1
|
Sfogliarini C, Pepe G, Cesta CM, Allegretti M, Locati M, Vegeto E. The immune activity of selective estrogen receptor modulators is gene and macrophage subtype-specific yet converges on Il1b downregulation. Biomed Pharmacother 2023; 165:115008. [PMID: 37442065 DOI: 10.1016/j.biopha.2023.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Raloxifene belongs to the family of Selective Estrogen Receptor Modulators (SERMs), which are drugs widely prescribed for Estrogen Receptor alpha (ERα)-related pathologies. Recently, SERMs are being tested in repurposing strategies for ERα-independent clinical indications, including a wide range of microbial infections. Macrophages are central in the fight against pathogen invasion. Despite estrogens have been shown to regulate macrophage phenotype, SERMs activity in these cells is still poorly defined. We investigated the activity of Raloxifene in comparison with another widely used SERM, Tamoxifen, on immune gene expression in macrophages obtained from mouse and human tissues, including mouse peritoneal macrophages, bone marrow-derived macrophages, microglia or human blood-derived macrophages, assaying for the involvement of the ERα, PI3K and NRF2 pathways also under inflammatory conditions. Our data demonstrate that Raloxifene acts by a dual mechanism, which entails ERα antagonism and off-target mediators. Moreover, micromolar concentrations of Raloxifene increase the expression of immune metabolic genes, such as Vegfa and Hmox1, through PI3K and NRF2 activation selectively in peritoneal macrophages. Conversely, Il1b mRNA down-regulation by SERMs is consistently observed in all macrophage subtypes and unrelated to the PI3K/NRF2 system. Importantly, the production of the inflammatory cytokine TNFα induced by the bacterial endotoxin, LPS, is potentiated by SERMs and paralleled by the cell subtype-specific increase in IL1β secretion. This work extends our knowledge on the biological and molecular mechanisms of SERMs immune activity and indicate macrophages as a pharmacological target for the exploitation of the antimicrobial potential of these drugs.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy.
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
2
|
Sfogliarini C, Pepe G, Dolce A, Della Torre S, Cesta MC, Allegretti M, Locati M, Vegeto E. Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Front Pharmacol 2022; 13:879020. [PMID: 35431927 PMCID: PMC9006819 DOI: 10.3389/fphar.2022.879020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
The Modulation of Interferon Regulatory Factor-1 via Caspase-1-Mediated Alveolar Macrophage Pyroptosis in Ventilator-Induced Lung Injury. Mediators Inflamm 2022; 2022:1002582. [PMID: 35462787 PMCID: PMC9033353 DOI: 10.1155/2022/1002582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background To examine the role of interferon regulatory factor-1 (IRF-1) and to explore the potential molecular mechanism in ventilator-induced lung injury. Methods Wild-type C57BL/6 mice and IRF-1 gene knockout mice/caspase-1 knockout mice were mechanically ventilated with a high tidal volume to establish a ventilator-related lung injury model. The supernatant of the alveolar lavage solution and the lung tissues of these mice were collected. The degree of lung injury was examined by hematoxylin and eosin staining. The protein and mRNA expression levels of IRF-1, caspase-1 (p10), and interleukin (IL)-1β (p17) in lung tissues were measured by western blot and quantitative real-time polymerase chain reaction, respectively. Pyroptosis of alveolar macrophages was detected by flow cytometry and western blotting for active caspase-1 and cleaved GSDMD. An enzyme-linked immunosorbent assay was used to measure the levels of IL-1β, IL-18, IL-6, TNF-α, and high mobility group box protein 1 (HMGB-1) in alveolar lavage fluid. Results IRF-1 expression and caspase-1-dependent pyroptosis in lung tissues of wild-type mice were significantly upregulated after mechanical ventilation with a high tidal volume. The degree of ventilator-related lung injury in IRF-1 gene knockout mice and caspase-1 knockout mice was significantly improved compared to that in wild-type mice, and the levels of GSDMD, IL-1β, IL-18, IL-6, and HMGB-1 in alveolar lavage solution were significantly reduced (P < 0.05). The expression levels of caspase-1 (p10), cleaved GSDMD, and IL-1β (p17) proteins in lung tissues of IRF-1 knockout mice with ventilator-related lung injury were significantly lower than those of wild-type mice, and the level of pyroptosis of macrophages in alveolar lavage solution was significantly reduced. Conclusions IRF-1 may aggravate ventilator-induced lung injury by regulating the activation of caspase-1 and the focal death of alveolar macrophages.
Collapse
|
4
|
Pepe G, Sfogliarini C, Rizzello L, Battaglia G, Pinna C, Rovati G, Ciana P, Brunialti E, Mornata F, Maggi A, Locati M, Vegeto E. ERα-independent NRF2-mediated immunoregulatory activity of tamoxifen. Biomed Pharmacother 2021; 144:112274. [PMID: 34653752 DOI: 10.1016/j.biopha.2021.112274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
Sex differences in immune-mediated diseases are linked to the activity of estrogens on innate immunity cells, including macrophages. Tamoxifen (TAM) is a selective estrogen receptor modulator (SERM) used in estrogen receptor-alpha (ERα)-dependent breast cancers and off-target indications such as infections, although the immune activity of TAM and its active metabolite, 4-OH tamoxifen (4HT), is poorly characterized. Here, we aimed at investigating the endocrine and immune activity of these SERMs in macrophages. Using primary cultures of female mouse macrophages, we analyzed the expression of immune mediators and activation of effector functions in competition experiments with SERMs and 17β-estradiol (E2) or the bacterial endotoxin LPS. We observed that 4HT and TAM induce estrogen antagonist effects when used at nanomolar concentrations, while pharmacological concentrations that are reached by TAM in clinical settings regulate the expression of VEGFα and other immune activation genes by ERα- and G protein-coupled receptor 1 (GPER1)-independent mechanisms that involve NRF2 through PI3K/Akt-dependent mechanisms. Importantly, we observed that SERMs potentiate cell phagocytosis and modify the effects of LPS on the expression of inflammatory cytokines, such as TNFα and IL1β, with an overall increase in cell inflammatory phenotype, further sustained by potentiation of IL1β secretion through caspase-1 activation. Altogether, our data unravel a novel molecular mechanism and immune functions for TAM and 4HT, sustaining their repurposing in infective and other estrogen receptors-unrelated pathologies.
Collapse
Affiliation(s)
- Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Loris Rizzello
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; National Institute of Molecular Genetics (INGM) Milan, 20122 Milan, Italy
| | - Giuseppe Battaglia
- Department of Chemistry and; The EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, WC1H 0AJ London, U.K; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Institute for Physics of Living System, University College London, WC1E 6BT London, U.K; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Christian Pinna
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Paolo Ciana
- Department of Health Sciences University of Milan, 20142 Milan, Italy
| | - Electra Brunialti
- Department of Health Sciences University of Milan, 20142 Milan, Italy
| | - Federica Mornata
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
5
|
Escher TE, Dandawate P, Sayed A, Hagan CR, Anant S, Lewis-Wambi J. Enhanced IFNα Signaling Promotes Ligand-Independent Activation of ERα to Promote Aromatase Inhibitor Resistance in Breast Cancer. Cancers (Basel) 2021; 13:5130. [PMID: 34680281 PMCID: PMC8534010 DOI: 10.3390/cancers13205130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023] Open
Abstract
Aromatase inhibitors (AIs) reduce estrogen levels up to 98% as the standard practice to treat postmenopausal women with estrogen receptor-positive (ER+) breast cancer. However, approximately 30% of ER+ breast cancers develop resistance to treatment. Enhanced interferon-alpha (IFNα) signaling is upregulated in breast cancers resistant to AIs, which drives expression of a key regulator of survival, interferon-induced transmembrane protein 1 (IFITM1). However, how upregulated IFNα signaling mediates AI resistance is unknown. In this study, we utilized MCF-7:5C cells, a breast cancer cell model of AI resistance, and demonstrate that these cells exhibit enhanced IFNα signaling and ligand-independent activation of the estrogen receptor (ERα). Experiments demonstrated that STAT1, the mediator of intracellular signaling for IFNα, can interact directly with ERα. Notably, inhibition of IFNα signaling significantly reduced ERα protein expression and ER-regulated genes. In addition, loss of ERα suppressed IFITM1 expression, which was associated with cell death. Notably, chromatin immunoprecipitation experiments validated that both ERα and STAT1 associate with ERE sequences in the IFITM1 promoter. Overall, hyperactivation of IFNα signaling enhances ligand-independent activation of ERα, which promotes ER-regulated, and interferon stimulated gene expression to promote survival in AI-resistant breast cancer cells.
