1
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
4
|
Mafi A, Keshavarzmotamed A, Hedayati N, Boroujeni ZY, Reiter RJ, Dehmordi RM, Aarabi MH, Rezaee M, Asemi Z. Melatonin targeting non-coding RNAs in cancer: Focus on mechanisms and potential therapeutic targets. Eur J Pharmacol 2023; 950:175755. [PMID: 37119959 DOI: 10.1016/j.ejphar.2023.175755] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Despite, melatonin is mainly known as a regulatory factor for circadian rhythm, its notable role in other fundamental biological processes, such as redox homeostasis and programmed cell death, has been found. In this line, a growing body of evidence indicated that melatonin could apply an inhibitory effect on the tumorigenic processes. Hence, melatonin might be considered an efficient adjuvant agent for cancer treatment. Besides, the physiological and pathological functions of non-coding RNAs (ncRNAs) in various disease, particularly cancers, have been expanded over the past two decades. It is well-established that ncRNAs can modulate the gene expression at various levels, thereby, ncRNAs. can regulate the numerous biological processes, including cell proliferation, cell metabolism, apoptosis, and cell cycle. Recently, targeting the ncRNAs expression provides a novel insight in the therapeutic approaches for cancer treatment. Moreover, accumulating investigations have revealed that melatonin could impact the expression of different ncRNAs in a multiple disorders, including cancer. Therefore, in the precent study, we discuss the potential roles of melatonin in modulating the expression of ncRNAs and the related molecular pathways in different types of cancer. Also, we highlighted its importance in therapeutic application and translational medicine in cancer treatment.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran.
| | - Zahra Yeganeh Boroujeni
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad-Hossein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
TGF-β/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells 2021; 10:cells10061382. [PMID: 34205102 PMCID: PMC8226492 DOI: 10.3390/cells10061382] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
TGF-β/Smad signalling has been the subject of extensive research due to its role in the cell cycle and carcinogenesis. Modifications to the TGF-β/Smad signalling pathway have been found to produce disparate effects on neurogenesis. We review the current research on canonical and non-canonical TGF-β/Smad signalling pathways and their functions in neurogenesis. We also examine the observed role of neurogenesis in neuropsychiatric disorders and the relationship between TGF-β/Smad signalling and neurogenesis in response to stressors. Overlapping mechanisms of cell proliferation, neurogenesis, and the development of mood disorders in response to stressors suggest that TGF-β/Smad signalling is an important regulator of stress response and is implicated in the behavioural outcomes of mood disorders.
Collapse
|
6
|
Thakur P, DeBo R, Dugan GO, Bourland JD, Michalson KT, Olson JD, Register TC, Kock ND, Cline JM. Clinicopathologic and Transcriptomic Analysis of Radiation-Induced Lung Injury in Nonhuman Primates. Int J Radiat Oncol Biol Phys 2021; 111:249-259. [PMID: 33848608 DOI: 10.1016/j.ijrobp.2021.03.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is a progressive condition with an early phase (radiation pneumonitis) and a late phase (lung fibrosis). RILI may occur after partial-body ionizing radiation exposures or internal radioisotope exposure, with wide individual variability in timing and extent of lung injury. This study aimed to provide new insights into the pathogenesis and progression of RILI in the nonhuman primate (NHP) rhesus macaque model. METHODS AND MATERIALS We used an integrative approach to understand RILI and its evolution at clinical and molecular levels in 17 NHPs exposed to 10 Gy of whole-thorax irradiation in comparison with 3 sham-irradiated control NHPs. Clinically, we monitored respiratory rates, computed tomography (CT) scans, plasma cytokine levels, and bronchoalveolar lavage (BAL) over 8 months and lung samples collected at necropsy for molecular and histopathologic analyses using RNA sequencing and immunohistochemistry. RESULTS Elevated respiratory rates, greater CT density, and more severe pneumonitis with increased macrophage content were associated with early mortality. Radiation-induced lung fibrosis included polarization of macrophages toward the M2-like phenotype, TGF-β signaling, expression of CDKN1A/p21 in epithelial cells, and expression of α-SMA in lung stroma. RNA sequencing analysis of lung tissue revealed SERPINA3, ATP12A, GJB2, CLDN10, TOX3, and LPA as top dysregulated transcripts in irradiated animals. In addition to transcriptomic data, we observed increased protein expression of SERPINA3, TGF-β1, CCL2, and CCL11 in BAL and plasma samples. CONCLUSIONS Our combined clinical, imaging, histologic, and transcriptomic analysis provides new insights into the early and late phases of RILI and highlights possible biomarkers and potential therapeutic targets of RILI. Activation of TGF-β and macrophage polarization appear to be key mechanisms involved in RILI.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Ryne DeBo
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Provention Bio, Red Bank, New Jersey
| | - Gregory O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Daniel Bourland
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Kris T Michalson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.
| |
Collapse
|
7
|
SMAD3 Hypomethylation as a Biomarker for Early Prediction of Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21197395. [PMID: 33036415 PMCID: PMC7582763 DOI: 10.3390/ijms21197395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality rates of colorectal cancer (CRC) have been high in recent years. Prevention and early detection are crucial for decreasing the death rate. Therefore, this study aims to characterize the alteration patterns of mothers against decapentaplegic homolog 3 (SMAD3) in patients with CRC and its applications in early detection by using a genome-wide methylation array to identify an aberrant hypomethylation site in the intron position of the SMAD3 gene. Quantitative methylation-specific polymerase chain reaction showed that hypomethylated SMAD3 occurred in 91.4% (501/548) of Taiwanese CRC tissues and 66.6% of benign tubular adenoma polyps. In addition, SMAD3 hypomethylation was observed in 94.7% of patients with CRC from The Cancer Genome Atlas dataset. A decrease in circulating cell-free methylation SMAD3 was detected in 70% of CRC patients but in only 20% of healthy individuals. SMAD3 mRNA expression was low in 42.9% of Taiwanese CRC tumor tissues but high in 29.4% of tumors compared with paired adjacent normal tissues. Hypomethylated SMAD3 was found in cancers of the digestive system, such as liver cancer, gastric cancer, and colorectal cancer, but not in breast cancer, endometrial cancer, and lung cancer. In conclusion, SMAD3 hypomethylation is a potential diagnostic marker for CRC in Western and Asian populations.
Collapse
|
8
|
Yu J, Dong Y, Tang W, Pan H, Lv L, Long T, Zhou Q, Qi J, Liu J, Ding G, Yin J, Tan L. The Relationship Between Single Nucleotide Polymorphisms of SMAD3/SMAD6 and Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:355-363. [PMID: 32904644 PMCID: PMC7457549 DOI: 10.2147/pgpm.s250076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
Abstract
Background The TGF-β signal pathways play a key role in the development and promotion of squamous cell carcinoma (SCC). The pathway is mediated by the SMAD family proteins that include SMAD3 and SMAD6. Our study aimed to evaluate the relationship between single nucleotide polymorphism (SNP) of SMAD3/SMAD6 and susceptibility to esophageal squamous cell carcinoma (ESCC) in the Chinese population. Patients and Methods This was a hospital-based case-control study compromised of 1043 ESCC patients and 1315 non-cancer patients. Seven SMAD3/SMAD6 (rs8028147, rs3743343, rs3743342, rs8025774, rs8031440, rs803167, and rs34643453) SNPs were selected and used to evaluate their correlation with ESCC susceptibility. Genetic model tests, stratified analyses, linkage disequilibrium analyses, and haplotype analyses were performed in our study. Results Participants with SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A or rs8031627 G>A had a significantly higher risk of ESCC. This was more evident in males, older patients (>63 years), smokers, and non-alcohol drinking participants. Linkage disequilibrium analyses further revealed that there were strong correlations between SMAD3 rs3743342 C>T, rs8025774 C>T, rs8031440 G>A, and rs8031627 G>A. In the same line, haplotype analyses revealed that SMAD3 ACCCGGSMAD6A and SMAD3AGCCGGSMAD6A were associated with less susceptibility to ESCC while SMAD3ATTTAASMAD6A was associated with a higher risk of ESCC. Conclusion SNPs of SMAD3 were related to higher susceptibility to ESCC. As such, they may contribute to the development of viable strategies for early diagnosis and treatment of ESCC. However, more detailed association mechanisms between SMAD3/SMAD6 SNPs and ESCC need further experiments to prove.
