1
|
Wang J, Li Y, Sun D, Li J, Li L, Zhang X, Liu X, Feng Z, Xue H, Cui Y, Wang Y, Liu D, Wang H. Implementing Optogenetic-Controlled Bacterial Systems in Drosophila melanogaster for Alleviation of Heavy Metal Poisoning. ACS Synth Biol 2024; 13:3312-3325. [PMID: 39312764 DOI: 10.1021/acssynbio.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Drosophila melanogaster (fruit fly) is an animal model chassis in biological and genetic research owing to its short life cycle, ease of cultivation, and acceptability to genetic modification. While the D. melanogaster chassis offers valuable insights into drug efficacy, toxicity, and mechanisms, several obvious challenges such as dosage control and drug resistance still limit its utility in pharmacological studies. Our research combines optogenetic control with engineered gut bacteria to facilitate the precise delivery of therapeutic substances in D. melanogaster for biomedical research. We have shown that the engineered bacteria can be orally administered to D. melanogaster to get a stable density of approximately 28,000 CFUs/per fly, leading to no detectable negative effects on the growth of D. melanogaster. In a model of D. melanogaster exposure to heavy metal, these orally administered bacteria uniformly express target genes under green light control to produce MtnB protein for binding and detoxifying lead, which significantly reduces the level of oxidative stress in the intestinal tract of Pb-treated flies. This pioneering study lays the groundwork for using optogenetic-controlled bacteria in the model chassis D. melanogaster to advance biomedical applications.
Collapse
Affiliation(s)
- Junyi Wang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Dawei Sun
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Jingyi Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Lianyue Li
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Xinyu Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Xinyu Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Zhijie Feng
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Huimin Xue
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yuhui Cui
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Duo Liu
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanjie Wang
- School of Life Sciences, Faculty of Medicine, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Palli SR. RNAi turns 25:contributions and challenges in insect science. FRONTIERS IN INSECT SCIENCE 2023; 3:1209478. [PMID: 38469536 PMCID: PMC10926446 DOI: 10.3389/finsc.2023.1209478] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/26/2023] [Indexed: 03/13/2024]
Abstract
Since its discovery in 1998, RNA interference (RNAi), a Nobel prize-winning technology, made significant contributions to advances in biology because of its ability to mediate the knockdown of specific target genes. RNAi applications in medicine and agriculture have been explored with mixed success. The past 25 years of research on RNAi resulted in advances in our understanding of the mechanisms of its action, target specificity, and differential efficiency among animals and plants. RNAi played a major role in advances in insect biology. Did RNAi technology fully meet insect pest and disease vector management expectations? This review will discuss recent advances in the mechanisms of RNAi and its contributions to insect science. The remaining challenges, including delivery to the target site, differential efficiency, potential resistance development and possible solutions for the widespread use of this technology in insect management.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Li L, Xu C, Long J, Shen D, Zhou W, Zhou Q, Yang J, Jiang M. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines. Oncotarget 2016; 6:23930-43. [PMID: 26329329 PMCID: PMC4695162 DOI: 10.18632/oncotarget.4525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 01/01/2023] Open
Abstract
In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers.
Collapse
Affiliation(s)
- Liming Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Cui Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Long
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Danbei Shen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Wuqing Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qiyan Zhou
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jia Yang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Mingjun Jiang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
4
|
Shaat H, Mostafa A, Moustafa M, Gamal-Eldeen A, Emam A, El-Hussieny E, Elhefnawi M. Modified gold nanoparticles for intracellular delivery of anti-liver cancer siRNA. Int J Pharm 2016; 504:125-33. [PMID: 27036397 DOI: 10.1016/j.ijpharm.2016.03.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022]
Abstract
To overcome the rapid enzymatic degradation and low transfection efficiency of siRNA, the delivery carriers for siRNA is a therapeutic demand to increase its stability. Gold nanoparticles (AuNPs) modified by branched polyethyleneimine (bPEI) were developed as an efficient and safe intracellular delivery carriers for siRNA. The current study implied that siRNA designed against an oncogene c-Myc could be delivered by a modified AuNPs complex without significant cytotoxicity. The comparative semi-quantitative and quantitative real time PCR were used to measure the c-Myc gene expression after transfection with naked siRNA and siRNA/bPEI/AuNPs, but AuNPs interfered with PCR. However, the c-Myc protein translation was successfully detected in the transfected HuH7 cells with naked siRNA and siRNA/bPEI/AuNPs and it was found to be inhibited by siRNA/bPEI/AuNPs more than naked siRNA. The results validate the successful silencing of c-Myc gene. Accordingly, it may confirm the promising and effective delivery of siRNA by bPEI/AuNPs. The complex enhances the cellular uptake of siRNA without significant cytotoxicity and confirms that bPEI modified AuNPs could be used as a good candidate for safe cellular delivery of siRNA.