Collapse
Affiliation(s)
- Taylor E. Escher
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Afreen Sayed
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
| | - Christy R. Hagan
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Joan Lewis-Wambi
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (T.E.E.); (P.D.); (A.S.); (C.R.H.); (S.A.)
- The University of Kansas Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
IFN Regulatory Factor 1 Mediates Macrophage Pyroptosis Induced by Oxidized Low-Density Lipoprotein in Patients with Acute Coronary Syndrome. Mediators Inflamm 2019; 2019:2917128. [PMID: 31871426 PMCID: PMC6913184 DOI: 10.1155/2019/2917128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Atherosclerosis (AS) is recognized as a chronic inflammatory disease. It is caused by the interaction between inflammatory cells such as macrophages, dendritic cells, and lipoproteins. Evidence has revealed that macrophage pyroptosis in lesion contributes to the formation of the necrotic core and thinning of the fibrous cap, which plays crucial roles in the onset of acute coronary syndrome (ACS). IFN regulatory factor 1 (IRF-1) is a pleiotropic transcription factor involved in various immune processes and cell death. We propose that IRF-1 may be implicated in macrophage pyroptosis in the pathogenesis of AS and ACS. Methods Patients with stable angina, unstable angina, acute myocardial infarction, and clinical presentation of chest pain were enrolled. The expression of IRF-1 in human PBMC-derived macrophages was analyzed. Then, overexpression and inhibition of IRF-1 was performed in macrophages from patients with ACS to explore the possible role and mechanism of IRF-1 involvement in macrophage pyroptosis. Results The expression of IRF-1 in macrophages was upregulated in ACS patients. The overexpression or inhibition of IRF-1 effectively modulated caspase-1 activation, as well as macrophage lysis, expression of gasdermin D-N (GSDMD-N), production of IL-1β and IL-18, and activation of NLRP3-ASC inflammasome, which were all inhibited by caspase-1 inhibitor. Further experiments revealed that pyroptosis and the downstream inflammatory response in AS induced by IRF-1 is a process that is dependent on reactive oxygen species (ROS) generation. Conclusion Our observations suggest that IRF-1 potently activates ox-LDL-induced macrophage pyroptosis and may play an important role in AS and ACS.
Collapse
|
7
|
Nicolini A, Ferrari P, Rossi G, Carpi A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr Relat Cancer 2018; 25:R577–R604. [PMID: 30306784 DOI: 10.1530/erc-18-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become clearer that advanced cancer, especially advanced breast cancer, is an entirely displayed pathological system that is much more complex than previously considered. However, the direct relationship between tumour growth and immune evasion can represent a general rule governing the pathological cancer system from the initial cancer cells to when the system is entirely displayed. Accordingly, a refined pathobiological model and a novel therapeutic strategy are proposed. The novel therapeutic strategy is based on therapeutically induced conditions (undetectable tumour burden and/or a prolonged tumour ‘resting state’), which enable an efficacious immune response in advanced breast and other types of solid cancers.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice. Shock 2018; 46:329-38. [PMID: 26939040 PMCID: PMC4978602 DOI: 10.1097/shk.0000000000000595] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation.
Collapse
|
9
|
Fang Q, Yao S, Luo G, Zhang X. Identification of differentially expressed genes in human breast cancer cells induced by 4-hydroxyltamoxifen and elucidation of their pathophysiological relevance and mechanisms. Oncotarget 2018; 9:2475-2501. [PMID: 29416786 PMCID: PMC5788654 DOI: 10.18632/oncotarget.23504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER+- than in ER--breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER+-tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER+ MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways.
Collapse
Affiliation(s)
- Qi Fang
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Shuang Yao
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xiaoying Zhang
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
10
|
Armstrong MJ, Stang MT, Liu Y, Yan J, Pizzoferrato E, Yim JH. IRF-1 inhibits NF-κB activity, suppresses TRAF2 and cIAP1 and induces breast cancer cell specific growth inhibition. Cancer Biol Ther 2016; 16:1029-41. [PMID: 26011589 DOI: 10.1080/15384047.2015.1046646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Interferon Regulatory Factor (IRF)-1, originally identified as a transcription factor of the human interferon (IFN)-β gene, mediates tumor suppression and may inhibit oncogenesis. We have shown that IRF-1 in human breast cancer cells results in the down-regulation of survivin, tumor cell death, and the inhibition of tumor growth in vivo in xenogeneic mouse models. In this current report, we initiate studies comparing the effect of IRF-1 in human nonmalignant breast cell and breast cancer cell lines. While IRF-1 in breast cancer cells results in growth inhibition and cell death, profound growth inhibition and cell death are not observed in nonmalignant human breast cells. We show that TNF-α or IFN-γ induces IRF-1 in breast cancer cells and results in enhanced cell death. Abrogation of IRF-1 diminishes TNF-α and IFN-γ-induced apoptosis. We test the hypothesis that IRF-1 augments TNF-α-induced apoptosis in breast cancer cells. Potential signaling networks elicited by IRF-1 are investigated by evaluating the NF-κB pathway. TNF-α and/or IFN-γ results in decreased presence of NF-κB p65 in the nucleus of breast cancer cells. While TNF-α and/or IFN-γ can induce IRF-1 in nonmalignant breast cells, a marked change in NF-κB p65 is not observed. Moreover, the ectopic expression of IRF-1 in breast cancer cells results in caspase-3, -7, -8 cleavage, inhibits NF-κB activity, and suppresses the expression of molecules involved in the NF-κB pathway. These data show that IRF-1 in human breast cancer cells elicits multiple signaling networks including intrinsic and extrinsic cell death and down-regulates molecules involved in the NF-κB pathway.
Collapse
Key Words
- Ad, adenovirus
- Cdk, cyclin-dependent kinase
- DISC, death-inducing signaling complex
- DMEM, Dulbecco's Modified Eagle's Medium
- DR, death receptor
- EGFP, enhanced green fluorescent protein
- ER, estrogen receptor
- FADD, fas-associated death domain
- FBS, Fetal Bovine Serum
- FITC, fluorescein isothiocyanate
- FLICE, fas-associated death domain protein interleukin-1 β-converting enzyme
- IAP
- IFN-β, interferon-β
- IFN-γ, interferon-gamma
- IKK, IκB, kinase complex
- IRF-1
- IRF-1, interferon regulatory factor-1
- IκB, Inhibitory kappaB
- MOI, multiplicity of infection
- MTT, methylthiazoltetrazolium
- NEMO, NF-κB essential modulator
- NF-κB
- NF-κB, nuclear factor of kappa Beta
- RIP1, receptor interacting protein 1
- SCID, severe combined immunodeficiency
- STAT, signal transducer and activator of transcription
- Smac/DIABLO, Second mitochondria-derived activator of caspase/Direct IAP-binding protein with low pI
- TNF-α, tumor necrosis factor-α
- TNFR, tumor necrosis factor receptor
- TRADD, TNF receptor associated protein with a death domain
- TRAF2, tumor necrosis factor receptor-associated factor 2
- TRAIL, tumor necrosis factor-related apoptosis-inducing ligand
- XIAP, X-linked inhibitor of apoptosis protein
- apoptosis
- breast cancer
- cFLIP, cellular FLICE inhibitory protein
- cIAP1, c-inhibitor of apoptosis
- p53
- siRNA, small interfering RNA
- tumor suppressor
- β-gal, β-galactosidase
Collapse
Affiliation(s)
- Michaele J Armstrong
- a Department of Surgery; University of Pittsburgh School of Medicine ; Pittsburgh , PA , USA
| | | | | | | | | | | |
Collapse
|
11
|
Cook KL, Schwartz-Roberts JL, Baumann WT, Clarke R. Linking autophagy with inflammation through IRF1 signaling in ER+ breast cancer. Mol Cell Oncol 2015; 3:e1023928. [PMID: 27308537 DOI: 10.1080/23723556.2015.1023928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Resistance to antiestrogen therapy remains a critical determinant of mortality in patients affected by ER+ breast cancer. Our previous work identified autophagy and interferon regulatory factor 1 (IRF1) signaling as key regulators of this process. We have recently demonstrated a novel reciprocal interaction between IRF1 and ATG7, linking inflammation and autophagy.
