1
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu S, Joshi K, Zhang L, Li W, Mack R, Runde A, Hagen PA, Barton K, Breslin P, Ji HL, Kini AR, Wang Z, Zhang J. Caspase 8 deletion causes infection/inflammation-induced bone marrow failure and MDS-like disease in mice. Cell Death Dis 2024; 15:278. [PMID: 38637559 PMCID: PMC11026525 DOI: 10.1038/s41419-024-06660-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of pre-leukemic hematopoietic disorders characterized by cytopenia in peripheral blood due to ineffective hematopoiesis and normo- or hypercellularity and morphologic dysplasia in bone marrow (BM). An inflammatory BM microenvironment and programmed cell death of hematopoietic stem/progenitor cells (HSPCs) are thought to be the major causes of ineffective hematopoiesis in MDS. Pyroptosis, apoptosis and necroptosis (collectively, PANoptosis) are observed in BM tissues of MDS patients, suggesting an important role of PANoptosis in MDS pathogenesis. Caspase 8 (Casp8) is a master regulator of PANoptosis, which is downregulated in HSPCs from most MDS patients and abnormally spliced in HSPCs from MDS patients with SRSF2 mutation. To study the role of PANoptosis in hematopoiesis, we generated inducible Casp8 knockout mice (Casp8-/-). Mx1-Cre-Casp8-/- mice died of BM failure within 10 days of polyI:C injections due to depletion of HSPCs. Rosa-ERT2Cre-Casp8-/- mice are healthy without significant changes in BM hematopoiesis within the first 1.5 months after Casp8 deletion. Such mice developed BM failure upon infection or low dose polyI:C/LPS injections due to the hypersensitivity of Casp8-/- HSPCs to infection or inflammation-induced necroptosis which can be prevented by Ripk3 deletion. However, impaired self-renewal capacity of Casp8-/- HSPCs cannot be rescued by Ripk3 deletion due to activation of Ripk1-Tbk1 signaling. Most importantly, mice transplanted with Casp8-/- BM cells developed MDS-like disease within 4 months of transplantation as demonstrated by anemia, thrombocytopenia and myelodysplasia. Our study suggests an essential role for a balance in Casp8, Ripk3-Mlkl and Ripk1-Tbk1 activities in the regulation of survival and self-renewal of HSPCs, the disruption of which induces inflammation and BM failure, resulting in MDS-like disease.
Collapse
Affiliation(s)
- Shanhui Liu
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, China
| | - Wenyan Li
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Austin Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Medicine, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
- Departments of Biology and Molecular/Cellular Physiology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Ameet R Kini
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA
| | - Zhiping Wang
- Lanzhou University Second Hospital, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou, Gansu, 730030, China.
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Department of Cancer Biology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
- Departments of Pathology and Radiation Oncology, Loyola University Chicago Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
4
|
Chen W, Gullett JM, Tweedell RE, Kanneganti TD. Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol 2023; 53:e2250235. [PMID: 36782083 PMCID: PMC10423303 DOI: 10.1002/eji.202250235] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
Regulated cell death (RCD) triggered by innate immune activation is an important strategy for host survival during pathogen invasion and perturbations of cellular homeostasis. There are two main categories of RCD, including nonlytic and lytic pathways. Apoptosis is the most well-characterized nonlytic RCD, and the inflammatory pyroptosis and necroptosis pathways are among the best known lytic forms. While these were historically viewed as independent RCD pathways, extensive evidence of cross-talk among their molecular components created a knowledge gap in our mechanistic understanding of RCD and innate immune pathway components, which led to the identification of PANoptosis. PANoptosis is a unique innate immune inflammatory RCD pathway that is regulated by PANoptosome complexes upon sensing pathogens, pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) or the cytokines produced downstream. Cytosolic innate immune sensors and regulators, such as ZBP1, AIM2 and RIPK1, promote the assembly of PANoptosomes to drive PANoptosis. In this review, we discuss the molecular components of the known PANoptosomes and highlight the mechanisms of PANoptosome assembly, activation and regulation identified to date. We also discuss how PANoptosomes and mutations in PANoptosome components are linked to diseases. Given the impact of RCD, and PANoptosis specifically, across the disease spectrum, improved understanding of PANoptosomes and their regulation will be critical for identifying new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Wen Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jessica M. Gullett
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebecca E. Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
5
|
Gryko M, Łukaszewicz-Zając M, Guzińska-Ustymowicz K, Kucharewicz M, Mroczko B, Algirdas U. The caspase-8 and procaspase-3 expression in gastric cancer and non-cancer mucosa in relation to clinico-morphological factors and some apoptosis-associated proteins. Adv Med Sci 2023; 68:94-100. [PMID: 36842408 DOI: 10.1016/j.advms.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
PURPOSE The aim of the study was to assess the expression of caspase-8 and procaspase-3 proteins in gastric cancer (GC) cells and non-cancerous mucosa in relation to clinical and morphological characteristics of the tumor, postoperative survival as well as other apoptosis-related proteins. MATERIALS AND METHODS The study included 91 GC patients. Expression of the proteins was assessed using immunohistochemical method. RESULTS Positive expression of procaspase-3 was found in all GC cells. A significant difference was found between high expression of this protein in cancer cells (70.3%) and non-cancerous mucosa (1.25%) (p ≤ 0.05). Caspase-8 expression was observed in 50.7% of GC cells and 46.7% of mucosa. Caspase-8 was more common in Lauren type II compared to Lauren type I cancer (p = 0.009), while a statistically significant difference was reported between positive procaspase-3 expression and differentiation of GC (p = 0.043) and Lauren's classification (p = 0.028). We observed a significant positive correlation between the expression of caspase-8 and bcl-xl (p = 0.030) as well as between the procaspase-3 and BID (p = 0.026). Positive caspase-8 expression was associated with longer survival of GC patients (p ≤ 0.01). CONCLUSIONS Our findings indicate the potential role of the analyzed proteins in GC pathogenesis. Positive expression of caspase-8 is associated with longer survival and better patient prognosis.
Collapse
Affiliation(s)
- Mariusz Gryko
- Second Department of General and Gastroenterological Surgery, Medical University of Bialystok, Bialystok, Poland.
| | | | | | - Mariola Kucharewicz
- Department of Clinical Oncology, Medical University of Bialystok Clinical Hospital, Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland; Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Utkus Algirdas
- Department of Human and Medical Genetics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Lopez KE, Bouchier-Hayes L. Lethal and Non-Lethal Functions of Caspases in the DNA Damage Response. Cells 2022; 11:cells11121887. [PMID: 35741016 PMCID: PMC9221191 DOI: 10.3390/cells11121887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the caspase family are well known for their roles in the initiation and execution of cell death. Due to their function in the removal of damaged cells that could otherwise become malignant, caspases are important players in the DNA damage response (DDR), a network of pathways that prevent genomic instability. However, emerging evidence of caspases positively or negatively impacting the accumulation of DNA damage in the absence of cell death demonstrates that caspases play a role in the DDR that is independent of their role in apoptosis. This review highlights the apoptotic and non-apoptotic roles of caspases in the DDR and how they can impact genomic stability and cancer treatment.
