1
|
Shirai YT, Hoshi N, Ward JM, Liu H, Cachau RE, Lee MP, Kimura S. Establishment and Characterization of Amitrole-Induced Mouse Thyroid Adenomatous Nodule-Derived Cell Lines. Thyroid 2024; 34:496-509. [PMID: 38149583 PMCID: PMC10998706 DOI: 10.1089/thy.2023.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Background: Thyroid cancer cell lines have been of great value for the study of thyroid cancer. However, the availability of benign thyroid adenoma cell lines is limited. Methods: Cell lines were established from thyroid adenomatous nodules that developed in mice treated with the goitrogen amitrole. Expression of epithelial, mesenchymal, and thyroid markers of these established cell lines was determined, and the effect of lentivirus-transduced overexpression of NKX2-1, a master regulator of thyroid development, on the thyroid marker expression was examined. Signal transduction and cell proliferation were evaluated after treatment with insulin-like growth factor-I (IGF-I) and the selective IGF-I receptor (IGF-IR) inhibitor NVP-ADW742. Xenograft studies were performed to examine tumorigenicity of the cells in mice. Whole-genome sequencing (WGS) was used to comprehensively determine the genetic mutations in the established two cell lines. Results: Five mouse thyroid adenomatous nodules-derived cell lines named CAT (cells from amitrole-treated thyroids) were established. Among these, two cell lines, CAT458/458s (CAT458s: a subline of CAT458) and CAT459, were found to be positive for epithelial markers and negative for a mesenchymal marker. NKX2-1-positive CAT459 cells showed higher messenger RNA (mRNA) expression of some thyroid differentiation markers than NKX2-1-negative CAT458s cells, and NKX2-1 overexpression increased and/or induced their expression. IGF-I signaling was transduced in thyrotropin receptor (Tshr)-negative CAT458s and 459 cells, and NVP-ADW742 suppressed their proliferation. No tumors developed in mice after subcutaneous injection of CAT458s or 459 cells. The WGS analysis revealed the presence of missense mutations in the tumor suppressor genes such as Polk (encoding DNA polymerase kappa) and Tgfb1 (encoding transforming growth factor beta 1), while no mutations were found in the prominent thyroid cancer-related genes Braf, Trp53 (encoding p53), and Tert (encoding telomerase reverse transcriptase). Conclusions: Two mouse thyroid adenomatous nodule-derived cell lines with different thyroid differentiation marker expression were established. NKX2-1 induced partial differentiation of these cell lines. They lacked tumorigenicity and prominent gene mutations involved in thyroid cancer development, while missense mutations were found in some tumor suppressors as revealed by WGS. The CAT458s and 459 provide a new tool to further clarify the process of thyroid multistep carcinogenesis and differentiation.
Collapse
Affiliation(s)
- Yo-Taro Shirai
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nobuo Hoshi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jerrold M. Ward
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raul E. Cachau
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Rizzo S, Thévenin D. Identifying Transmembrane Interactions in Receptor Protein Tyrosine Phosphatase Homodimerization and Heterodimerization. Methods Mol Biol 2024; 2743:195-209. [PMID: 38147217 PMCID: PMC10785008 DOI: 10.1007/978-1-0716-3569-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are one of the key regulators of receptor tyrosine kinases (RTKs) and therefore play a critical role in modulating signal transduction. While the structure-function relationship of RTKs has been widely studied, the mechanisms modulating the activity of RPTPs still need to be fully understood. On the other hand, homodimerization has been shown to antagonize RPTP catalytic activity and appears to be a general feature of the entire family. Conversely, their documented ability to physically interact with RTKs is integral to their negative regulation of RTKs, but there is a yet-to-be proposed common model. However, specific transmembrane (TM) domain interactions and residues have been shown to be essential in regulating RPTP homodimerization, interactions with RTK substrates, and activity. Therefore, elucidating the contribution of the TM domains in RPTP regulation can provide significant insights into how these receptors function, interact, and eventually be modulated. This chapter describes the dominant-negative AraC-based transcriptional reporter (DN-AraTM) assay to identify specific TM interactions essential to homodimerization and heteroassociation with other membrane receptors, such as RTKs.
Collapse
Affiliation(s)
- Sophie Rizzo
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
3
|
Rizzo S, Sikorski E, Park S, Im W, Vasquez‐Montes V, Ladokhin AS, Thévenin D. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes. Protein Sci 2023; 32:e4742. [PMID: 37515426 PMCID: PMC10461461 DOI: 10.1002/pro.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal-initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK-driven cell phenotypes. Here, we designed and tested a series of first-in-class pH-responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR-driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor-selective and TM-targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK-driven cancers.
Collapse
Affiliation(s)
- Sophie Rizzo
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Soohyung Park
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
4
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
5
|
PTPRJ is downregulated in cervical squamous cell carcinoma. J Genet 2022. [DOI: 10.1007/s12041-022-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
He L, Takahashi K, Pasic L, Narui C, Ellinger P, Grundmann M, Takahashi T. The effects of CD148 Q276P/R326Q polymorphisms in A431D epidermoid cancer cell proliferation and epidermal growth factor receptor signaling. Cancer Rep (Hoboken) 2021; 5:e1566. [PMID: 34791835 PMCID: PMC9458507 DOI: 10.1002/cnr2.1566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types. Previous studies have shown that CD148 dephosphorylates growth factor receptors and their signaling molecules, including EGFR and ERK1/2, and negatively regulates cancer cell growth. Furthermore, research of clinical patients has shown that highly linked CD148 gene polymorphisms, Gln276Pro (Q276P) and Arg326Gln (R326Q), are associated with an increased risk of several types of cancer. However, the biological effects of these missense mutations have not been studied. AIM We aimed to determine the biological effects of CD148 Q276P/R326Q mutations in cancer cell proliferation and growth factor signaling, with emphasis on EGFR signaling. METHODS CD148 forms, wild-type (WT) or Q276P/R326Q, were retrovirally introduced into A431D epidermoid carcinoma cells that lacks CD148 expression. The stable cells that express comparable levels of CD148 were sorted by flow cytometry. A431D cells infected with empty retrovirus was used as a control. CD148 localization, cell proliferation rate, EGFR signaling, and the response to thrombospondin-1 (TSP1), a CD148 ligand, were assessed by immunostaining, cell proliferation assay, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Both CD148 forms (WT, Q276P/R326Q) were distributed to cell surface and all three cell lines expressed same level of EGFR. Compared to control cells, the A431D cells that express CD148 forms showed significantly lower cell proliferation rates. EGF-induced EGFR and ERK1/2 phosphorylation as well as cell proliferation were also significantly reduced in these cells. Furthermore, TSP1 inhibited cell proliferation in CD148 (WT, Q276P/R326Q)-expressing A431D cells, while it showed no effects in control cells. However, significant differences were not observed between CD148 WT and Q276P/R326Q cells. CONCLUSION Our data demonstrates that Q276P/R326Q mutations do not have major effects on TSP1-CD148 interaction as well as on CD148's cellular localization and activity to inhibit EGFR signaling and cell proliferation.
Collapse
Affiliation(s)
- Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lejla Pasic
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Chikage Narui
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Buda P, Chyb M, Smorczewska-Kiljan A, Wieteska-Klimczak A, Paczesna A, Kowalczyk-Domagała M, Okarska-Napierała M, Sobalska-Kwapis M, Grochowalski Ł, Słomka M, Sitek A, Ksia Żyk J, Strapagiel D. Association Between rs12037447, rs146732504, rs151078858, rs55723436, and rs6094136 Polymorphisms and Kawasaki Disease in the Population of Polish Children. Front Pediatr 2021; 9:624798. [PMID: 33692975 PMCID: PMC7937642 DOI: 10.3389/fped.2021.624798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Kawasaki disease (KD) is an acute self-limited febrile vasculitis that mainly affects young children. Coronary artery involvement is the most serious complication in children with KD. It is currently the leading cause of acquired cardiac disease in children from developed countries. Literature data indicate a significant role of genetic susceptibility to KD. Objective: The aim of this study was to perform the first Genome-Wide Association Study (GWAS) in a population of Polish children with KD and identify susceptible genes involved in the pathogenesis of KD. Materials and Methods: The blood samples of Kawasaki disease patients (n = 119) were collected between 2016 and 2020, isolated and stored at the Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute in Warsaw. The control group was based on Polish donors (n = 6,071) registered as the POPULOUS collection at the Biobank Lab of The Department of Molecular Biophysics in University of Lodz. DNA samples were genotyped for 558,231 Single Nucleotide Polymorphisms (SNPs) using the 24 × 1 Infinium HTS Human Core Exome microarrays according to the protocol provided by the manufacturer. In order to discover and verify genetic risk-factors for KD, association analysis was carried out using PLINK 1.9. Results: Of all 164,395 variants, 5 were shown to occur statistically (padjusted < 0.05) more frequent in Kawasaki disease patients than in controls. Those are: rs12037447 in non-coding sequence (padjusted = 8.329 × 10-4, OR = 8.697, 95% CI; 3.629-20.84) and rs146732504 in KIF25 (padjusted = 0.007354, OR = 11.42, 95% CI; 3.79-34.43), rs151078858 in PTPRJ (padjusted = 0.04513, OR = 8.116, 95% CI; 3.134-21.01), rs55723436 in SPECC1L (padjusted = 0.04596, OR = 5.596, 95% CI; 2.669-11.74), rs6094136 in RPN2 (padjusted = 0.04755, OR = 10.08, 95% CI; 3.385-30.01) genes. Conclusion: Polymorphisms of genes KIF25, PTRPJ, SPECC1L, RNP2 may be linked with the incidence of Kawasaki disease in Polish children.
