1
|
Czajkowski K, Herbet M, Murias M, Piątkowska-Chmiel I. Senolytics: charting a new course or enhancing existing anti-tumor therapies? Cell Oncol (Dordr) 2025; 48:351-371. [PMID: 39633108 PMCID: PMC11996976 DOI: 10.1007/s13402-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Cell senescence is a natural response within our organisms. Initially, it was considered an effective anti-tumor mechanism. However, it is now believed that while cell senescence initially acts as a robust barrier against tumor initiation, the subsequent accumulation of senescent cells can paradoxically promote cancer recurrence and cause damage to neighboring tissues. This intricate balance between cell proliferation and senescence plays a pivotal role in maintaining tissue homeostasis. Moreover, senescence cells secrete many bioactive molecules collectively termed the senescence-associated secretory phenotype (SASP), which can induce chronic inflammation, alter tissue architecture, and promote tumorigenesis through paracrine signaling. Among the myriads of compounds, senotherapeutic drugs have emerged as exceptionally promising candidates in anticancer treatment. Their ability to selectively target senescent cells while sparing healthy tissues represents a paradigm shift in therapeutic intervention, offering new avenues for personalized oncology medicine. Senolytics have introduced new therapeutic possibilities by enabling the targeted removal of senescent cells. As standalone agents, they can clear tumor cells in a senescent state and, when combined with chemo- or radiotherapy, eliminate residual senescent cancer cells after treatment. This dual approach allows for the intentional use of lower-dose therapies or the removal of unintended senescent cells post-treatment. Additionally, by targeting non-cancerous senescent cells, senolytics may help reduce tumor formation risk, limit recurrence, and slow disease progression. This article examines the mechanisms of cellular senescence, its role in cancer treatment, and the importance of senotherapy, with particular attention to the therapeutic potential of senolytic drugs.
Collapse
Affiliation(s)
- Konrad Czajkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
2
|
Mösenlechner M, Schlösser D, Braumüller S, Dörfer L, Mannes M, Kawach R, Strauss G, Schmidt CQ, Lupu L, Huber-Lang MS. INDUCTION OF EARLY PULMONARY SENESCENCE IN EXPERIMENTAL SEPSIS. Shock 2025; 63:448-455. [PMID: 39637172 PMCID: PMC11882169 DOI: 10.1097/shk.0000000000002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Background: Sepsis continues to pose a significant threat to human life and represents a substantial financial burden. In addition to replicative stress resulting from telomeric loss, recent studies have identified multiple factors contributing to cell cycle arrest. Furthermore, our understanding of pathways associated with cellular senescence, such as CD47-mediated suppression of efferocytosis, has expanded. However, beyond in vitro experiments, the impact of cell stress during complex systemic illnesses, including sepsis, remains poorly understood. Consequently, we conducted an investigation into molecular alterations related to senescence-associated pulmonary mechanisms during experimental nonpulmonary sepsis. Methods: Male C57BL/6JRj mice were anesthetized and subjected to either control conditions (sham) or cecal ligation and puncture (CLP) to induce sepsis. Twenty-four hours or 7 d after CLP, animals were killed, and blood, bronchoalveolar fluids, and lungs were harvested and analyzed for morphological and biochemical changes. Results: Histological damage in pulmonary tissue, as well as increases in plasma levels of surfactant protein D, indicated development of alveolar-focused acute lung injury after CLP. Additionally, we observed a significant upregulation of the CD47-QPCTL-SHP-1 axis in lungs of septic mice. Whereas the expression of p16, a marker primarily indicating manifested forms of senescence, was decreased after CLP, the early marker of cellular senescence, p21, was increased in the lungs during sepsis. Later, at 7 d after CLP, pulmonary expression of CD47 and QPCTL-1 was decreased, whereas SHP-1 was significantly enhanced. Conclusion: Our findings suggest an activation of senescent-associated pathways during experimental sepsis. However, expanding the experiments to other organ systems and in vivo long-term models are necessary to further evaluate the sustained mechanisms and immunopathophysiological consequences of cellular senescence triggered by septic organ injury.
Collapse
Affiliation(s)
- Martin Mösenlechner
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | | | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Lena Dörfer
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Rawan Kawach
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Gudrun Strauss
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Ludmila Lupu
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
3
|
Zou H, Li S, Guo J, Wen L, Lv C, Leng F, Chen Z, Zeng M, Xu J, Li Y, Li X. Pan-cancer analysis reveals age-associated genetic alterations in protein domains. Am J Hum Genet 2025; 112:44-58. [PMID: 39708814 PMCID: PMC11739924 DOI: 10.1016/j.ajhg.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer incidence and mortality differ among individuals of different ages, but the functional consequences of genetic alterations remain largely unknown. We systematically characterized genetic alterations within protein domains stratified by affected individual's age and showed that the mutational effects on domains varied with age. We further identified potential age-associated driver genes with hotspots across 33 cancers. The candidate drivers involved numerous cancer-related genes that participate in various oncogenic pathways and play central roles in human protein-protein interaction (PPI) networks. We found widespread age biases in protein domains and identified the associations between hotspots and age. Age-stratified PPI networks perturbed by hotspots were constructed to illustrate the function of mutations enriched in domains. We found that hotspots in young adults were associated with premature senescence. In summary, we provided a catalog of age-associated hotspots and their perturbed networks, which may facilitate precision diagnostics and treatments for cancer.
Collapse
Affiliation(s)
- Haozhe Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Si Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Jiyu Guo
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Luan Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chongwen Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Feng Leng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zefeng Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Mengqian Zeng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
4
|
Liu Y, Lomeli I, Kron SJ. Therapy-Induced Cellular Senescence: Potentiating Tumor Elimination or Driving Cancer Resistance and Recurrence? Cells 2024; 13:1281. [PMID: 39120312 PMCID: PMC11312217 DOI: 10.3390/cells13151281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Cellular senescence has been increasingly recognized as a hallmark of cancer, reflecting its association with aging and inflammation, its role as a response to deregulated proliferation and oncogenic stress, and its induction by cancer therapies. While therapy-induced senescence (TIS) has been linked to resistance, recurrence, metastasis, and normal tissue toxicity, TIS also has the potential to enhance therapy response and stimulate anti-tumor immunity. In this review, we examine the Jekyll and Hyde nature of senescent cells (SnCs), focusing on how their persistence while expressing the senescence-associated secretory phenotype (SASP) modulates the tumor microenvironment through autocrine and paracrine mechanisms. Through the SASP, SnCs can mediate both resistance and response to cancer therapies. To fulfill the unmet potential of cancer immunotherapy, we consider how SnCs may influence tumor inflammation and serve as an antigen source to potentiate anti-tumor immune response. This new perspective suggests treatment approaches based on TIS to enhance immune checkpoint blockade. Finally, we describe strategies for mitigating the detrimental effects of senescence, such as modulating the SASP or targeting SnC persistence, which may enhance the overall benefits of cancer treatment.
Collapse
Affiliation(s)
| | | | - Stephen J. Kron
- Ludwig Center for Metastasis Research and Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Samiminemati A, Aprile D, Siniscalco D, Di Bernardo G. Methods to Investigate the Secretome of Senescent Cells. Methods Protoc 2024; 7:52. [PMID: 39051266 PMCID: PMC11270363 DOI: 10.3390/mps7040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
The word "secretome" was first used to describe the proteins that cells secrete under different circumstances; however, recent studies have proven the existence of other molecules such as RNA and chemical compounds in the secretome. The study of secretome has significance for the diagnosis and treatment of disease as it provides insight into cellular functions, including immune responses, development, and homeostasis. By halting cell division, cellular senescence plays a role in both cancer defense and aging by secreting substances known as senescence-associated secretory phenotypes (SASP). A variety of techniques could be used to analyze the secretome: protein-based approaches like mass spectrometry and protein microarrays, nucleic acid-based methods like RNA sequencing, microarrays, and in silico prediction. Each method offers unique advantages and limitations in characterizing secreted molecules. Top-down and bottom-up strategies for thorough secretome analysis are became possible by mass spectrometry. Understanding cellular function, disease causes, and proper treatment targets is aided by these methodologies. Their approaches, benefits, and drawbacks will all be discussed in this review.