Collapse
Affiliation(s)
- Hanan Shaat
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt; Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt
| | - Amany Mostafa
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt,.
| | - Moustafa Moustafa
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| | - Amira Gamal-Eldeen
- Cancer Biology and Genetics Laboratory Centre of Excellence for Advanced Sciences, NRC, Cairo, Egypt; Biochemistry Department, NRC, Dokki, Cairo, Egypt
| | - Ahmed Emam
- Nanomedicine and Tissue Engineering Laboratory, Medical Research Centre of excellence, National Research Centre (NRC), Cairo, Egypt; Ceramics Department, NRC, Dokki, Cairo, Egypt
| | - Enas El-Hussieny
- Zoology Department, Faculty of Science, Ain-Shams University, Cairo, Egypt
| | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Laboratory, Center of Excellence for advanced Sciences, NRC, Dokki, Cairo, Egypt,; Informatics and System Department, NRC, Dokki, Cairo, Egypt.
| |
Collapse
|
5
|
Haigh O, Depelsenaire AC, Meliga SC, Yukiko SR, McMillan NA, Frazer IH, Kendall MA. CXCL1 gene silencing in skin using liposome-encapsulated siRNA delivered by microprojection array. J Control Release 2014; 194:148-56. [DOI: 10.1016/j.jconrel.2014.08.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 05/09/2014] [Accepted: 08/23/2014] [Indexed: 11/26/2022]
|
6
|
|
7
|
Arora N, Mainali D, Smith EA. Unraveling the role of membrane proteins Notch, Pvr, and EGFR in altering integrin diffusion and clustering. Anal Bioanal Chem 2012; 404:2339-48. [DOI: 10.1007/s00216-012-6362-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/07/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023]
|
8
|
Gu W, Payne E, Sun S, Burgess M, McMillan NAJ. Inhibition of cervical cancer cell growth in vitro and in vivo with dual shRNAs. Cancer Gene Ther 2010; 18:219-27. [PMID: 21102424 DOI: 10.1038/cgt.2010.72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi)-based gene silencing is widely used in laboratories for gene function studies and also holds a great promise for developing treatments for diseases. However, in vivo delivery of RNAi therapy remains a key issue. Lentiviral vectors have been employed for stable gene transfer and gene therapy and therefore are expected to deliver a stable and durable RNAi therapy. But this does not seem to be true in some disease models. Here, we showed that lentivirus delivered short-hairpin RNA (shRNA) against human papillomavirus (HPV) E6/E7 oncogenes were effective for only 2 weeks in a cervical cancer model. However, using this vector to carry two copies of the same shRNA or two shRNAs targeting at two different but closely related genes (HPV E6 and vascular endothelial growth factor) was more effective at silencing the gene targets and inhibiting cell or even tumor growth than their single shRNA counterparts. The cancer cells treated with dual shRNA were also more sensitive to chemotherapeutic drugs than single shRNA-treated cells. These results suggest that a multi-shRNA strategy may be a more attractive approach for developing an RNAi therapy for this cancer.
Collapse
Affiliation(s)
- W Gu
- UQ Diamantina Institute, The University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The goal of personalized medicine is to treat each patient with the best drug: optimal therapeutic benefit with minimal side effects. The genomic revolution is rapidly identifying the genetic contribution to the diseased state as well as its contribution to drug efficacy and toxicity. The ability to perform genome-wide studies has led to an overwhelming number of candidate genes and/or their associated variants; however, understanding which are of therapeutic importance is becoming the greatest unmet need in the personalized medicine field. A related issue is the need to improve our methods of identifying and characterizing therapeutic drugs in the context of the complex genomic landscape of the intact body. Drosophila have proven to be a powerful tool for understanding the basic biological mechanisms of human development. This article will review Drosophila as a whole animal tool for gene and drug discovery. We will examine how Drosophila can be used to both sort through the myriad of hits coming from human genome-wide scans and to dramatically improve the early steps in pharmaceutical drug development.
Collapse
Affiliation(s)
- Yumi Kasai
- Department of Genetics & Genomic Sciences, Mount Sinai School of Medicine, One Gustave L Levy Place, NY 10029-6574, USA
| | | |
Collapse
|
10
|
Abstract
RNA interference (RNAi) is an effective tool for genome-scale, high-throughput analysis of gene function. In the past five years, a number of genome-scale RNAi high-throughput screens (HTSs) have been done in both Drosophila and mammalian cultured cells to study diverse biological processes, including signal transduction, cancer biology, and host cell responses to infection. Results from these screens have led to the identification of new components of these processes and, importantly, have also provided insights into the complexity of biological systems, forcing new and innovative approaches to understanding functional networks in cells. Here, we review the main findings that have emerged from RNAi HTS and discuss technical issues that remain to be improved, in particular the verification of RNAi results and validation of their biological relevance. Furthermore, we discuss the importance of multiplexed and integrated experimental data analysis pipelines to RNAi HTS.