Collapse
Affiliation(s)
- Katherine L Cook
- Department of Oncology and Lombardi Comprehensive Cancer Center; Georgetown University Medical Center, Washington, DC USA; Department of Surgery, Hypertension and Vascular Research Center, Wake Forest Comprehensive Cancer Center; Wake Forest University, Winston-Salem, NC USA
| | - Jessica L Schwartz-Roberts
- Department of Oncology and Lombardi Comprehensive Cancer Center; Georgetown University Medical Center , Washington, DC USA
| | - William T Baumann
- Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University , Blacksburg, VA USA
| | - Robert Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center; Georgetown University Medical Center , Washington, DC USA
| |
Collapse
|
12
|
Schwartz-Roberts JL, Cook KL, Chen C, Shajahan-Haq AN, Axelrod M, Wärri A, Riggins RB, Jin L, Haddad BR, Kallakury BV, Baumann WT, Clarke R. Interferon regulatory factor-1 signaling regulates the switch between autophagy and apoptosis to determine breast cancer cell fate. Cancer Res 2015; 75:1046-55. [PMID: 25576084 PMCID: PMC4359953 DOI: 10.1158/0008-5472.can-14-1851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interferon regulatory factor-1 (IRF1) is a tumor suppressor that regulates cell fate in several cell types. Here, we report an inverse correlation in expression of nuclear IRF1 and the autophagy regulator ATG7 in human breast cancer cells that directly affects their cell fate. In mice harboring mutant Atg7, nuclear IRF1 was increased in mammary tumors, spleen, and kidney. Mechanistic investigations identified ATG7 and the cell death modulator beclin-1 (BECN1) as negative regulators of IRF1. Silencing ATG7 or BECN1 caused estrogen receptor-α to exit the nucleus at the time when IRF1 nuclear localization occurred. Conversely, silencing IRF1 promoted autophagy by increasing BECN1 and blunting IGF1 receptor and mTOR survival signaling. Loss of IRF1 promoted resistance to antiestrogens, whereas combined silencing of ATG7 and IRF1 restored sensitivity to these agents. Using a mathematical model to prompt signaling hypotheses, we developed evidence that ATG7 silencing could resensitize IRF1-attenuated cells to apoptosis through mechanisms that involve other estrogen-regulated genes. Overall, our work shows how inhibiting the autophagy proteins ATG7 and BECN1 can regulate IRF1-dependent and -independent signaling pathways in ways that engender a new therapeutic strategy to attack breast cancer.
Collapse
Affiliation(s)
- Jessica L Schwartz-Roberts
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Katherine L Cook
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Chun Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Ayesha N Shajahan-Haq
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Margaret Axelrod
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Anni Wärri
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Rebecca B Riggins
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Lu Jin
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Bassem R Haddad
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC
| | - William T Baumann
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Robert Clarke
- Department of Physiology and Biophysics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC. Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC.
| |
Collapse
|
13
|
Dabydeen SA, Kang K, Díaz-Cruz ES, Alamri A, Axelrod ML, Bouker KB, Al-Kharboosh R, Clarke R, Hennighausen L, Furth PA. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis 2014; 36:122-32. [PMID: 25421723 DOI: 10.1093/carcin/bgu237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Response to breast cancer chemoprevention can depend upon host genetic makeup and initiating events leading up to preneoplasia. Increased expression of aromatase and estrogen receptor (ER) is found in conjunction with breast cancer. To investigate response or resistance to endocrine therapy, mice with targeted overexpression of Esr1 or CYP19A1 to mammary epithelial cells were employed, representing two direct pathophysiological interventions in estrogen pathway signaling. Both Esr1 and CYP19A1 overexpressing mice responded to letrozole with reduced hyperplastic alveolar nodule prevalence and decreased mammary epithelial cell proliferation. CYP19A1 overexpressing mice were tamoxifen sensitive but Esr1 overexpressing mice were tamoxifen resistant. Increased ER expression occurred with tamoxifen resistance but no consistent changes in progesterone receptor, pSTAT3, pSTAT5, cyclin D1 or cyclin E levels in association with response or resistance were found. RNA-sequencing (RNA-seq) was employed to seek a transcriptome predictive of tamoxifen resistance using these models and a second tamoxifen-resistant model, BRCA1 deficient/Trp53 haploinsufficient mice. Sixty-eight genes associated with immune system processing were upregulated in tamoxifen-resistant Esr1- and Brca1-deficient mice, whereas genes related to aromatic compound metabolic process were upregulated in tamoxifen-sensitive CYP19A1 mice. Interferon regulatory factor 7 was identified as a key transcription factor regulating these 68 immune processing genes. Two loci encoding novel transcripts with high homology to human immunoglobulin lambda-like polypeptide 1 were uniquely upregulated in the tamoxifen-resistant models. Letrozole proved to be a successful alternative to tamoxifen. Further study of transcriptional changes associated with tamoxifen resistance including immune-related genes could expand our mechanistic understanding and lead to biomarkers predictive of escape or response to endocrine therapies.
Collapse
Affiliation(s)
- Sarah A Dabydeen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Keunsoo Kang
- Laboratory Genetics and Physiology, NIDDK, NIH, Bethesda, MD 20892, USA Department of Microbiology, Dankook University, Cheonan 330-714, Republic of Korea
| | - Edgar S Díaz-Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Department of Pharmaceutical, Social, & Administrative Sciences, Belmont University College of Pharmacy, Nashville, TN 37212, USA
| | - Ahmad Alamri
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Clinical Laboratories Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia and
| | - Margaret L Axelrod
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Kerrie B Bouker
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Rawan Al-Kharboosh
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | - Priscilla A Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA, Department of Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
14
|
Retinoic Acid Receptor Alpha Amplifications and Retinoic Acid Sensitivity in Breast Cancers. Clin Breast Cancer 2013; 13:401-8. [DOI: 10.1016/j.clbc.2013.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/28/2012] [Accepted: 02/04/2013] [Indexed: 01/09/2023]
|
15
|
Notas G, Kampa M, Pelekanou V, Troullinaki M, Jacquot Y, Leclercq G, Castanas E. Whole transcriptome analysis of the ERα synthetic fragment P295-T311 (ERα17p) identifies specific ERα-isoform (ERα, ERα36)-dependent and -independent actions in breast cancer cells. Mol Oncol 2013; 7:595-610. [PMID: 23474223 DOI: 10.1016/j.molonc.2013.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023] Open
Abstract
ERα17p is a peptide corresponding to the sequence P295LMIKRSKKNSLALSLT311 of the estrogen receptor alpha (ERα) and initially found to interfere with ERα-related calmodulin binding. ERα17p was subsequently found to elicit estrogenic responses in E2-deprived ERα-positive breast cancer cells, increasing proliferation and ERE-dependent gene transcription. Surprisingly, in E2-supplemented media, ERα17p-induced apoptosis and modified the actin network, influencing cell motility. Here, we report that ERα17p internalizes in breast cancer cells (T47D, MDA-MB-231, SKBR3) and induces a massive early (3 h) transcriptional activity. Remarkably, about 75% of significantly modified transcripts were also modified by E2, confirming the pro-estrogenic profile of ERα17p. The different ER spectra of the used cell lines allowed us to identify a specific ERα17p signature related to ERα as well as its variant ERα36. With respect to ERα, the peptide activates nuclear (cell cycle, cell proliferation, nucleic acid and protein synthesis) and extranuclear signaling pathways. In contrast, through ERα36, it mainly triggers inhibitory actions on inflammation. This is the first work reporting a detailed ERα36-specific transcriptional signature. In addition, we report that ERα17p-induced transcripts related to apoptosis and actin modifying effects of the peptide are independent from its estrogen receptor(s)-related actions. We discuss our findings in view of the potential use of ERα17p as a selective peptidomimetic estrogen receptor modulator (PERM).