Collapse
Affiliation(s)
- Afshin Samiminemati
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Domenico Aprile
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
- Sbarro Health Research Organization, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Suzuki M, Kobayashi H, Hara D, Hanaoka H. Elimination of radiation-induced senescent cancer cells and stromal cells in vitro by near-infrared photoimmunotherapy. Cancer Med 2024; 13:e7381. [PMID: 38888415 PMCID: PMC11184651 DOI: 10.1002/cam4.7381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Therapy-induced senescent cancer and stromal cells secrete cytokines and growth factors to promote tumor progression. Therefore, senescent cells may be novel targets for tumor treatment. Near-infrared photoimmunotherapy (NIR-PIT) is a highly tumor-selective therapy that employs conjugates of a molecular-targeting antibody and photoabsorber. Thus, NIR-PIT has the potential to be applied as a novel senolytic therapy. This study aims to investigate the efficacy of NIR-PIT treatment on senescent cancer and stromal cells. METHODS Two cancer cell lines (human lung adenocarcinoma A549 cells and human pancreatic cancer MIA PaCa-2 cells) and two normal cell lines (mouse fibroblast transfected with human epidermal growth factor receptor 2 [HER2] cells and human fibroblast WI38 cells) were used. The cytotoxicity of NIR-PIT was evaluated using anti-epidermal growth factor receptor (EGFR) antibody panitumumab and anti-HER2 antibody transtuzumab. RESULTS Cellular senescence was induced in A549 and MIA PaCa-2 cells by 10 Gy γ-irradiation. The up-regulation of cellular senescence markers and characteristic morphological changes in senescent cells, including enlargement, flattening, and multinucleation, were observed in cancer cells after 5 days of γ-irradiation. Then, NIR-PIT targeting EGFR was performed on these senescent cancer cells. The NIR-PIT induced morphological changes, including bleb formation, swelling, and the inflow of extracellular fluid, and induced a significant decrease in cellular viability. These results suggested that NIR-PIT may induce cytotoxicity using the same mechanism in senescent cancer cells. In addition, similar morphological changes were also induced in radiation-induced senescent 3T3-HER2 fibroblasts by NIR-PIT targeting human epidermal growth factor receptor 2. CONCLUSION NIR-PIT eliminates both senescent cancer and stromal cells in vitro suggesting it may be a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Motofumi Suzuki
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Daiki Hara
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| | - Hirofumi Hanaoka
- Division of Fundamental Technology DevelopmentNear InfraRed Photo‐ImmunoTherapy Research Institute at Kansai Medical UniversityHirakataOsakaJapan
| |
Collapse
|
7
|
Adisasmita M, Lee HK, An Y, Kim M, Mamo MG, Hur JK, Choi D, Shin JH, Jung YK. Epigenetic modulation inhibits epithelial-mesenchymal transition-driven fibrogenesis and enhances characteristics of chemically-derived hepatic progenitors. Ann Surg Treat Res 2024; 106:274-283. [PMID: 38725803 PMCID: PMC11076951 DOI: 10.4174/astr.2024.106.5.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose One of the novel cell sources of cell-based liver regenerative medicine is human chemically-derived hepatic progenitors (hCdHs). We previously established this cell by direct hepatocyte reprogramming with a combination of small molecules (hepatocyte growth factor, A83-01, CHIR99021). However, there have been several issues concerning the cell's stability and maintenance, namely the occurrences of epithelial-mesenchymal transition (EMT) that develop fibrotic phenotypes, resulting in the loss of hepatic progenitor characteristics. These hepatic progenitor attributes are thought to be regulated by SOX9, a transcription factor essential for hepatic progenitor cells and cholangiocytes. Methods To suppress the fibrotic phenotype and improve our long-term hCdHs culture technology, we utilized the epigenetic modulating drugs DNA methyltransferase inhibitor (5-azacytidine) and histone deacetylase inhibitor (sodium butyrate) that have been reported to suppress and revert hepatic fibrosis. To confirm the essential role of SOX9 to our cell, we used clustered regularly interspaced short palindromic repeats-interference (CRISPRi) to repress the SOX9 expression. Results The treatment of only 5-azacytidine significantly reduces the fibrosis/mesenchymal marker and EMT-related transcription factor expression level in the early passages. Interestingly, this treatment also increased the hepatic progenitor markers expression, even during the reprogramming phase. Then, we confirmed the essential role of SOX9 by repressing the SOX9 expression with CRISPRi which resulted in the downregulation of several essential hepatic progenitor cell markers. Conclusion These results highlight the capacity of 5-azacytidine to inhibit EMT-driven hepatic fibrosis and the significance of SOX9 on hepatic progenitor cell stemness properties.
Collapse
Affiliation(s)
- Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Hyomin K Lee
- Major in Medical Genetics, Department of Medicine, Graduate School, Hanyang University, Seoul, Korea
- Department of Genetics, Hanyang University College of Medicine, Seoul, Korea
| | - Yohan An
- Department of Genetics, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Myounghoi Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Junho K. Hur
- Department of Genetics, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Ji Hyun Shin
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Yun Kyung Jung
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| |
Collapse
|
8
|
Soliman AM, Kodous AS, Al-Sherif DA, Ghorab MM. Quinazoline sulfonamide derivatives targeting MicroRNA-34a/MDM4/p53 apoptotic axis with radiosensitizing activity. Future Med Chem 2024; 16:929-948. [PMID: 38661115 PMCID: PMC11221547 DOI: 10.4155/fmc-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Ahmad S Kodous
- Radiation Biology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Diana A Al-Sherif
- Technology of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, 6th of October University, Giza 12585, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| |
Collapse
|
9
|
Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Wang SG, Xia QD. A new perspective on prostate cancer treatment: the interplay between cellular senescence and treatment resistance. Front Immunol 2024; 15:1395047. [PMID: 38694500 PMCID: PMC11061424 DOI: 10.3389/fimmu.2024.1395047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi-Dong Xia
- *Correspondence: Shao-Gang Wang, ; Qi-Dong Xia,
| |
Collapse
|
10
|
Luo L, An X, Xiao Y, Sun X, Li S, Wang Y, Sun W, Yu D. Mitochondrial-related microRNAs and their roles in cellular senescence. Front Physiol 2024; 14:1279548. [PMID: 38250662 PMCID: PMC10796628 DOI: 10.3389/fphys.2023.1279548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Aging is a natural aspect of mammalian life. Although cellular mortality is inevitable, various diseases can hasten the aging process, resulting in abnormal or premature senescence. As cells age, they experience distinctive morphological and biochemical shifts, compromising their functions. Research has illuminated that cellular senescence coincides with significant alterations in the microRNA (miRNA) expression profile. Notably, a subset of aging-associated miRNAs, originally encoded by nuclear DNA, relocate to mitochondria, manifesting a mitochondria-specific presence. Additionally, mitochondria themselves house miRNAs encoded by mitochondrial DNA (mtDNA). These mitochondria-residing miRNAs, collectively referred to as mitochondrial miRNAs (mitomiRs), have been shown to influence mtDNA transcription and protein synthesis, thereby impacting mitochondrial functionality and cellular behavior. Recent studies suggest that mitomiRs serve as critical sensors for cellular senescence, exerting control over mitochondrial homeostasis and influencing metabolic reprogramming, redox equilibrium, apoptosis, mitophagy, and calcium homeostasis-all processes intimately connected to senescence. This review synthesizes current findings on mitomiRs, their mitochondrial targets, and functions, while also exploring their involvement in cellular aging. Our goal is to shed light on the potential molecular mechanisms by which mitomiRs contribute to the aging process.
Collapse
Affiliation(s)
- Ling Luo
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yinghui Xiao
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiguang Sun
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yingzhao Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Gonzalez-Meljem JM, Martinez-Barbera JP. Implications of cellular senescence in paediatric pituitary tumours. EBioMedicine 2024; 99:104905. [PMID: 38043401 PMCID: PMC10730348 DOI: 10.1016/j.ebiom.2023.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
The long-standing view of senescent cells as passive and dysfunctional biological remnants has recently shifted into a new paradigm where they are main players in the development of many diseases, including cancer. The senescence programme represents a first line of defence that prevents tumour cell growth but also leads to the secretion of multiple pro-inflammatory and pro-tumourigenic factors that fuel tumour initiation, growth, and progression. Here, we review the main molecular features and biological functions of senescent cells in cancer, including the outcomes of inducing or targeting senescence. We discuss evidence on the role of cellular senescence in pituitary tumours, with an emphasis on adamantinomatous craniopharyngioma (ACP) and pituitary adenomas. Although senescence has been proposed to be a tumour-preventing mechanism in pituitary adenomas, research in ACP has shown that senescent cells are tumour-promoting in both murine models and human tumours. Future studies characterizing the impact of targeting senescent cells may result in novel therapies against pituitary tumours.
Collapse
Affiliation(s)
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Institute of Child Health, London, UK.
| |
Collapse
|
12
|
Waksal JA, Bruedigam C, Komrokji RS, Jamieson CHM, Mascarenhas JO. Telomerase-targeted therapies in myeloid malignancies. Blood Adv 2023; 7:4302-4314. [PMID: 37216228 PMCID: PMC10424149 DOI: 10.1182/bloodadvances.2023009903] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Human telomeres are tandem arrays that are predominantly composed of 5'-TTAGGG-3' nucleotide sequences at the terminal ends of chromosomes. These sequences serve 2 primary functions: they preserve genomic integrity by protecting the ends of chromosomes, preventing inappropriate degradation by DNA repair mechanisms, and they prevent loss of genetic information during cellular division. When telomeres shorten to reach a critical length, termed the Hayflick limit, cell senescence or death is triggered. Telomerase is a key enzyme involved in synthesizing and maintaining the length of telomeres within rapidly dividing cells and is upregulated across nearly all malignant cells. Accordingly, targeting telomerase to inhibit uncontrolled cell growth has been an area of great interest for decades. In this review, we summarize telomere and telomerase biology because it relates to both physiologic and malignant cells. We discuss the development of telomere- and telomerase-targeted therapeutic candidates within the realm of myeloid malignancies. We overview all mechanisms of targeting telomerase that are currently in development, with a particular focus on imetelstat, an oligonucleotide with direct telomerase inhibitory properties that has advanced the furthest in clinical development and has demonstrated promising data in multiple myeloid malignancies.