Collapse
Affiliation(s)
- Piotr Buda
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Chyb
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Anna Smorczewska-Kiljan
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wieteska-Klimczak
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Agata Paczesna
- Department of Cardiology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | | | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Wrocław, Poland
| | - Łukasz Grochowalski
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Wrocław, Poland
| | - Aneta Sitek
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Janusz Ksia Żyk
- Department of Pediatrics, Nutrition, and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland.,BBMRI.pl Consortium, Wrocław, Poland
| |
Collapse
|
8
|
Bloch E, Sikorski EL, Pontoriero D, Day EK, Berger BW, Lazzara MJ, Thévenin D. Disrupting the transmembrane domain-mediated oligomerization of protein tyrosine phosphatase receptor J inhibits EGFR-driven cancer cell phenotypes. J Biol Chem 2019; 294:18796-18806. [PMID: 31676686 DOI: 10.1074/jbc.ra119.010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Receptor protein tyrosine phosphatases (RPTPs) play critical regulatory roles in mammalian signal transduction. However, the structural basis for the regulation of their catalytic activity is not fully understood, and RPTPs are generally not therapeutically targetable. This knowledge gap is partially due to the lack of known natural ligands or selective agonists of RPTPs. Contrary to what is known from structure-function studies of receptor tyrosine kinases (RTKs), RPTP activities have been reported to be suppressed by dimerization, which may prevent RPTPs from accessing their RTK substrates. We report here that homodimerization of protein tyrosine phosphatase receptor J (PTPRJ, also known as DEP-1) is regulated by specific transmembrane (TM) residues. We found that disrupting these interactions destabilizes homodimerization of full-length PTPRJ in cells, reduces the phosphorylation of the known PTPRJ substrate epidermal growth factor receptor (EGFR) and of other downstream signaling effectors, antagonizes EGFR-driven cell phenotypes, and promotes substrate access. We demonstrate these observations in human cancer cells using mutational studies and identified a peptide that binds to the PTPRJ TM domain and represents the first example of an allosteric agonist of RPTPs. The results of our study provide fundamental structural and functional insights into how PTPRJ activity is tuned by TM interactions in cells. Our findings also open up opportunities for developing peptide-based agents that could be used as tools to probe RPTPs' signaling mechanisms or to manage cancers driven by RTK signaling.
Collapse
Affiliation(s)
- Elizabeth Bloch
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Eden L Sikorski
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| | - David Pontoriero
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015.
| |
Collapse
|
9
|
Gholami M, M Amoli M. Comments on: "Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk". J Appl Genet 2019; 60:431-433. [PMID: 31301025 DOI: 10.1007/s13353-019-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2019] [Accepted: 06/30/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shen N, Li L, Xu W, Tian J, Yang Y, Zhu Y, Gong Y, Ke J, Gong J, Chang J, Zhong R, Miao X. A missense variant in PTPN12 associated with the risk of colorectal cancer by modifying Ras/MEK/ERK signaling. Cancer Epidemiol 2019; 59:109-114. [PMID: 30731403 DOI: 10.1016/j.canep.2019.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The classical protein tyrosine phosphatases (PTPs) have been widely reported to be associated with various human malignancies including colorectal cancer (CRC). However, there are few comprehensive analyses of the association between the classical PTP genes and CRC risk. METHODS First, a bioinformatics analysis was performed to identify missense variants within the classical PTP gene family. Second, exome-wide association data and an independent population study were conducted to evaluate effects of candidate variants on CRC risk. Finally, functional assays based on signaling pathways were applied to uncover the potential pathogenic mechanism. RESULTS We identified that PTPN12 rs3750050 G allele presented a 19% increase the risk of CRC, with an OR of 1.19 (95% CI = 1.09-1.30, P = 1.015×10-4) under an additive model in the combined analysis. Furthermore, biochemical assays illustrated that rs3750050 could impair the inhibitory effect of PTPN12 on Ras/MEK/ERK signaling by impeding SHC dephosphorylation, increase the expression of cyclin D1 and ultimately lead to aberrant cell proliferation, thus contributing to CRC pathogenesis. CONCLUSION Our study highlights that PTPN12 rs3750050 could increase CRC risk by modifying Ras/MEK/ERK signaling. This work provides a novel insight into the roles of genetic variants within PTP genes in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Na Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Li
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Wang Xu
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Meta-analysis of association between Arg326Gln (rs1503185) and Gln276Pro (rs1566734) polymorphisms of PTPRJ gene and cancer risk. J Appl Genet 2019; 60:57-62. [PMID: 30661225 PMCID: PMC6373398 DOI: 10.1007/s13353-019-00481-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ, DEP1) is a tumour suppressor gene that negatively regulates such processes as angiogenesis, cell proliferation and migration and is one of the genes important for tumour development. Similar to other phosphatase genes, PTPRJ is also described as an oncogene. Among various genetic changes characteristic for this gene, single nucleotide polymorphisms (SNPs) constituting benign genetic variants that can modulate its function have been described. We focused on Gln276Pro and Arg326Gln missense polymorphisms and performed a meta-analysis using data from 2930 and 852 patients for Gln276Pro and Arg326Gln respectively in different cancers. A meta-analysis was performed based on five articles accessed via the PubMed and Research Gate databases. Our meta-analysis revealed that for Arg326Gln, the presence of the Arg (C) allele was associated with lower risk of some cancers, the strongest association was observed for colorectal cancer patients, and there was no association between Gln276Pro (G>T) polymorphism and cancer risk. The polymorphisms Arg326Gln and Gln276Pro of the PTPRJ gene are not associated with an increased risk of cancer except for the Arg326Gln polymorphism in colorectal cancer. Large-scale studies should be performed to verify the impact of this SNP on individual susceptibility to colorectal cancer for given individuals.
Collapse
|
12
|
Hendricks WPD, Zismann V, Sivaprakasam K, Legendre C, Poorman K, Tembe W, Perdigones N, Kiefer J, Liang W, DeLuca V, Stark M, Ruhe A, Froman R, Duesbery NS, Washington M, Aldrich J, Neff MW, Huentelman MJ, Hayward N, Brown K, Thamm D, Post G, Khanna C, Davis B, Breen M, Sekulic A, Trent JM. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genet 2018; 14:e1007589. [PMID: 30188888 PMCID: PMC6126841 DOI: 10.1371/journal.pgen.1007589] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 01/11/2023] Open
Abstract
Canine malignant melanoma, a significant cause of mortality in domestic dogs, is a powerful comparative model for human melanoma, but little is known about its genetic etiology. We mapped the genomic landscape of canine melanoma through multi-platform analysis of 37 tumors (31 mucosal, 3 acral, 2 cutaneous, and 1 uveal) and 17 matching constitutional samples including long- and short-insert whole genome sequencing, RNA sequencing, array comparative genomic hybridization, single nucleotide polymorphism array, and targeted Sanger sequencing analyses. We identified novel predominantly truncating mutations in the putative tumor suppressor gene PTPRJ in 19% of cases. No BRAF mutations were detected, but activating RAS mutations (24% of cases) occurred in conserved hotspots in all cutaneous and acral and 13% of mucosal subtypes. MDM2 amplifications (24%) and TP53 mutations (19%) were mutually exclusive. Additional low-frequency recurrent alterations were observed amidst low point mutation rates, an absence of ultraviolet light mutational signatures, and an abundance of copy number and structural alterations. Mutations that modulate cell proliferation and cell cycle control were common and highlight therapeutic axes such as MEK and MDM2 inhibition. This mutational landscape resembles that seen in BRAF wild-type and sun-shielded human melanoma subtypes. Overall, these data inform biological comparisons between canine and human melanoma while suggesting actionable targets in both species.