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, P.O. Box 2208, Heraklion 71003, Greece
| | | | | | | | | | | | | |
Collapse
|
16
|
Sun Y, Biscarini F, Bovenhuis H, Parmentier HK, van der Poel JJ. Genetic parameters and across-line SNP associations differ for natural antibody isotypes IgM and IgG in laying hens. Anim Genet 2012; 44:413-24. [DOI: 10.1111/age.12014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Y. Sun
- Animal Breeding and Genomics Centre; Wageningen University; PO Box 338; 6700 AH; Wageningen; The Netherlands
| | - F. Biscarini
- Department of Bioinformatics; Parco Tecnologico Padano; 26900; Lodi; Italy
| | - H. Bovenhuis
- Animal Breeding and Genomics Centre; Wageningen University; PO Box 338; 6700 AH; Wageningen; The Netherlands
| | - H. K. Parmentier
- Adaptation Physiology Group; Wageningen University; PO Box 338; 6700 AH; Wageningen; The Netherlands
| | - J. J. van der Poel
- Animal Breeding and Genomics Centre; Wageningen University; PO Box 338; 6700 AH; Wageningen; The Netherlands
| |
Collapse
|
17
|
Gao J, Wang Y, Xing Q, Yan J, Senthil M, Akmal Y, Kowolik CM, Kang J, Lu DM, Zhao M, Lin Z, Cheng CHK, Yip MLR, Yim JH. Identification of a natural compound by cell-based screening that enhances interferon regulatory factor-1 activity and causes tumor suppression. Mol Cancer Ther 2011; 10:1774-83. [PMID: 21817116 DOI: 10.1158/1535-7163.mct-11-0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor interferon regulatory factor-1 (IRF-1) is induced by many tumor-suppressive stimuli and can mediate antiproliferative and proapoptotic effects in cancer cells. Thus, identifying agents that enhance IRF-1 activity may be an effective approach to cancer therapy. A cell-based screening assay was developed to identify extracts and compounds that could enhance IRF-1 activity, using an IRF-1-dependent luciferase reporter cell line. Through this approach, we identified a natural product extract and a known active component of this extract, baicalein, which causes a marked increase in IRF-1-dependent reporter gene expression and IRF-1 protein, with modulation of known IRF-1 targets PUMA and cyclin D1. Baicalein causes suppression of growth in vitro in multiple cancer cell lines in the low micromolar range. IRF-1 plays a role in this growth suppression as shown by significant resistance to growth suppression in a breast cancer cell line stably transfected with short hairpin RNA against IRF-1. Finally, intraperitoneal administration of baicalein by repeated injection causes inhibition of growth in both xenogeneic and syngeneic mouse models of cancer without toxicity to the animals. These findings indicate that identifying enhancers of IRF-1 activity may have utility in anticancer therapies and that cell-based screening for activation of transcription factors can be a useful approach for drug discovery.
Collapse
Affiliation(s)
- Jinbo Gao
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schwartz JL, Shajahan AN, Clarke R. The Role of Interferon Regulatory Factor-1 (IRF1) in Overcoming Antiestrogen Resistance in the Treatment of Breast Cancer. Int J Breast Cancer 2011; 2011:912102. [PMID: 22295238 PMCID: PMC3262563 DOI: 10.4061/2011/912102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022] Open
Abstract
Resistance to endocrine therapy is common among breast cancer patients with estrogen receptor alpha-positive (ER+) tumors and limits the success of this therapeutic strategy. While the mechanisms that regulate endocrine responsiveness and cell fate are not fully understood, interferon regulatory factor-1 (IRF1) is strongly implicated as a key regulatory node in the underlying signaling network. IRF1 is a tumor suppressor that mediates cell fate by facilitating apoptosis and can do so with or without functional p53. Expression of IRF1 is downregulated in endocrine-resistant breast cancer cells, protecting these cells from IRF1-induced inhibition of proliferation and/or induction of cell death. Nonetheless, when IRF1 expression is induced following IFNγ treatment, antiestrogen sensitivity is restored by a process that includes the inhibition of prosurvival BCL2 family members and caspase activation. These data suggest that a combination of endocrine therapy and compounds that effectively induce IRF1 expression may be useful for the treatment of many ER+ breast cancers. By understanding IRF1 signaling in the context of endocrine responsiveness, we may be able to develop novel therapeutic strategies and better predict how patients will respond to endocrine therapy.
Collapse
Affiliation(s)
- J L Schwartz
- Georgetown University Medical Center, W401 Research Building, 3970 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | |
Collapse
|
19
|
Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R. Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 2011; 11:523-32. [PMID: 21677677 PMCID: PMC3294292 DOI: 10.1038/nrc3081] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers of the breast and other tissues arise from aberrant decision-making by cells regarding their survival or death, proliferation or quiescence, damage repair or bypass. These decisions are made by molecular signalling networks that process information from outside and from within the breast cancer cell and initiate responses that determine the cell's survival and reproduction. Because the molecular logic of these circuits is difficult to comprehend by intuitive reasoning alone, we present some preliminary mathematical models of the basic decision circuits in breast cancer cells that may aid our understanding of their susceptibility or resistance to endocrine therapy.
Collapse
Affiliation(s)
- John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ivanova MM, Luken KH, Zimmer AS, Lenzo FL, Smith RJ, Arteel MW, Kollenberg TJ, Mattingly KA, Klinge CM. Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor beta and AP-1 recruitment to adjacent promoter binding sites. FASEB J 2011; 25:1402-16. [PMID: 21233487 DOI: 10.1096/fj.10-169029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about endogenous estrogen receptor β (ERβ) gene targets in human breast cancer. We reported that estradiol (E(2)) induces nuclear respiratory factor-1 (NRF-1) transcription through ERα in MCF-7 breast cancer cells. Here we report that 4-hydroxytamoxifen (4-OHT), with an EC(50) of ~1.7 nM, increases NRF-1 expression by recruiting ERβ, cJun, cFos, CBP, and RNA polymerase II to and dismissing NCoR from the NRF1 promoter. Promoter deletion and transient transfection studies showed that the estrogen response element (ERE) is essential and that an adjacent AP-1 site contributes to maximal 4-OHT-induced NRF-1 transcription. siRNA knockdown of ERβ revealed that ERβ inhibits basal NRF-1 expression and is required for 4-OHT-induced NRF-1 transcription. An AP-1 inhibitor blocked 4-OHT-induced NRF-1 expression. The 4-OHT-induced increase in NRF-1 resulted in increased transcription of NRF-1 target CAPNS1 but not CYC1, CYC2, or TFAM despite increased NRF-1 coactivator PGC-1α protein. The absence of TFAM induction corresponds to a lack of Akt-dependent phosphorylation of NRF-1 with 4-OHT treatment. Overexpression of NRF-1 inhibited 4-OHT-induced apoptosis and siRNA knockdown of NRF-1 increased apoptosis, indicating an antiapoptotic role for NRF-1. Overall, NRF-1 expression and activity is regulated by 4-OHT via endogenous ERβ in MCF-7 cells.
Collapse
Affiliation(s)
- Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Biological reprogramming in acquired resistance to endocrine therapy of breast cancer. Oncogene 2010; 29:6071-83. [PMID: 20711236 DOI: 10.1038/onc.2010.333] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endocrine therapies targeting the proliferative effect of 17β-estradiol through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through molecular mechanisms that are not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7-LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were predicted to be influenced by transcription factors known to be involved in acquired resistance or cell proliferation (for example, interferon regulatory transcription factor 1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7-LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7-LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and tamoxifen, and recurrence after tamoxifen treatment. In accordance with these profiles, MCF7-LTED cells showed increased sensitivity to inhibition of FGFR-mediated signaling with PD173074. This study provides mechanistic insight into acquired resistance to endocrine therapies of breast cancer and highlights a potential therapeutic strategy.