Collapse
Affiliation(s)
- Julian A. Waksal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Claudia Bruedigam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - John O. Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Cotarelo CL, Schad A, Schmidt M, Hönig A, Sleeman JP, Thaler S. Detection of Cellular Senescence Reveals the Existence of Senescent Tumor Cells within Invasive Breast Carcinomas and Related Metastases. Cancers (Basel) 2023; 15:cancers15061860. [PMID: 36980745 PMCID: PMC10047432 DOI: 10.3390/cancers15061860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Oncogene-induced senescence is thought to constitute a barrier to carcinogenesis by arresting cells at risk of malignant transformation. However, numerous findings suggest that senescent cells may conversely promote tumor growth and metastatic progression, for example, through the senescence-associated secretory phenotype (SASP) they produce. Here, we investigated the degree to which senescent tumor cells exist within untreated human primary breast carcinomas and whether the presence of senescent cancer cells in primary tumors is recapitulated in their matched lymph node metastases. For the detection of senescence, we used SA-β-galactosidase (SA-β-gal) staining and other senescence markers such as Ki67, p21, p53, and p16. In patients with invasive luminal A and B breast carcinomas, we found broad similarities in the appearance of cancer cells between primary tumors and their corresponding metastases. Analysis of lymph nodes from patients with other breast cancer subtypes also revealed senescent tumor cells within metastatic lesions. Collectively, our findings show that senescent tumor cells exist within primary breast carcinomas and metastatic lesions. These results suggest a potential role for senescent breast tumor cells during metastatic progression and raise the question as to whether the targeting of senescent tumor cells with anti-senescent drugs might represent a novel avenue for improved treatment of breast and other cancers.
Collapse
Affiliation(s)
- Cristina L Cotarelo
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Arno Schad
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marcus Schmidt
- Department of Gynecology and Obstetrics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Arnd Hönig
- Breast Center, Women's Hospital, Marienhaus Hospital Mainz, 55131 Mainz, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Thaler
- European Center for Angioscience, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
14
|
Magalhães MCSV, Felix FA, Guimarães LM, Dos Santos JN, de Marco LA, Gomez RS, Gomes CC, de Sousa SF. Interrogation of TERT promoter hotspot mutations in ameloblastoma and ameloblastic carcinoma. J Oral Pathol Med 2023; 52:271-275. [PMID: 36169975 DOI: 10.1111/jop.13364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND TERT promoter mutations increase telomerase activity, conferring cell immortality. The coexistence of TERT promoter mutations with BRAFV600E is associated with aggressiveness. Ameloblastoma and ameloblastic carcinoma are infiltrative neoplasms that harbor BRAFV600E; however, it remains unknown if these odontogenic tumors also show TERT promoter mutations. METHODS Genomic DNA of paraffin-embedded ameloblastomas (n = 6) and ameloblastic carcinomas (n = 3) were Sanger-sequenced to assess the hotspot TERT promoter mutations C228T and C250T. BRAFV600E status was screened by TaqMan allele-specific quantitative polymerase chain reaction. RESULTS None of the samples harbored TERT promoter mutations. The BRAFV600E mutation was positive in 3 of 6 of ameloblastomas and in 1 of 3 of ameloblastic carcinomas. CONCLUSION The absence of TERT promoter mutation in the samples indicates that this molecular event is not relevant to the tumors' pathogenesis. Further studies are necessary to explore undefined genetic or epigenetic mechanisms related to TERT-upregulation in ameloblastoma, and the telomerase activity in ameloblastic carcinoma.
Collapse
Affiliation(s)
| | - Fernanda Aragão Felix
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Letícia Martins Guimarães
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jean Nunes Dos Santos
- Laboratory of Oral and Maxillofacial Pathology, School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Luiz Armando de Marco
- Department of Surgery, Medical School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sílvia Ferreira de Sousa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
15
|
Chiu FY, Kvadas RM, Mheidly Z, Shahbandi A, Jackson JG. Could senescence phenotypes strike the balance to promote tumor dormancy? Cancer Metastasis Rev 2023; 42:143-160. [PMID: 36735097 DOI: 10.1007/s10555-023-10089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Collapse
Affiliation(s)
- Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Raegan M Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
| |
Collapse
|
16
|
METTL14 Regulates Intestine Cellular Senescence through m 6A Modification of Lamin B Receptor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9096436. [PMID: 36578521 PMCID: PMC9792243 DOI: 10.1155/2022/9096436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
N-6-Methyladenosine (m6A) modification is involved in multiple biological processes including aging. However, the regulation of m6A methyltransferase-like 14 (METTL14) in aging remains unclear. Here, we revealed that the level of m6A modification and the expression of METTL14 were particularly decreased in the intestine of aged mice as compared to young mice. Similar results were confirmed in Drosophila melanogaster. Knockdown of Mettl14 in Drosophila resulted in a short lifespan, associated disrupted intestinal integrity, and reduced climbing ability. In human CCD-18Co cells, knockdown of METTL14 accelerated cellular senescence, and the overexpression of METTL14 rescued senescent phenotypes. We also identified the lamin B receptor (LBR) as a target gene for METTL14-mediated m6A modification. Knockdown of METTL14 decreased m6A level of LBR, resulted in LBR mRNA instability, and thus induced cellular senescence. Our findings suggest that METTL14 plays an essential role in the m6A modification-dependent aging process via the regulation of LBR and provides a potential target for cellular senescence.
Collapse
|
17
|
Yang T, You C, Meng S, Lai Z, Ai W, Zhang J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front Cell Infect Microbiol 2022; 12:935205. [PMID: 35846746 PMCID: PMC9283984 DOI: 10.3389/fcimb.2022.935205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Viral oncogenes may drive cellular metabolic reprogramming to modulate the normal epithelia cell malignant transformation. Understanding the viral oncogene-mediated signaling transduction dysregulation that involves in metabolic reprogramming may provide new therapeutic targets for virus-associated cancer treatment. Latent EBV infection and expression of viral oncogenes, including latent membrane proteins 1 and 2 (LMP1/2), and EBV-encoded BamH I-A rightward transcripts (BART) microRNAs (miR-BARTs), have been demonstrated to play fundamental roles in altering host cell metabolism to support nasopharyngeal carcinoma (NPC) pathogenesis. Yet, how do EBV infection and its encoded oncogenes facilitated the metabolic shifting and their roles in NPC carcinogenesis remains unclear. In this review, we will focus on delineating how EBV infection and its encoded oncoproteins altered the metabolic reprograming of infected cells to support their malignances. Furthermore, based on the understanding of the host's metabolic signaling alterations induced by EBV, we will provide a new perspective on the interplay between EBV infection and these metabolic pathways and offering a potential therapeutic intervention strategy in the treatment of EBV-associated malignant diseases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Chanping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
18
|
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers (Basel) 2022; 14:cancers14112745. [PMID: 35681725 PMCID: PMC9179324 DOI: 10.3390/cancers14112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cellular senescence and apoptosis were historically thought of as two distinct cell fate pathways. However, many of the proteins involved are integral to both pathways. In particular, the ability of p53 to regulate both senescence and apoptosis meant it was seen as the decisive factor in these decisions, yet questions remain about its ability to select on its own the most appropriate cell fate according to each situation. Therefore, cell fates are no longer considered fixed endpoints but dynamic states that can be shifted given the right combination of activation and/or inhibitions of cofactors. Abstract When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.
Collapse
|
19
|
Cellular senescence in cancers: relationship between bone marrow cancer and cellular senescence. Mol Biol Rep 2022; 49:4003-4012. [PMID: 35449316 DOI: 10.1007/s11033-021-07101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/16/2021] [Indexed: 10/18/2022]
Abstract
INTRODUCTION There are many factors and conditions that lead to cellular senescence. Replicative senescence and Hayflick phenomenon are the most important causes of cellular senescence. Senescent cells also lead to wound healing conditions resulting from injury and toxic conditions. MATERIAL AND METHODS When a cell becomes senescent, it stops replication and begins to leak inflammatory signals before growth. It also alters the extracellular matrix and behavior of neighbor cells and even motivates them. This review was conducted to determine the association between senescence and bone marrow cancer. RESULTS The results showed that senescent cells have a short life span due to their self-destructive nature or natural removal from the body by the immune system. These signals are effective to a certain extent in regenerating the damaged cells when present in a transient state. Cellular senescence can decrease the risk of all cancers, including bone marrow cancer, ensuring that cells with significant DNA injury are prevented from replication. CONCLUSION However, senescent cells increase in number as they age, which is very harmful over time. These cells extend into an older tissue for longer periods of time and form longer clusters in older tissues. Therefore, cellular senescence significantly contributes to aging.