Collapse
Affiliation(s)
- Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yunpeng Dong
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Qiang Zhou
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jianchao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, People's Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Sun Z, Cai S, Zabkiewicz C, Liu C, Ye L. Bone morphogenetic proteins mediate crosstalk between cancer cells and the tumour microenvironment at primary tumours and metastases (Review). Int J Oncol 2020; 56:1335-1351. [PMID: 32236571 DOI: 10.3892/ijo.2020.5030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic proteins (BMP) are pluripotent molecules, co‑ordinating cellular functions from early embryonic and postnatal development to tissue repair, regeneration and homeostasis. They are also involved in tumourigenesis, disease progression and the metastasis of various solid tumours. Emerging evidence has indicated that BMPs are able to promote disease progression and metastasis by orchestrating communication between cancer cells and the surrounding microenvironment. The interactions occur between BMPs and epidermal growth factor receptor, hepatocyte growth factor, fibroblast growth factor, vascular endothelial growth factor and extracellular matrix components. Overall, these interactions co‑ordinate the cellular functions of tumour cells and other types of cell in the tumour to promote the growth of the primary tumour, local invasion, angiogenesis and metastasis, and the establishment and survival of cancer cells in the metastatic niche. Therefore, the present study aimed to provide an informative summary of the involvement of BMPs in the tumour microenvironment.
Collapse
Affiliation(s)
- Zhiwei Sun
- VIP‑II Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Shuo Cai
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Catherine Zabkiewicz
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chang Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
10
|
microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma. Cell Death Dis 2019; 10:723. [PMID: 31558704 PMCID: PMC6763424 DOI: 10.1038/s41419-019-1960-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/06/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
The sekelsky mothers against dpp3 (Smad3) functions as a transcriptional modulator activated by transforming growth factor-β (TGF-β). Accumulated evidences indicated that Smad3 played the important roles in carcinogenesis and progression of hepatocellular carcinoma (HCC). Up to now, the regulatory mechanism of Smad3 in HCC still remains unclear. It has been known that some particular microRNAs (miRNAs) involve in carcinogenesis through the regulation of gene expressions with targeting mRNAs. In our study, the unknown candidates of miRNAs that target Smad3 mRNA were searched by using a newly established in vivo approach, the miRNA in vivo precipitation (miRIP). Using a loss-of-function assay, we demonstrated that miR-17 directly targeted Smad3 in HCC cells and inhibition on miR-17 increased Smad3 expression. Furthermore, we found that downregulation on Smad3 expression was consistent with high level of miR-17 in HCC tissues of patients when compared with around normal liver tissues. The manipulated miR-17 silence in HCC cells suppressed their growth of both in vitro and in vivo. Such suppression on cell growth could be recovered through downregulating Smad3. In addition, miR-17 affected cell proliferation through arresting cell cycle in G1 phase. The negative correlation between levels of miR-17 and protein levels of Smad3 was supported by the results of analysis with HCC tissue chip. In summary, for the first time, we confirmed that miR-17 directly targeted Smad3 mRNA and downregulated Smad3 protein expression in HCC. Our results indicated that the increased expression of miR-17 promoted carcinogenesis of HCC through down-regulations of Smad3, suggesting miR-17 might serve as the potential diagnostic and therapeutic targets for clinical HCC.
Collapse
|
11
|
Zhang H, Wang J, Chen X, Kang L, Lin M. Overexpression of c‐Ski promotes cell proliferation, invasion and migration of gastric cancer associated fibroblasts. Kaohsiung J Med Sci 2019; 35:214-221. [PMID: 30896889 DOI: 10.1002/kjm2.12042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Affiliation(s)
- Hui Zhang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Jin‐Si Wang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Xiao‐Geng Chen
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Li Kang
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| | - Meng‐Bo Lin
- Department of Surgical Oncology, Provincial Clinical CollegeFujian Medical University Fuzhou China
| |
Collapse
|
12
|
Wei S, Li Q, Li Z, Wang L, Zhang L, Xu Z. miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway. Oncotarget 2018; 7:75185-75196. [PMID: 27655675 PMCID: PMC5342733 DOI: 10.18632/oncotarget.12092] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
MiRNAs have been reported to regulate gene expression and be associated with cancer progression. Recently, miR-424-5p was reported to play important role in a variety of tumors. However, the role and molecular mechanisms of miR-424-5p in GC (gastric cancer) remains largely unknown. In this study, we aimed to explore the role of miR-424-5p in GC. QRT-PCR was used to determine the expression levels of miR-424-5p and Smad3. CCK8 assay, plate clone assay and cell cycle assay were used to measure the effects of miR-424-5p on GC cell proliferation. Luciferase reporter assay and western blotting were used to prove that Smad3 was one of the direct targets of miR-424-5p. Tumorigenesis assay was used to investigate the role of miR-424-5p in tumor growth of GC cells in vivo. We found that miR-424-5p was up-regulated in GC tissues and cells. Over-expression of miR-424-5p could promote the proliferation of GC cells. In addition, luciferase reporter assay and western blotting assay revealed that Smad3 was a direct target of miR-424-5p. Over-expression of Smad3 could partially reverse the effects of miR-424-5p on GC cell proliferation. Our study further revealed that miR-424-5p could inhibit TGF-β signaling pathway by Smad3.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Liu Z, Kundu-Roy T, Matsuura I, Wang G, Lin Y, Lou YR, Barnard NJ, Wang XF, Huang MT, Suh N, Liu F. Carcinogen 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis is accelerated in Smad3 heterozygous mice compared to Smad3 wild type mice. Oncotarget 2018; 7:64878-64885. [PMID: 27588495 PMCID: PMC5323122 DOI: 10.18632/oncotarget.11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Previous studies based on cell culture and xenograft animal models suggest that Smad3 has tumor suppressor function for breast cancer during early stages of tumorigenesis. In this report, we show that DMBA (7,12-dimethylbenz[a]anthracene), a chemical carcinogen, induces mammary tumor formation at a significantly higher frequency in the Smad3 heterozygous mice than in the Smad3 wild type mice. This is the first genetic evidence showing that Smad3 inhibits mammary tumor formation in a mouse model. Our findings support the notion that Smad3 has important tumor suppressor function for breast cancer.
Collapse
Affiliation(s)
- Zhengxue Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,College of Life Science & Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Tanima Kundu-Roy
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Isao Matsuura
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Division of Molecular Genomics and Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Guannan Wang
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - You-Rong Lou
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicola J Barnard
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Mou-Tuan Huang
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Fang Liu
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Zhu C, Huang Q, Zhu H. Melatonin Inhibits the Proliferation of Gastric Cancer Cells Through Regulating the miR-16-5p-Smad3 Pathway. DNA Cell Biol 2018; 37:244-252. [PMID: 29359963 DOI: 10.1089/dna.2017.4040] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The incidence and mortality of gastric cancer is steadily increasing annually around the world, which required further investigation about alternative therapy strategies. Melatonin, an indoleamine synthesized in the pineal gland, has shown dramatic anticancer effect in several cancers, however, the function of melatonin in gastric cancer needs to be characterized. In this study, we found that melatonin inhibited the growth and induced apoptosis of gastric cancer cells. microRNAs (miRNAs) have been attractive targets for many anticancer drugs. To explore the underlying molecular mechanism by which melatonin attenuated the growth of cancer cells, miRNA microarray analysis was performed to screen the miRNAs, which significantly altered after melatonin treatment. The result showed that melatonin administration enhanced the expression of miR-16-5p. Further molecular mechanism research revealed that miR-16-5p targeted Smad3 and consequently negatively regulated the abundance of Smad3. Consistently, melatonin exposure decreased the level of Smad3 and overexpression of Smad3 attenuated the inhibitory effect of melatonin in gastric cancer cells. These results uncovered the anticancer effect of melatonin and highlighted the critical roles of miR-16-5p-Smad3 pathway in melatonin-induced growth defects of gastric cancers.
Collapse
Affiliation(s)
- Chenyu Zhu
- 1 Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang, China
| | - Qun Huang
- 2 Operating Room, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang, China
| | - Hongyu Zhu
- 3 Gynecology Department, The First College of Clinical Medical Science, China Three Gorges University , Yi Chang, China
| |
Collapse
|
15
|
Wang Y, He H, Liyanarachchi S, Genutis LK, Li W, Yu L, Phay JE, Shen R, Brock P, de la Chapelle A. The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma. Genet Med 2018; 20:927-935. [PMID: 29300379 DOI: 10.1038/gim.2017.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To identify and characterize the functional variants, regulatory gene networks, and potential binding targets of SMAD3 in the 15q22 thyroid cancer risk locus. METHODS We performed linkage disequilibrium (LD) and haplotype analyses to fine map the 15q22 locus. Luciferase reporter assays were applied to evaluate the regulatory effects of the candidate variants. Knockdown by small interfering RNA, microarray analysis, chromatin immunoprecipitation (ChIP) and quantitative real-time polymerase chain reaction assays were performed to reveal the regulatory gene network and identify its binding targets. RESULTS We report a 25.6-kb haplotype within SMAD3 containing numerous single-nucleotide polymorphisms (SNPs) in high LD. SNPs rs17293632 and rs4562997 were identified as functional variants of SMAD3 by luciferase assays within the LD region. These variants regulate SMAD3 transcription in an allele-specific manner through enhancer elements in introns of SMAD3. Knockdown of SMAD3 in thyroid cancer cell lines revealed its regulatory gene network including two upregulated genes, SPRY4 and SPRY4-IT1. Sequence analysis and ChIP assays validated the actual binding of SMAD3 protein to multiple SMAD binding element sites in the region upstream of SPRY4. CONCLUSION Our data provide a functional annotation of the 15q22 thyroid cancer risk locus.