Collapse
Affiliation(s)
- Karla E. Lopez
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Lisa Bouchier-Hayes
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
7
|
Egorshina AY, Zamaraev AV, Kaminskyy VO, Radygina TV, Zhivotovsky B, Kopeina GS. Necroptosis as a Novel Facet of Mitotic Catastrophe. Int J Mol Sci 2022; 23:ijms23073733. [PMID: 35409093 PMCID: PMC8998610 DOI: 10.3390/ijms23073733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic catastrophe is a defensive mechanism that promotes elimination of cells with aberrant mitosis by triggering the cell-death pathways and/or cellular senescence. Nowadays, it is known that apoptosis, autophagic cell death, and necrosis could be consequences of mitotic catastrophe. Here, we demonstrate the ability of a DNA-damaging agent, doxorubicin, at 600 nM concentration to stimulate mitotic catastrophe. We observe that the inhibition of caspase activity leads to accumulation of cells with mitotic catastrophe hallmarks in which RIP1-dependent necroptotic cell death is triggered. The suppression of autophagy by a chemical inhibitor or ATG13 knockout upregulates RIP1 phosphorylation and promotes necroptotic cell death. Thus, in certain conditions mitotic catastrophe, in addition to apoptosis and autophagy, can precede necroptosis.
Collapse
Affiliation(s)
- Aleksandra Yu. Egorshina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
| | - Alexey V. Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
| | - Vitaliy O. Kaminskyy
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 171 77 Stockholm, Sweden;
| | - Tatiana V. Radygina
- Federal State Autonomous Institution “National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation, 119296 Moscow, Russia;
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 171 77 Stockholm, Sweden;
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
- Correspondence:
| |
Collapse
|
8
|
Al-Salihi M, Bornikoel A, Zhuang Y, Stachura P, Scheller J, Lang KS, Lang PA. The role of ADAM17 during liver damage. Biol Chem 2021; 402:1115-1128. [PMID: 34192832 DOI: 10.1515/hsz-2021-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 17 is a membrane bound protease, involved in the cleavage and thus regulation of various membrane proteins, which are critical during liver injury. Among ADAM17 substrates are tumor necrosis factor α (TNFα), tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), the epidermal growth factor receptor (EGFR) ligands amphiregulin (AR) and heparin-binding-EGF-like growth factor (HB-EGF), the interleukin-6 receptor (IL-6R) and the receptor for a hepatocyte growth factor (HGF), c-Met. TNFα and its binding receptors can promote liver injury by inducing apoptosis and necroptosis in liver cells. Consistently, hepatocyte specific deletion of ADAM17 resulted in increased liver cell damage following CD95 stimulation. IL-6 trans-signaling is critical for liver regeneration and can alleviate liver damage. EGFR ligands can prevent liver damage and deletion of amphiregulin and HB-EGF can result in increased hepatocyte death and reduced proliferation. All of which indicates that ADAM17 has a central role in liver injury and recovery from it. Furthermore, inactive rhomboid proteins (iRhom) are involved in the trafficking and maturation of ADAM17 and have been linked to liver damage. Taken together, ADAM17 can contribute in a complex way to liver damage and injury.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Anna Bornikoel
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Pawel Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Choi YY, Shin SJ, Lee JE, Madlensky L, Lee ST, Park JS, Jo JH, Kim H, Nachmanson D, Xu X, Noh SH, Cheong JH, Harismendy O. Prevalence of cancer susceptibility variants in patients with multiple Lynch syndrome related cancers. Sci Rep 2021; 11:14807. [PMID: 34285288 PMCID: PMC8292343 DOI: 10.1038/s41598-021-94292-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022] Open
Abstract
Along with early-onset cancers, multiple primary cancers (MPCs) are likely resulting from increased genetic susceptibility; however, the associated predisposition genes or prevalence of the pathogenic variants genes in MPC patients are often unknown. We screened 71 patients with MPC of the stomach, colorectal, and endometrium, sequencing 65 cancer predisposition genes. A subset of 19 patients with early-onset MPC of stomach and colorectum were further evaluated for variants in cancer related genes using both normal and tumor whole exome sequencing. Among 71 patients with MPCs, variants classified to be pathogenic were observed in 15 (21.1%) patients and affected Lynch Syndrome (LS) genes: MLH1 (n = 10), MSH6 (n = 2), PMS2 (n = 2), and MSH2 (n = 1). All carriers had tumors with high microsatellite instability and 13 of them (86.7%) were early-onset, consistent with LS. In 19 patients with early-onset MPCs, loss of function (LoF) variants in RECQL5 were more prevalent in non-LS MPC than in matched sporadic cancer patients (OR = 31.6, 2.73–1700.6, p = 0.001). Additionally, there were high-confidence LoF variants at FANCG and CASP8 in two patients accompanied by somatic loss of heterozygosity in tumor, respectively. The results suggest that genetic screening should be considered for synchronous cancers and metachronous MPCs of the LS tumor spectrum, particularly in early-onset. Susceptibility variants in non-LS genes for MPC patients may exist, but evidence for their role is more elusive than for LS patients.
Collapse
Affiliation(s)
- Yoon Young Choi
- Department of Surgery, CHA University School of Medicine, Pocheon-si, Korea.,Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu,, Seoul, 120-752, Korea.,Yonsei Biomedical Research Institute, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Eun Lee
- Yonsei Biomedical Research Institute, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Lisa Madlensky
- Moores Cancer Center and Division of Biomedical Informatics Department of Medicine, University of California San Diego School of Medicine, 3855 Health Sciences Dr, La Jolla, CA, 92037, USA.,Department of Family Medicine and Public Health, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Seung-Tae Lee
- Hereditary Cancer Clinic, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Soo Park
- Hereditary Cancer Clinic, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea.,Department of Medicine, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Hyeon Jo
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea
| | - Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego School of Medicine, San Diego, USA
| | - Xiaojun Xu
- Moores Cancer Center and Division of Biomedical Informatics Department of Medicine, University of California San Diego School of Medicine, 3855 Health Sciences Dr, La Jolla, CA, 92037, USA
| | - Sung Hoon Noh
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu,, Seoul, 120-752, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu,, Seoul, 120-752, Korea. .,Yonsei Biomedical Research Institute, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Korea.
| | - Olivier Harismendy
- Moores Cancer Center and Division of Biomedical Informatics Department of Medicine, University of California San Diego School of Medicine, 3855 Health Sciences Dr, La Jolla, CA, 92037, USA. .,Department of Medicine, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
10
|
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021; 12:702487. [PMID: 34305611 PMCID: PMC8293693 DOI: 10.3389/fphar.2021.702487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol. Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used. Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR). Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action. This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.