Collapse
Affiliation(s)
- William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Victoria Zismann
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Karthigayini Sivaprakasam
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Department of Biomedical Informatics, Arizona State University, Phoenix, Arizona, United States of America
| | - Christophe Legendre
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Kelsey Poorman
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Waibhav Tembe
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Nieves Perdigones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jeffrey Kiefer
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Winnie Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Valerie DeLuca
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Mitchell Stark
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alison Ruhe
- Veterinary Genetics Laboratory, University of California Davis, Davis, California, United States of America
| | - Roe Froman
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute (VARI), Grand Rapids, Michigan, United States of America
| | | | - Megan Washington
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Mark W. Neff
- Program in Canine Genetics and Genomics, Van Andel Research Institute (VARI), Grand Rapids, Michigan, United States of America
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Nicholas Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gerald Post
- The Veterinary Cancer Center, Norwalk, Connecticut, United States of America
| | - Chand Khanna
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Barbara Davis
- Innogenics Inc., Harvard, Massachusetts, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Alexander Sekulic
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jeffrey M. Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| |
Collapse
|
13
|
Sala M, Spensiero A, Scala MC, Pepe G, Bilotta A, Paduano F, D'Agostino S, Lanzillotta D, Bertamino A, Novellino E, Trapasso F, Gomez-Monterrey IM, Campiglia P. Design, Synthesis, Biological Activity, and Structural Analysis of Lactam-Constrained PTPRJ Agonist Peptides. ChemMedChem 2018; 13:1673-1680. [PMID: 29888867 DOI: 10.1002/cmdc.201800147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/25/2018] [Indexed: 01/13/2023]
Abstract
PTPRJ is a receptor-like protein tyrosine phosphatase mainly known for its antiproliferative and tumor-suppressive functions. PTPRJ dephosphorylates several growth factors and their receptors, negatively regulating cell proliferation and migration. We recently identified a disulfide-bridged nonapeptide, named PTPRJ-19 (H-[Cys-His-His-Asn-Leu-Thr-His-Ala-Cys]-OH), which activates PTPRJ, thereby causing cell growth inhibition and apoptosis of both cancer and endothelial cells. With the aim of replacing the disulfide bridge by a chemically more stable moiety, we have synthesized and tested a series of lactam analogues of PTPRJ-19. This replacement led to analogues with higher activity and greater stability than the parent peptide.
Collapse
Affiliation(s)
- Marina Sala
- Department of Pharmacy, University of Salerno, 84084, Fisciano (SA), Italy
| | - Antonia Spensiero
- Department of Pharmacy, University of Salerno, 84084, Fisciano (SA), Italy
| | | | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084, Fisciano (SA), Italy
| | - Anna Bilotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Francesco Paduano
- Department of Medicina Sperimentale e Clinica, University Magna Graecia, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Sabrina D'Agostino
- Department of Medicina Sperimentale e Clinica, University Magna Graecia, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Delia Lanzillotta
- Department of Medicina Sperimentale e Clinica, University Magna Graecia, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084, Fisciano (SA), Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy
| | - Francesco Trapasso
- Department of Medicina Sperimentale e Clinica, University Magna Graecia, Campus "S. Venuta", 88100, Catanzaro, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084, Fisciano (SA), Italy
| |
Collapse
|
14
|
The receptor protein tyrosine phosphatase PTPRJ negatively modulates the CD98hc oncoprotein in lung cancer cells. Oncotarget 2018; 9:23334-23348. [PMID: 29805737 PMCID: PMC5955124 DOI: 10.18632/oncotarget.25101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/24/2018] [Indexed: 01/16/2023] Open
Abstract
PTPRJ, a receptor protein tyrosine phosphatase strongly downregulated in human cancer, displays tumor suppressor activity by negatively modulating several proteins involved in proliferating signals. Here, through a proteomic-based approach, we identified a list of potential PTPRJ-interacting proteins and among them we focused on CD98hc, a type II glycosylated integral membrane protein encoded by SLC3A2, corresponding to the heavy chain of a heterodimeric transmembrane amino-acid transporter, including LAT1. CD98hc is widely overexpressed in several types of cancers and contributes to the process of tumorigenesis by interfering with cell proliferation, adhesion, and migration. We first validated PTPRJ-CD98hc interaction, then demonstrated that PTPRJ overexpression dramatically reduces CD98hc protein levels in A549 lung cancer cells. In addition, following to the treatment of PTPRJ-transduced cells with MG132, a proteasome inhibitor, CD98hc levels did not decrease compared to controls, indicating that PTPRJ is involved in the regulation of CD98hc proteasomal degradation. Moreover, PTPRJ overexpression combined with CD98hc silencing consistently reduced cell proliferation and triggered apoptosis of lung cancer cells. Interestingly, by interrogating the can Evolve database, we observed an inverse correlation between PTPRJ and SLC3A2 gene expression. Indeed, the non-small cell lung cancers (NSCLCs) of patients showing a short survival rate express the lowest and the highest levels of PTPRJ and SLC3A2, respectively. Therefore, the results reported here contribute to shed lights on PTPRJ signaling in cancer cells: moreover, our findings also support the development of a novel anticancer therapeutic approach by targeting the pathway of PTPRJ that is usually downregulated in highly malignant human neoplasias.
Collapse
|
15
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
16
|
Fontanillo M, Köhn M. Phosphatases: Their Roles in Cancer and Their Chemical Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:209-40. [PMID: 27236558 DOI: 10.1007/978-3-319-32805-8_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phosphatases are involved in basically all cellular processes by dephosphorylating cellular components such as proteins, phospholipids and second messengers. They counteract kinases of which many are established oncogenes, and therefore kinases are one of the most important drug targets for targeted cancer therapy. Due to this relationship between kinases and phosphatases, phosphatases are traditionally assumed to be tumour suppressors. However, research findings over the last years prove that this simplification is incorrect, as bona-fide and putative phosphatase oncogenes have been identified. We describe here the role of phosphatases in cancer, tumour suppressors and oncogenes, and their chemical modulators, and discuss new approaches and opportunities for phosphatases as drug targets.
Collapse
Affiliation(s)
- Miriam Fontanillo
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
17
|
The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene 2015; 34:5536-47. [DOI: 10.1038/onc.2015.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
|
18
|
Zhao S, Sedwick D, Wang Z. Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 2014; 34:3885-94. [PMID: 25263441 PMCID: PMC4377308 DOI: 10.1038/onc.2014.326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs.
Collapse
Affiliation(s)
- S Zhao
- 1] Division of Gastroenterology and Hepatology and Shanghai Institution of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China [2] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [3] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - D Sedwick
- 1] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA [2] Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Z Wang
- 1] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [2] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Aya-Bonilla C, Camilleri E, Haupt LM, Lea R, Gandhi MK, Griffiths LR. In silico analyses reveal common cellular pathways affected by loss of heterozygosity (LOH) events in the lymphomagenesis of Non-Hodgkin's lymphoma (NHL). BMC Genomics 2014; 15:390. [PMID: 24885312 PMCID: PMC4041994 DOI: 10.1186/1471-2164-15-390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022] Open
Abstract
Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-390) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
20
|
Ortuso F, Paduano F, Carotenuto A, Gomez-Monterrey I, Bilotta A, Gaudio E, Sala M, Artese A, Vernieri E, Dattilo V, Iuliano R, Brancaccio D, Bertamino A, Musella S, Alcaro S, Grieco P, Perrotti N, Croce CM, Novellino E, Fusco A, Campiglia P, Trapasso F. Discovery of PTPRJ agonist peptides that effectively inhibit in vitro cancer cell proliferation and tube formation. ACS Chem Biol 2013; 8:1497-506. [PMID: 23627474 DOI: 10.1021/cb3007192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PTPRJ is a receptor protein tyrosine phosphatase involved in both physiological and oncogenic pathways. We previously reported that its expression is strongly reduced in the majority of explored cancer cell lines and tumor samples; moreover, its restoration blocks in vitro cancer cell proliferation and in vivo tumor formation. By means of a phage display library screening, we recently identified two peptides able to bind and activate PTPRJ, resulting in cell growth inhibition and apoptosis of both cancer and endothelial cells. Here, on a previously discovered PTPRJ agonist peptide, PTPRJ-pep19, we synthesized and assayed a panel of nonapeptide analogues with the aim to identify specific amino acid residues responsible for peptide activity. These second-generation nonapeptides were tested on both cancer and primary endothelial cells (HeLa and HUVEC, respectively); interestingly, one of them (PTPRJ-19.4) was able to both dramatically reduce cell proliferation and effectively trigger apoptosis of both HeLa and HUVECs compared to its first-generation counterpart. Moreover, PTPRJ-pep19.4 significantly inhibited in vitro tube formation on Matrigel. Intriguingly, while ERK1/2 phosphorylation and cell proliferation were both inhibited by PTPRJ-pep19.4 in breast cancer cells (MCF-7 and SKBr3), no effects were observed on primary normal human mammary endothelial cells (HMEC). We further characterized these peptides by molecular modeling and NMR experiments reporting, for the most active peptide, the possibility of self-aggregation states and highlighting new hints of structure-activity relationship. Thus, our results indicate that this nonapeptide might represent a great potential lead for the development of novel targeted anticancer drugs.