Collapse
Affiliation(s)
- Yanqiang Wang
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Luke K Genutis
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Wei Li
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA.,Department of Biomedical Informatics, The Ohio State University, Ohio, Columbus, USA
| | - John E Phay
- Department of Surgery, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Rulong Shen
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
16
|
Dimopoulos K, Søgaard Helbo A, Fibiger Munch-Petersen H, Sjö L, Christensen J, Sommer Kristensen L, Asmar F, Hermansen NEU, O'Connel C, Gimsing P, Liang G, Grønbaek K. Dual inhibition of DNMTs and EZH2 can overcome both intrinsic and acquired resistance of myeloma cells to IMiDs in a cereblon-independent manner. Mol Oncol 2017; 12:180-195. [PMID: 29130642 PMCID: PMC5792743 DOI: 10.1002/1878-0261.12157] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 01/22/2023] Open
Abstract
Thalidomide and its derivatives, lenalidomide and pomalidomide (also known as IMiDs), have significantly changed the treatment landscape of multiple myeloma, and the recent discovery of cereblon (CRBN) as their direct biological target has led to a deeper understanding of their complex mechanism of action. In an effort to comprehend the precise mechanisms behind the development of IMiD resistance and examine whether it is potentially reversible, we established lenalidomide‐resistant (‐LR) and pomalidomide‐resistant (‐PR) human myeloma cell lines from two IMiD‐sensitive cell lines, OPM2 and NCI‐H929, by continuous culture in the presence of lenalidomide or pomalidomide for 4–6 months, until acquirement of stable resistance. By assessing genome‐wide DNA methylation and chromatin accessibility in these cell lines, we found that acquired IMiD resistance is associated with an increase in genome‐wide DNA methylation and an even greater reduction in chromatin accessibility. Transcriptome analysis confirmed that resistant cell lines are mainly characterized by a reduction in gene expression, identifying SMAD3 as a commonly downregulated gene in IMiD‐resistant cell lines. Moreover, we show that these changes are potentially reversible, as combination of 5‐azacytidine and EPZ‐6438 not only restored the observed accessibility changes and the expression of SMAD3, but also resensitized the resistant cells to both lenalidomide and pomalidomide. Interestingly, the resensitization process was independent of CRBN. Our data suggest that simultaneous inhibition of DNA methyl transferases and EZH2 leads to an extensive epigenetic reprogramming which allows myeloma cells to (re)gain sensitivity to IMiDs.
Collapse
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Alexandra Søgaard Helbo
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | | - Lene Sjö
- Department of Pathology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Jesper Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Lasse Sommer Kristensen
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Fazila Asmar
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | | | - Casey O'Connel
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter Gimsing
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Gangning Liang
- Department of Urology and Hematology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kirsten Grønbaek
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| |
Collapse
|
17
|
Roulois D, Deshayes S, Guilly MN, Nader JS, Liddell C, Robard M, Hulin P, Ouacher A, Le Martelot V, Fonteneau JF, Grégoire M, Blanquart C, Pouliquen DL. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: the involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget 2017; 7:34664-87. [PMID: 27129173 PMCID: PMC5085183 DOI: 10.18632/oncotarget.8970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/10/2016] [Indexed: 12/12/2022] Open
Abstract
Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.
Collapse
Affiliation(s)
- David Roulois
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Deshayes
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Joëlle S Nader
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Charly Liddell
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Myriam Robard
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Philippe Hulin
- INSERM, Université d'Angers, Université de Nantes, Nantes, France.,Cellular and Tissular Imaging Core Facility (MicroPICell), Nantes, France
| | - Amal Ouacher
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Vanessa Le Martelot
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Jean-François Fonteneau
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marc Grégoire
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Christophe Blanquart
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Daniel L Pouliquen
- CRCNA, Université d'Angers, Université de Nantes, Nantes, France.,INSERM, Université d'Angers, Université de Nantes, Nantes, France.,CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
18
|
Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 2017; 44:1441-1454. [PMID: 27911726 DOI: 10.1042/bst20160065] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.
Collapse
|
19
|
Liu S, Yang TB, Nan YL, Li AH, Pan DX, Xu Y, Li S, Li T, Zeng XY, Qiu XQ. Genetic variants of cell cycle pathway genes predict disease-free survival of hepatocellular carcinoma. Cancer Med 2017. [PMID: 28639733 PMCID: PMC5504311 DOI: 10.1002/cam4.1067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruption of the cell cycle pathway has previously been related to development of human cancers. However, associations between genetic variants of cell cycle pathway genes and prognosis of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we evaluated the associations between 24 potential functional single nucleotide polymorphisms (SNPs) of 16 main cell cycle pathway genes and disease‐free survival (DFS) of 271 HCC patients who had undergone radical surgery resection. We identified two SNPs, i.e., SMAD3 rs11556090 A>G and RBL2 rs3929G>C, that were independently predictive of DFS in an additive genetic model with false‐positive report probability (FPRP) <0.2. The SMAD3 rs11556090G allele was associated with a poorer DFS, compared with the A allele [hazard ratio (HR) = 1.46, 95% confidential interval (95% CI) = 1.13–1.89, P = 0.004]; while the RBL2 rs3929 C allele was associated with a superior DFS, compared with the G allele (HR = 0.74, 95% CI = 0.57–0.96, P = 0.023). Additionally, patients with an increasing number of unfavorable genotypes (NUGs) of these loci had a significant shorter DFS (Ptrend = 0.0001). Further analysis using receiver operating characteristic (ROC) curves showed that the model including the NUGs and known prognostic clinical variables demonstrated a significant improvement in predicting the 1‐year DFS (P = 0.011). Moreover, the RBL2 rs3929 C allele was significantly associated with increased mRNA expression levels of RBL2 in liver tissue (P = 1.8 × 10−7) and the whole blood (P = 3.9 × 10−14). Our data demonstrated an independent or a joint effect of SMAD3 rs11556090 and RBL2 rs3929 in the cell cycle pathway on DFS of HCC, which need to be validated by large cohort and biological studies.
Collapse
Affiliation(s)
- Shun Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Tian-Bo Yang
- Affiliated Tumor Hospital of Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi, 530021, China
| | - Yue-Li Nan
- Shenzhen Longhua Center for Chronic Diseases Prevention and Control, 118 Guanlan Road, Shenzhen, Guangdong, 518110, China
| | - An-Hua Li
- GuangXi Center for Disease Prevention and Control, 18 Jinzhou Road, Nanning, Guangxi, 530021, China
| | - Dong-Xiang Pan
- GuangXi Center for Disease Prevention and Control, 18 Jinzhou Road, Nanning, Guangxi, 530021, China
| | - Yang Xu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Shu Li
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Ting Li
- Medical Scientific Research Centre, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao-Yun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| | - Xiao-Qiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, China
| |
Collapse
|
20
|
Salmaninejad A, Khoramshahi V, Azani A, Soltaninejad E, Aslani S, Zamani MR, Zal M, Nesaei A, Hosseini SM. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics 2017. [PMID: 28642997 DOI: 10.1007/s00251-017-1015-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The programmed cell death protein 1 (PD-1) is expressed by activated T cells that act as an immunoregulatory molecule, and are responsible for the negative regulation of T cell activation and peripheral tolerance. The PD-1 gene also encodes an inhibitory cell surface receptor involved in the regulation of T cell functions during immune responses/tolerance. Beyond potent inhibitory effects on T cells, PD-1 also has a role in regulating B cell and monocyte responses. An overexpression of PD-1 has been reported to contribute to immune system avoidance in different cancers. In particular, PD-1 over-expression influences tumor-specific T cell immunity in a cancer microenvironment. Blocking the PD-1/PD-1 ligand (PD-L1) pathway could potentially augment endogenous antitumor responses. Along these lines, the use of PD-1/PD-L1 inhibitors has been applied in clinical trials against diverse forms of cancer. It was believed that antibodies targeting PD-1/PD-L1 might synergize with other treatments that enhance endogenous antitumor immunity by blocking inhibitory receptor-ligand interactions. However, in all cases, the host genetic status (as well as that of the tumor) is likely to have an impact on the expected outcomes. Various investigations have evaluated the association between PD-1 polymorphisms and the risk of various types of cancer. Frequently studied PD-1 polymorphisms, PD-1.1 (rs36084323), PD-1.3 (rs11568821), PD-1.5 (rs2227981), PD-1.9 (rs2227982), and PD-1 rs7421861, and their associations in the risk of susceptibility to different types of cancer are mentioned in this review, as are studies highlighting the significance of conducting genetic association studies in different ethnic populations.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Genetics Research Center, Student Research Committee, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khoramshahi
- Department of Immunology, International Campus of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Azani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Soltaninejad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zamani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Zal
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Science, Tehran, Iran.