Collapse
|
22
|
Ning Y, Riggins RB, Mulla JE, Chung H, Zwart A, Clarke R. IFNgamma restores breast cancer sensitivity to fulvestrant by regulating STAT1, IFN regulatory factor 1, NF-kappaB, BCL2 family members, and signaling to caspase-dependent apoptosis. Mol Cancer Ther 2010; 9:1274-85. [PMID: 20457620 PMCID: PMC2925293 DOI: 10.1158/1535-7163.mct-09-1169] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antiestrogens are effective therapies for the management of many estrogen receptor-alpha (ER)-positive breast cancers. Nonetheless, both de novo and acquired resistance occur and remain major problems in the clinical setting. IFNgamma is an inflammatory cytokine that induces the expression and function of IFN regulatory factor 1 (IRF1), a tumor suppressor gene that can increase antiestrogen responsiveness. We show that IFNgamma, but not IFNalpha, IFNbeta, or fulvestrant (ICI; ICI 182,780; Faslodex), induces IRF1 expression in antiestrogen-resistant MCF7/LCC9 and LY2 cells. Moreover, IFNgamma restores the responsiveness of these cells to fulvestrant. Increased IRF1 activation suppresses NF-kappaB p65 (RELA) activity, inhibits the expression of prosurvival (BCL2, BCL-W), and induces the expression of proapoptotic members (BAK, mitochondrial BAX) of the BCL2 family. This molecular signaling is associated with the activation of signal transducer and activator of transcription 1 and leads to increased mitochondrial membrane permeability; activation of caspase-7 (CASP7), CASP8, and CASP9; and induction of apoptosis but not autophagy. Whereas antiestrogen-resistant cells are capable of inducing autophagy through IFN-mediated signaling, their ability to do so through antiestrogen-regulated signaling is lost. The abilities of IFNgamma to activate CASP8, induce apoptosis, and restore antiestrogen sensitivity are prevented by siRNA targeting IRF1, whereas transient overexpression of IRF1 mimics the effects of IFNgamma treatment. These observations support the exploration of clinical trials combining antiestrogens and compounds that can induce IRF1, such as IFNgamma, for the treatment of some ER-positive breast cancers.
Collapse
Affiliation(s)
- Yanxia Ning
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
- Department of Physiology & Pathophysiology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, P.R. China
| | - Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Jennifer E. Mulla
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Haniee Chung
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Alan Zwart
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
23
|
Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E, Caze-Subra S, Bickmore WA, Bystricky K. Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 2010; 6:e1000922. [PMID: 20421946 PMCID: PMC2858706 DOI: 10.1371/journal.pgen.1000922] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/24/2010] [Indexed: 01/06/2023] Open
Abstract
The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and debate. We investigated the nuclear organization of estrogen receptor alpha (ERalpha) target genes in human breast epithelial and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another report, the ERalpha target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each other. The nuclear separation between these genes, as well as between the ERalpha target genes PGR and CTSD, was unchanged by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was unaffected by hormone addition. Our results demonstrate that estradiol-induced ERalpha target genes are not required to co-localize in the nucleus.
Collapse
Affiliation(s)
- Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| | - Elizabeth A. Kerr
- The Breakthrough Breast Cancer Research Unit, Edinburgh, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sehrish Rafique
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Elad Katz
- The Breakthrough Breast Cancer Research Unit, Edinburgh, United Kingdom
| | - Stephanie Caze-Subra
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| | - Wendy A. Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse - UPS, Toulouse, France
- LBME, CNRS, Toulouse, France
| |
Collapse
|
24
|
Sun L, Tian Z, Wang J. A direct cross-talk between interferon-gamma and sonic hedgehog signaling that leads to the proliferation of neuronal precursor cells. Brain Behav Immun 2010; 24:220-8. [PMID: 19800966 PMCID: PMC2821661 DOI: 10.1016/j.bbi.2009.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/16/2009] [Accepted: 09/26/2009] [Indexed: 01/19/2023] Open
Abstract
Interferon-gamma (IFN-gamma) is a pleiotropic cytokine that is critical for innate and adaptive immunity. Recent evidence suggests a connection between IFN-gamma signaling and the sonic hedgehog (Shh) pathway in the developing brain with CNS-targeted expression of IFN-gamma transgene in mice. To determine the relationship between these distinct pathways, we have found that IFN-gamma induces a rapid Shh transcription in cultured primary granular neuron precursor (GNP) cells. The transcriptional induction of Shh by IFN-gamma is resistant to protein synthesis inhibition. Chromatin immunoprecipitation (ChIP) analysis reveals a direct binding of signal transducer and activator of transcription (STAT) 1 to the Shh promoter. Functional analyses, including dual immunofluorescent labeling with 5-bromodeoxyuridine (BrdU) incorporation indicate that IFN-gamma treatment leads to significant GNP proliferation. This mitogenic effect of IFN-gamma is blocked by inhibition of Shh signaling. Therefore, Shh is an IFN-gamma target gene and is responsible for IFN-gamma-induced GNP proliferation. This previously unrecognized cross-talk between IFN-gamma and Shh highlights a potential importance of this immune mediator in the pathogenesis of human developmental and psychiatric disorders.
Collapse
|
25
|
IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death Differ 2009; 17:699-709. [PMID: 19851330 PMCID: PMC2838929 DOI: 10.1038/cdd.2009.156] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Interferon Regulatory Factor-1 (IRF-1) is a transcription factor which acts as a tumor suppressor and causes apoptosis in cancer cells. We evaluated IRF-1 induced apoptosis in gastric cancer cell lines. We established stable clones in AGS cells that have a tetracycline inducible IRF-1 expression system. We used these clones and recombinant adenovirus expressing IRF-1 to explore the mechanism of IRF-1 induced apoptosis in gastric cancer. Expression of IRF-1 causes apoptosis in gastric cancer cell lines as demonstrated by phosphatidylserine exposure and cleavage of caspase-8, caspase-3, and Bid with mitochondrial release of cytochrome c. However, inhibition of caspase-8 and Bid did not inhibit apoptosis and did not decrease cleaved caspase-9 or mitochondrial release of cytochrome c. We then demonstrate that IRF-1 up-regulates PUMA (p53 up-regulated modulator of apoptosis), that is known to activate apoptosis by the intrinsic pathway; this can be p53 independent. IRF-1 binds to distinct sites in the promoter of PUMA and activates PUMA transcription. Moreover, molecular markers of mitochondrial apoptosis are eliminated in PUMA knockout and knockdown cells and phospatidylserine exposure is decreased dramatically. Finally, we demonstrate that IFN-γ induces IRF-1 mediated up-regulation of PUMA in cancer cells. We conclude that IRF-1 can induce apoptosis by the intrinsic pathway independent of the extrinsic pathway by up-regulation of PUMA.
Collapse
|
26
|
Cavalli LR, Riggins RB, Wang A, Clarke R, Haddad BR. Frequent loss of heterozygosity at the interferon regulatory factor-1 gene locus in breast cancer. Breast Cancer Res Treat 2009; 121:227-31. [PMID: 19697121 DOI: 10.1007/s10549-009-0509-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/08/2009] [Indexed: 12/23/2022]
Abstract
The interferon regulatory factor-1 (IRF1) gene, localized on chromosome 5q31.1, is mutated or rearranged in several cancers including some hematopoietic and gastric cancers. However, whether loss of IRF1 occurs in sporadic breast cancer is unknown. Loss of 5q12-31 is reported in 11% of sporadic breast cancers, and high-resolution array-CGH studies have shown loss at 5q31.1 in 50% of breast cancers with a mutated BRCA1 gene. Functionally, overexpression of IRF1 reduces, and a dominant negative IRF1 construct increases, tumorigenesis of human breast cancer xenografts. Taken together, these observations indicate that the IRF1 gene may play a potentially important role as a breast cancer tumor suppressor gene. In this study, we investigated allelic loss of the IRF1 gene in breast tumor specimens from 52 women with invasive breast cancer using an IRF1 intragenic dinucleotide polymorphic marker. Thirty-seven cases were informative. LOH at the IRF1 locus was detected in 32% of these informative cases (12/37). There was a significant association between IRF1 loss and both older age (P = 0.0167) and earlier stage (Stages 1 and 2) (P = 0.0165). To assess the association of IRF1 mRNA expression with clinical outcomes in breast cancer, we studied data from two published gene expression microarray datasets. In breast cancer patients, low IRF1 mRNA expression is strongly correlated with both risk of recurrence (OR = 3.00; P = 0.003; n = 273 cases) and risk of death (OR = 4.18; P = 0.004; n = 191 cases). Our findings strongly imply a tumor suppressor role for the IRF1 gene in breast cancer.