Collapse
Affiliation(s)
- Stephanie Mohr
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
Dutta T, Burgess M, McMillan NAJ, Parekh HS. Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:463-70. [PMID: 20044033 DOI: 10.1016/j.nano.2009.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 10/08/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Although small interfering RNA (siRNA) treatment holds great promise for the treatment of cancers, the field has been held back by the availability of suitable delivery vehicles. For cervical cancer the E6 and E7 oncogenes are ideal siRNA targets for treatment. The purpose of the present study was to explore the potential of dendrosomes for the delivery of siRNA targeting E6 and E7 proteins of cervical cancer cells in vitro. Optimization of dendrimer generation and nitrogen-to-phosphate (N/P) ratio was carried out using dendrimer-fluorescein isothiocyanate oligo complexes. The optimized N/P ratios were used in formulating complexes between dendrimers and siRNA targeting green fluorescence protein (siGFP). Although formulation 4D100 (dendrimer-siRNA complex) displayed the highest GFP knockdown, it was also found to be highly toxic to cells. In the final formulation 4D100 was encapsulated into dendrosomes so as to mask these toxic effects. The optimized dendrosomal formulation (DF), DF3 was found to possess a siGFP-entrapment efficiency of 49.76% +/- 1.62%, vesicle size of 154 +/- 1.73 nm, and zeta potential of +3.21 +/- 0.07 mV. The GFP knockdown efficiency of DF3 (dendrosome) was found to be almost identical to that of 4D100, but the former was completely nontoxic to the cells. DF3 containing siRNA against E6 and E7 was found to knock down the target genes considerably, as compared with the other formulations tested. Our results imply that dendrosomes hold potential for the delivery of siRNA and that a suitable targeting strategy could be useful for applications in vivo. FROM THE CLINICAL EDITOR siRNA treatment holds great promise for the treatment of cancers, but overall, the availability of suitable delivery vehicles remains a major issue. The purpose of this study was to explore the potential of dendrosomes for the delivery of siRNA targeting specific proteins in cervical cancer cells in vitro. The results suggest that dendrosomes hold potential for the delivery of siRNA and a suitable targeting strategy could be useful for applications in vivo.
Collapse
Affiliation(s)
- Tathagata Dutta
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
12
|
Gene silencing in human embryonic stem cells by RNA interference. Biochem Biophys Res Commun 2009; 390:1106-10. [DOI: 10.1016/j.bbrc.2009.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 10/08/2009] [Indexed: 12/27/2022]
|
13
|
Hu X, Yu N, Fu L, Su W, Huang G, Wu Y, Huang H, Huang H. Downregulation of human telomerase reverse transcriptase through anti-C-myc siRNA in human colon cancer Colo 320 cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2009; 28:1-11. [PMID: 19116866 DOI: 10.1080/15257770802581633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The c-Myc and human telomerase reverse transcriptase gene (hTERT) gene are frequently deregulated and overexpressed in malignancy. hTERT activity is induced by c-Myc and strategies designed to inhibit c-Myc expression in cancer cells may have considerable therapeutic value. We designed and used a short hairpin RNA to inhibit c-Myc expression in Colo 320 cells and validated its effect on cell proliferation. In this study, four c-Myc-shRNA expression vectors were constructed and introduced into Colo 320 cells. The effects of c-Myc silencing on tumor cell growth was assessed by soft agar assay and DNA synthesis and MTT experiments. The expressions of c-Myc and hTERT were also assessed by real-time reverse transcription-polymerase chain reaction and Western blot analysis. Upon transient transfection with plasmid encoding shRNA, it was found that expression of c-Myc and hTERT decreased in shRNA-transfected cells. The downregulation of c-Myc and hTERT inhibited cell growth, shortened telomere lengths, and suppressed telomerase activity. In conclusion, our findings demonstrate that shRNA of c-Myc can inhibit the DNA replication in Colo 320 cells effectively and reduce telomere length and telomerase activity; therefore, it could be used as a new potential anticancer tool for therapy of human colon cancer.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Adolescent Health and Maternal and Child Health Care, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hao H, Nancai Y, Lei F, Xiong W, Wen S, Guofu H, Yanxia W, Hanju H, Qian L, Hong X. siRNA directed against c-Myc inhibits proliferation and downregulates human telomerase reverse transcriptase in human colon cancer Colo 320 cells. J Exp Clin Cancer Res 2008; 27:27. [PMID: 18694522 PMCID: PMC2526986 DOI: 10.1186/1756-9966-27-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 08/12/2008] [Indexed: 11/10/2022] Open
Abstract
The c-Myc and human telomerase reverse transcriptase gene (hTERT) gene are frequently deregulated and overexpressed in malignancy. hTERT activity is induced by c-Myc and strategies designed to inhibit c-Myc expression in cancer cells may have considerable therapeutic value. We designed and used a short hairpin RNA to inhibit c-Myc expression in Colo 320 cells and validated its effect on cell proliferation. In this study, four c-Myc-shRNA expression vectors were constructed and introduced into Colo 320 cells. The effects of c-Myc silencing on tumor cell growth was assessed by soft agar assay and DNA synthesis experiments. The expressions of c-Myc and hTERT were also assessed by real-time reverse transcription-polymerase chain reaction and Western blot analysis. Upon transient transfection with plasmid encoding shRNA, it was found that expression of c-Myc and hTERT decreased in shRNA-transfected cells. The downregulation of c-Myc and hTERT inhibited cell growth, shortened telomere lengths, and suppressed telomerase activity. In conclusion, our findings demonstrate that shRNA of c-Myc can inhibit the DNA replication in Colo 320 cells effectively and reduce telomere length and telomerase activity, therefore, it could be used as a new potential anticancer tool for therapy of human colon cancer.