| |
Collapse
|
21
|
FAF1 phosphorylation by AKT accumulates TGF-β type II receptor and drives breast cancer metastasis. Nat Commun 2017; 8:15021. [PMID: 28443643 PMCID: PMC5414047 DOI: 10.1038/ncomms15021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
TGF-β is pro-metastatic for the late-stage breast cancer cells. Despite recent progress, the regulation of TGF-β type II receptor remains uncertain. Here we report that FAF1 destabilizes TβRII on the cell surface by recruiting the VCP/E3 ligase complex, thereby limiting excessive TGF-β response. Importantly, activated AKT directly phosphorylates FAF1 at Ser 582, which disrupts the FAF1–VCP complex and reduces FAF1 at the plasma membrane. The latter results in an increase in TβRII at the cell surface that promotes both TGF-β-induced SMAD and non-SMAD signalling. We uncover a metastasis suppressing role for FAF1 through analyses of FAF1-knockout animals, various in vitro and in vivo models of epithelial-to-mesenchymal transition and metastasis, an MMTV-PyMT transgenic mouse model of mammary tumour progression and clinical breast cancer samples. These findings describe a previously uncharacterized mechanism by which TβRII is tightly controlled. Together, we reveal how SMAD and AKT pathways interact to confer pro-oncogenic responses to TGF-β. Aberrant activation of TGF-β signalling promotes cancer metastasis but the initial steps of this activation are unclear. Here Xie et al. show that FAF1 regulates the surface levels of TGF-β type II receptor thus influencing the persistence of the signalling and breast cancer metastasis.
Collapse
|
22
|
Establishment of a gastric cancer subline with high metastatic potential using a novel microfluidic system. Sci Rep 2016; 6:38376. [PMID: 27917905 PMCID: PMC5137147 DOI: 10.1038/srep38376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
Metastasis is an important hallmark of malignant tumors. In this study, we developed a microfluidic system to screen highly metastatic sublines via differential resolution of cell invasiveness. The system was composed of a PDMS-glass device connected with a syringe pump and a Petri dish. To facilitate the selection process, a long-term cell invasion driving force based on a chemotactic factor gradient was created using the Petri dish-based liquid supply pattern, and the invasive cells were collected for round-by-round selection via an open region in the chip. Using the system, we established an SGC-7901/B2 subline from the human gastric cancer SGC-7901 cell line by only two rounds of selection. In vitro assays showed that the SGC-7901/B2 cells were superior to the parental cells in proliferation and invasiveness. Furthermore, an in vivo tumorigenicity assay demonstrated that compared with the parental cells, the subline had stronger spontaneous metastatic and proliferative capability, which led to a shorter survival duration. Additionally, the protein expression differences including E-cadherin and Smad3 between the subline and parental cells were revealed. In conclusion, this microfluidic system is a highly effective tool for selecting highly metastatic sublines, and SGC-7901/B2 cells could serve as a potential model for tumor metastasis research.
Collapse
|
23
|
Prime SS, Davies M, Pring M, Paterson IC. The Role of TGF-β in Epithelial Malignancy and its Relevance to the Pathogenesis of Oral Cancer (Part II). ACTA ACUST UNITED AC 2016; 15:337-47. [PMID: 15574678 DOI: 10.1177/154411130401500603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of transforming growth factor-β (TGF-β) in epithelial malignancy is complex, but it is becoming clear that, in the early stages of carcinogenesis, the protein acts as a potent tumor suppressor, while later, TGF-β can function to advance tumor progression. We review the evidence to show that the pro-oncogenic functions of TGF-β are associated with (1) a partial loss of response to the ligand, (2) defects of components of the TGF-β signal transduction pathway, (3) over-expression and/or activation of the latent complex, (4) epithelial-mesenchymal transition, and (5) recruitment of signaling pathways which act in concert with TGF-β to facilitate the metastatic phenotype. These changes are viewed in the context of what is known about the pathogenesis of oral cancer and whether this knowledge can be translated into the development of new therapeutic modalities.
Collapse
Affiliation(s)
- S S Prime
- Department of Oral and Dental Science, Division of Oral Medicine, Pathology and Microbiology, Bristol Dental Hospital and School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
| | | | | | | |
Collapse
|
24
|
Wang G, Yu Y, Sun C, Liu T, Liang T, Zhan L, Lin X, Feng XH. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene 2016; 35:4388-98. [PMID: 26616859 PMCID: PMC4885808 DOI: 10.1038/onc.2015.446] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Smad and STAT proteins are critical signal transducers and transcription factors in controlling cell growth and tumorigenesis. Here we report that the STAT3 signaling pathway attenuates transforming growth factor-β (TGF-β)-induced responses through a direct Smad3-STAT3 interplay. Activated STAT3 blunts TGF-β-mediated signaling. Depletion of STAT3 promotes TGF-β-mediated transcriptional and physiological responses, including cell cycle arrest, apoptosis and epithelial-to-mesenchymal transition. STAT3 directly interacts with Smad3 in vivo and in vitro, resulting in attenuation of the Smad3-Smad4 complex formation and suppression of DNA-binding ability of Smad3. The N-terminal region of DNA-binding domain of STAT3 is responsible for the STAT3-Smad3 interaction and also indispensable for STAT3-mediated inhibition of TGF-β signaling. Thus, our finding illustrates a direct crosstalk between the STAT3 and Smad3 signaling pathways that may contribute to tumor development and inflammation.
Collapse
Affiliation(s)
- Gaohang Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuang Sun
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ting Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and the Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixing Zhan
- Institute of Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xia Lin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin-Hua Feng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Li H, Zhang H, Lu G, Li Q, Gu J, Song Y, Gao S, Ding Y. Mechanism analysis of colorectal cancer according to the microRNA expression profile. Oncol Lett 2016; 12:2329-2336. [PMID: 27698796 PMCID: PMC5038387 DOI: 10.3892/ol.2016.5027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/22/2016] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC.
Collapse
Affiliation(s)
- Hong Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Huichao Zhang
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Gang Lu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Qingjing Li
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Jifeng Gu
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yuan Song
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Shejun Gao
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| | - Yawen Ding
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050035, P.R. China
| |
Collapse
|
26
|
RUNX3-mediated up-regulation of miR-29b suppresses the proliferation and migration of gastric cancer cells by targeting KDM2A. Cancer Lett 2016; 381:138-48. [PMID: 27497248 DOI: 10.1016/j.canlet.2016.07.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/21/2022]
Abstract
RUNX3 is a transcriptional factor that has been shown to regulate protein-coding gene expression at the transcriptional level. However, the regulation of RUNX3 on miRNAs is not fully understood. In this study, we used miRNA microarray to identify the miRNAs that are regulated by RUNX3 and found that miR-29b showed the most up-regulation in RUNX3 over-expressed cells compared with the control cells. We used qRT-PCR to confirm the miRNA microarray results in several gastric cancer cells and found that RUNX3 could bind to the miR-29b promoter directly and cooperate with Smad3 to increase the promoter activity of miR-29b. In the clinical setting, both RUNX3 and miR-29b are down-regulated significantly in human gastric cancer tissues. A positive correlation between miR-29b and RUNX3 was found in the gastric cancer tissues. Additionally, we found that miR-29b suppressed the proliferation and metastasis of gastric cancer cells by directly targeting KDM2A. The miR-29b/KDM2A axis was involved in the RUNX3-mediated inhibition of gastric cancer cell proliferation and metastasis. Taken together, our results suggested that RUNX3-mediated up-regulation of miR-29b inhibited the proliferation and migration of gastric cancer cells by targeting KDM2A, representing a novel molecular mechanism for the tumor suppression action of RUNX3.