Collapse
Affiliation(s)
- Laeza Alves Sampaio
- Graduate Program of Applied Sciences to Health, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | |
Collapse
|
11
|
Zou J, Xia H, Zhang C, Xu H, Tang Q, Zhu G, Li J, Bi F. Casp8 acts through A20 to inhibit PD-L1 expression: The mechanism and its implication in immunotherapy. Cancer Sci 2021; 112:2664-2678. [PMID: 33934451 PMCID: PMC8253292 DOI: 10.1111/cas.14932] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy targeting the PD-L1/PD-1 pathway is a novel type of clinical cancer treatment, but only small subsets of patients can benefit from it because of multiple factors. PD-L1/PD-1 expression is a biomarker for predicting the efficacy of anti-PD-L1/PD-1 therapy, which highlights the importance of understanding the regulatory mechanisms of PD-L1 expression in cancer cells. Casp8 is an apical caspase protease involved in mediating cell apoptosis, but it also has multiple nonapoptotic functions. Casp8 mutations are associated with increased risks of cancer, and low expression of Casp8 is closely connected with poor prognosis in patients with cancer. In addition, mutations of Casp8 in lymphocytes also lead to human immunodeficiency, thereby causing dysfunction of the innate immune system, but the roles of Casp8 in antitumor immunity remain unclear. Here, we found that knocking down Casp8 in mouse melanoma cells promoted tumor progression in an immune system-dependent manner. Mechanistically, Casp8 induced PD-L1 degradation by upregulating TNFAIP3 (A20) expression, a ubiquitin-editing enzyme that results in PD-L1 ubiquitination. In addition, compared with Casp8fl/fl mice, mice with conditional deletion of Casp8 in natural killer (NK) cells (Ncr1iCre/+ Casp8fl/fl mice) showed a decreased frequency of IFN-γ+ and CD107a+ NK cells but an increased frequency of PD-1+ and CTLA-4+ NK cells. Melanoma cells with Casp8 knocked down exhibited sensitivity to anti-PD-1 or anti-CTLA-4 antibody treatments, particularly in Ncr1iCre/+Casp8fl/fl mice. Together, the results indicate that Casp8 induces PD-L1 degradation by upregulating A20 expression and that decreased Casp8 expression is a potential biomarker for predicting the sensitivity to anti-PD-L1/PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jiahuan Zou
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Hongwei Xia
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Chenliang Zhang
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Huanji Xu
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Gongmin Zhu
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| | - Jielang Li
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Feng Bi
- Department of Abdominal OncologyCancer CenterWest China HospitalSichuan UniversityChengduChina
- Laboratory of Molecular Targeted Therapy in OncologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
12
|
Oh YT, Sun SY. Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules 2021; 11:499. [PMID: 33810241 PMCID: PMC8065657 DOI: 10.3390/biom11040499] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL; TNFSF10) and their corresponding death receptors (e.g., DR5) not only initiate apoptosis through activation of the extrinsic apoptotic pathway but also exert non-apoptotic biological functions such as regulation of inflammation and cancer metastasis. The involvement of the TRAIL/death receptor signaling pathway in the regulation of cancer invasion and metastasis is complex as both positive and negative roles have been reported. The underlying molecular mechanisms are even more complicated. This review will focus on discussing current knowledge in our understanding of the involvement of TRAIL/death receptor-mediated signaling in the regulation of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA;
| |
Collapse
|
13
|
Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life 2021; 73:492-510. [PMID: 33179373 DOI: 10.1002/iub.2407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The cross-talk between the mitochondrion and the nucleus regulates cellular functions, including differentiation and adaptation to stress. Mitochondria supply metabolites for epigenetic modifications and other nuclear-associated activities and certain mitochondrial proteins were found in the nucleus. The voltage-dependent anion channel 1 (VDAC1), localized at the outer mitochondrial membrane (OMM) is a central protein in controlling energy production, cell growth, Ca2+ homeostasis, and apoptosis. To alter the cross-talk between the mitochondria and the nucleus, we used specific siRNA to silence the expression of VDAC1 in glioblastoma (GBM) U87-MG and U118-MG cell-derived tumors, and then monitored the nuclear localization of mitochondrial proteins and the methylation and acetylation of histones. Depletion of VDAC1 from tumor cells reduced metabolism, leading to inhibition of tumor growth, and several tumor-associated processes and signaling pathways linked to cancer development. In addition, we demonstrate that certain mitochondrial pro-apoptotic proteins such as caspases 3, 8, and 9, and p53 were unexpectedly overexpressed in tumors, suggesting that they possess additional non-apoptotic functions. VDAC1 depletion and metabolic reprograming altered their expression levels and subcellular localization, specifically their translocation to the nucleus. In addition, VDAC1 depletion also leads to epigenetic modifications of histone acetylation and methylation, suggesting that the interchange between metabolism and cancer signaling pathways involves mitochondria-nucleus cross-talk. The mechanisms regulating mitochondrial protein trafficking into and out of the nucleus and the role these proteins play in the nucleus remain to be elucidated.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Ankit Verma
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Department of Cell, Developmental, & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Or Aizenberg
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varda Shoshan-Barmaz
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| |
Collapse
|
14
|
The role of caspase-8 in the tumor microenvironment of ovarian cancer. Cancer Metastasis Rev 2020; 40:303-318. [PMID: 33026575 PMCID: PMC7897206 DOI: 10.1007/s10555-020-09935-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is an aspartate-specific cysteine protease, which is best known for its apoptotic functions. Caspase-8 is placed at central nodes of multiple signal pathways, regulating not only the cell cycle but also the invasive and metastatic cell behavior, the immune cell homeostasis and cytokine production, which are the two major components of the tumor microenvironment (TME). Ovarian cancer often has dysregulated caspase-8 expression, leading to imbalance between its apoptotic and non-apoptotic functions within the tumor and the surrounding milieu. The downregulation of caspase-8 in ovarian cancer seems to be linked to high aggressiveness with chronic inflammation, immunoediting, and immune resistance. Caspase-8 plays therefore an essential role not only in the primary tumor cells but also in the TME by regulating the immune response, B and T lymphocyte activation, and macrophage differentiation and polarization. The switch between M1 and M2 macrophages is possibly associated with changes in the caspase-8 expression. In this review, we are discussing the non-apoptotic functions of caspase-8, highlighting this protein as a modulator of the immune response and the cytokine composition in the TME. Considering the low survival rate among ovarian cancer patients, it is urgently necessary to develop new therapeutic strategies to optimize the response to the standard treatment. The TME is highly heterogenous and provides a variety of opportunities for new drug targets. Given the variety of roles of caspase-8 in the TME, we should focus on this protein in the development of new therapeutic strategies against the TME of ovarian cancer.