Collapse
Affiliation(s)
- Huang Hao
- Center of Experimental Medicine, Wuhan No,1 Hospital, Wuhan, 430022, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hongxing Z, Nancai Y, Wen S, Guofu H, Yanxia W, Hanju H, Qian L, Wei M, Yandong Y, Hao H. Depletion of c-Myc inhibits human colon cancer colo 320 cells' growth. Cancer Biother Radiopharm 2008; 23:229-37. [PMID: 18454692 DOI: 10.1089/cbr.2007.0441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human colon cancer is the leading cause of cancer death in both men and women worldwide. The c-Myc gene is frequently deregulated and overexpressed in this malignancy, and strategies designed to inhibit c-Myc expression in cancer cells may have considerable therapeutic value. We design and use short hairpin RNA (shRNA) to inhibit c-Myc expression in Colo 320 cells and validat its effect on cell proliferation. In this study, four c-Myc-shRNA expression vectors were constructed and introduced into Colo 320 cells, and the cell cycle and apoptotic cells were analyzed by flow cytometry. The effects of c-Myc silencing on tumor-cell growth was assessed by the soft agar assay and by DNA synthesis experiments. Expression of c-Myc was also assessed by real-time reverse transcription polymerase chain reaction and Western blot analysis. Upon transient transfection with plasmid-encoding shRNA, it was found that expression of c-Myc decreased in shRNA-transfected cells, and the downregulation of c-Myc inhibited cell growth and induced apoptosis in Colo 320 cells. c-Myc downregulation also increased cell population in the G0-G1 phase. In conclusion, our findings demonstrate that shRNA can inhibit the DNA replication and induce apoptosis in Colo 320 cells effectively and, therefore, could be used as a new potential anticancer tool for the therapy of human colon cancer.
Collapse
Affiliation(s)
- Zhang Hongxing
- Center of Experimental Medicine, Wuhan First Hospital, Wuhan City, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gu W, Putral L, McMillan N. siRNA and shRNA as anticancer agents in a cervical cancer model. Methods Mol Biol 2008; 442:159-72. [PMID: 18369785 DOI: 10.1007/978-1-59745-191-8_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
We describe the protocols of using siRNAs, or shRNAs delivered by a lentiviral vector, as a means to silence cancer-causing genes. We use cervical cancer as a model to demonstrate the inhibition of the human papillomavirus (HPV) oncogenes E6 and E7 in cervical cancer cells by RNAi and inhibition of the cell growth in vitro and tumor growth in mouse models. The protocols include methods on siRNA and shRNA design, production of lentiviral-vectored shRNA, transfection or transduction of cervical cancer cells with siRNA or shRNA, and detection of the inhibitory effects of siRNA or shRNA both in vitro and in vitro.
Collapse
Affiliation(s)
- Wenyi Gu
- Cancer Biology Program, Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
17
|
Abstract
Genetic and biochemical analyses in model systems such as the fruitfly, Drosophila melanogaster, have successfully identified several genes that play key regulatory roles in fundamental cellular and developmental processes. However, the analyses of the complete genome sequences of Drosophila, as well as of humans, now reveal that traditional methods have ascribed functions to only a fraction of the total predicted genes. Thus, the roles for many, as yet unidentified genes, in normal development and cancer remain to be discovered. The challenge presented by the various large-scale genome projects is how to derive biologically relevant information from the raw sequences. The past few years have witnessed a rapid growth in the development and implementation high-throughput screening (HTS) technologies that researchers are now using to discover "gene-function" in an unbiased, systematic, and time-efficient manner. In fact one of the most promising functional genomic approach that has emerged in the past few years is based on RNA-interference (RNAi), in which the introduction of double-stranded RNA (dsRNA) into cells or whole organisms has been shown to be an effective tool to suppress endogenous gene expression. The RNAi technology has made it feasible to query the function of every gene in the genome for their potential function in a given cell-biological process using cell-based assays. This chapter discusses the application, advantages, and limitations of this powerful technology in the identification of novel modulators of cell-signaling pathways as well as its future scope and utility in designing more efficient genome-scale screens.