Collapse
|
27
|
Bielanowicz A, Johnson RW, Goh H, Moody SC, Poulton IJ, Croce N, Loveland KL, Hedger MP, Sims NA, Itman C. Prepubertal Di-n-Butyl Phthalate Exposure Alters Sertoli and Leydig Cell Function and Lowers Bone Density in Adult Male Mice. Endocrinology 2016; 157:2595-603. [PMID: 27058814 DOI: 10.1210/en.2015-1936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phthalate exposure impairs testis development and function; however, whether phthalates affect nonreproductive functions is not well understood. To investigate this, C57BL/6J mice were fed 1-500 mg di-n-butyl phthalate (DBP) in corn oil, or vehicle only, daily from 4 to 14 days, after which tissues were collected (prepubertal study). Another group was fed 1-500 mg/kg·d DBP from 4 to 21 days and then maintained untreated until 8 weeks for determination of adult consequences of prepubertal exposure. Bones were assessed by microcomputed tomography and dual-energy X-ray absorptiometry and T by RIA. DBP exposure decreased prepubertal femur length, marrow volume, and mean moment of inertia. Adult animals exposed prepubertally to low DBP doses had lower bone mineral content and bone mineral density and less lean tissue mass than vehicle-treated animals. Altered dynamics of the emerging Leydig population were found in 14-day-old animals fed 100-500 mg/kg·d DBP. Adult mice had variable testicular T and serum T and LH concentrations after prepubertal exposure and a dose-dependent reduction in cytochrome p450, family 11, subfamily A, polypeptide 1. Insulin-like 3 was detected in Sertoli cells of adult mice administered the highest dose of 500 mg/kg·d DBP prepubertally, a finding supported by the induction of insulin-like 3 expression in TM4 cells exposed to 50 μM, but not 5 μM, DBP. We propose that low-dose DBP exposure is detrimental to bone but that normal bone mineral density/bone mineral content after high-dose DBP exposure reflects changes in testicular somatic cells that confer protection to bones. These findings will fuel concerns that low-dose DBP exposure impacts health beyond the reproductive axis.
Collapse
Affiliation(s)
- Amanda Bielanowicz
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Rachelle W Johnson
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hoey Goh
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Sarah C Moody
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Ingrid J Poulton
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Nic Croce
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Kate L Loveland
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Mark P Hedger
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Natalie A Sims
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Catherine Itman
- Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences (A.B., C.I.), and School of Mathematical and Physical Sciences (N.C.), Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales 2308, Australia; St Vincent's Institute of Medical Research (R.W.J., I.J.P., N.A.S.) and Department of Medicine at St. Vincent's Hospital (R.W.J., I.J.P., N.A.S.), The University of Melbourne, Fitzroy, Victoria 3065, Australia; Departments of Biochemistry and Molecular Biology (H.G., K.L.L.), Anatomy and Developmental Biology (S.C.M., K.L.L.), and Molecular Translational Sciences (K.L.L.), Monash University, and Hudson Institute of Medical Research (K.L.L., M.P.H.), Clayton, Victoria 3800, Australia; and Faculty of Science, Health, Education, and Engineering (C.I.), School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| |
Collapse
|
28
|
Jafarzadeh M, Soltani BM. Hsa-miR-590-5p Interaction with SMAD3 Transcript Supports Its Regulatory Effect on The TGFβ Signaling Pathway. CELL JOURNAL 2016; 18:7-12. [PMID: 27054113 PMCID: PMC4819388 DOI: 10.22074/cellj.2016.3981] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE SMAD proteins are the core players of the transforming growth factor-beta (TGFβ) signaling pathway, a pathway which is involved in cell proliferation, differentiation and migration. On the other hand, hsa-miRNA-590-5p (miR-590-5p) is known to have a negative regulatory effect on TGFβ signaling pathway receptors. Since, RNAhybrid analy- sis suggested SMAD3 as a bona fide target gene for miR-590, we intended to investigate the effect of miR-590-5p on SMAD3 transcription. MATERIALS AND METHODS In this experimental study, miR-590-5p was overexpressed in different cell lines and its increased expression was detected through quantitative reverse transcription-polymerase chain reaction (RT-qPCR). Western blot analysis was then used to investigate the effect of miR-590-5p overexpression on SMAD3 protein level. Next, the direct interaction of miR-590-5p with the 3´-UTR sequence of SMAD3 transcript was investigated using the dual luciferase assay. Finally, flow cytometery was used to inves- tigate the effect of miR-590-5p overexpression on cell cycle progression in HeLa and SW480 cell lines. RESULTS miR-590-5p was overexpressed in the SW480 cell line and its overexpression resulted in significant reduction of the SMAD3 protein level. Consistently, direct interaction of miR-590-5p with 3´-UTR sequence of SMAD3 was detected. Finally, miR-590-5p over- expression did not show a significant effect on cell cycle progression of Hela and SW480 cell lines. CONCLUSION Consistent with previous reports about the negative regulatory effect of miR-590 on TGFβ receptors, our data suggest that miR-590-5p also attenuates the TGFβ signaling pathway through down-regulation of SMAD3.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Katz LH, Likhter M, Jogunoori W, Belkin M, Ohshiro K, Mishra L. TGF-β signaling in liver and gastrointestinal cancers. Cancer Lett 2016; 379:166-72. [PMID: 27039259 DOI: 10.1016/j.canlet.2016.03.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
Transforming Growth Factor-β (TGF-β) plays crucial and complex roles in liver and gastrointestinal cancers. These include a multitude of distinct functions, such as maintaining stem cell homeostasis, promoting fibrosis, immune modulating, as a tumor suppressor and paradoxically, as a tumor progressor. However, key mechanisms for the switches responsible for these distinct actions are poorly understood, and remain a challenge. The Cancer Genome Atlas (TCGA) analyses and genetically engineered mouse models now provide an integrated approach to dissect these multifaceted and context-dependent driving roles of the TGF-β pathway. In this review, we will discuss the molecular mechanisms of TGF-β signaling, focusing on colorectal, gastric, pancreatic, and liver cancers. Novel drugs targeting the TGF-β pathway have been developed over the last decade, and some have been proven effective in clinical trials. A better understanding of the TGF-β pathway may improve our ability to target it, thus providing more tools to the armamentarium against these deadly cancers.
Collapse
Affiliation(s)
- L H Katz
- Department of Gastroenterology, Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - M Likhter
- Department of Gastroenterology, Sheba Medical Center, Israel
| | - W Jogunoori
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, USA
| | - M Belkin
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, USA
| | - K Ohshiro
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington, DC, USA
| | - L Mishra
- Department of Surgery and GWU Cancer Center, George Washington University and DVAMC, Washington, DC, USA.
| |
Collapse
|
30
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
31
|
Ye L, Jiang WG. Bone morphogenetic proteins in tumour associated angiogenesis and implication in cancer therapies. Cancer Lett 2015; 380:586-597. [PMID: 26639195 DOI: 10.1016/j.canlet.2015.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 02/09/2023]
Abstract
Bone morphogenetic protein (BMP) belongs to transforming growth factor-β superfamily. To date, more than 20 BMPs have been identified in humans. BMPs play a critical role in embryonic and postnatal development, and also in maintaining homeostasis in different organs and tissues by regulating cell differentiation, proliferation, survival and motility. They play important roles in the development and progression of certain malignancies, including prostate cancer, breast cancer, lung cancer, etc. Recently, more evidence shows that BMPs are also involved in tumour associated angiogenesis. For example BMP can either directly regulate the functions of vascular endothelial cells or indirectly influence the angiogenesis via regulation of angiogenic factors, such as vascular endothelial growth factor (VEGF). Such crosstalk can also be reflected in the interaction with other angiogenic factors, like hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). All these factors are involved in the orchestration of the angiogenic process during tumour development and progression. Review of the relevant studies will provide a comprehensive prospective on current understanding and shed light on the corresponding therapeutic opportunity.
Collapse
Affiliation(s)
- Lin Ye
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University-Peking University Cancer Institute, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
32
|
Cheruku HR, Mohamedali A, Cantor DI, Tan SH, Nice EC, Baker MS. Transforming growth factor-β, MAPK and Wnt signaling interactions in colorectal cancer. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
miR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer. Tumour Biol 2015; 36:4123-31. [PMID: 25578496 DOI: 10.1007/s13277-015-3046-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/02/2015] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-145 (miR-145) has been implicated in several cancers. However, its role in nasopharyngeal carcinoma (NPC) remains unclear. In this study, we proved that miR-145 was significantly downregulated in NPC and associated with NPC cell metastasis. Moreover, miR-145 suppressed Smad3 by directly binding to the 3'-untranslated region (UTR) of Smad3. Knockdown of Smad3 in NPC cells inhibited cell migration and invasion, which was consistent with the effect of miR-145 in NPC cells. In addition, Smad3 expression was inversely correlated with miR-145 level in clinical NPC samples. Taken together, our findings indicate that miR-145 is a tumour suppressor that affects invasive and metastatic properties of NPC via the miR-145/Smad3 axis, leading us to propose that miR-145 overexpression might be a potential therapeutic strategy of NPC intervention.