Collapse
Affiliation(s)
- Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
27
|
Clarke R, Shajahan AN, Riggins RB, Cho Y, Crawford A, Xuan J, Wang Y, Zwart A, Nehra R, Liu MC. Gene network signaling in hormone responsiveness modifies apoptosis and autophagy in breast cancer cells. J Steroid Biochem Mol Biol 2009; 114:8-20. [PMID: 19444933 PMCID: PMC2768542 DOI: 10.1016/j.jsbmb.2008.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Resistance to endocrine therapies, whether de novo or acquired, remains a major limitation in the ability to cure many tumors that express detectable levels of the estrogen receptor alpha protein (ER). While several resistance phenotypes have been described, endocrine unresponsiveness in the context of therapy-induced tumor growth appears to be the most prevalent. The signaling that regulates endocrine resistant phenotypes is poorly understood but it involves a complex signaling network with a topology that includes redundant and degenerative features. To be relevant to clinical outcomes, the most pertinent features of this network are those that ultimately affect the endocrine-regulated components of the cell fate and cell proliferation machineries. We show that autophagy, as supported by the endocrine regulation of monodansylcadaverine staining, increased LC3 cleavage, and reduced expression of p62/SQSTM1, plays an important role in breast cancer cells responding to endocrine therapy. We further show that the cell fate machinery includes both apoptotic and autophagic functions that are potentially regulated through integrated signaling that flows through key members of the BCL2 gene family and beclin-1 (BECN1). This signaling links cellular functions in mitochondria and endoplasmic reticulum, the latter as a consequence of induction of the unfolded protein response. We have taken a seed-gene approach to begin extracting critical nodes and edges that represent central signaling events in the endocrine regulation of apoptosis and autophagy. Three seed nodes were identified from global gene or protein expression analyses and supported by subsequent functional studies that established their abilities to affect cell fate. The seed nodes of nuclear factor kappa B (NFkappaB), interferon regulatory factor-1 (IRF1), and X-box binding protein-1 (XBP1)are linked by directional edges that support signal flow through a preliminary network that is grown to include key regulators of their individual function: NEMO/IKKgamma, nucleophosmin and ER respectively. Signaling proceeds through BCL2 gene family members and BECN1 ultimately to regulate cell fate.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schild-Hay LJ, Leil TA, Divi RL, Olivero OA, Weston A, Poirier MC. Tamoxifen induces expression of immune response-related genes in cultured normal human mammary epithelial cells. Cancer Res 2009; 69:1150-5. [PMID: 19155303 PMCID: PMC2633418 DOI: 10.1158/0008-5472.can-08-2806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Use of tamoxifen is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented tamoxifen-induced gene expression changes in cultured normal human mammary epithelial cells (strains 5, 16, and 40), established from tissue taken at reduction mammoplasty from three individuals. Cells exposed to 0, 10, or 50 micromol/L of tamoxifen for 48 hours were evaluated for (E)-alpha-(deoxyguanosine-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct formation using TAM-DNA (DNA modified with dG-N(2)-TAM) chemiluminescence immunoassay, gene expression changes using National Cancer Institute DNA-oligonucleotide microarray, and real-time PCR. At 48 hours, cells exposed to 10 and 50 micromol/L of tamoxifen were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N(2)-TAM adducts. For microarrays, cells were exposed to 10 micromol/L of tamoxifen and genes with expression changes of >3-fold were as follows: 13 genes up-regulated and 1 down-regulated for strain 16; 17 genes up-regulated for strain 5, and 11 genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, MXI, and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all three strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. Real-time PCR revealed the up-regulation of IFNA1 and confirmed the tamoxifen-induced up-regulation of the five other genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of IFN-related genes in the three normal human mammary epithelial cell strains suggests that, in addition to hormonal effects, tamoxifen exposure may enhance immune response in normal breast tissue.
Collapse
Affiliation(s)
- Laura J Schild-Hay
- Carcinogen-DNA Interactions Section, LCBG, CCR, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
29
|
Frontini M, Vijayakumar M, Garvin A, Clarke N. A ChIP-chip approach reveals a novel role for transcription factor IRF1 in the DNA damage response. Nucleic Acids Res 2009; 37:1073-85. [PMID: 19129219 PMCID: PMC2651779 DOI: 10.1093/nar/gkn1051] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IRF1 is a transcription factor that regulates key processes in the immune system and in tumour suppression. To gain further insight into IRF1's role in these processes, we searched for new target genes by performing chromatin immunoprecipitation coupled to a CpG island microarray (ChIP–chip). Using this approach we identified 202 new IRF1-binding sites with high confidence. Functional categorization of the target genes revealed a surprising cadre of new roles that can be linked to IRF1. One of the major functional categories was the DNA damage response pathway. In order to further validate our findings, we show that IRF1 can regulate the mRNA expression of a number of the DNA damage response genes in our list. In particular, we demonstrate that the mRNA and protein levels of the DNA repair protein BRIP1 [Fanconi anemia gene J (FANC J)] are upregulated after IRF1 over-expression. We also demonstrate that knockdown of IRF1 by siRNA results in loss of BRIP1 expression, abrogation of BRIP1 foci after DNA interstrand crosslink (ICL) damage and hypersensitivity to the DNA crosslinking agent, melphalan; a characteristic phenotype of FANC J cells. Taken together, our data provides a more complete understanding of the regulatory networks controlled by IRF1 and reveals a novel role for IRF1 in regulating the ICL DNA damage response.
Collapse
Affiliation(s)
- Mattia Frontini
- MRC Clinical Sciences Centre, Faculty of Medicine Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | | |
Collapse
|
30
|
Baker JC, Ostrander JH, Lem S, Broadwater G, Bean GR, D'Amato NC, Goldenberg VK, Rowell C, Ibarra-Drendall C, Grant T, Pilie PG, Vasilatos SN, Troch MM, Scott V, Wilke LG, Paisie C, Rabiner SM, Torres-Hernandez A, Zalles CM, Seewaldt VL. ESR1 promoter hypermethylation does not predict atypia in RPFNA nor persistent atypia after 12 months tamoxifen chemoprevention. Cancer Epidemiol Biomarkers Prev 2008; 17:1884-90. [PMID: 18708376 PMCID: PMC2717700 DOI: 10.1158/1055-9965.epi-07-2696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Currently, we lack biomarkers to predict whether high-risk women with mammary atypia will respond to tamoxifen chemoprevention. EXPERIMENTAL DESIGN Thirty-four women with cytologic mammary atypia from the Duke University High-Risk clinic were offered tamoxifen chemoprevention. We tested whether ESR1 promoter hypermethylation and/or estrogen receptor (ER) protein expression by immunohistochemistry predicted persistent atypia in 18 women who were treated with tamoxifen for 12 months and in 16 untreated controls. RESULTS We observed a statistically significant decrease in the Masood score of women on tamoxifen chemoprevention for 12 months compared with control women. This was a significant interaction effect of time (0, 6, and 12 months) and treatment group (tamoxifen versus control) P = 0.0007. However, neither ESR1 promoter hypermethylation nor low ER expression predicted persistent atypia in Random Periareolar Fine Needle Aspiration after 12 months tamoxifen prevention. CONCLUSIONS Results from this single institution pilot study provide evidence that, unlike for invasive breast cancer, ESR1 promoter hypermethylation and/or low ER expression is not a reliable marker of tamoxifen-resistant atypia.