Collapse
|
20
|
Goy E, Tomezak M, Facchin C, Martin N, Bouchaert E, Benoit J, de Schutter C, Nassour J, Saas L, Drullion C, Brodin PM, Vandeputte A, Molendi-Coste O, Pineau L, Goormachtigh G, Pluquet O, Pourtier A, Cleri F, Lartigau E, Penel N, Abbadie C. The out-of-field dose in radiation therapy induces delayed tumorigenesis by senescence evasion. eLife 2022; 11:67190. [PMID: 35302491 PMCID: PMC8933005 DOI: 10.7554/elife.67190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
A rare but severe complication of curative-intent radiation therapy is the induction of second primary cancers. These cancers preferentially develop not inside the planning target volume (PTV) but around, over several centimeters, after a latency period of 1–40 years. We show here that normal human or mouse dermal fibroblasts submitted to the out-of-field dose scattering at the margin of a PTV receiving a mimicked patient’s treatment do not die but enter in a long-lived senescent state resulting from the accumulation of unrepaired DNA single-strand breaks, in the almost absence of double-strand breaks. Importantly, a few of these senescent cells systematically and spontaneously escape from the cell cycle arrest after a while to generate daughter cells harboring mutations and invasive capacities. These findings highlight single-strand break-induced senescence as the mechanism of second primary cancer initiation, with clinically relevant spatiotemporal specificities. Senescence being pharmacologically targetable, they open the avenue for second primary cancer prevention.
Collapse
Affiliation(s)
- Erwan Goy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Tomezak
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France.,Univ. Lille, CNRS, UMR8520, Institut d'Electronique, Microélectronique et Nanotechnologie, F-59652 Villeneuve d'Ascq, France
| | - Caterina Facchin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Emmanuel Bouchaert
- Oncovet Clinical Research, Plateforme PRECI, F-59120 Loos, France.,Oncovet, Plateforme PRECI, F-59650 Villeneuve d'Ascq, France
| | - Jerome Benoit
- Oncovet Clinical Research, Plateforme PRECI, F-59120 Loos, France.,Oncovet, Plateforme PRECI, F-59650 Villeneuve d'Ascq, France
| | - Clementine de Schutter
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Joe Nassour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Laure Saas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Claire Drullion
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Priscille M Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Alexandre Vandeputte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laurent Pineau
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Gautier Goormachtigh
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Olivier Pluquet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Fabrizio Cleri
- Univ. Lille, CNRS, UMR8520, Institut d'Electronique, Microélectronique et Nanotechnologie, F-59652 Villeneuve d'Ascq, France
| | - Eric Lartigau
- Lille University, Medical School and Centre Oscar Lambret, Lille, France
| | - Nicolas Penel
- Lille University, Medical School and Centre Oscar Lambret, Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| |
Collapse
|
21
|
Nakajima Y, Yamazaki Y, Gao X, Hashimoto M, Nio M, Wada M, Fujishima F, Sasano H. Association between mitochondrial and nuclear DNA damages and cellular senescence in the patients with biliary atresia undergoing Kasai portoenterostomy and liver transplantation. Med Mol Morphol 2022; 55:131-145. [PMID: 35238992 DOI: 10.1007/s00795-022-00314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
Biliary atresia (BA) is a cholestatic disease with extrahepatic bile duct obstruction that requires early surgical intervention and occasionally liver transplantation (LT). Accumulation of toxic bile acids induces oxidative stress that results in cell damage, such as cell senescence, mitochondrial dysfunction and others. However, details of their reciprocal association and clinical significance are unexplored. Therefore, we used immuno-localization of markers for cell senescence (p16 and p21), nuclear double-strand DNA damage (γH2AX), autophagy (p62), and mtDNA damage (mtDNA copy number) in patients with BA who underwent Kasai portoenterostomy (KP) and LT. We studied liver biopsy specimens from 54 patients with BA, 14 who underwent LT and 11 from the livers of neonates and infants obtained at autopsy. In hepatocytes, p21 expression was significantly increased in KP. In cholangiocytes, p16 expression was significantly increased in LT, and p21 expression was significantly increased in KP. p62 expression was significantly increased in the KP hepatocytes and LT cholangiocytes. Furthermore, mtDNA copy number significantly decreased in KP and LT compared with the control. Cell senescence and mitochondrial DNA damage progression were dependent on the BA clinical stages and could possibly serve as the markers of indication of LT.
Collapse
Affiliation(s)
- Yudai Nakajima
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Xin Gao
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Masatoshi Hashimoto
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Nio
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Tohoku Kousai Hospital, Sendai, Japan
| | - Motoshi Wada
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
22
|
Ahmadinejad F, Bos T, Hu B, Britt E, Koblinski J, Souers AJ, Leverson JD, Faber AC, Gewirtz DA, Harada H. Senolytic-Mediated Elimination of Head and Neck Tumor Cells Induced Into Senescence by Cisplatin. Mol Pharmacol 2022; 101:168-180. [PMID: 34907000 PMCID: PMC8969145 DOI: 10.1124/molpharm.121.000354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023] Open
Abstract
Therapeutic outcomes achieved in head and neck squamous cell carcinoma (HNSCC) patients by concurrent cisplatin-based chemoradiotherapy initially reflect both tumor regression and tumor stasis. However, local and distant metastasis and disease relapse are common in HNSCC patients. In the current work, we demonstrate that cisplatin treatment induces senescence in both p53 wild-type HN30 and p53 mutant HN12 head and neck cancer models. We also show that tumor cells can escape from senescence both in vitro and in vivo. We further establish the effectiveness of the senolytic, ABT-263 (Navitoclax), in elimination of senescent tumor cells after cisplatin treatment. Navitoclax increased apoptosis by 3.3-fold (P ≤ 0.05) at day 7 compared with monotherapy by cisplatin. Additionally, we show that ABT-263 interferes with the interaction between B-cell lymphoma-x large (BCL-XL) and BAX, anti- and pro-apoptotic proteins, respectively, followed by BAX activation, suggesting that ABT-263-induced apoptotic cell death is mediated through BAX. Our in vivo studies also confirm senescence induction in tumor cells by cisplatin, and the promotion of apoptosis coupled with a significant delay of tumor growth after sequential treatment with ABT-263. Sequential treatment with cisplatin followed by ABT-263 extended the humane endpoint to ∼130 days compared with cisplatin alone, where mice survived ∼75 days. These results support the premise that senolytic agents could be used to eliminate residual senescent tumor cells after chemotherapy and thereby potentially delay disease recurrence in head and neck cancer patients. SIGNIFICANCE STATEMENT: Disease recurrence is the most common cause of death in head and neck cancer patients. B-cell lymphoma-x large inhibitors such as ABT-263 (Navitoclax) have the capacity to be used in combination with cisplatin in head and neck cancer patients to eliminate senescent cells and possibly prevent disease relapse.
Collapse
Affiliation(s)
- Fereshteh Ahmadinejad
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Tasia Bos
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Bin Hu
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Erin Britt
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Jennifer Koblinski
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Andrew J Souers
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Joel D Leverson
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Anthony C Faber
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - David A Gewirtz
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| | - Hisashi Harada
- Department of Human and Molecular Genetics, School of Medicine (F.A.), Philips Institute for Oral Health Research, School of Dentistry (T.B., E.B., A.C.F., H.H.), Cancer Mouse Models Core (B.H., J.K.), and Department of Pharmacology and Toxicology, School of Medicine (D.A.G.), Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia; and AbbVie, North Chicago, Illinois (A.J.S., J.D.L.)
| |
Collapse
|
23
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
24
|
Wang M, Chen S, Wei Y, Wei X. DNA-PK inhibition by M3814 enhances chemosensitivity in non-small cell lung cancer. Acta Pharm Sin B 2021; 11:3935-3949. [PMID: 35024317 PMCID: PMC8727896 DOI: 10.1016/j.apsb.2021.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
A significant proportion of non-small cell lung cancer (NSCLC) patients experience accumulating chemotherapy-related adverse events, motivating the design of chemosensitizating strategies. The main cytotoxic damage induced by chemotherapeutic agents is DNA double-strand breaks (DSB). It is thus conceivable that DNA-dependent protein kinase (DNA-PK) inhibitors which attenuate DNA repair would enhance the anti-tumor effect of chemotherapy. The present study aims to systematically evaluate the efficacy and safety of a novel DNA-PK inhibitor M3814 in synergy with chemotherapies on NSCLC. We identified increased expression of DNA-PK in human NSCLC tissues which was associated with poor prognosis. M3814 potentiated the anti-tumor effect of paclitaxel and etoposide in A549, H460 and H1703 NSCLC cell lines. In the four combinations based on two NSCLC xenograft models and two chemotherapy, we also observed tumor regression at tolerated doses in vivo. Moreover, we identified a P53-dependent accelerated senescence response by M3814 following treatment with paclitaxel/etoposide. The present study provides a theoretical basis for the use of M3814 in combination with paclitaxel and etoposide in clinical practice, with hope to aid the optimization of NSCLC treatment.