Collapse
|
15
|
Cantoni C, Wurzer H, Thomas C, Vitale M. Escape of tumor cells from the NK cell cytotoxic activity. J Leukoc Biol 2020; 108:1339-1360. [PMID: 32930468 DOI: 10.1002/jlb.2mr0820-652r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, NK cells, initially identified as potent cytotoxic effector cells, have revealed an unexpected complexity, both at phenotypic and functional levels. The discovery of different NK cell subsets, characterized by distinct gene expression and phenotypes, was combined with the characterization of the diverse functions NK cells can exert, not only as circulating cells, but also as cells localized or recruited in lymphoid organs and in multiple tissues. Besides the elimination of tumor and virus-infected cells, these functions include the production of cytokines and chemokines, the regulation of innate and adaptive immune cells, the influence on tissue homeostasis. In addition, NK cells display a remarkable functional plasticity, being able to adapt to the environment and to develop a kind of memory. Nevertheless, the powerful cytotoxic activity of NK cells remains one of their most relevant properties, particularly in the antitumor response. In this review, the process of tumor cell recognition and killing mediated by NK cells, starting from the generation of cytolytic granules and recognition of target cell, to the establishment of the NK cell immunological synapse, the release of cytotoxic molecules, and consequent tumor cell death is described. Next, the review focuses on the heterogeneous mechanisms, either intrinsic to tumors or induced by the tumor microenvironment, by which cancer cells can escape the NK cell-mediated attack.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Hannah Wurzer
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Clément Thomas
- Cytoskeleton and Cancer Progression, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Massimo Vitale
- UO Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
16
|
Samir P, Malireddi RKS, Kanneganti TD. The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front Cell Infect Microbiol 2020; 10:238. [PMID: 32582562 PMCID: PMC7283380 DOI: 10.3389/fcimb.2020.00238] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
Programmed cell death is regulated by evolutionarily conserved pathways that play critical roles in development and the immune response. A newly recognized pathway for proinflammatory programmed cell death called PANoptosis is controlled by a recently identified cytoplasmic multimeric protein complex named the PANoptosome. The PANoptosome can engage, in parallel, three key modes of programmed cell death—pyroptosis, apoptosis, and necroptosis. The PANoptosome components have been implicated in a wide array of human diseases including autoinflammatory diseases, neurodegenerative diseases, cancer, microbial infections, and metabolic diseases. Here, we review putative components of the PANoptosome and present a phylogenetic analysis of their molecular domains and interaction motifs that support complex assembly. We also discuss genetic data that suggest PANoptosis is coordinated by scaffolding and catalytic functions of the complex components and propose mechanistic models for PANoptosome assembly. Overall, this review presents potential mechanisms governing PANoptosis based on evolutionary analysis of the PANoptosome components.
Collapse
Affiliation(s)
- Parimal Samir
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | | |
Collapse
|
17
|
Singh R, Das S, Datta S, Mazumdar A, Biswas NK, Maitra A, Majumder PP, Ghose S, Roy B. Study of Caspase 8 mutation in oral cancer and adjacent precancer tissues and implication in progression. PLoS One 2020; 15:e0233058. [PMID: 32492030 PMCID: PMC7269231 DOI: 10.1371/journal.pone.0233058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
It is hypothesized that same driver gene mutations should be present in both oral leukoplakia and cancer tissues. So, we attempted to find out mutations at one of the driver genes, CASP8, in cancer and adjacent leukoplakia tissues. Patients (n = 27), affected by both of cancer and adjacent leukoplakia, were recruited for the study. Blood and tissue DNA samples were used to identify somatic mutations at CASP8 by next generation sequencing method. In total, 56% (15 out of 27) cancer and 30% (8 out of 27) leukoplakia tissues had CASP8 somatic mutations. In 8 patients, both cancer and adjacent leukoplakia tissues, located within 2-5 cm of tumor sites, had identical somatic mutations. But, in 7 patients, cancer samples had somatic mutations but none of the leukoplakia tissues, located beyond 5cm of tumor sites, had somatic mutations. Mutated allele frequencies at CASP8 were found to be more in cancer compared to adjacent leukoplakia tissues. This study provides mutational evidence that oral cancer might have progressed from previously grown leukoplakia lesion. Leukoplakia tissues, located beyond 5cm of cancer sites, were free from mutation. The study implies that CASP8 mutation could be one of the signatures for some of the leukoplakia to progress to oral cancer.
Collapse
Affiliation(s)
- Richa Singh
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Shreya Das
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Sila Datta
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | | | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Sandip Ghose
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
- * E-mail: (BR); (SG)
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
- * E-mail: (BR); (SG)
| |
Collapse
|
18
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
19
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Payer ÁR, Gonzalez S, López-Soto A. Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. Int J Mol Sci 2020; 21:ijms21103726. [PMID: 32466293 PMCID: PMC7279491 DOI: 10.3390/ijms21103726] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are major contributors to immunosurveillance and control of tumor development by inducing apoptosis of malignant cells. Among the main mechanisms involved in NK cell-mediated cytotoxicity, the death receptor pathway and the release of granules containing perforin/granzymes stand out due to their efficacy in eliminating tumor cells. However, accumulated evidence suggest a profound immune suppression in the context of tumor progression affecting effector cells, such as NK cells, leading to decreased cytotoxicity. This diminished capability, together with the development of resistance to apoptosis by cancer cells, favor the loss of immunogenicity and promote immunosuppression, thus partially inducing NK cell-mediated killing resistance. Altered expression patterns of pro- and anti-apoptotic proteins along with genetic background comprise the main mechanisms of resistance to NK cell-related apoptosis. Herein, we summarize the main effector cytotoxic mechanisms against tumor cells, as well as the major resistance strategies acquired by tumor cells that hamper the extrinsic and intrinsic apoptotic pathways related to NK cell-mediated killing.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ángel R. Payer
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, University of Oviedo, 33006 Oviedo, Spain; (S.L.-H.); (S.G.)
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandro López-Soto
- Instituto Universitario de Oncología del Principado de Asturias, IUOPA, 33006 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (C.S.-B.); (A.L.-S.)
| |
Collapse
|
20
|
Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer 2020; 1873:188357. [PMID: 32147543 DOI: 10.1016/j.bbcan.2020.188357] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Caspase-8 is a cysteine - aspartate specific protease that classically triggers the extrinsic apoptotic pathway, in response to the activation of cell surface Death Receptors (DRs) like FAS, TRAIL-R and TNF-R. Besides it's roles in triggering death receptor-mediated apoptosis, Caspase-8 has also been implicated in the onsets of anoikis, autophagy and pyroptosis. Furthermore, Caspase-8 also plays a crucial pro-survival function by inhibiting an alternative form of programmed cell death called necroptosis. Low expression levels of pro-Caspase-8 is therefore associated with the malignant transformation of cancers. However, the long-held notion that pro-Caspase-8 expression/activity is generally lost in most cancers, thereby contributing to apoptotic escape and enhanced resistance to anti-cancer therapeutics, has been found to be true for only a minority of cancers types. In the majority of cases, pro-Caspase-8 expression is maintained and sometimes elevated, while it's apoptotic activity is regulated through different mechanisms. This supports the notion that the non-apoptotic functions of Caspase-8 offer growth advantage in these cancer types and have, therefore, gained renewed interest in the recent years. In light of these reasons, a number of therapeutic approaches have been employed, with the intent of targeting pro-Caspase-8 in cancer cells. In this review, we would attempt to discuss - the classic roles of Caspase-8 in initiating apoptosis; it's non-apoptotic functions; it's the clinical significance in different cancer types; and the therapeutic applications exploiting the ability of pro-Caspase-8 to regulate various cellular functions.