Collapse
Affiliation(s)
| | | | - Alfonso Carotenuto
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Isabel Gomez-Monterrey
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | - Eugenio Gaudio
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Marina Sala
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | | | | | | | - Diego Brancaccio
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alessia Bertamino
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | - Simona Musella
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | | | - Paolo Grieco
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | | | - Carlo M. Croce
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
| | - Alfredo Fusco
- Dipartimento
di Biologia e Patologia Cellulare e Molecolare c/o Istituto di Endocrinologia
ed Oncologia Sperimentale del CNR, Università degli Studi di Napoli “Federico II”, 80131
Napoli, Italy
| | - Pietro Campiglia
- Dipartimento di
Farmacia, Università di Salerno,
84084 Fisciano, Italy
| | | |
Collapse
|
21
|
Nunes-Xavier CE, Martín-Pérez J, Elson A, Pulido R. Protein tyrosine phosphatases as novel targets in breast cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1836:211-26. [PMID: 23756181 DOI: 10.1016/j.bbcan.2013.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/01/2013] [Indexed: 02/07/2023]
Abstract
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- BioCruces Health Research Institute, Hospital de Cruces, Plaza Cruces s/n, 48903 Barakaldo, Spain
| | | | | | | |
Collapse
|
22
|
Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P, Lea R, Gandhi MK, Griffiths LR. High-resolution loss of heterozygosity screening implicatesPTPRJas a potential tumor suppressor gene that affects susceptibility to non-hodgkin's lymphoma. Genes Chromosomes Cancer 2013; 52:467-79. [DOI: 10.1002/gcc.22044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/16/2012] [Indexed: 01/04/2023] Open
|
23
|
Casagrande S, Ruf M, Rechsteiner M, Morra L, Brun-Schmid S, von Teichman A, Krek W, Schraml P, Moch H. The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma. J Pathol 2013; 229:525-34. [PMID: 23007793 DOI: 10.1002/path.4107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/20/2012] [Accepted: 09/12/2012] [Indexed: 11/07/2022]
Abstract
Mass spectrometry analysis of renal cancer cell lines recently suggested that the protein-tyrosine phosphatase receptor type J (PTPRJ), an important regulator of tyrosine kinase receptors, is tightly linked to the von Hippel-Lindau protein (pVHL). Therefore, we aimed to characterize the biological relevance of PTPRJ for clear cell renal cell carcinoma (ccRCC). In pVHL-negative ccRCC cell lines, both RNA and protein expression levels of PTPRJ were lower than those in the corresponding pVHL reconstituted cells. Quantitative RT-PCR and western blot analysis of ccRCC with known VHL mutation status and normal matched tissues as well as RNA in situ hybridization on a tissue microarray (TMA) confirmed a decrease of PTPRJ expression in more than 80% of ccRCCs, but in only 12% of papillary RCCs. ccRCC patients with no or reduced PTPRJ mRNA expression had a less favourable outcome than those with a normal expression status (p = 0.05). Sequence analysis of 32 PTPRJ mRNA-negative ccRCC samples showed five known polymorphisms but no mutations, implying other mechanisms leading to PTPRJ's down-regulation. Selective silencing of HIF-α by siRNA and reporter gene assays demonstrated that pVHL inactivation reduces PTPRJ expression through a HIF-dependent mechanism, which is mainly driven by HIF-2α stabilization. Our results suggest PTPRJ as a member of a pVHL-controlled pathway whose suppression by HIF is critical for ccRCC development.
Collapse
MESH Headings
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- In Situ Hybridization
- Kaplan-Meier Estimate
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Models, Molecular
- Polymorphism, Genetic
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
- Sequence Analysis, DNA
- Tissue Array Analysis
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
Collapse
Affiliation(s)
- Silvia Casagrande
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Protein tyrosine phosphatase µ (PTP µ or PTPRM), a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis. PLoS One 2012. [PMID: 23185569 PMCID: PMC3502354 DOI: 10.1371/journal.pone.0050183] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. Design Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. Results A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. Conclusions Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.
Collapse
|
25
|
Paduano F, Ortuso F, Campiglia P, Raso C, Iaccino E, Gaspari M, Gaudio E, Mangone G, Carotenuto A, Bilotta A, Narciso D, Palmieri C, Agosti V, Artese A, Gomez-Monterrey I, Sala M, Cuda G, Iuliano R, Perrotti N, Scala G, Viglietto G, Alcaro S, Croce CM, Novellino E, Fusco A, Trapasso F. Isolation and functional characterization of peptide agonists of PTPRJ, a tyrosine phosphatase receptor endowed with tumor suppressor activity. ACS Chem Biol 2012; 7:1666-76. [PMID: 22759068 DOI: 10.1021/cb300281t] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PTPRJ is a receptor-type protein tyrosine phosphatase whose expression is strongly reduced in the majority of investigated cancer cell lines and tumor specimens. PTPRJ negatively interferes with mitogenic signals originating from several oncogenic receptor tyrosine kinases, including HGFR, PDGFR, RET, and VEGFR-2. Here we report the isolation and characterization of peptides from a random peptide phage display library that bind and activate PTPRJ. These agonist peptides, which are able to both circularize and form dimers in acqueous solution, were assayed for their biochemical and biological activity on both human cancer cells and primary endothelial cells (HeLa and HUVEC, respectively). Our results demonstrate that binding of PTPRJ-interacting peptides to cell cultures dramatically reduces the extent of both MAPK phosphorylation and total phosphotyrosine levels; conversely, they induce a significant increase of the cell cycle inhibitor p27(Kip1). Moreover, PTPRJ agonist peptides both reduce proliferation and trigger apoptosis of treated cells. Our data indicate that peptide agonists of PTPRJ positively modulate the PTPRJ activity and may lead to novel targeted anticancer therapies.
Collapse
Affiliation(s)
- Francesco Paduano
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Francesco Ortuso
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Pietro Campiglia
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Sezione Chimico-Tecnologica, Università di Salerno, 84084 Fisciano (Salerno), Italy
| | - Cinzia Raso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Enrico Iaccino
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Eugenio Gaudio
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Graziella Mangone
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Alfonso Carotenuto
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Anna Bilotta
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Domenico Narciso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Camillo Palmieri
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Valter Agosti
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Anna Artese
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Isabel Gomez-Monterrey
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Marina Sala
- Dipartimento di Scienze Farmaceutiche
e Biomediche, Sezione Chimico-Tecnologica, Università di Salerno, 84084 Fisciano (Salerno), Italy
| | - Giovanni Cuda
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Giuseppe Scala
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Giuseppe Viglietto
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| | - Stefano Alcaro
- Laboratorio
di Chimica Farmaceutica
Computazionale, Dipartimento di Scienze Farmacobiologiche, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100 Catanzaro, Italy
| | - Carlo M. Croce
- Department of Molecular Virology,
Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United
States
| | - Ettore Novellino
- Dipartimento di
Chimica Farmaceutica
e Tossicologica, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia
Cellulare e Molecolare c/o Istituto di Endocrinologia ed Oncologia
Sperimentale del CNR, Università degli Studi di Napoli “Federico II”, 80131 Naples, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale
e Clinica, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, 88100
Catanzaro, Italy
| |
Collapse
|
26
|
Polymorphisms of protein tyrosine phosphatase CD148 influence FcγRIIA-dependent platelet activation and the risk of heparin-induced thrombocytopenia. Blood 2012; 120:1309-16. [DOI: 10.1182/blood-2012-04-424044] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Heparin-induced thrombocytopenia (HIT) is due primarily to IgG antibodies specific to platelet factor 4/heparin complexes (PF4/Hs) that activate platelets via FcγRIIA. CD148 is a protein tyrosine phosphatase that regulates Src kinases and collagen-induced platelet activation. Three polymorphisms affecting CD148 (Q276P, R326Q, and D872E) were studied in HIT patients and 2 control groups, with or without antibodies to PF4/Hs. Heterozygote status for CD148 276P or 326Q alleles was less frequent in HIT patients, suggesting a protective effect of these polymorphisms. Aggregation tests performed with collagen, HIT plasma, and monoclonal antibodies cross-linking FcγRIIA showed consistent hyporesponsiveness of platelets expressing the 276P/326Q alleles. In addition, platelets expressing the 276P/326Q alleles exhibited a greater sensitivity to the Src family kinases inhibitor dasatinib in response to collagen or ALB6 cross-linking FcγRIIA receptors. Moreover, the activatory phosphorylation of Src family kinases was considerably delayed as well as the phosphorylation of Linker for activation of T cells and phospholipase Cγ2, 2 major signaling proteins downstream from FcγRIIA. In conclusion, this study shows that CD148 polymorphisms affect platelet activation and probably exert a protec-tive effect on the risk of HIT in patients with antibodies to PF4/Hs.
Collapse
|
27
|
Receptor type protein tyrosine phosphatases (RPTPs) - roles in signal transduction and human disease. J Cell Commun Signal 2012; 6:125-38. [PMID: 22851429 DOI: 10.1007/s12079-012-0171-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.