Collapse
Key Words
- Cell senescence
- Chemosensitization
- DDR, DNA damage response
- DNA repair
- DNA-PK, DNA-dependent protein kinase
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DNA-dependent protein kinase
- DSB, DNA double-strand breaks
- Etoposide
- HR, homologous recombination
- IHC, immunohistochemistry
- LADC, lung adenocarcinoma
- LCLC, large-cell carcinoma
- LSCC, lung squamous cell carcinoma
- M3814
- NHEJ, non homologous end joining
- NSCLC, non-small cell lung cancer
- Non-small cell lung cancer
- Paclitaxel
- dsDNA, double strand DNA
Collapse
|
25
|
Tan MM, Chen MH, Han F, Wang JW, Tu YX. Role of Bioactive Constituents of Panax notoginseng in the Modulation of Tumorigenesis: A Potential Review for the Treatment of Cancer. Front Pharmacol 2021; 12:738914. [PMID: 34776959 PMCID: PMC8578715 DOI: 10.3389/fphar.2021.738914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a leading cause of death, affecting people in both developed and developing countries. It is a challenging disease due to its complicated pathophysiological mechanism. Many anti-cancer drugs are used to treat cancer and reduce mortality rates, but their toxicity limits their administration. Drugs made from natural products, which act as multi-targeted therapy, have the ability to target critical signaling proteins in different pathways. Natural compounds possess pharmacological activities such as anti-cancer activity, low toxicity, and minimum side effects. Panax notoginseng is a medicinal plant whose extracts and phytochemicals are used to treat cancer, cardiovascular disorders, blood stasis, easing inflammation, edema, and pain. P. notoginseng's secondary metabolites target cancer's dysregulated pathways, causing cancer cell death. In this review, we focused on several ginsenosides extracted from P. notoginseng that have been evaluated against various cancer cell lines, with the aim of cancer treatment. Furthermore, an in vivo investigation of these ginsenosides should be conducted to gain insight into the dysregulation of several pathways, followed by clinical trials for the potential and effective treatment of cancer.
Collapse
Affiliation(s)
- Ming-Ming Tan
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Min-Hua Chen
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Fang Han
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Wei Wang
- Department of Emergency Medicine, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| | - Yue-Xing Tu
- Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
26
|
Assessment of 5-Aminolevulinic Acid-Mediated Photodynamic Therapy on Bone Metastases: An in Vitro Study. BIOLOGY 2021; 10:biology10101020. [PMID: 34681119 PMCID: PMC8533584 DOI: 10.3390/biology10101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Bone metastases are typically associated with a short-term prognosis. Photodynamic therapy (PDT) emerges as a promising alternative treatment for targeting metastatic lesions. In this study we investigated the effect of 5-aminolevulinic acid-mediated PDT treatment on both primary and human bone metastatic cancer cell lines. We found that human cell lines have different sensitivity to the same doses and exposure of 5-ALA PDT resulting in two different cell fates, apoptosis or senescence, depending on the extent of the cellular damage. As such, PDT has potential applicability in bone metastases of invasive ductal carcinoma. Abstract Bone is a frequent site of metastases, being typically associated with a short-term prognosis in affected patients. Photodynamic therapy (PDT) emerges as a promising alternative treatment for controlling malignant disease that can directly target interstitial metastatic lesions. The aim of this study was to assess the effect induced by PDT treatment on both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma). After 24 h post light delivery (blue light-wavelength 436 nm) with 5-aminolevulinic acid, the effect on cellular migration, viability, apoptosis, and senescence were assessed. Our results showed that bone metastasis derived from breast cancer reacted with an inhibition of cell migration coupled with reduced viability and signs of apoptosis such as nuclei fragmentation following PDT exposure. A limited effect in terms of cellular viability inhibition was observed for the cells of giant cell bone tumors. In contrast, bone metastasis derived from renal carcinoma followed a different fate—cells were characterized by senescent features, without a notable effect on cell migration or viability. Collectively, our study illustrates that PDT could act as a successful therapy concept for local tumor control in some entities of bone metastases.
Collapse
|
27
|
Zhang DY, Monteiro MJ, Liu JP, Gu WY. Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clin Exp Pharmacol Physiol 2021; 48:1185-1202. [PMID: 34046925 DOI: 10.1111/1440-1681.13528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, Hangzhou, China
- Department of Immunology, Monash University Faculty of Medicine, Prahran, Vic, Australia
- Hudson Institute of Medical Research, and Department of Molecular and Translational Science, Monash University Faculty of Medicine, Clayton, Vic, Australia
| | - Wen-Yi Gu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
28
|
Prekovic S, Schuurman K, Mayayo-Peralta I, Manjón AG, Buijs M, Yavuz S, Wellenstein MD, Barrera A, Monkhorst K, Huber A, Morris B, Lieftink C, Chalkiadakis T, Alkan F, Silva J, Győrffy B, Hoekman L, van den Broek B, Teunissen H, Debets DO, Severson T, Jonkers J, Reddy T, de Visser KE, Faller W, Beijersbergen R, Altelaar M, de Wit E, Medema R, Zwart W. Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nat Commun 2021; 12:4360. [PMID: 34272384 PMCID: PMC8285479 DOI: 10.1038/s41467-021-24537-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) regulates gene expression, governing aspects of homeostasis, but is also involved in cancer. Pharmacological GR activation is frequently used to alleviate therapy-related side-effects. While prior studies have shown GR activation might also have anti-proliferative action on tumours, the underpinnings of glucocorticoid action and its direct effectors in non-lymphoid solid cancers remain elusive. Here, we study the mechanisms of glucocorticoid response, focusing on lung cancer. We show that GR activation induces reversible cancer cell dormancy characterised by anticancer drug tolerance, and activation of growth factor survival signalling accompanied by vulnerability to inhibitors. GR-induced dormancy is dependent on a single GR-target gene, CDKN1C, regulated through chromatin looping of a GR-occupied upstream distal enhancer in a SWI/SNF-dependent fashion. These insights illustrate the importance of GR signalling in non-lymphoid solid cancer biology, particularly in lung cancer, and warrant caution for use of glucocorticoids in treatment of anticancer therapy related side-effects.
Collapse
Affiliation(s)
- Stefan Prekovic
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karianne Schuurman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabel Mayayo-Peralta
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna G Manjón
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Buijs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Selçuk Yavuz
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Max D Wellenstein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alejandro Barrera
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne Huber
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Ben Morris
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theofilos Chalkiadakis
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Balázs Győrffy
- Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Liesbeth Hoekman
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bram van den Broek
- Division of Cell Biology and BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Donna O Debets
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tesa Severson
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Timothy Reddy
- Department of Biostatistics & Bioinformatics, and Centre for Genomic & Computational Biology, Duke University Medical Centre, Durham, NC, USA
| | - Karin E de Visser
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William Faller
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Mass spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rene Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
29
|
Gerovska D, Garcia-Gallastegi P, Crende O, Márquez J, Larrinaga G, Unzurrunzaga M, Araúzo-Bravo MJ, Badiola I. GeromiRs Are Downregulated in the Tumor Microenvironment during Colon Cancer Colonization of the Liver in a Murine Metastasis Model. Int J Mol Sci 2021; 22:ijms22094819. [PMID: 34062897 PMCID: PMC8124834 DOI: 10.3390/ijms22094819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain
| | - Patricia Garcia-Gallastegi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Olatz Crende
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Joana Márquez
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
| | - Gorka Larrinaga
- Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- BioCruces Health Research Institute, 48903 Barakaldo, Spain
| | - Maite Unzurrunzaga
- Centro Salud Legazpi OSI Goierri-Urola Garaia-Osakidetza, 20230 Legazpia, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain;
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, C/Doctor Beguiristain s/n, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, C/María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149 Münster, Germany
- Correspondence: (M.J.A.-B.); (I.B.); Tel.: +34-94-3006108 (M.J.A.-B.); +34-94-6015776 (I.B.)
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; (P.G.-G.); (O.C.); (J.M.)
- Nanokide Therapeutics SL, Zitek Ed, Rectorado Bajo, Bº Sarriena sn, 48940 Leioa, Spain
- Correspondence: (M.J.A.-B.); (I.B.); Tel.: +34-94-3006108 (M.J.A.-B.); +34-94-6015776 (I.B.)
| |
Collapse
|
30
|
Fitsiou E, Soto-Gamez A, Demaria M. Biological functions of therapy-induced senescence in cancer. Semin Cancer Biol 2021; 81:5-13. [PMID: 33775830 DOI: 10.1016/j.semcancer.2021.03.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced cellular senescence is a state of stable growth arrest induced by common cancer treatments such as chemotherapy and radiation. In an oncogenic context, therapy-induced senescence can have different consequences. By blocking cellular proliferation and by facilitating immune cell infiltration, it functions as tumor suppressive mechanism. By fueling the proliferation of bystander cells and facilitating metastasis, it acts as a tumor promoting factor. This dual role is mainly attributed to the differential expression and secretion of a set of pro-inflammatory cytokines and tissue remodeling factors, collectively known as the Senescence-Associated Secretory Phenotype (SASP). Here, we describe cell-autonomous and non-cell-autonomous mechanisms that senescent cells activate in response to chemotherapy and radiation leading to tumor suppression and tumor promotion. We present the current state of knowledge on the stimuli that affect the activation of these opposing mechanisms and the effect of senescent cells on their micro-environment eg. by regulating the functions of immune cells in tumor clearance as well as strategies to eliminate senescent tumor cells before exerting their deleterious side-effects.