Collapse
Affiliation(s)
| | | | - Siya Lem
- Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | - Craig Rowell
- Duke University Medical Center, Durham, North Carolina
| | | | - Tracey Grant
- Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | - Lee G. Wilke
- Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | |
Collapse
|
31
|
Bowie ML, Ibarra C, Seewalt VL. IRF-1 promotes apoptosis in p53-damaged basal-type human mammary epithelial cells: a model for early basal-type mammary carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:367-74. [PMID: 18497060 DOI: 10.1007/978-0-387-69080-3_35] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammary gland homeostasis is regulated by both endogenous and exogenous signals, creating a balance between proliferation and apoptosis. It is thought that breast cancer develops from the acquisition of multiple genetic changes. The function of tumor suppressor p53 is fequently lost in cancers; however, not all cells that lose p53 progress to become invasive cancer. We have developed a model of early mammary carcinogenesis to investigate some of the internal and external signaling pathways that target the elimination ot normal basal-type human mammary epithelial cells (HMECs) that acutely acquire p53-damage. Here, we show that both tamoxifen (Tam) and three-dimensional prepared extracellular matrix culture (3-D rECM) induce apoptosis in HMEC cells with acute loss of p53 [*p53(-) HMECs] through induction of interferon regulatory factor-1 (IRF-1). Tam and rECM signaling in *p53(-) HMECs (1) promotes the recruitment of a STAT1/ CBP complex to the IRF-1 promoter, (2) upregulates IRF-1, (3) activates caspase-1 and -3, and (4) induces apoptosis. Suppression of IRF-1 with siRNA oligos inhibited both Tam- and rECM-induced apoptosis. These observations demonstrate that IRF-1 plays a critical role in eliminating p53-damaged cells, and may play a more global role in mammary gland homeostasis.
Collapse
|
32
|
Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH. Pathways to tamoxifen resistance. Cancer Lett 2007; 256:1-24. [PMID: 17475399 PMCID: PMC2533271 DOI: 10.1016/j.canlet.2007.03.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 03/15/2007] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
Therapies that target the synthesis of estrogen or the function of estrogen receptor(s) have been developed to treat breast cancer. While these approaches have proven to be beneficial to a large number of patients, both de novo and acquired resistance to these drugs is a significant problem. Recent advances in our understanding of the molecular mechanisms that contribute to resistance have provided a means to begin to predict patient responses to these drugs and develop rational approaches for combining therapeutic agents to circumvent or desensitize the resistant phenotype. Here, we review common mechanisms of antiestrogen resistance and discuss the implications for prediction of response and design of effective combinatorial treatments.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057
| | - Randy S. Schrecengost
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - Michael S. Guerrero
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| | - Amy H. Bouton
- Department of Microbiology and Cancer Center, Box 800734, University of Virginia Health System, Charlottesville, VA 22908-0734
| |
Collapse
|
33
|
Teschendorff AE, Journée M, Absil PA, Sepulchre R, Caldas C. Elucidating the altered transcriptional programs in breast cancer using independent component analysis. PLoS Comput Biol 2007; 3:e161. [PMID: 17708679 PMCID: PMC1950343 DOI: 10.1371/journal.pcbi.0030161] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/28/2007] [Indexed: 12/29/2022] Open
Abstract
The quantity of mRNA transcripts in a cell is determined by a complex interplay of cooperative and counteracting biological processes. Independent Component Analysis (ICA) is one of a few number of unsupervised algorithms that have been applied to microarray gene expression data in an attempt to understand phenotype differences in terms of changes in the activation/inhibition patterns of biological pathways. While the ICA model has been shown to outperform other linear representations of the data such as Principal Components Analysis (PCA), a validation using explicit pathway and regulatory element information has not yet been performed. We apply a range of popular ICA algorithms to six of the largest microarray cancer datasets and use pathway-knowledge and regulatory-element databases for validation. We show that ICA outperforms PCA and clustering-based methods in that ICA components map closer to known cancer-related pathways, regulatory modules, and cancer phenotypes. Furthermore, we identify cancer signalling and oncogenic pathways and regulatory modules that play a prominent role in breast cancer and relate the differential activation patterns of these to breast cancer phenotypes. Importantly, we find novel associations linking immune response and epithelial–mesenchymal transition pathways with estrogen receptor status and histological grade, respectively. In addition, we find associations linking the activity levels of biological pathways and transcription factors (NF1 and NFAT) with clinical outcome in breast cancer. ICA provides a framework for a more biologically relevant interpretation of genomewide transcriptomic data. Adopting ICA as the analysis tool of choice will help understand the phenotype–pathway relationship and thus help elucidate the molecular taxonomy of heterogeneous cancers and of other complex genetic diseases. The amount of a given transcript or protein in a cell is determined by a balance of expression and repression in a complex network of biological processes. This delicate balance is compromised in complex genetic diseases such as cancer by alterations in the activation patterns of functionally important biological processes known as pathways. Over the last years, a large number of microarray experiments profiling the expression levels of more than 20,000 human genes in hundreds of tumor samples have shown that most cancer types are heterogeneous diseases, each characterized by many different expression subtypes. The biological and clinical goal is to explain the observed tumor and clinical heterogeneity in terms of specific patterns of altered pathways. The bioinformatic challenge is therefore to devise mathematical tools that explicitly attempt to infer these altered pathways. To this end, we applied a signal processing tool in a meta-analysis of breast cancer, encompassing more than 800 tumor specimens derived from four different patient cohorts, and showed that this algorithm significantly outperforms popular standard bioinformatics tools in identifying altered pathways underlying breast cancer. These results show that the same tool could be applied to other complex human genetic diseases to better elucidate the underlying altered pathways.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- Breast Cancer Functional Genomics Laboratory, Cancer Research UK Cambridge Research Institute, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Bouker KB, Skaar TC, Harburger DS, Riggins RB, Fernandez DR, Zwart A, Clarke R. The A4396G polymorphism in interferon regulatory factor 1 is frequently expressed in breast cancer cell lines. ACTA ACUST UNITED AC 2007; 175:61-4. [PMID: 17498560 DOI: 10.1016/j.cancergencyto.2006.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Loss or mutation of known tumor suppressor genes accounts for a small proportion of all breast cancers. We have recently shown that interferon regulatory factor 1 (IRF1) is a putative tumor suppressor gene in breast cancer. We now report that the A4396G single nucleotide polymorphism in the IRF1 gene is more frequent in human breast cancer cell lines than in the general population (P = 0.01). Furthermore, A4396G is more frequently expressed in African American (black) than in European ancestry (white) subjects (n = 70 subjects; P < or = 0.001), leading to a significant difference in genotype distribution between these populations (P = 0.002).