Collapse
|
34
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Zhong Q, Wang T, Lu P, Zhang R, Zou J, Yuan S. miR-193b promotes cell proliferation by targeting Smad3 in human glioma. J Neurosci Res 2014; 92:619-26. [PMID: 24496888 DOI: 10.1002/jnr.23339] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/25/2022]
Abstract
Studies have shown that several miRNAs play important roles in regulating a variety of cellular processes in gliomas. In these reports, upregulation of miR-193b has been found to be associated with a poor prognosis for glioma, but its functional mechanism in glioma remains unclear. This study investigates the roles of miR-193b in glioma tumor growth. We first showed that the expression of miR-193b was elevated in both glioma samples and glioma cells. Furthermore, downregulation of miR-193b by inhibitors was statistically correlated with a decrease in cell growth and a restored G1 accumulation. Luciferase assay and Western blot analysis revealed that Smad3 is a direct target of miR-193b. To prove that miR-193b regulated cell growth through the transforming growth factor-β (TGF-β) pathway in glioma cells by regulating Smad3, we tested endogenous targets of the TGF-β pathway by measuring the accumulation of p21 mRNAs after downregulation of miR-193b. The results confirmed that induction of p21 was promoted by miR-193b inhibitors in glioma cells, although this induction disappeared when Smad3 was knocked down with siRNA. Moreover, downregulation of Smad3 mitigates the miR-193b suppression of glioma proliferation. In conclusion, these results suggest that miR-193b regulated cell growth in glioma through the TGF-β pathway by regulating Smad3. Thus, our study indicates that miR-193b promotes cell proliferation by targeting Smad3 in human glioma, which may serve as a potentially useful target for development of miRNA-based therapies in the future.
Collapse
Affiliation(s)
- Qisheng Zhong
- Department of Neurosurgery, General Hospital of Jinan Military Command of Chinese PLA, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Kim TA, Kang JM, Hyun JS, Lee B, Kim SJ, Yang ES, Hong S, Lee HJ, Fujii M, Niederhuber JE, Kim SJ. The Smad7-Skp2 complex orchestrates Myc stability, impacting on the cytostatic effect of TGF-β. J Cell Sci 2013; 127:411-21. [PMID: 24259667 DOI: 10.1242/jcs.136028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In most human cancers the Myc proto-oncogene is highly activated. Dysregulation of Myc oncoprotein contributes to tumorigenesis in numerous tissues and organs. Thus, targeting Myc stability could be a crucial step for cancer therapy. Here we report Smad7 as a key molecule regulating Myc stability and activity by recruiting the F-box protein, Skp2. Ectopic expression of Smad7 downregulated the protein level of Myc without affecting the transcription level, and significantly repressed its transcriptional activity, leading to inhibition of cell proliferation and tumorigenic activity. Furthermore, Smad7 enhanced ubiquitylation of Myc through direct interaction with Myc and recruitment of Skp2. Ablation of Smad7 resulted in less sensitivity to the growth inhibitory effect of TGF-β by inducing stable Myc expression. In conclusion, these findings that Smad7 functions in Myc oncoprotein degradation and enhances the cytostatic effect of TGF-β signaling provide a possible new therapeutic approach for cancer treatment.
Collapse
Affiliation(s)
- Tae-Aug Kim
- CHA Cancer Institute, CHA University, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li P, Chen Y, Meng X, Kwok KY, Huang X, Choy KW, Wang CC, Lan H, Yuan P. Suppression of malignancy by Smad3 in mouse embryonic stem cell formed teratoma. Stem Cell Rev Rep 2013; 9:709-720. [PMID: 23794057 DOI: 10.1007/s12015-013-9452-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disease associated gene deficient embryonic stem cells can serve as valuable in vitro models to study disease mechanisms and screen drugs. Smad3 mediated TGF-β/Activin/Nodal signaling plays important roles in many biological processes. Despite numerous studies regarding Smad3 function, the role of Smad3 in mouse ES cells is not well studied. To understand the function of Smad3 in mouse ES cells, we derived Smad3-/- ES cells and wild type ES cells. Smad3-/- ES cells display no defect on self-renewal. They express similar level of pluripotent genes and lineage genes compared to wild type ES cells. However, Smad3 ablation results in transient difference in germ layer marker expression during embryoid body formation. Mesoderm lineage marker expression is significantly reduced in the embryoid body formed by Smad3-/- ES cells compared to wild type ES cells. Intriguingly, subcutaneous injection of Smad3-/- ES cells into nude mice leads to formation of malignant immature teratomas, whilst wild type ES cells tend to form mature teratomas. Smad3-/- ES cell formed teratomas can therefore provide a new model for the study of the mechanism of malignant teratomas.
Collapse
Affiliation(s)
- Peng Li
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Genetic modification of dividing cells using episomally maintained S/MAR DNA vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e115. [PMID: 23941867 PMCID: PMC3759738 DOI: 10.1038/mtna.2013.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/28/2013] [Indexed: 01/23/2023]
Abstract
The development of episomally maintained DNA vectors to genetically modify dividing cells efficiently and stably, without the risk of integration-mediated genotoxicity, should prove to be a valuable tool in genetic research. In this study, we demonstrate the utility of Scaffold/Matrix Attachment Region (S/MAR) DNA vectors to model the restoration of a functional wild-type copy of the gene folliculin (FLCN) implicated in the renal cancer Birt-Hogg-Dubé (BHD). Inactivation of FLCN has been shown to be involved in the development of sporadic renal neoplasia in BHD. S/MAR-modified BHD tumor cells (named UOK257-FS) show restored stable FLCN expression and have normalized downstream TGFβ signals. We demonstrate that UOK257-FS cells show a reduced growth rate in vitro and suppression of xenograft tumor development in vivo, compared with the original FLCN-null UOK257 cell line. In addition, we demonstrate that mTOR signaling in serum-starved FLCN-restored cells is differentially regulated compared with the FLCN-deficient cell. The novel UOK257-FS cell line will be useful for studying the signaling pathways affected in BHD pathogenesis. Significantly, this study demonstrates the suitability of S/MAR vectors to successfully model the functional expression of a therapeutic gene in a cancer cell line and will aid the identification of novel cancer markers for diagnosis and therapy.
Collapse
|
40
|
Oncogenic PAK4 regulates Smad2/3 axis involving gastric tumorigenesis. Oncogene 2013; 33:3473-84. [PMID: 23934187 DOI: 10.1038/onc.2013.300] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022]
Abstract
The alteration of p21-activated kinase 4 (PAK4) and transforming growth factor-beta (TGF-β) signaling effector Smad2/3 was detected in several types of tumors, which acts as oncogenic factor and tumor suppressor, but the relationship between these events has not been explored. Here, we demonstrate that PAK4 interacts with and modulates phosphorylation of Smad2/3 via both kinase-dependent and kinase-independent mechanisms, which attenuate Smad2/3 axis transactivation and TGF-β-mediated growth inhibition in gastric cancer cells. First, PAK4 interaction with Smad2/3, which is independent of PAK4 kinase activity, blocks TGF-β1-induced phosphorylation of Smad2 Ser465/467 or Smad3 Ser423/425 and the consequent activation. In addition, PAK4 phosphorylates Smad2 on Ser465, leading to the degradation of Smad2 through ubiquitin-proteasome-dependent pathway under hepatocyte growth factor (HGF) stimulation. Interestingly, PAK4 expression correlates negatively with phospho-Ser465/467 Smad2 but positively with phospho-Ser465 Smad2 in gastric cancer tissues. Furthermore, the expressions of HGF, phospho-Ser474 PAK4 and phospho-Ser465 Smad2 are markedly increased in gastric cancer tissues, and the expression of Smad2 is decreased in gastric cancer tissues. Our results document an oncogenic role of PAK4 in repression of Smad2/3 transactivation that involved in tumorigenesis, and suggest PAK4 as a potential therapeutic target for gastric cancer.