Collapse
|
28
|
Labbé DP, Hardy S, Tremblay ML. Protein tyrosine phosphatases in cancer: friends and foes! PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:253-306. [PMID: 22340721 DOI: 10.1016/b978-0-12-396456-4.00009-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tyrosine phosphorylation of proteins serves as an exquisite switch in controlling several key oncogenic signaling pathways involved in cell proliferation, apoptosis, migration, and invasion. Since protein tyrosine phosphatases (PTPs) counteract protein kinases by removing phosphate moieties on target proteins, one may intuitively think that PTPs would act as tumor suppressors. Indeed, one of the most described PTPs, namely, the phosphatase and tensin homolog (PTEN), is a tumor suppressor. However, a growing body of evidence suggests that PTPs can also function as potent oncoproteins. In this chapter, we provide a broad historical overview of the PTPs, their mechanism of action, and posttranslational modifications. Then, we focus on the dual properties of classical PTPs (receptor and nonreceptor) and dual-specificity phosphatases in cancer and summarize the current knowledge of the signaling pathways regulated by key PTPs in human cancer. In conclusion, we present our perspective on the potential of these PTPs to serve as therapeutic targets in cancer.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
29
|
Smart CE, Askarian Amiri ME, Wronski A, Dinger ME, Crawford J, Ovchinnikov DA, Vargas AC, Reid L, Simpson PT, Song S, Wiesner C, French JD, Dave RK, da Silva L, Purdon A, Andrew M, Mattick JS, Lakhani SR, Brown MA, Kellie S. Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. PLoS One 2012; 7:e40742. [PMID: 22815804 PMCID: PMC3398958 DOI: 10.1371/journal.pone.0040742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Differentiation/genetics
- Cell Line, Tumor
- Down-Regulation/genetics
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- Epithelium/enzymology
- Epithelium/pathology
- Female
- Gene Dosage/genetics
- Gene Expression Regulation, Neoplastic
- Genetic Loci/genetics
- Humans
- Introns/genetics
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Animal/enzymology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Meta-Analysis as Topic
- Mice
- Mice, Inbred C57BL
- Pregnancy
- RNA, Antisense/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism
Collapse
Affiliation(s)
- Chanel E. Smart
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Marjan E. Askarian Amiri
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcel E. Dinger
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Joanna Crawford
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dmitry A. Ovchinnikov
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ana Cristina Vargas
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Lynne Reid
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Peter T. Simpson
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Sarah Song
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christiane Wiesner
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Richa K. Dave
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leonard da Silva
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Amy Purdon
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Megan Andrew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - John S. Mattick
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sunil R. Lakhani
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- University of Queensland, Department of Anatomical Pathology, Brisbane, Queensland, Australia
| | - Melissa A. Brown
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
30
|
Paduano F, Dattilo V, Narciso D, Bilotta A, Gaudio E, Menniti M, Agosti V, Palmieri C, Perrotti N, Fusco A, Trapasso F, Iuliano R. Protein tyrosine phosphatase PTPRJ is negatively regulated by microRNA-328. FEBS J 2012; 280:401-12. [PMID: 22564856 DOI: 10.1111/j.1742-4658.2012.08624.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Expression of PTPRJ, which is a ubiquitous receptor-type protein tyrosine phosphatase, is significantly reduced in a vast majority of human epithelial cancers and cancer cell lines (i.e. colon, lung, thyroid, mammary and pancreatic tumours). A possible role for microRNAs (miRNAs) in the negative regulation of PTPRJ expression has never been investigated. In this study, we show that overexpression of microRNA-328 (miR-328) decreases PTPRJ expression in HeLa and SKBr3 cells. Further investigations demonstrate that miR-328 acts directly on the 3'UTR of PTPRJ, resulting in reduced mRNA levels. Luciferase assay and site-specific mutagenesis were used to identify a functional miRNA response element in the 3'UTR of PTPRJ. Expression of miR-328 significantly enhances cell proliferation in HeLa and SKBr3 cells, similar to the effects of downregulation of PTPRJ with small interfering RNA. Additionally, in HeLa cells, the proliferative effect of miR-328 was not observed when PTPRJ was silenced with small interfering RNA; conversely, restoration of PTPRJ expression in miR-328-overexpressing cells abolished the proliferative activity of miR-328. In conclusion, we report the identification of miR-328 as an important player in the regulation of PTPRJ expression, and we propose that the interaction of miR-328 with PTPRJ is responsible for miR-328-dependent increase of epithelial cell proliferation.
Collapse
Affiliation(s)
- Francesco Paduano
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia, Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ellinghaus E, Stanulla M, Richter G, Ellinghaus D, te Kronnie G, Cario G, Cazzaniga G, Horstmann M, Panzer Grümayer R, Cavé H, Trka J, Cinek O, Teigler-Schlegel A, ElSharawy A, Häsler R, Nebel A, Meissner B, Bartram T, Lescai F, Franceschi C, Giordan M, Nürnberg P, Heinzow B, Zimmermann M, Schreiber S, Schrappe M, Franke A. Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia. Leukemia 2012; 26:902-9. [PMID: 22076464 PMCID: PMC3356560 DOI: 10.1038/leu.2011.302] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/03/2011] [Accepted: 09/21/2011] [Indexed: 02/08/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) - the most common chromosomal translocation observed in childhood ALL - which leads to an ETV6-RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, P(CMH)=8.94 × 10(-9), OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10(-11), OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10(-9), OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10(-7), OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6-RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis.
Collapse
Affiliation(s)
- E Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, on behalf of the German Berlin-Frankfurt-Münster Study Group for Treatment of Childhood Acute Lymphoblastic Leukemia
| | - G Richter
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - D Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - G te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padua, Padua, Italy
| | - G Cario
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, on behalf of the German Berlin-Frankfurt-Münster Study Group for Treatment of Childhood Acute Lymphoblastic Leukemia
| | - G Cazzaniga
- M. Tettamanti Research Center, Children's Hospital, University of Milan-Bicocca, Monza, Italy
| | - M Horstmann
- Clinic of Pediatric Hematology and Oncology, University Medical Center, and Research Center Children's Cancer Center, Hamburg, Germany
| | - R Panzer Grümayer
- St Anna Children's Hospital and Children's Cancer Research Institute, Vienna, Austria
| | - H Cavé
- Department of Genetics, Hôpital Robert Debré, Paris, France
| | - J Trka
- Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - O Cinek
- Department of Pediatrics, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - A Teigler-Schlegel
- Oncogenetic Laboratory, Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - A ElSharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - R Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - A Nebel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - B Meissner
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, on behalf of the German Berlin-Frankfurt-Münster Study Group for Treatment of Childhood Acute Lymphoblastic Leukemia
| | - T Bartram
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, on behalf of the German Berlin-Frankfurt-Münster Study Group for Treatment of Childhood Acute Lymphoblastic Leukemia
| | - F Lescai
- Division of Research Strategy, University College London, London, UK
| | - C Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | - M Giordan
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padua, Padua, Italy
| | - P Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - B Heinzow
- State Social Services Agency Schleswig-Holstein, Kiel, Germany
- University of Notre Dame, Sydney Medical School, Sydney, Australia
| | - M Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - S Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
- Department of General Internal Medicine, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
- Popgen Biobank, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel, Kiel, Germany
| | - M Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany, on behalf of the German Berlin-Frankfurt-Münster Study Group for Treatment of Childhood Acute Lymphoblastic Leukemia
| | - A Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
32
|
Whitmore TE, Peterson A, Holzman T, Eastham A, Amon L, McIntosh M, Ozinsky A, Nelson PS, Martin DB. Integrative Analysis of N-Linked Human Glycoproteomic Data Sets Reveals PTPRF Ectodomain as a Novel Plasma Biomarker Candidate for Prostate Cancer. J Proteome Res 2012; 11:2653-65. [DOI: 10.1021/pr201200n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Theodore E. Whitmore
- Institute for Systems Biology, 1441 N. 34th St., Seattle, Washington 98103,
United States
| | - Amelia Peterson
- Department
of Chemistry, University of Wisconsin,
Madison, Wisconsin, United States
| | | | - Ashley Eastham
- Analytical & Formulation Sciences, Amgen Inc., Seattle, Washington 98119, United States
| | | | | | - Adrian Ozinsky
- Institute for Systems Biology, 1441 N. 34th St., Seattle, Washington 98103,
United States
| | | | - Daniel B. Martin
- Seattle Cancer Care Alliance,
825 Eastlake Avenue East, P.O. Box 19023, Seattle, Washington 98109,
United States
| |
Collapse
|
33
|
Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell 2011; 22:3609-24. [PMID: 21813734 PMCID: PMC3183016 DOI: 10.1091/mbc.e11-02-0099] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteoglycan syndecan-2 is a novel ligand for the tyrosine phosphatase receptor CD148, an interaction that stimulates a signaling pathway leading to integrin-mediated cell adhesion. The pathway involves SRC and PI3 kinases and is an example of cell surface receptor cross-talk influencing integrin-mediated cellular processes. Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin–mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin–mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.