Collapse
|
21
|
Li M, Le Wei, Zhang XM, Zhang YJ, Jiang J, Liu PY. The M476W/Q482H mutation of procaspase-8 restored caspase-8-mediated apoptosis. Biochem Biophys Res Commun 2019; 514:653-658. [DOI: 10.1016/j.bbrc.2019.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 02/02/2023]
|
22
|
Hussein NAEM, El-Toukhy MAEF, Kazem AH, Ali MES, Ahmad MAER, Ghazy HMR, El-Din AMG. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Neveen Abd El Moneim Hussein
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mervat Abd El-Fattah El-Toukhy
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amany Hussein Kazem
- Department of Pathology, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Mahmoud El-Said Ali
- Toxicology Department, Forensic Science College, Naif Arab University for Security Sciences, Saudi Arabia
| | | | - Hossam Mahmoud Rashad Ghazy
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Mohamed Gamal El-Din
- Applied Medical Chemistry, Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Liccardi G, Ramos Garcia L, Tenev T, Annibaldi A, Legrand AJ, Robertson D, Feltham R, Anderton H, Darding M, Peltzer N, Dannappel M, Schünke H, Fava LL, Haschka MD, Glatter T, Nesvizhskii A, Schmidt A, Harris PA, Bertin J, Gough PJ, Villunger A, Silke J, Pasparakis M, Bianchi K, Meier P. RIPK1 and Caspase-8 Ensure Chromosome Stability Independently of Their Role in Cell Death and Inflammation. Mol Cell 2019; 73:413-428.e7. [PMID: 30598363 PMCID: PMC6375735 DOI: 10.1016/j.molcel.2018.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 01/17/2023]
Abstract
Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promoting faithful chromosome alignment in mitosis and thereby ensuring genome stability. We find that ripoptosome complexes progressively form as cells enter mitosis, peaking at metaphase and disassembling as cells exit mitosis. Genetic deletion and mitosis-specific inhibition of Ripk1 or Caspase-8 results in chromosome alignment defects independently of MLKL. We found that Polo-like kinase 1 (PLK1) is recruited into mitotic ripoptosomes, where PLK1's activity is controlled via RIPK1-dependent recruitment and Caspase-8-mediated cleavage. A fine balance of ripoptosome assembly is required as deregulated ripoptosome activity modulates PLK1-dependent phosphorylation of downstream effectors, such as BUBR1. Our data suggest that ripoptosome-mediated regulation of PLK1 contributes to faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Gianmaria Liccardi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laura Ramos Garcia
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Alessandro Annibaldi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - David Robertson
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Rebecca Feltham
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Holly Anderton
- The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Maurice Darding
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Nieves Peltzer
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, UK
| | - Marius Dannappel
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hannah Schünke
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Luca L Fava
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Manuel D Haschka
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria
| | - Timo Glatter
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland; Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | - Alexey Nesvizhskii
- Department of Pathology, Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Schmidt
- Proteomics Core Facility, Biocentrum of the University of Basel, Basel, Switzerland
| | - Philip A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Andreas Villunger
- Division of Dev. Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, A-6020, Austria; Tyrolean Cancer Research Institute, A-6020 Innsbruck, Austria
| | - John Silke
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Manolis Pasparakis
- Institute for Genetics, Centre for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Katiuscia Bianchi
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Barts Cancer Institute, Queen Mary, John Vane Science Centre, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
24
|
Ghantous Y, Bahouth Z, Abu El-Naaj I. Clinical and genetic signatures of local recurrence in oral squamous cell carcinoma. Arch Oral Biol 2018; 95:141-148. [PMID: 30118965 DOI: 10.1016/j.archoralbio.2018.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
PURPOSE Recurrent and metastatic Oral Squamous Cell Carcinoma (OSCC) is often incurable. There are large gaps in the understanding of the clinical course, biology and genetic biomarkers of OSCC which could help us identify patients with high-risk of recurrence who may benefit from intensified therapy or novel targeted therapy trials. The purpose of this study was to identify significant clinical, pathological and genomic risk factors for local recurrence in OSCC. PATIENTS AND METHODS Molecular data sets and clinicopathological characteristics of 159 head and neck carcinoma patients were obtained from The Cancer Genome Atlas (TCGA) data portal and analyzed using the Genome Data Analysis Center and cBioPortal to find significant risk factors for tumor recurrence. RESULTS The local recurrence rate was 24%. OSCC originating from the buccal mucosa composed 13% of all the tumors in the recurrent group, making it a statistically significant risk of recurrence (P value = 0.03). Likewise, positive surgical margins, pathological T staging, and alcohol consumption were found to be significantly associated with recurrence (P value < 0.05). Genetic profiling revealed the top 5 mutated genes (using the MutSigCV analysis). Only one of these genes, CASP8 was the only gene that was significantly altered only in the recurrent group (Q value = 8.7 × 10-11). The fingerprint of 5 mutated genes was found in 97% of the patients in the recurrence group. Moreover, copy number alterations in cytoband 5p15.33, which involved amplification in telomerase reverse-transcriptase (TERT) gene, was found to be significant only in the recurrent group. CONCLUSIONS In the current study, we found several clinical and genetic characteristics that could define patients with high-risk of OSCC recurrence. This provides a means of identifying patients that may benefit from intensified therapy or novel targeted therapy trials.
Collapse
Affiliation(s)
- Yasmine Ghantous
- The Maxillo-Facial Surgery Department, Baruch Padeh Medical Center, The Faculty of Medicine, Bar Ilan University, Galilee, Israel.
| | - Zaher Bahouth
- Department of Urology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Imad Abu El-Naaj
- The Maxillo-Facial Surgery Department, Baruch Padeh Medical Center, The Faculty of Medicine, Bar Ilan University, Galilee, Israel
| |
Collapse
|
25
|
Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur J Med Chem 2018; 155:117-134. [DOI: 10.1016/j.ejmech.2018.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
26
|
Won DH, Kim LH, Jang B, Yang IH, Kwon HJ, Jin B, Oh SH, Kang JH, Hong SD, Shin JA, Cho SD. In vitro and in vivo anti-cancer activity of silymarin on oral cancer. Tumour Biol 2018; 40:1010428318776170. [DOI: 10.1177/1010428318776170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Silymarin, a standardized extract from milk thistle fruits has been found to exhibit anti-cancer effects against various cancers. Here, we explored the anti-cancer activity of silymarin and its molecular target in human oral cancer in vitro and in vivo. Silymarin dose-dependently inhibited the proliferation of HSC-4 oral cancer cells and promoted caspase-dependent apoptosis. A human apoptosis protein array kit showed that death receptor 5 may be involved in silymarin-induced apoptosis, which was also shown through western blotting, immunocytochemistry, and reverse transcription-polymerase chain reaction. Silymarin increased cleaved caspase-8 and truncated Bid, leading to accumulation of cytochrome c. In addition, silymarin activated death receptor 5/caspase-8 to induce apoptotic cell death in two other oral cancer cell lines (YD15 and Ca9.22). Silymarin also suppressed tumor growth and volume without any hepatic or renal toxicity in vivo. Taken together, these results provide in vitro and in vivo evidence supporting the anti-cancer effect of silymarin and death receptor 5, and caspase-8 may be essential players in silymarin-mediated apoptosis in oral cancer.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Boonsil Jang
- Department of Dental Hygiene, Sorabol College, Gyeongju-si, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Hye-Jeong Kwon
- Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Bohwan Jin
- Laboratory Animal Center, CHA University and CHA Bio Complex, Seongnam, Republic of Korea
| | - Seung Hyun Oh
- National Cancer Center, Goyang-si, Republic of Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang-si, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Cheng L, Wang H, Guo K, Wang Z, Zhang Z, Shen C, Chen L, Lin J. Reversine, a substituted purine, exerts an inhibitive effect on human renal carcinoma cells via induction of cell apoptosis and polyploidy. Onco Targets Ther 2018. [PMID: 29520153 PMCID: PMC5833753 DOI: 10.2147/ott.s158198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Human renal cell carcinoma (RCC) is the most common type of kidney cancer that arises from the renal epithelium. Up to 33.3% of RCC patients treated with local tumor resections will subsequently develop recurrence or metastases. Thus, optimized therapeutic regimes are urgently needed to improve the prognosis of RCC. Reversine was recently reported to exert critical roles in cancer therapy. Materials and methods This study evaluated the anti-tumor effects of reversine on cell viability, colony formation, apoptosis, and cell cycle in 786-O and ACHN cell lines. Results It was demonstrated that reversine significantly inhibited the proliferation of both cell lines in time- and dose-dependent manners. Polyploidy formation was observed under high-concentration reversine treatment. In addition, reversine induced cell death via caspase-dependent apoptotic pathways, which could be partially inhibited by Z-VAD-FMK, a pan-caspase inhibitor. Conclusion Reversine could effectively suppress the proliferation of human RCC cells, and may serve as a novel therapeutic regimen for RCC in clinical practice.