Collapse
Affiliation(s)
- Ramanuj DasGupta
- Department of Pharmacology, New York University School of Medicine/Cancer Institute, New York, NY, USA
| | | |
Collapse
|
18
|
Chen J, Irving A, McMillan N, Gu W. Future of RNAi-based therapies for human papillomavirus-associated cervical cancer. Future Virol 2007. [DOI: 10.2217/17460794.2.6.587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over 99% of cervical cancers are associated with infection of high-risk type human papillomaviruses (HPV). These viruses infect epithelial cells lining the cervix and express the early viral genes E6 and E7, which are oncogenes and are primarily responsible for the transformation of the epithelial cells. The continuous expression of those genes is essential for maintenance of the cancer cell phenotype and viability. These viral genes can be silenced using oligonucleotide-based techniques, for example RNAi, antisense RNA and ribozymes. In spite of promising results in vitro and in vivo, in mice, these methods have thus far proved unsuccessful in humans, owing to the lack of an effective delivery system amongst other limitations. In this review we will discuss potential gene-silencing strategies in cervical cancer that would target both viral genes such as E6 and E7, and cellular genes that become deregulated such as E2F, p53, Akt, mTor, NF-κB or Bcl-2. By investigating these approaches we may generate an effective treatment for HPV-induced cervical cancer using gene silencing.
Collapse
Affiliation(s)
- Jiezhong Chen
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Aaron Irving
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Nigel McMillan
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Wenyi Gu
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| |
Collapse
|
19
|
Haney SA. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets. Expert Opin Ther Targets 2007; 11:1429-41. [DOI: 10.1517/14728222.11.11.1429] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
21
|
Hao H, Xin T, Nancai Y, Yanxia W, Qian L, Wei M, Yandong Y, Hanju H. Short-interfering RNA-mediated silencing of proliferating cell nuclear antigen inhibit proliferation and induce apoptosis in HeLa cells. Int J Gynecol Cancer 2007; 18:36-42. [PMID: 17466038 DOI: 10.1111/j.1525-1438.2007.00955.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is an important protein for DNA polymerase delta in the nucleus, and shown to have a fundamental role in cellular proliferation. It is overexpressed to support cell growth in cervical carcinoma. To study its role in stress response, we design and use short hairpin RNA (shRNA) to inhibit PCNA expression in HeLa cells and validate its effect on cell proliferation. In this study, three PCNA-shRNA expression vectors are constructed and introduced into HeLa cells, and the cell cycle is analyzed by flow cytometry. Apoptotic cell is detected by single cell gel electrophoresis assay (comet assay), and caspase cleavage is studied also. Expression of PCNA is assessed by real-time reverse transcription-polymerase chain reaction and Western blot analysis. Upon transient transfection with plasmid encoding shRNA, it is found that expression of PCNA decreased in shRNA-transfected cells, downregulation of PCNA inhibit cell growth and induce apoptosis in HeLa cells. PCNA downregulation also increase cell population in the G0-G1 phase. In conclusion, our findings demonstrate that shRNA can inhibit the DNA replication and induce apoptosis in HeLa cells effectively and, therefore, could be used as a new potential anticancer tool for therapy of human cervical carcinoma.
Collapse
Affiliation(s)
- H Hao
- Department of Pathogenic Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, Perrimon N, Mathey-Prevot B. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 2006; 3:833-8. [PMID: 16964256 DOI: 10.1038/nmeth935] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/18/2006] [Indexed: 02/07/2023]
Abstract
To evaluate the specificity of long dsRNAs used in high-throughput RNA interference (RNAi) screens performed at the Drosophila RNAi Screening Center (DRSC), we performed a global analysis of their activity in 30 genome-wide screens completed at our facility. Notably, our analysis predicts that dsRNAs containing > or = 19-nucleotide perfect matches identified in silico to unintended targets may contribute to a significant false positive error rate arising from off-target effects. We confirmed experimentally that such sequences in dsRNAs lead to false positives and to efficient knockdown of a cross-hybridizing transcript, raising a cautionary note about interpreting results based on the use of a single dsRNA per gene. Although a full appreciation of all causes of false positive errors remains to be determined, we suggest simple guidelines to help ensure high-quality information from RNAi high-throughput screens.
Collapse
Affiliation(s)
- Meghana M Kulkarni
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006; 7:R100. [PMID: 17076895 PMCID: PMC1794559 DOI: 10.1186/gb-2006-7-10-r100] [Citation(s) in RCA: 3819] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/31/2006] [Indexed: 11/26/2022] Open
Abstract
CellProfiler, the first free, open-source system for flexible and high-throughput cell image analysis is described. Biologists can now prepare and image thousands of samples per day using automation, enabling chemical screens and functional genomics (for example, using RNA interference). Here we describe the first free, open-source system designed for flexible, high-throughput cell image analysis, CellProfiler. CellProfiler can address a variety of biological questions quantitatively, including standard assays (for example, cell count, size, per-cell protein levels) and complex morphological assays (for example, cell/organelle shape or subcellular patterns of DNA or protein staining).