Collapse
Affiliation(s)
- James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
34
|
Venkatachalam R, Verwiel ETP, Kamping EJ, Hoenselaar E, Görgens H, Schackert HK, van Krieken JHJM, Ligtenberg MJL, Hoogerbrugge N, van Kessel AG, Kuiper RP. Identification of candidate predisposing copy number variants in familial and early-onset colorectal cancer patients. Int J Cancer 2011; 129:1635-42. [PMID: 21128281 DOI: 10.1002/ijc.25821] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
In the majority of colorectal cancers (CRCs) under clinical suspicion for a hereditary cause, the disease-causing genetic factors are still to be discovered. To identify such genetic factors we stringently selected a discovery cohort of 41 CRC index patients with microsatellite-stable tumors. All patients were below 40 years of age at diagnosis and/or exhibited an overt family history. We employed genome-wide copy number profiling using high-resolution SNP arrays on germline DNA, which resulted in the identification of novel copy number variants (CNVs) in six patients (15%) encompassing, among others, the cadherin gene CDH18, the bone morphogenetic protein antagonist family gene GREM1, and the breakpoint cluster region gene BCR. In addition, two genomic deletions were encountered encompassing two microRNA genes, hsa-mir-491/KIAA1797 and hsa-mir-646/AK309218. None of these CNVs has previously been reported in relation to CRC predisposition in humans, nor were they encountered in large control cohorts (>1,600 unaffected individuals). Since several of these newly identified candidate genes may be functionally linked to CRC development, our results illustrate the potential of this approach for the identification of novel candidate genes involved in CRC predisposition.
Collapse
Affiliation(s)
- Ramprasath Venkatachalam
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Members of the protein tyrosine phosphatase (Ptp) family dephosphorylate target proteins and counter the activities of protein tyrosine kinases that are involved in cellular phosphorylation and signalling. As such, certain PTPs might be tumour suppressors. Indeed, PTPs play an important part in the inhibition or control of growth, but accumulating evidence indicates that some PTPs may exert oncogenic functions. Recent large-scale genetic analyses of various human tumours have highlighted the relevance of PTPs either as putative tumour suppressors or as candidate oncoproteins. Progress in understanding the regulation and function of PTPs has provided insights into which PTPs might be potential therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Sofi G Julien
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
36
|
Venkatachalam R, Ligtenberg MJL, Hoogerbrugge N, Schackert HK, Görgens H, Hahn MM, Kamping EJ, Vreede L, Hoenselaar E, van der Looij E, Goossens M, Churchman M, Carvajal-Carmona L, Tomlinson IPM, de Bruijn DRH, Van Kessel AG, Kuiper RP. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology 2010; 139:2221-4. [PMID: 21036128 DOI: 10.1053/j.gastro.2010.08.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 01/05/2023]
|
37
|
Iuliano R, Palmieri D, He H, Iervolino A, Borbone E, Pallante P, Cianflone A, Nagy R, Alder H, Calin GA, Trapasso F, Giordano C, Croce CM, de la Chapelle A, Fusco A. Role of PTPRJ genotype in papillary thyroid carcinoma risk. Endocr Relat Cancer 2010; 17:1001-6. [PMID: 20823296 PMCID: PMC3915780 DOI: 10.1677/erc-10-0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The strong genetic predisposition to papillary thyroid carcinoma (PTC) might be due to a combination of low-penetrance susceptibility variants. Thus, the research into gene variants involved in the increase of susceptibility to PTC is a relevant field of investigation. The gene coding for the receptor-type tyrosine phosphatase PTPRJ has been proposed as a cancer susceptibility gene, and its role as a tumor suppressor gene is well established in thyroid carcinogenesis. In this study, we want to ascertain the role of PTPRJ genotype in the risk for PTC. We performed a case-control study in which we determined the PTPRJ genotype for the non-synonymous Gln276Pro and Asp872Glu polymorphisms by PCR amplification and sequencing. We calculated allele and genotype frequencies for the considered polymorphisms of PTPRJ in a total sample of 299 cases (PTC patients) and 339 controls (healthy subjects) selected from Caucasian populations. We observed a significantly higher frequency of homozygotes for the Asp872 allele in the group of PTC patients than in the control group (odds ratio=1.61, 95% confidence interval 1.15-2.25, P=0.0053). We observed a non-significant increased frequency of homozygotes for Gln276Pro polymorphism in PTC cases in two distinct Caucasian populations. Therefore, the results reported here show that the homozygous genotype for Asp872 of PTPRJ is associated with an increased risk to develop PTC.
Collapse
Affiliation(s)
- Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università degli Studi “Magna Græcia” di Catanzaro, viale Europa, 88100 Catanzaro, Italy
- Corresponding Authors Rodolfo Iuliano, Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, Campus “Salvatore Venuta” Viale Europa, località Germaneto, 88100 Catanzaro, Italy. Tel. +39-0961-3695182 Fax: +39-0961-3694090 Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy. Tel. +39-081-3737857 Fax: +39-081-3737808
| | - Dario Palmieri
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE, Biotecnologie Avanzate, via Comunale Margherita, 482, 80145 Napoli, Italy
| | - Huiling He
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Angela Iervolino
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE, Biotecnologie Avanzate, via Comunale Margherita, 482, 80145 Napoli, Italy
| | - Eleonora Borbone
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE, Biotecnologie Avanzate, via Comunale Margherita, 482, 80145 Napoli, Italy
| | - Pierlorenzo Pallante
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE, Biotecnologie Avanzate, via Comunale Margherita, 482, 80145 Napoli, Italy
| | - Alessandra Cianflone
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
| | - Rebecca Nagy
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Hansjuerg Alder
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - George A. Calin
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università degli Studi “Magna Græcia” di Catanzaro, viale Europa, 88100 Catanzaro, Italy
| | - Carla Giordano
- Sezione di Endocrinologia, DOSAC (Dipartimento di Oncologia Sperimentale ed Applicazioni Cliniche), Università di Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Carlo M. Croce
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Albert de la Chapelle
- Division of Human Cancer Genetics, Comprehensive Cancer Center, Ohio State University, 460 West 12th Avenue, Columbus, Ohio, 43210, USA
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy
- NOGEC (Naples Oncogenomic Center) – CEINGE, Biotecnologie Avanzate, via Comunale Margherita, 482, 80145 Napoli, Italy
- Corresponding Authors Rodolfo Iuliano, Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, Campus “Salvatore Venuta” Viale Europa, località Germaneto, 88100 Catanzaro, Italy. Tel. +39-0961-3695182 Fax: +39-0961-3694090 Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare c/o, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli “Federico II”,80131 Napoli, Italy. Tel. +39-081-3737857 Fax: +39-081-3737808
| |
Collapse
|
38
|
Tarcic G, Boguslavsky SK, Wakim J, Kiuchi T, Liu A, Reinitz F, Nathanson D, Takahashi T, Mischel PS, Ng T, Yarden Y. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr Biol 2010; 19:1788-98. [PMID: 19836242 DOI: 10.1016/j.cub.2009.09.048] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND The epidermal growth factor (EGF) stimulates rapid tyrosine phosphorylation of the EGF receptor (EGFR). This event precedes signaling from both the plasma membrane and from endosomes, and it is essential for recruitment of a ubiquitin ligase, CBL, that sorts activated receptors to endosomes and degradation. Because hyperphosphorylation of EGFR is involved in oncogenic pathways, we performed an unbiased screen of small interfering RNA (siRNA) oligonucleotides targeting all human tyrosine phosphatases. RESULTS We report the identification of PTPRK and PTPRJ (density-enhanced phosphatase-1 [DEP-1]) as EGFR-targeting phosphatases. DEP-1 is a tumor suppressor that dephosphorylates and thereby stabilizes EGFR by hampering its ability to associate with the CBL-GRB2 ubiquitin ligase complex. DEP-1 silencing enhanced tyrosine phosphorylation of endosomal EGFRs and, accordingly, increased cell proliferation. In line with functional interactions, EGFR and DEP-1 form physical associations, and EGFR phosphorylates a substrate-trapping mutant of DEP-1. Interestingly, the interactions of DEP-1 and EGFR are followed by physical segregation: whereas EGFR undergoes endocytosis, DEP-1 remains confined to the cell surface. CONCLUSIONS EGFR and DEP-1 physically interact at the cell surface and maintain bidirectional enzyme-substrate interactions, which are relevant to their respective oncogenic and tumor-suppressive functions. These observations highlight the emerging roles of vesicular trafficking in malignant processes.
Collapse
Affiliation(s)
- Gabi Tarcic
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mita Y, Yasuda Y, Sakai A, Yamamoto H, Toyooka S, Gunduz M, Tanabe S, Naomoto Y, Ouchida M, Shimizu K. Missense polymorphisms of PTPRJ and PTPN13 genes affect susceptibility to a variety of human cancers. J Cancer Res Clin Oncol 2010; 136:249-59. [PMID: 19672627 DOI: 10.1007/s00432-009-0656-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 07/28/2009] [Indexed: 12/28/2022]
Abstract
PURPOSE We investigated the association between incidence of various cancers and four single nucleotide polymorphisms (SNPs), two each in two protein tyrosine phosphatase (PTP) genes, PTPRJ and PTPN13, by a case-control study conducted in Japan. METHODS The study samples comprised 819 cancer-free controls and 569 cancer cases including lung, head and neck, colorectal, and esophageal cancers. RESULTS Compared with the major homozygotes at the Arg326Gln SNP in PTPRJ, a likely homologue of the mouse SCC1 (susceptible to colon cancer), Arg/Gln or Gln/Gln genotypes exhibited an increased colorectal cancer risk with adjusted odds ratios (aOR) of 1.71 (P = 0.021) and 3.74 (P = 4.14 x 10(-4)), respectively. Increased risks were observed with one or more of the combination genotypes of Gln276Pro and Arg326Gln in PTPRJ for most cancer types (aOR range 10.13-55.08, Bonferroni-corrected P = 0.0454-7.20 x 10(-9)). In the PTPN13, major homozygotes of Ile1522Met showed an increased risk for lung squamous cell carcinomas (aOR 1.86), compared to the heterozygotes. Increased risks were observed with at least one of the combination genotypes of the two SNPs, Ile1522Met and Tyr2081Asp, for all but esophageal cancer examined (aOR 3.36-13.75), compared with double heterozygotes. Moreover, these high risks were seen also when all cancer cases were combined (aOR 1.81-6.84). CONCLUSIONS PTPRJ and PTPN13 SNPs were found to influence susceptibility to a wide spectrum of cancers. Because allelic frequencies of these SNPs are relatively common in many ethnic groups, these findings are worthy of further study.