Collapse
Affiliation(s)
- Li Cheng
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Kecun Guo
- Department of Urology, The Second People's Hospital of Liaocheng, Shandong, China
| | - Zicheng Wang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China
| | - Zhongyuan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Cheng Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing, China
| | - Jian Lin
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| |
Collapse
|
28
|
Li M, Yao J, Zhang X, Chen X, Chen J, Guan Y, Yang X. Q482H mutation of procaspase-8 in acute myeloid leukemia abolishes caspase-8-mediated apoptosis by impairing procaspase-8 dimerization. Biochem Biophys Res Commun 2018; 495:1376-1382. [DOI: 10.1016/j.bbrc.2017.11.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/20/2022]
|
29
|
Ali MM, H Borai I, Ghanem HM, H Abdel-Halim A, Mousa FM. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed Pharmacother 2017; 98:491-498. [PMID: 29287196 DOI: 10.1016/j.biopha.2017.12.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 02/08/2023] Open
Abstract
Inspite of the wide facilities for controlling cancer growth, there are little drugs to inhibit its metastasis or prevent its angiogenesis. Discovering such natural or synthetic multi-targeted agent that might strike different targets is considered as a vital goal for tumor controlling. In a previous study, the chemoprotective effect of methanol extract of Momordicacharantia (MEMC) on albino western rats bearing hepatocarcinogenesis was evaluated. The mechanism by which MEMC exert its anticancer properties was unknown. Therefore, we aimed in this study to investigate the possible role of MEMC as anti-proliferative, anti-angiogenic and anti-metastatic agent to exert its chemoprotective effect. The study was conducted on sixty albino western rats divided into six groups, 10 rats each. Diethylnitrosamine (DENA) was injected intraperitoneally (i.p.) at a dose of 200 mg/kg body weight once, 2 weeks later rats were received carbon tetrachloride (CCl4) subcutaneously (3 ml/kg/week) continued for 10 weeks. MEMC was orally produced to rats (40 mg/kg) alone, as well as before, at the same time and after DENA injection. Cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), caspase-3,-8 (Casp-3,-8), histone deacetylase (HDAC) and matrixmetalloproteinases-2,-9 (MMP-2,-9) were evaluated. MEMC treatment significantly decreased Cox-2, VEGF, HDAC and MMP-2,-9 and increased Casp-3,-8 as compared to DENAgroup,which demonstrated that the anticancer effect of MEMC may be through the inhibition of angiogenesis, proliferation and metastasis and the activation of apoptosis. The improvement in before-treated group was more pronounced than that in after- and simultaneous-treated groups, indicating thatMEMC may act as a prophylactic agent more than being a therapeutic agent.
Collapse
Affiliation(s)
- Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Ibrahim H Borai
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abeer H Abdel-Halim
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Fatma M Mousa
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
30
|
Im JY, Kim BK, Lee JY, Park SH, Ban HS, Jung KE, Won M. DDIAS suppresses TRAIL-mediated apoptosis by inhibiting DISC formation and destabilizing caspase-8 in cancer cells. Oncogene 2017; 37:1251-1262. [DOI: 10.1038/s41388-017-0025-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/09/2022]
|
31
|
Chang PY, Kuo TM, Chen PK, Lin YZ, Hua CH, Chen YC, Ko YC. Arecoline N-Oxide Upregulates Caspase-8 Expression in Oral Hyperplastic Lesions of Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10197-10205. [PMID: 29092399 DOI: 10.1021/acs.jafc.7b03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Areca nut is strongly associated with oral squamous cell carcinoma (OSCC) occurrence. Arecoline N-oxide (ANO), a metabolite of the areca alkaloid arecoline, exhibits an oral fibrotic effect in NOD/SCID mice. Caspase-8, a cysteine protease encoded by the CASP8 gene, is a central mediator in the extrinsic apoptotic pathway via death receptors. Deregulation of caspase-8 in OSCC has been reported. This study investigates the regulation of caspase-8 in ANO-induced oral squamous epithelial hyperplasia that represents the initial highly proliferative stage of oral carcinogenesis. CASP8 somatic mutations were identified from whole-exome sequencing of OSCC samples. Immunohistochemical staining showed upregulation of caspase-8 in ANO-induced hyperplasia of both NOD-SCID and C57BL/6 mice. Levels of expression of CASP8, APAF-1, BAX, and BAD increased in ANO-treated DOK cells. Co-localization of increased caspase-8 and PCNA levels was detected in ANO-induced hyperplastic lesions, whereas no co-localization among γ-H2A.X, caspase-3, and upregulated caspase-8 was observed. The findings indicate that upregulation of caspase-8 is involved in cell proliferation rather than apoptosis during the initial stage of ANO-mediated oral tumorigenesis.
Collapse
Affiliation(s)
- Pei-Ying Chang
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
| | - Tzer-Min Kuo
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - Po-Ku Chen
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
| | - You-Zhe Lin
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital , Taichung, Taiwan
| | - Yuan-Chien Chen
- Department of Oral and Maxillofacial Surgery, China Medical University Hospital , Taichung, Taiwan
- School of Dentistry, China Medical University , Taichung, Taiwan
| | - Ying-Chin Ko
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung, Taiwan
- Environment-Omics-Disease Research Center, China Medical University Hospital and China Medical University , Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University , Taichung, Taiwan
| |
Collapse
|
32
|
Boege Y, Malehmir M, Healy ME, Bettermann K, Lorentzen A, Vucur M, Ahuja AK, Böhm F, Mertens JC, Shimizu Y, Frick L, Remouchamps C, Mutreja K, Kähne T, Sundaravinayagam D, Wolf MJ, Rehrauer H, Koppe C, Speicher T, Padrissa-Altés S, Maire R, Schattenberg JM, Jeong JS, Liu L, Zwirner S, Boger R, Hüser N, Davis RJ, Müllhaupt B, Moch H, Schulze-Bergkamen H, Clavien PA, Werner S, Borsig L, Luther SA, Jost PJ, Weinlich R, Unger K, Behrens A, Hillert L, Dillon C, Di Virgilio M, Wallach D, Dejardin E, Zender L, Naumann M, Walczak H, Green DR, Lopes M, Lavrik I, Luedde T, Heikenwalder M, Weber A. A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell 2017; 32:342-359.e10. [PMID: 28898696 PMCID: PMC5598544 DOI: 10.1016/j.ccell.2017.08.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/30/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022]
Abstract
Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.
