP2-Ig blocking protein significantly suppresses specific antigen-stimulated T cell proliferation as well as IL-2 secretion both in vitro and in vivo; conversely, NKRP1f-expressing antigen presenting cells (APC) enhance B7.1/CD28-mediated costimulation for T cell proliferation through interaction with OCILRP2/Clr-g. Our studies reveal a unique functional interaction between two C-type lectins, OCILRP2/Clr-g and NKRP1f, during APC-mediated T cell costimulation and suggest a role for C-type lectins in maintaining T cell response or memory in vivo.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Huang X, Di Liberto M, Cunningham AF, Kang L, Cheng S, Ely S, Liou HC, Maclennan ICM, Chen-Kiang S. Homeostatic cell-cycle control by BLyS: Induction of cell-cycle entry but not G1/S transition in opposition to p18INK4c and p27Kip1. Proc Natl Acad Sci U S A 2004; 101:17789-94. [PMID: 15591344 PMCID: PMC535425 DOI: 10.1073/pnas.0406111101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle entry is critical for homeostatic control in physiologic response of higher organisms but is not well understood. The antibody response begins with induction of naive mature B cells, which are naturally arrested in G(0)/G(1) phase of the cell cycle, to enter the cell cycle in response to antigen and cytokine. BLyS (BAFF), a cytokine essential for mature B cell development and survival, is thought to act mainly by attenuation of apoptosis. Here, we show that BLyS alone induces cell-cycle entry and early G(1) cell-cycle progression, but not S-phase entry, in opposition to the cyclin-dependent kinase inhibitors p18(INK4c). Independent of its survival function, BLyS enhances the synthesis of cyclin D2, in part through activation of NF-kappaB, as well as CDK4 and retinoblastoma protein phosphorylation. By convergent activation of the same cell-cycle regulators in opposition to p18(INK4c), B cell receptor signaling induces cell-cycle entry and G(1) progression in synergy with BLyS, but also DNA replication. The failure of BLyS to induce S-phase cell-cycle entry lies in its inability to increase cyclin E and reduce p27(Kip1) expression. Antagonistic cell-cycle regulation by BLyS and p18(INK4c) is functionally linked to apoptotic control and conserved from B cell activation in vitro to antibody response in vivo, further indicating a physiologic role in homeostasis.
Collapse
Affiliation(s)
- Xiangao Huang
- Department of Pathology and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Feng B, Cheng S, Hsia CY, King LB, Monroe JG, Liou HC. NF-κB inducible genes BCL-X and cyclin E promote immature B-cell proliferation and survival. Cell Immunol 2004; 232:9-20. [PMID: 15922711 DOI: 10.1016/j.cellimm.2005.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 12/22/2022]
Abstract
B-cell receptor (BCR) ligation induces proliferation and survival in mature B-cells but conversely, can lead to apoptosis in immature B-cells. We have previously shown that c-Rel, a member of the NF-kappaB transcription factor family, is essential for mature B-cell survival and proliferation via regulation of the anti-apoptotic molecule Bcl-X and cell cycle genes E2F3a and cyclin E. Here, we report that c-Rel-deficient mature B-cells are rendered sensitive to BCR-induced growth arrest and apoptosis in a manner that strongly resembles the phenotypic response of immature B-cells to BCR signaling. We further demonstrate that BCR-stimulated immature B-cells are defective in NF-kappaB activation, but that introduction of two downstream c-Rel target genes, Bcl-X and cyclin E, can restore survival and proliferation to these cells. Our studies therefore suggest that specific blockade of NF-kappaB activation may be responsible for the growth arrest and apoptosis of BCR-activated immature B-cells.
Collapse
Affiliation(s)
- Biao Feng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
46
|
Gilmore TD, Kalaitzidis D, Liang MC, Starczynowski DT. The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 2004; 23:2275-86. [PMID: 14755244 DOI: 10.1038/sj.onc.1207410] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of the Rel/NF-kappaB signal transduction pathway has been associated with a variety of animal and human malignancies. However, among the Rel/NF-kappaB family members, only c-Rel has been consistently shown to be able to malignantly transform cells in culture. In addition, c-rel has been activated by a retroviral promoter insertion in an avian B-cell lymphoma, and amplifications of REL (human c-rel) are frequently seen in Hodgkin's lymphomas and diffuse large B-cell lymphomas, and in some follicular and mediastinal B-cell lymphomas. Phenotypic analysis of c-rel knockout mice demonstrates that c-Rel has a normal role in B-cell proliferation and survival; moreover, c-Rel nuclear activity is required for B-cell development. Few mammalian model systems are available to study the role of c-Rel in oncogenesis, and it is still not clear what features of c-Rel endow it with its unique oncogenic activity among the Rel/NF-kappaB family. In any event, REL may provide an appropriate therapeutic target for certain human lymphoid cell malignancies.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
47
|
Feng B, Cheng S, Pear WS, Liou HC. NF-kB inhibitor blocks B cell development at two checkpoints. MEDICAL IMMUNOLOGY 2004; 3:1. [PMID: 15050028 PMCID: PMC419369 DOI: 10.1186/1476-9433-3-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/29/2004] [Indexed: 01/13/2023]
Abstract
Members of the NF-kB transcription factor family are differentially expressed in the B cell lineage. Disruption of individual or two NF-kB subunits exhibits distinct defects in B lymphocyte development, activation, and survival. However, the role each NF-kB plays during B cell development has been obscured by molecular compensation. To address this issue, a trans-dominant form of IkBα was transduced into bone marrow cells to act as a pan-inhibitor of NF-kB using a retroviral system. While the development of T-lymphocytes and myeloid cell lineages was not grossly affected by the transduced IkBα gene, a significant reduction in the number and percentage of B lineage cells was apparent in IkBα transduced chimeric mice. IkBα expression decreased the percentage of pre-B and immature B cell subsets in the bone marrow and further impaired the development of follicular mature B cells and marginal zone B cells in the periphery. Introduction of the Bcl-X transgene completely restored the pre-B and immature B cell pool in the bone marrow. However, despite a significant improvement of overall viability of the B cell lineage, Bcl-X expression was insufficient to overcome the maturation block resulting from NF-kB inhibition. Together, our study suggests that NF-kB activity is required for two distinct checkpoints during B cell development: one is for pre-B/immature B cell viability, the other is to provide both survival and maturation signals to ensure the proper development of follicular mature B cells.
Collapse
Affiliation(s)
- Biao Feng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Shuhua Cheng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Warren S Pear
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| |
Collapse
|