Collapse
Affiliation(s)
- Yuichiro Mita
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dave RK, Hume DA, Elsegood C, Kellie S. CD148/DEP-1 association with areas of cytoskeletal organisation in macrophages. Exp Cell Res 2009; 315:1734-44. [PMID: 19268662 DOI: 10.1016/j.yexcr.2009.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/15/2009] [Accepted: 02/17/2009] [Indexed: 01/04/2023]
Abstract
In macrophages, tyrosine phosphorylation regulates many signalling pathways leading to growth, differentiation, activation, phagocytosis and adhesion. Protein tyrosine phosphatases (PTPs) represent a biochemical counterbalance to the activity of protein tyrosine kinases, thus regulating the dynamic phosphorylation state of a cell. CD148 is a receptor PTP that is highly expressed in macrophages and is further regulated by pro-inflammatory stimuli. CD148 is normally localised to the plasma membrane of macrophages. Following stimulation with CSF-1 or LPS, there was a re-distribution and concentration of CD148 in areas of membrane ruffling. Treatment of macrophages with anti-CD148 monoclonal antibody inhibited CSF-1-induced macrophage spreading, cytoskeletal re-arrangements and chemotaxis, without affecting cell survival. There were no detectable effects on the CSF-1 receptor-akt signalling pathway. These results are consistent with the hypothesis that CD148 is a regulator of macrophage activity.
Collapse
Affiliation(s)
- Richa K Dave
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | | | | | | |
Collapse
|
41
|
Iuliano R, Raso C, Quintiero A, Pera IL, Pichiorri F, Palumbo T, Palmieri D, Pattarozzi A, Florio T, Viglietto G, Trapasso F, Croce CM, Fusco A. The eighth fibronectin type III domain of protein tyrosine phosphatase receptor J influences the formation of protein complexes and cell localization. J Biochem 2009; 145:377-85. [PMID: 19122201 DOI: 10.1093/jb/mvn175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulation of receptor-type phosphatases can involve the formation of higher-order structures, but the exact role played in this process by protein domains is not well understood. In this study we show the formation of different higher-order structures of the receptor-type phosphatase PTPRJ, detected in HEK293A cells transfected with different PTPRJ expression constructs. In the plasma membrane PTPRJ forms dimers detectable by treatment with the cross-linking reagent BS(3) (bis[sulfosuccinimidyl]suberate). However, other PTPRJ complexes, dependent on the formation of disulfide bonds, are detected by treatment with the oxidant agent H(2)O(2) or by a mutation Asp872Cys, located in the eighth fibronectin type III domain of PTPRJ. A deletion in the eighth fibronectin domain of PTPRJ impairs its dimerization in the plasma membrane and increases the formation of PTPRJ complexes dependent on disulfide bonds that remain trapped in the cytoplasm. The deletion mutant maintains the catalytic activity but is unable to carry out inhibition of proliferation on HeLa cells, achieved by the wild type form, since it does not reach the plasma membrane. Therefore, the intact structure of the eighth fibronectin domain of PTPRJ is critical for its localization in plasma membrane and biological function.
Collapse
Affiliation(s)
- Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Toland AE, Rozek LS, Presswala S, Rennert G, Gruber SB. PTPRJ haplotypes and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17:2782-5. [PMID: 18843023 DOI: 10.1158/1055-9965.epi-08-0513] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent studies from mouse mapping studies for cancer susceptibility have successfully led to the identification of a handful of susceptibility genes. Ptprj was identified as a strong candidate gene for mouse locus susceptibility to colorectal cancer 1, and one variant, rs1566734, showed evidence of preferential allelic imbalance in human colorectal tumors. Haplotypes in human PTPRJ have also been associated with protective effects for breast cancer risk. To determine if variants or haplotype in PTPRJ confer protective or risk effects for colorectal cancer (CRC), we genotyped rs1566734 and six additional PTPRJ haplotype tagging single nucleotide polymorphisms (SNP) in CRC cases and controls from the Molecular Epidemiology of Colorectal Cancer study. There was no evidence for cancer risk with rs1566734 in 1,897 cases and 1,954 controls with a homozygote odds ratio of 1.09 and 95% confidence interval of 0.85 to 1.39. The 6 tagging SNPs resulted in 6 main haplotypes (frequencies, >1%). None of the six tagSNPs individually showed significant evidence for risk; however, rs1503185 showed a nonsignificant protective effect. One haplotype was overrepresented in cases compared with controls, corresponding to a 34% increase in risk CRC, but there was no significant difference overall in haplotype frequencies between cases and controls (global test P statistic=0.19). From this study, we observe no significant increase in risk for human CRC with variants or haplotypes in PTPRJ. Additional studies are warranted to study possible PTPRJ-interacting loci, which are observed with Scc1 in the mouse models for CRC susceptibility.
Collapse
Affiliation(s)
- Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Division of Human Genetics, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | |
Collapse
|
43
|
The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J 2008; 413:193-200. [PMID: 18348712 DOI: 10.1042/bj20071317] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD148 is a transmembrane tyrosine phosphatase that has been implicated in the regulation of cell growth and transformation. However, the signalling mechanisms of CD148 are incompletely understood. To identify the specific intracellular molecules involved in CD148 signalling, we carried out a modified yeast two-hybrid screening assay. Using the substrate-trapping mutant form of CD148 (CD148 D/A) as bait, we recovered the p85 regulatory subunit of PI3K (phosphoinositide 3-kinase). CD148 D/A, but not catalytically active CD148, interacted with p85 in a phosphorylation-dependent manner in vitro and in intact cells. Growth factor receptor and PI3K activity were also trapped by CD148 D/A via p85 from pervanadate-treated cell lysates. CD148 prominently and specifically dephosphorylated p85 in vitro. Co-expression of CD148 reduced p85 phosphorylation induced by active Src, and attenuated the increases in PI3K activity, yet CD148 did not alter the basal PI3K activity. Finally, CD148 knock-down by siRNA (short interfering RNA) increased PI3K activity on serum stimulation. Taken together, these results demonstrate that CD148 may interact with and dephosphorylate p85 when it is phosphorylated and modulate the magnitude of PI3K activity.
Collapse
|
44
|
Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Pardo AD, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV. DNA damage, homology-directed repair, and DNA methylation. PLoS Genet 2008; 3:e110. [PMID: 17616978 PMCID: PMC1913100 DOI: 10.1371/journal.pgen.0030110] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 05/21/2007] [Indexed: 02/06/2023] Open
Abstract
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments. Genomic DNA can be modified by cytosine methylation. This epigenetic modification is layered on the primary genetic information and can silence the affected gene. Epigenetic modification has been implicated in cancer and aging. To date, the primary cause and the mechanism leading to DNA methylation are not known. By using a sophisticated genetic system, we have induced a single break in the double helix of the genomes of mouse or human cells. This rupture was repaired by a very precise mechanism: the damaged chromosome pairs and retrieves genetic information from an undamaged and homologous DNA partner. This homology-directed repair was marked in half of the repaired molecules by de novo methylation of cytosines flanking the cut. As a direct consequence, the gene in these repaired molecules was silenced. In the remaining molecules, the recombinant DNA was undermethylated and expressed the reconstituted gene. Since homology-directed repair may duplicate or delete genetic information, epigenetic modification of repaired DNA represents a powerful evolutionary force. If the expression of the repaired gene is harmful, only cells inheriting the silenced copy will survive. Conversely, if the function of the repaired gene is beneficial, cells inheriting the under-methylated copy will have a selective advantage.