Collapse
Affiliation(s)
- Anne E Carpenter
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Thouis R Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Computer Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | - Colin Clarke
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Computer Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - In Han Kang
- Computer Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ola Friman
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David A Guertin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Joo Han Chang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Jason Moffat
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Polina Golland
- Computer Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
McQuibban GA, Lee JR, Zheng L, Juusola M, Freeman M. Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr Biol 2006; 16:982-9. [PMID: 16713954 DOI: 10.1016/j.cub.2006.03.062] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 11/20/2022]
Abstract
In addition to being energy generators, mitochondria control many cellular processes including apoptosis. They are dynamic organelles, and the machinery of membrane fusion and fission is emerging as a key regulator of mitochondrial biology. We have recently identified a novel and conserved mitochondrial rhomboid intramembrane protease that controls membrane fusion in Saccharomyces cerevisiae by processing the dynamin-like GTPase, Mgm1, thereby releasing it from the membrane. The genetics of mitochondrial membrane dynamics has until now focused primarily on yeast. Here we show that in Drosophila, the mitochondrial rhomboid (Rhomboid-7) is required for mitochondrial fusion during fly spermatogenesis and muscle maturation, both tissues with unusual mitochondrial dynamics. We also find that mutations in Drosophila optic atrophy 1-like (Opa1-like), the ortholog of yeast mgm1, display similar phenotypes, suggesting a shared role for Rhomboid-7 and Opa1-like, as with their yeast orthologs. Loss of human OPA1 leads to dominant optic atrophy, a mitochondrial disease leading to childhood onset blindness. rhomboid-7 mutant flies have severe neurological defects, evidenced by compromised signaling across the first visual synapse, as well as light-induced neurodegeneration of photoreceptors that resembles the human disease. rhomboid-7 mutant flies also have a greatly reduced lifespan.
Collapse
Affiliation(s)
- G Angus McQuibban
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Richardson HE. Vinegar flies turn to porto for cell division cycle meeting. Dev Cell 2006; 11:141-6. [PMID: 16937557 DOI: 10.1016/j.devcel.2006.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Third International Workshop on Drosophila Cell Division Cycle brought together researchers focusing on DNA replication, mitosis, meiosis, cell cycle regulation, checkpoints, asymmetric division, cell and tissue growth, and tumorgenesis. This review describes new findings presented at the meeting that particularly highlight the advantages of the Drosophila systems.
Collapse
Affiliation(s)
- Helena E Richardson
- Cell Cycle and Development Lab, Research Division, MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
26
|
Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC. The application of systems biology to drug discovery. Curr Opin Chem Biol 2006; 10:294-302. [PMID: 16822703 DOI: 10.1016/j.cbpa.2006.06.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 06/21/2006] [Indexed: 01/06/2023]
Abstract
Recent advances in the 'omics' technologies, scientific computing and mathematical modeling of biological processes have started to fundamentally impact the way we approach drug discovery. Recent years have witnessed the development of genome-scale functional screens, large collections of reagents, protein microarrays, databases and algorithms for data and text mining. Taken together, they enable the unprecedented descriptions of complex biological systems, which are testable by mathematical modeling and simulation. While the methods and tools are advancing, it is their iterative and combinatorial application that defines the systems biology approach.
Collapse
Affiliation(s)
- Carolyn R Cho
- Department of Systems Biology, Genome and Proteome Sciences, Novartis Institutes of BioMedical Research, Cambridge MA 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Gu W, Putral L, Hengst K, Minto K, Saunders NA, Leggatt G, McMillan NAJ. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther 2006; 13:1023-32. [PMID: 16810314 DOI: 10.1038/sj.cgt.7700971] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, we investigated the suppressive effect of a short hairpin RNA delivered by a lentiviral vector (LV-shRNA) against human papillomavirus (HPV) type 18 E6 on the expression of the oncogenes E6 and E7 in cervical cancer HeLa cells both in vitro and in vivo. The LV-shRNA effectively delivered the shRNA to HeLa cells and lead to a dose-dependent reduction of E7 protein and the stabilization of E6 target proteins, p53 and p21. Low-dose infection of HeLa cells with LV-shRNA caused reduced cell growth and the induction of senescence, whereas a high-dose infection resulted in specific cell death via apoptosis. Transplant of HeLa cells infected with a low dose of LV-shRNA into Rag-/- mice significantly reduced the tumor weight, whereas transplant of cells infected with a high dose resulted in a complete loss of tumor growth. Systemic delivery of LV-shRNA into mice with established HeLa cell lung metastases led to a significant reduction in the number of tumor nodules. Our data collectively suggest that lentiviral delivery is an effective way to achieve stable suppression of E6/E7 oncogene expression and induce inhibition of tumor growth both in vitro and in vivo. These results encourage further investigation of this form of RNA interference as a promising treatment for cervical cancer.