Collapse
|
41
|
Qu Y, Ray PS, Li J, Cai Q, Bagaria SP, Moran C, Sim MS, Zhang J, Turner RR, Zhu Z, Cui X, Liu B. High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. Eur J Cancer 2013; 49:3718-28. [PMID: 23927957 DOI: 10.1016/j.ejca.2013.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/17/2013] [Accepted: 07/15/2013] [Indexed: 01/15/2023]
Abstract
BACKGROUND Secreted frizzled-related protein 1 (sFRP1), Wnt signalling regulator, can positively or negatively regulate tumourigenesis and progression. We sought to determine the clinical relevance and the role of sFRP1 in gastric cancer development and progression. METHODS We investigated the sFRP1 protein expression levels and its clinicopathological correlations using 85 cases of human gastric samples with survival information (JWCI cohort). mRNA levels of sFRP1 and coexpressed genes were analysed using 131-sample cDNA microarray data (Ruijin cohort). The effects of sFRP1 alteration were investigated using cell proliferation, colony formation, migration, and invasion and xenograft models. RESULTS We show that sFRP1 is overexpressed in some human cancers and is significantly associated with lymph node metastasis and decreased overall survival in gastric cancer patients. Using gastric cancer cell models, we demonstrate that sFRP1 overexpression is correlated with the activation of TGFβ (transforming growth factor-beta) signalling pathway and thereby induces cell proliferation, epithelial-mesenchymal transition (EMT), and invasion. Conversely, sFRP1 knockdown shows the opposite effects. Furthermore, sFRP1 overexpression promotes tumourigenesis and metastasis in a xenograft model. CONCLUSION Our studies demonstrate that sFRP1 is a biomarker for aggressive subgroups of human gastric cancer and a prognostic biomarker for patients with poor survival. Our data provide insight into a crosstalk between Wnt and TGFβ pathways which underlies gastric cancer development and progression.
Collapse
Affiliation(s)
- Ying Qu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu ZB, Cai L, Lin SJ, Lu JL, Yao Y, Zhou LF. The miR-92b functions as a potential oncogene by targeting on Smad3 in glioblastomas. Brain Res 2013; 1529:16-25. [PMID: 23892108 DOI: 10.1016/j.brainres.2013.07.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/13/2013] [Accepted: 07/17/2013] [Indexed: 12/26/2022]
Abstract
MicroRNAs(miR) play an important role in cell growth, differentiation, proliferation and apoptosis, which can function either as oncogenes or as tumor suppressors in their effect on tumor growth. Smad3 is often underexpressed in very diverse types of malignant tumors and has an important tumor suppressive function; however, the underlying mechanism in solid cancer including glioblastomas(GBM) is not fully explored. The aim of this study is to explore the role of miR-92b in regulation of smad3 in GBM. In our study, we found that miR-92b expression was significantly increased in GBM tissues compared with normal brain tissues by Q-RT-PCR and in situ hybridization (P<0.01). However, expression of smad3 in GBM samples was significantly reduced compared with normal brain tissues by western blot and immunohistochemistry (P<0.05). Using 3'UTR luciferase reporter gene assay, we found that miR-92b directly affected smad3 expression in GBM cells by targeting the 3'-untranslated region. Silencing of miR-92b was able to significantly inhibit the viability of GBM cells in three GBM cell lines through up-regulating the TGF-beta/smad3/p21 signaling pathway in vitro. Furthermore, the tumor growth and the weight of U87 cells in the miR-92b inhibitor group were significantly inhibited when compared with that of the control group in vivo. Our data demonstrated that miR-92b may be considered as a tumor oncogene to promote GBM cell proliferation, and thus may serve as a potentially useful target for development of miRNA-based therapies in the future.
Collapse
Affiliation(s)
- Zhe Bao Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, 12# Wulumuqi middle Road, Shanghai 200040, China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The transforming growth factor-β (TGF-β) system signals via protein kinase receptors and SMAD mediators to regulate a large number of biological processes. Alterations of the TGF-β signalling pathway are implicated in human cancer. Prior to tumour initiation and early during progression, TGF-β acts as a tumour suppressor; however, at later stages, it is often a tumour promoter. Knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of cancer progression, invasion, metastasis and epithelial-to-mesenchymal transition. Furthermore, several molecular targets with great potential in therapeutic interventions have been identified. This review discusses the TGF-β signalling pathway, its involvement in cancer and current therapeutic approaches.
Collapse
|
44
|
Abstract
BACKGROUND The transforming growth factor-β/Smads signaling pathway plays an important role in tumorigenesis and progression in cancer, and may closely be related to the biological behaviors of some malignant tumors, such as gastric carcinoma. In this study, we investigated the roles of Smad3 and Smad3 phosphoisoforms in the prognosis of gastric carcinoma. METHODS We investigated the expressions of Smad3, pSmad3C(S423/425), pSmad3L(T179), pSmad3L(S204), and pSmad3L(S213) in tumor tissue microarrays of 442 gastric carcinoma patients who underwent curative surgery using immunohistochemistry and assessed their correlation with clinical outcome. RESULTS Positive Smad3 expression was observed in 33.5 % of gastric carcinoma. The rates of positive Smad3 phosphoisoforms expression varied according to the location of phosphorylation within Smad3: pSmad3C(S423/425) 28.5 %, pSmad3L(T179) 5.9 %, pSmad3L(S204) 1.8 %, and pSmad3L(S213) 20.8 %. Positive Smad3 expression was associated with diffuse type (p = 0.003), poorer histologic differentiation (p = 0.005), more frequent lymph node metastasis (p = 0.001), and higher AJCC stage (p = 0.006). Multivariate analyses revealed that Smad3 expression (p = 0.041), pSmad3L(T179) expression (p = 0.011), pSmad3L(S213) expression (p = 0.003), and American Joint Committee on Cancer (AJCC) stage were independent predictors of shorter disease-free survival. Smad3 expression (p = 0.033), pSmad3L(T179) expression (p = 0.012), pSmad3L(S213) expression (p = 0.005), and AJCC stage were also independent predictors of shorter overall survival. pSmad3C(S423/425) expression tended to show favorable influences on both disease-free survival (p = 0.134) and overall survival (p = 0.232). CONCLUSIONS Smad3, pSmad3L(T179), and pSmad3L(S213) expression might be independent predictors of both shorter disease-free survival and shorter overall survival in gastric carcinoma patients after curative surgery, and might help clinicians identify patients at high risk of recurrence.
Collapse
|
45
|
Bilandzic M, Chu S, Wang Y, Tan HL, Fuller PJ, Findlay JK, Stenvers KL. Betaglycan alters NFκB-TGFβ2 cross talk to reduce survival of human granulosa tumor cells. Mol Endocrinol 2013; 27:466-79. [PMID: 23322721 DOI: 10.1210/me.2012-1239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The molecular pathways controlling granulosa cell tumor (GCT) survival are poorly understood. In many cell types, nuclear factor-κB (NFκB) and TGFβ coordinately regulate cell survival to maintain tissue homeostasis. Because GCT cell lines exhibit constitutively activated NFκB, we hypothesized that NFκB blocks TGFβ-mediated cell death in GCT cells. To test this hypothesis, we used the human GCT cell line KGN, which exhibits loss of betaglycan, a TGFβ co-receptor. After inhibition of NFκB in KGN cells, re-expression of betaglycan resulted in a decrease in cell viability, which was further decreased by TGFβ2. Intriguingly, TGFβ2 increased NFκB reporter activity in control cells, but betaglycan expression suppressed both basal and TGFβ2-stimulated NFκB activity. Chemical inhibition of Mothers against decapentaplegic homolog 2/3 (SMAD2/3) signaling or SMAD2/3 gene silencing revealed that both SMADs contributed to cell survival. Furthermore, inhibiting NFκB activity resulted in a specific reduction in SMAD3 expression. Conversely, overexpression of SMAD3 increased basal NFκB activity and countered betaglycan-mediated suppression of NFκB activity. Finally, ERK1/2 activation emerged as the point of convergence of NFκB, SMAD3, and TGFβ2/betaglycan governance of GCT cell viability. Key findings in KGN cells were reproduced in a second GCT cell line, COV434. Collectively, our data establish that both SMAD2/3 and NFκB signaling pathways support GCT cell viability and suggest the existence of a positive feedback loop between NFκB and SMAD3 signaling in late-stage GCT. Furthermore, our data suggest that loss of betaglycan during tumor progression in GCT alters the functional outcomes generated by NFκB and TGFβ pathway cross talk.