Collapse
Affiliation(s)
- Concetta Cuozzo
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Medicina Sperimentale, Università “La Sapienza,” Rome, Italy
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Tiziana Angrisano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Annalisa Morano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Bongyong Lee
- Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, Orlando, Florida, United States of America
| | - Alba Di Pardo
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Samantha Messina
- Dipartimento di Patologia Molecolare, Istituto Neurologico Mediterraneo, Neuromed, Pozzilli, Italy
| | - Rodolfo Iuliano
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Maria R Santillo
- Dipartimento di Neuroscienze, Sezione Fisiologia, Università Federico II, Naples, Italy
| | - Mark T Muller
- Department of Molecular Biology and Microbiology and Biomolecular Science Center, University of Central Florida, Orlando, Florida, United States of America
| | - Lorenzo Chiariotti
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
| | - Max E Gottesman
- Institute of Cancer Research, Columbia University Medical Center, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MEG); (EVA)
| | - Enrico V Avvedimento
- Dipartimento di Biologia e Patologia Molecolare e Cellulare, Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università Federico II, Naples, Italy
- * To whom correspondence should be addressed. E-mail: (MEG); (EVA)
| |
Collapse
|
45
|
Baida A, Akdi M, González-Flores E, Galofré P, Marcos R, Velázquez A. Strong Association of Chromosome 1p12 Loci with Thyroid Cancer Susceptibility. Cancer Epidemiol Biomarkers Prev 2008; 17:1499-504. [DOI: 10.1158/1055-9965.epi-07-0235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Several genes directly related to thyroid cancer development have been described; nevertheless, the genetic pathways of this tumorigenesis process are unknown. Together with environmental factors, susceptibility genes could have an important role in thyroid cancer. Our previous studies suggest that the chromosome 1p12-13 is related to thyroid cancer incidence. Here, we extend the analysis with a case-control association study in a Spanish population. Thus, six single-nucleotide polymorphisms were genotyped, covering 2.4 Mb of the 1p12-13 region. A statistically significant association between thyroid cancer incidence and the rs2145418 and rs4658973 polymorphisms was found (P < 0.0001). No association was detected for the other four polymorphisms studied. The rs2145418 marker showed a significant odds ratio of 5.0 [95% confidence interval (95% CI), 2.85-8.83] and 9.2 (95% CI, 4.50-21.6) for heterozygous and homozygous G-variant alleles, respectively. For rs4658973, the odds ratios were 0.40 (95% CI, 0.26-0.62) and 0.07 (95% CI, 0.03-0.18) for heterozygous and homozygous G-variant alleles, respectively. These markers map into the 1p12 region, and no linkage disequilibrium was found between them, indicating an independent relation of these polymorphisms with thyroid cancer susceptibility. Our data provide evidence of a strong association of the chromosome 1p12 with thyroid cancer risk, and it is the first study describing susceptibility loci for thyroid cancer in this region. (Cancer Epidemiol Biomarkers Prev 2008;17(6):1499–504)
Collapse
Affiliation(s)
- Aida Baida
- 1Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 2CIBER Epidemiologia y Salud Pública, ISCIII, Madrid, Spain; and
| | - Mounaim Akdi
- 1Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Eddy González-Flores
- 1Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pere Galofré
- 3Servei de Medicina Nuclear, Hospital Josep Trueta, Girona, Spain
| | - Ricard Marcos
- 1Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 2CIBER Epidemiologia y Salud Pública, ISCIII, Madrid, Spain; and
| | - Antonia Velázquez
- 1Grup de Mutagènesi, Unitat de Genètica, Departament de Genètica i de Microbiologia, Edifici Cn, Universitat Autònoma de Barcelona, Bellaterra, Spain
- 2CIBER Epidemiologia y Salud Pública, ISCIII, Madrid, Spain; and
| |
Collapse
|
46
|
Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J 2008; 275:816-30. [DOI: 10.1111/j.1742-4658.2008.06249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
|
48
|
Matozo HC, Santos MAM, de Oliveira Neto M, Bleicher L, Lima LMTR, Iuliano R, Fusco A, Polikarpov I. Low-resolution structure and fluorescence anisotropy analysis of protein tyrosine phosphatase eta catalytic domain. Biophys J 2007; 92:4424-32. [PMID: 17400699 PMCID: PMC1877755 DOI: 10.1529/biophysj.106.094961] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rat protein tyrosine phosphatase eta, rPTPeta, is a class I "classical" transmembrane RPTP, with an intracellular portion composed of a unique catalytic region. The rPTPeta and the human homolog DEP-1 are downregulated in rat and human neoplastic cells, respectively. However, the malignant phenotype is reverted after exogenous reconstitution of rPTPeta, suggesting that its function restoration could be an important tool for gene therapy of human cancers. Using small-angle x-ray scattering (SAXS) and biophysical techniques, we characterized the intracellular catalytic domain of rat protein tyrosine phosphatase eta (rPTPetaCD) in solution. The protein forms dimers in solution as confirmed by SAXS data analysis. The SAXS data also indicated that rPTPetaCD dimers are elongated and have an average radius of gyration of 2.65 nm and a D(max) of 8.5 nm. To further study the rPTPetaCD conformation in solution, we built rPTPetaCD homology models using as scaffolds the crystallographic structures of RPTPalpha-D1 and RPTPmicro-D1 dimers. These models were, then, superimposed onto ab initio low-resolution SAXS structures. The structural comparisons and sequence alignment analysis of the putative dimerization interfaces provide support to the notion that the rPTPetaCD dimer architecture is more closely related to the crystal structure of autoinhibitory RPTPalpha-D1 dimer than to the dimeric arrangement exemplified by RPTPmicro-D1. Finally, the characterization of rPTPetaCD by fluorescence anisotropy measurements demonstrates that the dimer dissociation is concentration dependent with a dissociation constant of 21.6 +/- 2.0 microM.
Collapse
Affiliation(s)
- Huita C Matozo
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Trapasso F, Drusco A, Costinean S, Alder H, Aqeilan RI, Iuliano R, Gaudio E, Raso C, Zanesi N, Croce CM, Fusco A. Genetic ablation of Ptprj, a mouse cancer susceptibility gene, results in normal growth and development and does not predispose to spontaneous tumorigenesis. DNA Cell Biol 2006; 25:376-82. [PMID: 16792508 DOI: 10.1089/dna.2006.25.376] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ptprj is a ubiquitously expressed murine gene encoding a receptor-type protein tyrosine phosphatase, which has recently been proposed as a candidate gene on the locus Scc1 for colon cancer susceptibility. It has been demonstrated that PTPRJ, the human homologue of Ptprj, is involved in the control of cell growth and adhesion, being furthermore altered in several types of cancer including mammary, thyroid, lung, colon, and pancreatic cancers. To investigate the biological functions of Ptprj, we have generated mice deficient in this receptor protein tyrosine phosphatase. Ptprj-deficient mice are viable, fertile, and show no gross anatomical alterations. Furthermore, neither changes in life span nor spontaneous tumor appearance were observed in Ptprj-null mice. Our results indicate that Ptprj is dispensable for normal growth and development in mice.
Collapse
Affiliation(s)
- Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Campus Germaneto, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Iervolino A, Iuliano R, Trapasso F, Viglietto G, Melillo RM, Carlomagno F, Santoro M, Fusco A. The Receptor-Type Protein Tyrosine Phosphatase J Antagonizes the Biochemical and Biological Effects of RET-Derived Oncoproteins. Cancer Res 2006; 66:6280-7. [PMID: 16778204 DOI: 10.1158/0008-5472.can-06-0228] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid cancer is frequently associated with the oncogenic conversion of the RET receptor tyrosine kinase. RET gene rearrangements, which lead to the generation of chimeric RET/papillary thyroid carcinoma (PTC) oncogenes, occur in PTC, whereas RET point mutations occur in familial multiple endocrine neoplasia type 2 (MEN2) and sporadic medullary thyroid carcinomas (MTC). We showed previously that the expression of the receptor-type protein tyrosine phosphatase J (PTPRJ) is suppressed in neoplastically transformed follicular thyroid cells. We now report that PTPRJ coimmunoprecipitates with wild-type RET and with the MEN2A-associated RET(C634R) oncoprotein but not with the RET/PTC1 and RET-MEN2B isoforms. Using mutated forms of PTPRJ and RET-MEN2A, we show that the integrity of the respective catalytic domains is required for the PTPRJ/RET-MEN2A interaction. PTPRJ expression induces dephosphorylation of the RET(C634R) and, probably via an indirect mechanism, RET/PTC1 oncoproteins on two key RET autophosphorylation sites (Tyr1062 and Tyr905). This results in a significant decrease of RET-induced Shc and extracellular signal-regulated kinase 1/2 phosphorylation levels. In line with this finding, adoptive PTPRJ expression reduced the oncogenic activity of RET(C634R) in an in vitro focus formation assay of NIH3T3 cells. As expected from the coimmunoprecipitation results, the RET(M918T) oncoprotein, which is associated to MEN2B and sporadic MTC, was resistant to the dephosphorylating activity of PTPRJ. Taken together, these findings identify RET as a novel substrate of PTPRJ and suggest that PTPRJ expression levels may affect tumor phenotype associated with RET/PTC1 and RET(C634R) mutants. On the other hand, resistance to PTPRJ may be part of the mechanism of RET oncogenic conversion secondary to the M918T mutation.
Collapse
Affiliation(s)
- Angela Iervolino
- Naples Oncogenomic Center-Centro di Ricerca per l'Ingegneria Genetica, Biotecnologie Avanzate, Italy
| | | | | | | | | | | | | | | |
Collapse
|