Collapse
Affiliation(s)
- Eleni Fitsiou
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands
| | - Abel Soto-Gamez
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, 9713AV, Groningen, The Netherlands.
| |
Collapse
|
31
|
Alfhili MA, Hussein HAM, Park Y, Lee MH, Akula SM. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways. Apoptosis 2021; 26:96-110. [PMID: 33387145 DOI: 10.1007/s10495-020-01650-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Burkitt's lymphoma (BL) is the fastest growing human tumor. Current treatment consists of a multiagent regimen of cytotoxic drugs with serious side effjects including tumor lysis, cardiotoxicity, hepatic impairment, neuropathy, myelosuppression, increased susceptibility to malignancy, and death. Furthermore, therapeutic interventions in areas of BL prevalence are not as feasible as in high-income countries. Therefore, there exists an urgent need to identify new therapies with a safer profile and improved accessibility. Triclosan (TCS), an antimicrobial used in personal care products and surgical scrubs, has gained considerable interest as an antitumor agent due to its interference with fatty acid synthesis. Here, we investigate the antitumor properties and associated molecular mechanisms of TCS in BL-derived BJAB cells. Dose-dependent cell death was observed following treatment with 10-100 µM TCS for 24 h, which was associated with membrane phospholipid scrambling, compromised permeability, and cell shrinkage. TCS-induced cell death was accompanied by elevated intracellular calcium, perturbed redox balance, chromatin condensation, and DNA fragmentation. TCS upregulated Bad expression and downregulated that of Bcl2. Moreover, caspase and JNK MAPK signaling were required for the full apoptotic activity of TCS. In conclusion, this report identifies TCS as an antitumor agent and provides new insights into the molecular mechanisms governing TCS-induced apoptosis in BL cells.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC. 27834, USA
- Faculty of Science, Assiut Branch, Al Azhar University, Assiut, 71524, Egypt
| | - Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC. 27834, USA.
| |
Collapse
|
32
|
Therapy-induced polyploidization and senescence: Coincidence or interconnection? Semin Cancer Biol 2020; 81:83-95. [DOI: 10.1016/j.semcancer.2020.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
|
33
|
Logozzi M, Mizzoni D, Di Raimo R, Andreotti M, Macchia D, Spada M, Fais S. In vivo antiaging effects of alkaline water supplementation. J Enzyme Inhib Med Chem 2020; 35:657-664. [PMID: 32106720 PMCID: PMC7054916 DOI: 10.1080/14756366.2020.1733547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Telomeres length and telomerase activity are currently considered aging molecular stigmata. Water is a major requirement for our body and water should be alkaline. Recent reports have shown that aging is related to a reduced water intake. We wanted to investigate the effect of the daily intake of alkaline water on the molecular hallmark of aging and the anti-oxidant response. We watered a mouse model of aging with or without alkaline supplementation. After 10 months, we obtained the blood, the bone marrow and the ovaries from both groups. In the blood, we measured the levels of ROS, SOD-1, GSH, and the telomerase activity and analysed the bone marrow and the ovaries for the telomeres length. We found reduced ROS levels and increased SOD-1, GSH, telomerase activity and telomeres length in alkaline supplemented mice. We show here that watering by using alkaline water supplementation highly improves aging at the molecular level.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Macchia
- Center of Animal research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
34
|
Liu P, Tang Q, Chen M, Chen W, Lu Y, Liu Z, He Z. Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Front Oncol 2020; 10:589908. [PMID: 33330071 PMCID: PMC7732623 DOI: 10.3389/fonc.2020.589908] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The lack of effective targeted drugs has become a challenge on treating HCC patients. Cellular senescence is closely linked to the occurrence, development, and therapy of tumor. Induction of cellular senescence and further activation of immune surveillance provides a new strategy to develop HCC targeted drugs, that is, senescence-induced therapy for HCC. Precancerous hepatocytes or HCC cells can be induced into senescent cells, subsequently producing senescence-associated secretory phenotype (SASP) factors. SASP factors recruit and activate various types of immune cells, including T cells, NK cells, macrophages, and their subtypes, which carry out the role of immune surveillance and elimination of senescent cells, ultimately preventing the occurrence of HCC or inhibiting the progression of HCC. Specific interventions in several checkpoints of senescence-mediated therapy will make positive contributions to suppress tumorigenesis and progression of HCC, for instance, by applying small molecular compounds to induce cellular senescence or selecting cytokines/chemokines to activate immunosurveillance, supplementing adoptive immunocytes to remove senescent cells, and screening chemical drugs to induce apoptosis of senescent cells or accelerate clearance of senescent cells. These interventional checkpoints become potential chemotherapeutic targets in senescence-induced therapy for HCC. In this review, we focus on the frontiers of senescence-induced therapy and discuss senescent characteristics of hepatocytes during hepatocarcinogenesis as well as the roles and mechanisms of senescent cell induction and clearance, and cellular senescence-related immunosurveillance during the formation and progression of HCC.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Qinghe Tang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Miaomiao Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wenjian Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yanli Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
35
|
Smith MT, Guyton KZ, Kleinstreuer N, Borrel A, Cardenas A, Chiu WA, Felsher DW, Gibbons CF, Goodson WH, Houck KA, Kane AB, La Merrill MA, Lebrec H, Lowe L, McHale CM, Minocherhomji S, Rieswijk L, Sandy MS, Sone H, Wang A, Zhang L, Zeise L, Fielden M. The Key Characteristics of Carcinogens: Relationship to the Hallmarks of Cancer, Relevant Biomarkers, and Assays to Measure Them. Cancer Epidemiol Biomarkers Prev 2020; 29:1887-1903. [PMID: 32152214 PMCID: PMC7483401 DOI: 10.1158/1055-9965.epi-19-1346] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022] Open
Abstract
The key characteristics (KC) of human carcinogens provide a uniform approach to evaluating mechanistic evidence in cancer hazard identification. Refinements to the approach were requested by organizations and individuals applying the KCs. We assembled an expert committee with knowledge of carcinogenesis and experience in applying the KCs in cancer hazard identification. We leveraged this expertise and examined the literature to more clearly describe each KC, identify current and emerging assays and in vivo biomarkers that can be used to measure them, and make recommendations for future assay development. We found that the KCs are clearly distinct from the Hallmarks of Cancer, that interrelationships among the KCs can be leveraged to strengthen the KC approach (and an understanding of environmental carcinogenesis), and that the KC approach is applicable to the systematic evaluation of a broad range of potential cancer hazards in vivo and in vitro We identified gaps in coverage of the KCs by current assays. Future efforts should expand the breadth, specificity, and sensitivity of validated assays and biomarkers that can measure the 10 KCs. Refinement of the KC approach will enhance and accelerate carcinogen identification, a first step in cancer prevention.See all articles in this CEBP Focus section, "Environmental Carcinogenesis: Pathways to Prevention."
Collapse
Affiliation(s)
- Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California.
| | - Kathryn Z Guyton
- Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Nicole Kleinstreuer
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandre Borrel
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Weihsueh A Chiu
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California
| | - Catherine F Gibbons
- Office of Research and Development, US Environmental Protection Agency, Washington, D.C
| | - William H Goodson
- California Pacific Medical Center Research Institute, San Francisco, California
| | - Keith A Houck
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Herve Lebrec
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Sheroy Minocherhomji
- Comparative Biology & Safety Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
- Institute of Data Science, Maastricht University, Maastricht, the Netherlands
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Hideko Sone
- Yokohama University of Pharmacy and National Institute for Environmental Studies, Tsukuba Ibaraki, Japan
| | - Amy Wang
- Office of the Report on Carcinogens, Division of National Toxicology Program, The National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California
| | - Mark Fielden
- Expansion Therapeutics Inc, San Diego, California
| |
Collapse
|
36
|
Liu Y, Yang S, Wang K, Lu J, Bao X, Wang R, Qiu Y, Wang T, Yu H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif 2020; 53:e12894. [PMID: 32881115 PMCID: PMC7574878 DOI: 10.1111/cpr.12894] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti‐cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti‐cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro‐senescent cancer.
Collapse
Affiliation(s)
- Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Ma Y, Song Y, Shen R, Li P, Ding H, Guo Z, Liu X, Wang D. Loss of RAD6B induces degeneration of the cochlea in mice. Biochem Biophys Res Commun 2020; 531:402-408. [PMID: 32868078 DOI: 10.1016/j.bbrc.2020.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 01/11/2023]
Abstract
Presbycusis is a form of age-related hearing loss (AHL). Many studies have shown that the degeneration of various structures in the cochlea of the inner ear is related to AHL, and DNA damage is an important factor leading to the above process. As an E2 ubiquitin-conjugated enzyme, RAD6B plays an important role in DNA damage repair (DDR) through histone ubiquitination. However, the molecular mechanism is still unclear. In this study, we investigated the role of RAD6B in the morphological changes and DDR mechanisms in aging-related degeneration of the cochlea of mice. We observed that the hair cells, stria vascularis and spiral ganglion in the cochlea of the RAD6B knockout mice showed significant degenerative changes and abnormal expression of proteins associated with DDR mechanisms compared with those of the littermate wild-type mice. In conclusion, our results suggest that the deletion of RAD6B may lead to abnormalities in DDR, thereby accelerating the degeneration of various structures in the cochlea and senescence and apoptosis of cochlea cells.