Collapse
Affiliation(s)
- Yannick Boege
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Mohsen Malehmir
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Marc E Healy
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Kira Bettermann
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Lorentzen
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Mihael Vucur
- Department of Medicine III, Division of GI and Hepatobiliary Oncology, University Hospital RWTH Aachen, 52056 Aachen, Germany
| | - Akshay K Ahuja
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Friederike Böhm
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Joachim C Mertens
- Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Yutaka Shimizu
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Lukas Frick
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Caroline Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Devakumar Sundaravinayagam
- DNA Repair and Maintenance of Genome Stability, Max-Delbruck Center for Molecular Medicine (MDC) Berlin, 13125 Berlin, Germany
| | - Monika J Wolf
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH and University Zurich, 8057 Zurich, Switzerland
| | - Christiane Koppe
- Department of Medicine III, Division of GI and Hepatobiliary Oncology, University Hospital RWTH Aachen, 52056 Aachen, Germany
| | - Tobias Speicher
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | | | - Renaud Maire
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jörn M Schattenberg
- I. Department of Medicine, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Ju-Seong Jeong
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lei Liu
- Department of Surgery, Technische Universität München, 80333 Munich, Germany
| | - Stefan Zwirner
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Regina Boger
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Norbert Hüser
- Department of Surgery, Technische Universität München, 80333 Munich, Germany
| | - Roger J Davis
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Beat Müllhaupt
- Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Pierre-Alain Clavien
- Clinic of Visceral and Transplantation Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH, Zurich, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Philipp J Jost
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ricardo Weinlich
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Hillert
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Christopher Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michela Di Virgilio
- DNA Repair and Maintenance of Genome Stability, Max-Delbruck Center for Molecular Medicine (MDC) Berlin, 13125 Berlin, Germany
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Lars Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Physiology I, Institute of Physiology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Translational Gastrointestinal Oncology Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation, Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Inna Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Tom Luedde
- Department of Medicine III, Division of GI and Hepatobiliary Oncology, University Hospital RWTH Aachen, 52056 Aachen, Germany
| | - Mathias Heikenwalder
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland; Institute of Virology, Technische Universität München, Helmholtz Zentrum München, 85764 Munich, Germany; Institute of Chronic Inflammation and Cancer, Deutsches Krebs-Forschungszentrum (DKFZ), 69120 Heidelberg, Germany.
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
33
|
Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell 2017; 65:715-729.e5. [DOI: 10.1016/j.molcel.2017.01.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
|
34
|
MiR-376a promotion of proliferation and metastases in ovarian cancer: Potential role as a biomarker. Life Sci 2016; 173:62-67. [PMID: 27979415 DOI: 10.1016/j.lfs.2016.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/15/2022]
Abstract
AIMS Ovarian cancer is the fifth most deadly cancer in women, and is usually diagnosed too late. Exploring specific and sensitive biomarkers will be helpful to early detection and will improve the survival rates of ovarian cancer patients. MAIN METHODS Realtime PCR was used to detect the expression of miR-376a. Wound healing and transwell assays were used to examined the migration and invasion abilities of ovarian cancer cells. Tumor xenograft experiments were employed to test the in vivo malignancy of ovarian cancer cells. Western Blotting and luciferase report assays were conducted for the target genes analysis. KEY FINDINGS Using a cohort of 32 cases of ovarian cancer and 10 cases of healthy control samples, we found that miR-376 expression is increased in ovarian cancer tissues. The serum level of miR-376a is significantly higher in ovarian cancer patients and is associated with the clinical stages of ovarian cancer. Over expression of miR-376a stimulated the proliferation, migration, and invasion of ovarian cancer cells, while inhibition of miR-376a expression blocked the proliferation, migration, and invasion. Data from nude mice further demonstrated the stimulatory role of miR-376a in ovarian cancer progression. Mechanically, miR-376a played its role by targeting KLF15 and Caspase-8. SIGNIFICANCE Our findings enrich the knowledge of miR-376a in ovarian cancer formation and progression, providing a possibility of using miR-376a as a diagnostic and prognostic biomarker for ovarian cancer.
Collapse
|
35
|
Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, Wei Y, Wang G, Chang KJ. Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol 2016; 49:153-63. [PMID: 27210546 PMCID: PMC4902065 DOI: 10.3892/ijo.2016.3525] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
The discovery of the TRAIL protein and its death receptors DR4/5 changed the horizon of cancer research because TRAIL specifically kills cancer cells. However, the validity of TRAIL-based cancer therapies has yet to be established, as most cancer cells are TRAIL-resistant. In this report, we demonstrate that TRAIL-resistance of many cancer cell lines can be overcome after siRNA- or rocaglamide-mediated downregulation of c-FLIP expression and simultaneous inhibition of IAPs activity using AT406, a pan-antagonist of IAPs. Combined triple actions of the TRAIL, the IAPs inhibitor, AT406, and the c-FLIP expression inhibitor, rocaglamide (ART), markedly improve TRAIL-induced apoptotic effects in most solid cancer cell lines through the activation of an extrinsic apoptosis pathway. Furthermore, this ART combination does not harm normal cells. Among the 18 TRAIL-resistant cancer cell lines used, 15 cell lines become sensitive or highly sensitive to ART, and two out of three glioma cell lines exhibit high resistance to ART treatment due to very low levels of procaspase-8. This study provides a rationale for the development of TRAIL-induced apoptosis-based cancer therapies.
Collapse
Affiliation(s)
- Ying Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xiang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qinghong Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yaping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yuehai Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Guanlin Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Kwen-Jen Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
36
|
Ledgerwood LG, Kumar D, Eterovic AK, Wick J, Chen K, Zhao H, Tazi L, Manna P, Kerley S, Joshi R, Wang L, Chiosea SI, Garnett JD, Tsue TT, Chien J, Mills GB, Grandis JR, Thomas SM. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget 2016; 7:27185-98. [PMID: 27034009 PMCID: PMC5053641 DOI: 10.18632/oncotarget.8448] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 01/06/2023] Open
Abstract
In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies.