Collapse
Affiliation(s)
- W Gu
- Cancer Biology Program, Centre for Immunology and Cancer Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Chatterjee-Kishore M, Miller CP. Exploring the sounds of silence: RNAi-mediated gene silencing for target identification and validation. Drug Discov Today 2006; 10:1559-65. [PMID: 16257379 DOI: 10.1016/s1359-6446(05)03623-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drug development begins with the identification and early preclinical validation of novel biological targets, a process often called 'target identification and validation'. This process usually uses various approaches, such as observations from literature and findings from animal or clinical studies, together with cutting edge molecular techniques that include analyses of gene and protein expression, interaction and function. The publication of the human genome has increased research in gene and protein expression analysis that, in combination with RNA interference technology, promises the evaluation of novel functions for known genes, as well as hitherto unknown or unstudied genes with functions relevant to disease.
Collapse
|
29
|
Ding L, Buchholz F. RNAi in embryonic stem cells. ACTA ACUST UNITED AC 2006; 2:11-8. [PMID: 17142881 DOI: 10.1007/s12015-006-0003-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells that can be isolated and grown in vitro from the inner cell mass of blastocysts. Their potential to differentiate into any cell of the body makes them a promising starting material for cell therapy. Much progress has been made in recent years to develop ES cell differentiation protocols employing cocktails of certain growth factors or by using cell-type-restricted promoters driving the expression of selection markers or fluorescent proteins. However, little is known about the molecular details underlying the earliest processes of mammalian development. Genetic tools that provide novel insight into these processes would be very helpful to gain a better molecular understanding and to design better differentiation protocols. Recently, RNAi has emerged as a powerful technology to perform loss-of-function studies in mammalian cells. This technology should be ideal to identify and study genes required for ES cell self-renewal and differentiation. Here, we review the recent advances and challenges of RNAi research in ES cells and we provide a perspective on possible applications to enhance our understanding of ES cell self-renewal and early differentiation.
Collapse
Affiliation(s)
- Li Ding
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | |
Collapse
|
30
|
Bunch TA, Helsten TL, Kendall TL, Shirahatti N, Mahadevan D, Shattil SJ, Brower DL. Amino acid changes in Drosophila alphaPS2betaPS integrins that affect ligand affinity. J Biol Chem 2005; 281:5050-7. [PMID: 16371365 DOI: 10.1074/jbc.m508550200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a ligand-mimetic antibody Fab fragment specific for Drosophila alphaPS2betaPS integrins to probe the ligand binding affinities of these invertebrate receptors. TWOW-1 was constructed by inserting a fragment of the extracellular matrix protein Tiggrin into the H-CDR3 of the alphavbeta3 ligand-mimetic antibody WOW-1. The specificity of alphaPS2betaPS binding to TWOW-1 was demonstrated by numerous tests used for other integrin-ligand interactions. Binding was decreased in the presence of EDTA or RGD peptides and by mutation of the TWOW-1 RGD sequence or the betaPS metal ion-dependent adhesion site (MIDAS) motif. TWOW-1 binding was increased by mutations in the alphaPS2 membrane-proximal cytoplasmic GFFNR sequence or by exposure to Mn2+. Although Mn2+ is sometimes assumed to promote maximal integrin activity, TWOW-1 binding in Mn2+ could be increased further by the alphaPS2 GFFNR --> GFANA mutation. A mutation in the betaPS I domain (betaPS-b58; V409D) greatly increased ligand binding affinity, explaining the increased cell spreading mediated by alphaPS2betaPS-b58. Further mutagenesis of this residue suggested that Val-409 normally stabilizes the closed head conformation. Mutations that potentially reduce interaction of the integrin beta subunit plexin-semaphorin-integrin (PSI) and stalk domains have been shown to have activating properties. We found that complete deletion of the betaPS PSI domain enhanced TWOW-1 binding. Moreover the PSI domain is dispensable for at least some other integrin functions because betaPS-DeltaPSI displayed an enhanced ability to mediate cell spreading. These studies establish a means to evaluate mechanisms and consequences of integrin affinity modulation in a tractable model genetic system.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Molecular and Cellular Biology, Arizona Cancer Center, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
32
|
Abstract
Mammalian genome sequencing has identified numerous genes requiring functional annotation. The discovery that dsRNA can direct gene-specific silencing in both model organisms and mammalian cells through RNA interference (RNAi) has provided a platform for dissecting the function of independent genes. The generation of large-scale RNAi libraries targeting all predicted genes within mouse, rat and human cells, combined with the large number of cell-based assays, provides a unique opportunity to perform high-throughput genetics in these complex cell systems. Many different formats exist for the generation of genome-wide RNAi libraries for use in mammalian cells. Furthermore, the use of these libraries in either genetic screens or genetic selections allows for the identification of known and novel genes involved in complex cellular phenotypes and biological processes, some of which underpin human disease. In this review, we examine genome-wide RNAi libraries used in model organisms and mammalian cells and provide examples of how these information rich reagents can be used for determining gene function, discovering novel therapeutic targets and dissecting signalling pathways, cellular processes and complex phenotypes.