Collapse
Affiliation(s)
- Yangping Ma
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanfeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rong Shen
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Panpan Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Han Ding
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhao Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiangwen Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
38
|
Wang J, Yang L, Dong C, Wang J, Xu L, Qiu Y, Weng Q, Zhao C, Xin M, Lu QR. EED-mediated histone methylation is critical for CNS myelination and remyelination by inhibiting WNT, BMP, and senescence pathways. SCIENCE ADVANCES 2020; 6:eaaz6477. [PMID: 32851157 PMCID: PMC7423366 DOI: 10.1126/sciadv.aaz6477] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/30/2020] [Indexed: 05/07/2023]
Abstract
Mutations in the polycomb repressive complex 2 (PRC2) can cause Weaver-like syndrome, wherein a patient cohort exhibits abnormal white matter; however, PRC2 functions in CNS myelination and regeneration remain elusive. We show here that H3K27me3, the PRC2 catalytic product, increases during oligodendrocyte maturation. Depletion of embryonic ectoderm development (EED), a core PRC2 subunit, reduces differentiation of oligodendrocyte progenitors (OPCs), and causes an OPC-to-astrocyte fate switch in a region-specific manner. Although dispensable for myelin maintenance, EED is critical for oligodendrocyte remyelination. Genomic occupancy and transcriptomic analyses indicate that EED establishes a chromatin landscape that selectively represses inhibitory WNT and bone morphogenetic protein (BMP) signaling, and senescence-associated programs. Blocking WNT or BMP pathways partially restores differentiation defects in EED-deficient OPCs. Thus, our findings reveal that EED/PRC2 is a crucial epigenetic programmer of CNS myelination and repair, while demonstrating a spatiotemporal-specific role of PRC2-mediated chromatin silencing in shaping oligodendrocyte identity and lineage plasticity.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lijun Yang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chen Dong
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jincheng Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueping Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mei Xin
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q. Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Corresponding author.
| |
Collapse
|
39
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
40
|
Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020; 21:ijms21124481. [PMID: 32599736 PMCID: PMC7349968 DOI: 10.3390/ijms21124481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Although once considered as structural components of eukaryotic biological membranes, research in the past few decades hints at a major role of bioactive sphingolipids in mediating an array of physiological processes including cell survival, proliferation, inflammation, senescence, and death. A large body of evidence points to a fundamental role for the sphingolipid metabolic pathway in modulating the DNA damage response (DDR). The interplay between these two elements of cell signaling determines cell fate when cells are exposed to metabolic stress or ionizing radiation among other genotoxic agents. In this review, we aim to dissect the mediators of the DDR and how these interact with the different sphingolipid metabolites to mount various cellular responses.
Collapse
|
41
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
42
|
Huang SX, Fan WY, Wang L, Liu H, Wang X, Zhao H, Jiang WB. Maspin inhibits MCF-7 cell invasion and proliferation by downregulating miR-21 and increasing the expression of its target genes. Oncol Lett 2020; 19:2621-2628. [PMID: 32218812 PMCID: PMC7068223 DOI: 10.3892/ol.2020.11360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Maspin has been identified as a tumor suppressor gene in breast cancer, but the underlying regulatory mechanisms remain unclear. In the present study, maspin pcDNA was transfected into MCF-7 cells. microRNA (miR) microarray and reverse transcription-quantitative polymerase chain reaction was used for analysis; the results demonstrated that maspin may inhibit miR-10b, miR-21 and miR-451 expression in MCF-7 cells. In addition, maspin increased the expression of certain miR-21 target genes (phosphatase and tensin homolog, programmed cell death 4 and B-cell lymphoma-2), miR-10b target gene (Homeobox D10; HOXD10) and miR-451 target gene (multidrug resistance protein 1). Furthermore, the results of the present study revealed that decreased expression of miR-21 suppressed the invasion and proliferation of MCF-7 cells. Therefore, in the present study, it was hypothesized that as a tumor-suppressor gene, the potential molecular mechanism of maspin include down-regulating the expression of miR-21 and increasing the expression of specific miR-21 target genes.
Collapse
Affiliation(s)
- Shao-Xin Huang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| | - Wen-Yan Fan
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| | - Ling Wang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| | - Hui Liu
- Clinical Skills Center, Clinical Medical College, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xin Wang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| | - Hao Zhao
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| | - Wen-Bin Jiang
- Department of Social Science and Public Health, School of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China.,Urban Agglomeration in The Middle Reaches of The Yangtze River and Nanchang-Jiujiang Development Research Center, Jiujiang, Jiangxi 3320005, P.R. China
| |
Collapse
|
43
|
Hassannia B, Logie E, Vandenabeele P, Vanden Berghe T, Vanden Berghe W. Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochem Pharmacol 2020; 173:113602. [DOI: 10.1016/j.bcp.2019.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 12/26/2022]
|
44
|
Hadryś A, Sochanik A, McFadden G, Jazowiecka-Rakus J. Mesenchymal stem cells as carriers for systemic delivery of oncolytic viruses. Eur J Pharmacol 2020; 874:172991. [PMID: 32044323 DOI: 10.1016/j.ejphar.2020.172991] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Progress in genetic engineering led to the emergence of some viruses as potent anticancer therapeutics. These oncolytic viruses combine self-amplification with dual antitumor action: oncolytic (destruction of cancer cells) and immunostimulatory (eliciting acquired antitumor response against cancer epitopes). As any other viruses, they trigger antiviral response upon systemic administration. Mesenchymal stem cells are immature cells capable of self-renewing and differentiating into many cell types that belong to three germinal layers. Due to their inherent tumor tropism mesenchymal stem cells loaded with oncolytic virus can improve delivery of the therapeutic cargo to cancer sites. Shielding of oncolytic viral construct from antiviral host immune response makes these cells prospective delivery vehicles to even hard-to-reach metastatic neoplastic foci. Use of mesenchymal stem cells has been criticized by some investigators as limiting proliferative abilities of primary cells and increasing the risk of malignant transformation, as well as attenuating therapeutic responses. However, majority of preclinical studies indicate safety and efficacy of mesenchymal stem cells used as carriers of oncolytic viruses. In view of contradictory postulates, the debate continues. The review discusses mesenchymal stem cells as carriers for delivery of genetically engineered oncolytic constructs and focuses on systemic approach to oncoviral treatment of some deadly neoplasms.
Collapse
Affiliation(s)
- Agata Hadryś
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland; Institute of Chemistry, University of Silesia, Poland.
| | - Aleksander Sochanik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| | - Grant McFadden
- Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | |
Collapse
|
45
|
Castelli M, Piobbico D, Chiacchiaretta M, Brunacci C, Pieroni S, Bartoli D, Gargaro M, Fallarino F, Puccetti P, Soddu S, Della‐Fazia MA, Servillo G. HOPS/TMUB1 retains p53 in the cytoplasm and sustains p53-dependent mitochondrial apoptosis. EMBO Rep 2020; 21:e48073. [PMID: 31867855 PMCID: PMC7001502 DOI: 10.15252/embr.201948073] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Apoptotic signalling by p53 occurs at both transcriptional and non-transcriptional levels, as p53 may act as a direct apoptogenic stimulus via activation of the intrinsic mitochondrial pathway. HOPS is a highly conserved, ubiquitously expressed shuttling protein with an ubiquitin-like domain. We generated Hops-/- mice and observed that they are viable with no apparent phenotypic defects. However, when treated with chemotherapeutic agents, Hops-/- mice display a significant reduction in apoptosis, suggesting an impaired ability to respond to genotoxic stressors. We show that HOPS acts as a regulator of cytoplasmic p53 levels and function. By binding p53, HOPS inhibits p53 proteasomal degradation and favours p53 recruitment to mitochondria and apoptosis induction. By interfering with importin α, HOPS further increases p53 cytoplasmic levels. Thus, HOPS promotes the p53-dependent mitochondrial apoptosis pathway by preserving cytoplasmic p53 from both degradation and nuclear uptake.
Collapse
Affiliation(s)
- Marilena Castelli
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Danilo Piobbico
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | | | - Cinzia Brunacci
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Stefania Pieroni
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Daniela Bartoli
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Marco Gargaro
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
| | - Francesca Fallarino
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.)University of PerugiaPerugiaItaly
| | - Paolo Puccetti
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.)University of PerugiaPerugiaItaly
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic TargetsIRCCS – Regina Elena National Cancer InstituteRomeItaly
| | | | - Giuseppe Servillo
- Department of Experimental MedicineUniversity of PerugiaPerugiaItaly
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.)University of PerugiaPerugiaItaly
| |
Collapse
|
46
|
Villota C, Varas-Godoy M, Jeldes E, Campos A, Villegas J, Borgna V, Burzio LO, Burzio VA. HPV-18 E2 protein downregulates antisense noncoding mitochondrial RNA-2, delaying replicative senescence of human keratinocytes. Aging (Albany NY) 2019; 11:33-47. [PMID: 30595560 PMCID: PMC6339806 DOI: 10.18632/aging.101711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Human and mouse cells display a differential expression pattern of a family of mitochondrial noncoding RNAs (ncmtRNAs), according to proliferative status. Normal proliferating and cancer cells express a sense ncmtRNA (SncmtRNA), which seems to be required for cell proliferation, and two antisense transcripts referred to as ASncmtRNA-1 and -2. Remarkably however, the ASncmtRNAs are downregulated in human and mouse cancer cells, including HeLa and SiHa cells, transformed with HPV-18 and HPV-16, respectively. HPV E2 protein is considered a tumor suppressor in the context of high-risk HPV-induced transformation and therefore, to explore the mechanisms involved in the downregulation of ASncmtRNAs during tumorigenesis, we studied human foreskin keratinocytes (HFK) transduced with lentiviral-encoded HPV-18 E2. Transduced cells displayed a significantly extended replicative lifespan of up to 23 population doublings, compared to 8 in control cells, together with downregulation of the ASncmtRNAs. At 26 population doublings, cells transduced with E2 were arrested at G2/M, together with downregulation of E2 and SncmtRNA and upregulation of ASncmtRNA-2. Our results suggest a role for high-risk HPV E2 protein in cellular immortalization. Additionally, we propose a new cellular phenotype according to the expression of the SncmtRNA and the ASncmtRNAs.