Collapse
Affiliation(s)
- Maree Bilandzic
- Prince Henry’s Institute, Department of Developmental Biology and Anatomy, Monash University, Clayton, Victoria 3168, Australia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yang KM, Kim W, Bae E, Gim J, Weist BM, Jung Y, Hyun JS, Hernandez JB, Leem SH, Park T, Jeong J, Walsh CM, Kim SJ. DRAK2 participates in a negative feedback loop to control TGF-β/Smads signaling by binding to type I TGF-β receptor. Cell Rep 2012; 2:1286-99. [PMID: 23122956 DOI: 10.1016/j.celrep.2012.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/17/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022] Open
Abstract
TGF-β1 is a multifunctional cytokine that mediates diverse biological processes. However, the mechanisms by which the intracellular signals of TGF-β1 are terminated are not well understood. Here, we demonstrate that DRAK2 serves as a TGF-β1-inducible antagonist of TGF-β signaling. TGF-β1 stimulation rapidly induces DRAK2 expression and enhances endogenous interaction of the type I TGF-β receptor with DRAK2, thereby blocking R-Smads recruitment. Depletion of DRAK2 expression markedly augmented the intensity and the extent of TGF-β1 responses. Furthermore, a high level of DRAK2 expression was observed in basal-like and HER2-enriched breast tumors and cell lines, and depletion of DRAK2 expression suppressed the tumorigenic ability of breast cancer cells. Thus, these studies define a function for DRAK2 as an intrinsic intracellular antagonist participating in the negative feedback loop to control TGF-β1 responses, and aberrant expression of DRAK2 increases tumorigenic potential, in part, through the inhibition of TGF-β1 tumor suppressor activity.
Collapse
Affiliation(s)
- Kyung-Min Yang
- CHA Cancer Institute, CHA University of Medicine and Science, Seoul 135-081, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-β - an excellent servant but a bad master. J Transl Med 2012; 10:183. [PMID: 22943793 PMCID: PMC3494542 DOI: 10.1186/1479-5876-10-183] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor (TGF-β) family of growth factors controls an immense number of cellular responses and figures prominently in development and homeostasis of most human tissues. Work over the past decades has revealed significant insight into the TGF-β signal transduction network, such as activation of serine/threonine receptors through ligand binding, activation of SMAD proteins through phosphorylation, regulation of target genes expression in association with DNA-binding partners and regulation of SMAD activity and degradation. Disruption of the TGF-β pathway has been implicated in many human diseases, including solid and hematopoietic tumors. As a potent inhibitor of cell proliferation, TGF-β acts as a tumor suppressor; however in tumor cells, TGF-β looses anti-proliferative response and become an oncogenic factor. This article reviews current understanding of TGF-β signaling and different mechanisms that lead to its impairment in various solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Lenka Kubiczkova
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, 625 00, Czech Republic
| | | | | | | |
Collapse
|
48
|
USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 2012; 14:717-26. [PMID: 22706160 DOI: 10.1038/ncb2522] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
Abstract
The stability and membrane localization of the transforming growth factor-β (TGF-β) type I receptor (TβRI) determines the levels of TGF-β signalling. TβRI is targeted for ubiquitylation-mediated degradation by the SMAD7-SMURF2 complex. Here we performed a genome-wide gain-of-function screen and identified ubiquitin-specific protease (USP) 4 as a strong inducer of TGF-β signalling. USP4 was found to directly interact with TβRI and act as a deubiquitylating enzyme, thereby controlling TβRI levels at the plasma membrane. Depletion of USP4 mitigates TGF-β-induced epithelial to mesenchymal transition and metastasis. Importantly, AKT (also known as protein kinase B), which has been associated with poor prognosis in breast cancer, directly associates with and phosphorylates USP4. AKT-mediated phosphorylation relocates nuclear USP4 to the cytoplasm and membrane and is required for maintaining its protein stability. Moreover, AKT-induced breast cancer cell migration was inhibited by USP4 depletion and TβRI kinase inhibition. Our results uncover USP4 as an important determinant for crosstalk between TGF-β and AKT signalling pathways.
Collapse
|
49
|
Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. J Transl Med 2012; 92:883-95. [PMID: 22411066 PMCID: PMC3584162 DOI: 10.1038/labinvest.2012.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SMAD proteins are downstream effectors of the TGF-β signaling pathway. Smad3-null mice develop colorectal cancer by 6 months of age. In this study, we have examined whether the loss of Smad3 promotes gastric neoplasia in mice. The stomachs of Smad3⁻/⁻ mice were compared with age-matched Smad3 heterozygous and wild-type mice. E-cadherin, Ki-67, phosphoSTAT3, and TFF2/SP expression was analyzed by immunohistochemisty. The short hairpin RNA (ShRNA)-mediated knockdown of Smad3 in AGS and MKN28 cells was also performed. In addition, we examined alterations in DCLK1-expressing cells. Smad3⁻/⁻ mouse stomachs at 6 months of age revealed the presence of exophytic growths along the lesser curvature in the proximal fundus. Six-month-old Smad3⁻/⁻ mouse stomachs showed metaplastic columnar glands initiating from the transition zone junction between the forestomach and the glandular epithelium along the lesser curvature. Ten-month-old Smad3⁻/⁻ mice all exhibited invasive gastric neoplastic changes with increased Ki-67, phosphoSTAT3 expression, and aberrant cytosolic E-cadherin staining in papillary glands within the invading submucosal gland. The shRNA-mediated knockdown of Smad3 in AGS and MKN28 cells promoted the expression of phosphoSTAT3. DCLK1-expressing cells, which also stained for the tuft cell marker acetylated-α-tubulin, were observed in 10-month-old Smad3⁻/⁻ mice within tumors and in fundic invasive lesions. In conclusion, Smad3-null mice develop gastric tumors in the fundus, which arise from the junction between the forestomach and the glandular epithelium and progress to prominent invasive tumors over time. Smad3-null mice represent a novel model of fundic gastric tumor initiated from forestomach/glandular transition zone along the lesser curvature.
Collapse
|
50
|
Wu Y, Li Q, Zhou X, Yu J, Mu Y, Munker S, Xu C, Shen Z, Müllenbach R, Liu Y, Li L, Gretz N, Zieker D, Li J, Matsuzaki K, Li Y, Dooley S, Weng H. Decreased levels of active SMAD2 correlate with poor prognosis in gastric cancer. PLoS One 2012; 7:e35684. [PMID: 22539990 PMCID: PMC3334357 DOI: 10.1371/journal.pone.0035684] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/20/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND TGF-β plays a dual role in the progression of human cancer. During the early stages of carcinogenesis, TGF-β functions as a tumor suppressor. During the late stages of tumor development, however, TGF-β can promote tumor growth and metastasis. A shift in Smad2/3 phosphorylation from the carboxy terminus to linker sites is a key event determining biological function of TGF-β in colorectal and hepatocellular carcinoma. In the present study, we investigated the potential role of differential Smad2/3 phosphorylation in gastric adenocarcinoma. METHODOLOGY Immunohistochemical staining with anti-P-Smad2/3C and P-Smad2/3L antibodies was performed on 130 paraffin-embedded gastric adenocarcinoma specimens. The relationship between P-Smad2/3C and P-Smad2/3L immunohistochemical score and clinicopathologic characteristics of patients was analyzed. Real time PCR was used to measure mRNA expression of Smad2 and Smad3 in cancer and surrounding non-tumor tissue. PRINCIPAL FINDINGS No significant P-Smad2L and/or P-Smad3L positive staining was detected in the majority of specimens (positive staining in 18/130 samples). Positive P-Smad2/3L staining was not associated with a decrease in carboxyterminal phosphorylation staining. Loss of P-Smad2C remarkably correlated with depth of tumor infiltration and poor differentiation of cancer cells in patients with gastric cancer. No correlation was detectable between P-Smad3C and clinicopathologic characteristics of gastric adenocarcinoma. However, co-staining analysis revealed that P-Smad3C co-localised with α-SMA and collagen I in gastric cancer cells, indicating a potential link between P-Smad3C and epithelial-to-mesenchymal transition of cancer. Real time PCR demonstrated reduced mRNA expression of Smad2 in gastric cancer when compared with surrounding non-tumor tissue in 15/16 patients. CONCLUSIONS Loss of P-Smad2C tightly correlated with cancer invasion and poor differentiation in gastric cancer. Contrary to colorectal and hepatocellular carcinoma, canonical carboxy-terminal phosphorylation, but not linker phosphorylation, of Smad2 is critical for gastric cancer.
Collapse
Affiliation(s)
- Yijun Wu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Li
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xinhui Zhou
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiren Yu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunchuan Mu
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stefan Munker
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Roman Müllenbach
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Yan Liu
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Li Li
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Derek Zieker
- General, Visceral Surgery and Transplantation, University Hospital Tübingen, Tübingen, Germany
| | - Jun Li
- General, Visceral Surgery and Transplantation, University Hospital Tübingen, Tübingen, Germany
| | - Kouichi Matsuzaki
- Departments of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Steven Dooley
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| | - Honglei Weng
- Molecular Hepatology - Alcohol Associated Diseases, II, Medical Clinic Faculty of Medicine at Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|