Collapse
Affiliation(s)
- Kerrie B Bouker
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Stang MT, Armstrong MJ, Watson GA, Sung KY, Liu Y, Ren B, Yim JH. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 2007; 26:6420-30. [PMID: 17452973 DOI: 10.1038/sj.onc.1210470] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) is a transcription factor that has apoptotic anti-tumor activity. In breast cancer cell types, IRF-1 is implicated in mediating apoptosis by both novel and established anti-tumor agents, including the anti-estrogens tamoxifen and faslodex. Here we demonstrate that in MDA468 breast cancer cells, apoptosis by IFN-gamma is mediated by IRF-1 and IFN-gamma, and IRF-1-induced apoptosis is caspase-mediated. IRF-1 induction results in cleavage of caspase-8, -3 and -7, and application of caspase inhibitors attenuate activated cleavage products. IRF-1-induced apoptosis involves caspase-8 since apoptosis is significantly decreased by the caspase-8-specific inhibitor IETD, c-FLIP expression and in caspase-8-deficient cancer cells. Furthermore, we demonstrate that IRF-1-induced apoptosis requires fas-associated death domain (FADD) since dominant-negative FADD expressing cells resist IRF-1-induced apoptosis and activated downstream products. Immunofluorescent studies demonstrate perinuclear colocalization of FADD and caspase-8. Despite the known role of FADD in mediating death-ligand induced apoptosis, neutralizing antibodies against classical death receptors do not inhibit IRF-1 induced apoptosis, and no secreted ligand appears to be involved since MDA468 coincubated with IRF-1 transfected cells do not apoptose. Therefore, we demonstrate that IRF-1 induces a ligand-independent FADD/caspase-8-mediated apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- M T Stang
- Department of Surgery/University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bowie ML, Troch MM, Delrow J, Dietze EC, Bean GR, Ibarra C, Pandiyan G, Seewaldt VL. Interferon regulatory factor-1 regulates reconstituted extracellular matrix (rECM)-mediated apoptosis in human mammary epithelial cells. Oncogene 2006; 26:2017-26. [PMID: 17016442 DOI: 10.1038/sj.onc.1210013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interactions between extracellular matrix (ECM) and mammary epithelial cells are critical for mammary gland homeostasis and apoptotic signaling. Interferon regulatory factor-1 (IRF-1) is a transcriptional regulator that promotes apoptosis during mammary gland involution and p53-independent apoptosis. We have recently shown that rapid cell surface tamoxifen (Tam) signaling promotes apoptosis in normal human mammary epithelial cells that were acutely damaged by expression of human papillomavirus type-16 E6 protein (*HMEC-E6). Apoptosis was mediated by recruitment of CREB-binding protein (CBP) to the gamma-activating sequence (GAS) element of the IRF-1 promoter, induction of IRF-1 and caspase-1/-3 activation. Here, we show that growth factor-depleted, reconstituted ECM (rECM), similar to Tam, promotes apoptosis in *HMEC-E6 cells through induction of IRF-1. Apoptosis was temporally associated with recruitment of CBP to the GAS element of the IRF-1 promoter, induction of IRF-1 expression and caspase-1/-3 activation. Small interfering RNA-mediated suppression of IRF-1 protein expression in *HMEC-E6 cells blocked (1) induction of IRF-1, (2) caspase-1/-3 activation and (3) apoptosis. These observations demonstrate that IRF-1 promotes rECM-mediated apoptosis and provide evidence that both rECM and rapid Tam signaling transcriptionally activate IRF-1 through recruitment of CBP to the IRF-1 GAS promoter complex.
Collapse
Affiliation(s)
- M L Bowie
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Egwuagu CE, Li W, Yu CR, Che Mei Lin M, Chan CC, Nakamura T, Chepelinsky AB. Interferon-γ induces regression of epithelial cell carcinoma: critical roles of IRF-1 and ICSBP transcription factors. Oncogene 2006; 25:3670-9. [PMID: 16462767 DOI: 10.1038/sj.onc.1209402] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed an epithelial cell carcinoma model for studying efficacy of IFNgamma gene therapy and have identified components of IFNgamma-signaling pathway responsible for its direct anti-tumor actions. The tumor results from ectopic expression of SV40 Large T-Antigen (SV40 T-Ag) oncogene in lens of transgenic mouse (alphaT3) and complete regression of the tumor is induced by targeting expression of IFNgamma into malignant lens cells. Inflammatory cells are absent in lens of alphaT3 or DT (co-expressing IFNgamma and SV40-T-Antigen) mice and the transformed lens cells are non-immunogenic, suggesting non-involvement of immunologic cells. We show that IFNgamma has direct growth-inhibitory effects on tumor cells, induces death of tumor cells by apoptosis and that these effects are mediated by two transcription factors, IRF-1 (interferon-regulatory factor-1) and ICSBP (interferon-consensus sequence-binding protein) induced by IFNgamma. Furthermore, stable transfection with ICSBP or IRF-1 construct inhibits lens carcinoma cell growth by upregulating Caspase-1, p21(WAF1) and p27 expression. In contrast, tumor progression in alphaT3 lens correlates with inhibition of IRF-1 and ICSBP expression. Our results suggest that IFNgamma gene therapy maybe effective in malignant diseases for which DNA tumor viruses are etiologic agents and that antitumor actions of IRF-1/ICSBP can be exploited therapeutically to circumvent adverse clinical effects associated with IFN therapy.
Collapse
Affiliation(s)
- C E Egwuagu
- Laboratories of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-1857, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hu G, Mancl ME, Barnes BJ. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. Cancer Res 2005; 65:7403-12. [PMID: 16103093 DOI: 10.1158/0008-5472.can-05-0583] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human IFN regulatory factor-5 (IRF-5) is a candidate tumor suppressor gene that mediates cell arrest, apoptosis, and immune activation. Here we show that ectopic IRF-5 sensitizes p53-proficient and p53-deficient colon cancer cells to DNA damage-induced apoptosis. The combination IFN-beta and irinotecan (CPT-11) cooperatively inhibits cell growth and IRF-5 synergizes with it to further promote apoptosis. The synergism is due to IRF-5 signaling since a striking defect in apoptosis and cell death was observed in IRF-5-deficient cells, which correlated well with a reduction in DNA damage-induced cellular events. Components of this IRF-5 signaling pathway are investigated including a mechanism for DNA damage-induced IRF-5 activation. Thus, IRF-5-regulated pathways may serve as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Guodong Hu
- Division of Viral Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
39
|
Bouker KB, Skaar TC, Riggins RB, Harburger DS, Fernandez DR, Zwart A, Wang A, Clarke R. Interferon regulatory factor-1 (IRF-1) exhibits tumor suppressor activities in breast cancer associated with caspase activation and induction of apoptosis. Carcinogenesis 2005; 26:1527-35. [PMID: 15878912 DOI: 10.1093/carcin/bgi113] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have directly assessed the ability of interferon regulatory factor-1 (IRF-1) to act as a tumor suppressor gene in human breast cancer cells and explored whether this suppressor function is mechanistically conferred by affecting cell cycle transition, apoptosis and/or caspase activation. We have used a dual approach, measuring whether overexpression of wild-type IRF-1 or a dominant negative IRF-1 (dnIRF-1) produce opposing effects on breast cancer cell proliferation in vitro or tumorigenicity in athymic nude mice. Mechanistic studies determined the effects of blocking endogenous IRF-1 expression on cell cycle transition by flow cytometry, on apoptosis by Annexin V staining, and on caspase activation by fluorescent substrate cleavage. IRF-1 mRNA (P < or = 0.001) and protein (P < or = 0.001) are highly expressed in non-tumorigenic, normal, mammary epithelial cells, with intermediate expression in tumorigenic, but non-metastatic, cells and very low expression in metastatic cell lines. In MCF-7 cells transfected with a wild-type IRF-1 (MCF-7/IRF-1), IRF-1 mRNA expression inversely correlates with the rate of cell proliferation (r = -0.91; P = 0.002). Conversely, expression of dnIRF-1 in both MCF-7 (MCF-7/dnIRF-1; p53 wild-type) and T47D cells (T47D/dnIRF-1; p53 mutant) increases cell proliferation (P < or = 0.001). In athymic nude mice, the incidence of MCF-7/IRF-1 xenografts is reduced (P = 0.045), whereas MCF-7/dnIRF-1 xenografts exhibit a significantly higher tumor incidence (P < or = 0.001). Effects of IRF-1/dnIRF-1 are mediated through changes in the rates of apoptosis and not through cell cycle regulation. MCF-7/dnIRF-1 cells exhibit a 50% decrease in basal apoptosis (P = 0.007) and a significant reduction in caspase 8 activity (P = 0.03); similar effects occur in T47D/dnIRF-1 cells, where the effects on apoptosis appear to be mediated through inhibition of caspases 3/7 (P < 0.001) and caspase 8 (P = 0.03). These data establish a functional role for IRF-1 in the growth suppression of breast cancer cells and strongly implicate IRF-1 as a tumor suppressor gene in breast cancer that acts, independent of p53, to control apoptosis.
Collapse
Affiliation(s)
- Kerrie B Bouker
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | |
Collapse
|