Collapse
Affiliation(s)
- Claudio Villota
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Emanuel Jeldes
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - América Campos
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Laboratorio de Comunicaciones Celulares (CEMC) Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
47
|
Li S, Han J, Guo G, Sun Y, Zhang T, Zhao M, Xu Y, Cui Y, Liu Y, Zhang J. Voltage-gated sodium channels β3 subunit promotes tumorigenesis in hepatocellular carcinoma by facilitating p53 degradation. FEBS Lett 2019; 594:497-508. [PMID: 31626714 DOI: 10.1002/1873-3468.13641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
The voltage-gated sodium channels (VGSCs) are aberrantly expressed in a variety of tumors and play an important role in tumor growth and metastasis. Here, we show that VGSCs auxiliary β3 subunit, encoded by the SCN3B gene, promotes proliferation and suppresses apoptosis in HepG2 cells by promoting p53 degradation. β3 significantly increases HepG2 cell proliferation, promotes tumor growth in mouse xenograft models, and suppresses senescence and apoptosis. We found that β3 knockdown stabilizes p53 protein, leading to potentiation of p53-induced cell cycle arrest, senescence, and apoptosis. Mechanistic studies revealed that β3 could bind to p53, promoting p53 ubiquitination and degradation by stabilizing the p53/MDM2 complex. Our results suggest that β3 is a novel negative regulator of p53 and a potential oncogenic factor.
Collapse
Affiliation(s)
- Shuai Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Jiadi Han
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Guili Guo
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yudi Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Tingting Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Yong Cui
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Yanfeng Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China
| | - Jinghai Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, China.,School of Medical Devices, Shenyang Pharmaceutical University, China
| |
Collapse
|
48
|
Zhang L, He X, Liu X, Zhang F, Huang LF, Potter AS, Xu L, Zhou W, Zheng T, Luo Z, Berry KP, Pribnow A, Smith SM, Fuller C, Jones BV, Fouladi M, Drissi R, Yang ZJ, Gustafson WC, Remke M, Pomeroy SL, Girard EJ, Olson JM, Morrissy AS, Vladoiu MC, Zhang J, Tian W, Xin M, Taylor MD, Potter SS, Roussel MF, Weiss WA, Lu QR. Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. Cancer Cell 2019; 36:302-318.e7. [PMID: 31474569 PMCID: PMC6760242 DOI: 10.1016/j.ccell.2019.07.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 02/05/2023]
Abstract
Progenitor heterogeneity and identities underlying tumor initiation and relapse in medulloblastomas remain elusive. Utilizing single-cell transcriptomic analysis, we demonstrated a developmental hierarchy of progenitor pools in Sonic Hedgehog (SHH) medulloblastomas, and identified OLIG2-expressing glial progenitors as transit-amplifying cells at the tumorigenic onset. Although OLIG2+ progenitors become quiescent stem-like cells in full-blown tumors, they are highly enriched in therapy-resistant and recurrent medulloblastomas. Depletion of mitotic Olig2+ progenitors or Olig2 ablation impeded tumor initiation. Genomic profiling revealed that OLIG2 modulates chromatin landscapes and activates oncogenic networks including HIPPO-YAP/TAZ and AURORA-A/MYCN pathways. Co-targeting these oncogenic pathways induced tumor growth arrest. Together, our results indicate that glial lineage-associated OLIG2+ progenitors are tumor-initiating cells during medulloblastoma tumorigenesis and relapse, suggesting OLIG2-driven oncogenic networks as potential therapeutic targets.
Collapse
Affiliation(s)
- Liguo Zhang
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xuelian He
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Boston Children's Hospital, Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Xuezhao Liu
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Feng Zhang
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - L Frank Huang
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew S Potter
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lingli Xu
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Tao Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zaili Luo
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kalen P Berry
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Allison Pribnow
- Tumor Cell Biology Division, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephanie M Smith
- Tumor Cell Biology Division, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christine Fuller
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Blaise V Jones
- Radiology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maryam Fouladi
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachid Drissi
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA 19111, USA
| | - W Clay Gustafson
- Department of Neurology, Pediatrics, and Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Scott L Pomeroy
- Boston Children's Hospital, Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Emily J Girard
- Division of Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98145-5005, USA
| | - James M Olson
- Division of Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA 98145-5005, USA
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Jiao Zhang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Weidong Tian
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Mei Xin
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - S Steven Potter
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Martine F Roussel
- Tumor Cell Biology Division, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William A Weiss
- Department of Neurology, Pediatrics, and Surgery and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Q Richard Lu
- Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
49
|
Cheng L, Yuan B, Ying S, Niu C, Mai H, Guan X, Yang X, Teng Y, Lin J, Huang J, Jin R, Wu J, Liu B, Chang S, Wang E, Zhang C, Hou N, Cheng X, Xu D, Yang X, Gao S, Ye Q. PES1 is a critical component of telomerase assembly and regulates cellular senescence. SCIENCE ADVANCES 2019; 5:eaav1090. [PMID: 31106266 PMCID: PMC6520020 DOI: 10.1126/sciadv.aav1090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Telomerase defers the onset of telomere shortening and cellular senescence by adding telomeric repeat DNA to chromosome ends, and its activation contributes to carcinogenesis. Telomerase minimally consists of the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR). However, how telomerase assembles is largely unknown. Here, we demonstrate that PES1 (Pescadillo), a protein overexpressed in many cancers, forms a complex with TERT and TR through direct interaction with TERT, regulating telomerase activity, telomere length maintenance, and senescence. PES1 does not interact with the previously reported telomerase components Reptin, Pontin, p23, and Hsp90. PES1 facilitates telomerase assembly by promoting direct interaction between TERT and TR without affecting TERT and TR levels. PES1 expression correlates positively with telomerase activity and negatively with senescence in patients with breast cancer. Thus, we identify a previously unknown telomerase complex, and targeting PES1 may open a new avenue for cancer therapy.
Collapse
Affiliation(s)
- Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Bin Yuan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sunyang Ying
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Chang Niu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongxu Mai
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xin Guan
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiaohui Yang
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing 100048, China
| | - Junjian Huang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Rui Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shaohong Chang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Enqun Wang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Chunxia Zhang
- Department of Stomatology, Anqing Municipal Hospital of Anhui Medical University, Anqing, Anhui 246003, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Danyang Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Department of Biochemistry, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Shan Gao
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
- Corresponding author. (Q.Y.); (S.G.); (X.Y.)
| |
Collapse
|
50
|
Gypenoside L Inhibits Proliferation of Liver and Esophageal Cancer Cells by Inducing Senescence. Molecules 2019; 24:molecules24061054. [PMID: 30889805 PMCID: PMC6471500 DOI: 10.3390/molecules24061054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Senescence is an irreversible state of cell cycle arrest that can be triggered by multiple stimuli, such as oxygen reactive species and DNA damage. Growing evidence has proven that senescence is a tumor-suppressive approach in cancer treatment. Therefore, developing novel agents that modulate senescence may be an alternative strategy against cancer. In our study, we investigated the inhibitory effect of gypenoside L (Gyp-L), a saponin isolated from Gynostemma pentaphyllum, on cancer cell growth. We found that Gyp-L increased the SA-β-galactosidase activity, promoted the production of senescence-associated secretory cytokines, and inhibited cell proliferation of human liver and esophageal cancer cells. Moreover, Gyp-L caused cell cycle arrest at S phase, and activated senescence-related cell cycle inhibitor proteins (p21 and p27) and their upstream regulators. In addition, Gyp-L activated p38 and ERK MAPK pathways and NF-κB pathway to induce senescence. Consistently, adding chemical inhibitors efficiently counteracted the Gyp-L-mediated senescence, growth inhibition, and cell cycle arrest in cancer cells. Furthermore, treatment with Gyp-L, enhanced the cytotoxicity of clinic therapeutic drugs, including 5-fluorouracil and cisplatin, on cancer cells. Overall, these results indicate that Gyp-L inhibits proliferation of cancer cells by inducing senescence and renders cancer cells more sensitive to chemotherapy.
Collapse
|