Collapse
Affiliation(s)
- Lara M Cullen
- Johnson and Johnson Research Pty Ltd, Australian Technology Park, Sydney, New South Wales
| | | |
Collapse
|
33
|
Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ. Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 2005; 37:1281-8. [PMID: 16200065 DOI: 10.1038/ng1650] [Citation(s) in RCA: 477] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/18/2005] [Indexed: 12/16/2022]
Abstract
Loss-of-function phenotypes often hold the key to understanding the connections and biological functions of biochemical pathways. We and others previously constructed libraries of short hairpin RNAs that allow systematic analysis of RNA interference-induced phenotypes in mammalian cells. Here we report the construction and validation of second-generation short hairpin RNA expression libraries designed using an increased knowledge of RNA interference biochemistry. These constructs include silencing triggers designed to mimic a natural microRNA primary transcript, and each target sequence was selected on the basis of thermodynamic criteria for optimal small RNA performance. Biochemical and phenotypic assays indicate that the new libraries are substantially improved over first-generation reagents. We generated large-scale-arrayed, sequence-verified libraries comprising more than 140,000 second-generation short hairpin RNA expression plasmids, covering a substantial fraction of all predicted genes in the human and mouse genomes. These libraries are available to the scientific community.
Collapse
Affiliation(s)
- Jose M Silva
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
DasGupta R, Kaykas A, Moon RT, Perrimon N. Functional genomic analysis of the Wnt-wingless signaling pathway. Science 2005; 308:826-33. [PMID: 15817814 DOI: 10.1126/science.1109374] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Wnt-Wingless (Wg) pathway is one of a core set of evolutionarily conserved signaling pathways that regulates many aspects of metazoan development. Aberrant Wnt signaling has been linked to human disease. In the present study, we used a genomewide RNA interference (RNAi) screen in Drosophila cells to screen for regulators of the Wnt pathway. We identified 238 potential regulators, which include known pathway components, genes with functions not previously linked to this pathway, and genes with no previously assigned functions. Reciprocal-Best-Blast analyses reveal that 50% of the genes identified in the screen have human orthologs, of which approximately 18% are associated with human disease. Functional assays of selected genes from the cell-based screen in Drosophila, mammalian cells, and zebrafish embryos demonstrated that these genes have evolutionarily conserved functions in Wnt signaling. High-throughput RNAi screens in cultured cells, followed by functional analyses in model organisms, prove to be a rapid means of identifying regulators of signaling pathways implicated in development and disease.
Collapse
Affiliation(s)
- Ramanuj DasGupta
- Department of Genetics, Howard Hughes Medical Institute (HHMI), Harvard Medical School, New Research Building, No. 339, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
Yang CP, Chen MS, Liaw GJ, Chen SF, Chou G, Fan SS. Using Drosophila eye as a model system to characterize the function of mars gene in cell-cycle regulation. Exp Cell Res 2005; 307:183-93. [PMID: 15922738 DOI: 10.1016/j.yexcr.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
Human hepatoma up-regulated protein (HURP), a cell-cycle regulator, is found consistently overexpressed in human hepatocellular carcinoma. At present, the function of HURP in cell-cycle regulation and carcinogenesis remains unclear. In database mining, we have identified a mars gene in Drosophila, which encodes a protein with a high similarity to HURP in its guanylate kinase-associated protein (GKAP) motif. Overexpression but not down-regulation of mars in eye discs resulted in a higher mitotic index along with a high frequency of mitotic defects, including misalignment of chromosomes and mispositioned centrosomes, at the second mitotic wave (SMW). The consequence of mitotic defects impairs cell-cycle progression, and causes cell death posterior to the furrow. Immunocytochemical studies also have indicated that the expression of Mars is cell cycle regulated, and that its subcellular localization is dynamically changed during cell-cycle progression. Furthermore, we also demonstrated that the first 198 amino acids at the N-terminus of Mars are responsible for the degradation of Mars in non-mitotic cells. Together, we report the use Drosophila eye as a model system to characterize the function of the mars gene in cell-cycle regulation.
Collapse
Affiliation(s)
- Ching-Po Yang
- Department of Life Science and Life Science Research Center, Tunghai University, Taichung, 407 Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Julian Downward
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|