Collapse
Affiliation(s)
- Levi G. Ledgerwood
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Dhruv Kumar
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Agda Karina Eterovic
- Department of Systems Biology and Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Wick
- Department of Biostatistics, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Ken Chen
- Department of Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Hao Zhao
- Department of Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Loubna Tazi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Pradip Manna
- Physicians Reference Laboratory, Kansas City, MO, USA
| | | | - Radhika Joshi
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Lin Wang
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Simion I. Chiosea
- Department of Pathology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - James David Garnett
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Terance Ted Tsue
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Jeremy Chien
- Department of Pathology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
- Department of Cancer Biology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| | - Gordon B. Mills
- Department of Systems Biology and Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Rubin Grandis
- Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
- Department of Cancer Biology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, and University of Kansas Cancer Center, Kansas City, MO, USA
| |
Collapse
|
37
|
Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231. Int J Oncol 2016; 48:2339-48. [PMID: 27082853 DOI: 10.3892/ijo.2016.3474] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/07/2015] [Indexed: 11/05/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a clinically aggressive form of breast cancer that is unresponsive to endocrine agents or trastuzumab. TNBC accounts for ~10-20% of all breast cancer cases and represents the form with the poorest prognosis. Patients with TNBC are at higher risk of early recurrence, mainly in the lungs, brain and soft tissue, therefore, there is an urgent need for new therapies. The present study was carried out in MDA-MB-231 cells, where we assessed the role of caspase-8 (casp-8), a critical effector of death receptors, also involved in non‑apoptotic functions. Analysis of casp-8 mRNA and protein levels indicated that they were up-regulated with respect to the normal human mammalian epithelial cells. We demonstrated that silencing of casp-8 by small interfering-RNA, strongly decreased MDA-MB-231 cell growth by delaying G0/G1- to S-phase transition and increasing p21, p27 and hypo-phosphorylated/active form of pRb levels. Surprisingly, casp-8-knockdown, also potently increased both the migratory and metastatic capacity of MDA-MB‑231 cells, as shown by both wound healing and Matrigel assay, and by the expression of a number of related-genes and/or proteins such as VEGFA, C-MYC, CTNNB1, HMGA2, CXCR4, KLF4, VERSICAN V1 and MMP2. Among these, KLF4, a transcriptional factor with a dual role (activator and repressor), seemed to play critical roles. We suggest that in MDA-MB‑231 cells, the endogenous expression of casp-8 might keep the cells perpetually cycling through downregulation of KLF4, the subsequent lowering of p21 and p27, and the inactivation by hyperphosphorylation of pRb. Simultaneously, by lowering the expression of some migratory and invasive genes, casp-8 might restrain the metastatic ability of the cells. Overall, our findings showed that, in MDA-MB-231 cells, casp-8 might play some unusual roles which should be better explored, in order to understand whether it might be identified as a molecular therapeutic target.
Collapse
|
38
|
Stracquadanio G, Wang X, Wallace M, Grawenda AM, Zhang P, Hewitt J, Zeron-Medina J, Castro-Giner F, Tomlinson IP, Goding CR, Cygan KJ, Fairbrother WG, Thomas LF, Sætrom P, Gemignani F, Landi S, Schuster-Boeckler B, Bell DA, Bond GL. The importance of p53 pathway genetics in inherited and somatic cancer genomes. Nat Rev Cancer 2016; 16:251-65. [PMID: 27009395 PMCID: PMC6854702 DOI: 10.1038/nrc.2016.15] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decades of research have shown that mutations in the p53 stress response pathway affect the incidence of diverse cancers more than mutations in other pathways. However, most evidence is limited to somatic mutations and rare inherited mutations. Using newly abundant genomic data, we demonstrate that commonly inherited genetic variants in the p53 pathway also affect the incidence of a broad range of cancers more than variants in other pathways. The cancer-associated single nucleotide polymorphisms (SNPs) of the p53 pathway have strikingly similar genetic characteristics to well-studied p53 pathway cancer-causing somatic mutations. Our results enable insights into p53-mediated tumour suppression in humans and into p53 pathway-based cancer surveillance and treatment strategies.
Collapse
Affiliation(s)
- Giovanni Stracquadanio
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Xuting Wang
- Environmental Genomics Group, Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Marsha Wallace
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Anna M. Grawenda
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Ping Zhang
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Juliet Hewitt
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Jorge Zeron-Medina
- Vall d’Hebron University Hospital, Oncology Department, Passeig de la Vall D’Hebron 119, 08035 Barcelona, Spain
| | - Francesc Castro-Giner
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Ian P. Tomlinson
- Molecular and Population Genetics Laboratory, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Kamil J. Cygan
- Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - William G. Fairbrother
- Center for Computational Molecular Biology, Brown University, 115 Waterman Street, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Laurent F. Thomas
- Department of Cancer Research and Molecular Medicine, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pål Sætrom
- Department of Computer and Information Science, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian, University of Science and Technology, NO-7491 Trondheim, Norway
| | - Frederica Gemignani
- Genetics- Department of Biology, University of Pisa, Via Derna, 1, 56126 Pisa - Italy
| | - Stefano Landi
- Genetics- Department of Biology, University of Pisa, Via Derna, 1, 56126 Pisa - Italy
| | - Benjamin Schuster-Boeckler
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
| | - Douglas A. Bell
- Environmental Genomics Group, Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
- Corresponding authors: . The Ludwig Institute for Cancer Research, The Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, The United Kingdom. . Environmental Genomics Group, Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, MD C3-03, NIEHS, PO Box 12233, Research Triangle Park, NC 27709, The United States of America
| | - Gareth L. Bond
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom
- Corresponding authors: . The Ludwig Institute for Cancer Research, The Nuffield Department of Clinical Medicine, The University of Oxford, Oxford, The United Kingdom. . Environmental Genomics Group, Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, MD C3-03, NIEHS, PO Box 12233, Research Triangle Park, NC 27709, The United States of America
| |
Collapse
|
39
|
Menon U, V P, Raghuram PH, Kannan K, Govindarajan GVV, Ramanathan A. Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas. Asian Pac J Cancer Prev 2016; 16:4589-92. [PMID: 26107208 DOI: 10.7314/apjcp.2015.16.11.4589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. MATERIALS AND METHODS Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. RESULTS Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. CONCLUSIONS The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.
Collapse
Affiliation(s)
- Uthara Menon
- Department of Oral Medicine and Radiology, Faculty of Dentistry, SRM University, Ramapuram, India E-mail :
| | | | | | | | | | | |
Collapse
|
40
|
Westhoff MA, Marschall N, Debatin KM. Novel Approaches to Apoptosis-Inducing Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:173-204. [PMID: 27558822 DOI: 10.1007/978-3-319-39406-0_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Induction of apoptotic programmed cell death is one of the underlying principles of most current cancer therapies. In this review, we discuss the limitations and drawbacks of this approach and identify three distinct, but overlapping strategies to avoid these difficulties and further enhance the efficacy of apoptosis-inducing therapies. We postulate that the application of multi-targeted small molecule inhibitor cocktails will reduce the risk of the cancer cell populations developing resistance towards therapy. Following from these considerations regarding population genetics and ecology, we advocate the reconsideration of therapeutic end points to maximise the benefits, in terms of quantity and quality of life, for the patients. Finally, combining both previous points, we also suggest an altered focus on the cellular and molecular targets of therapy, i.e. targeting the (cancer cells') interaction with the tumour microenvironment.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Nicolas Marschall
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstrasse 24, 89075, Ulm, Germany.
| |
Collapse
|
41
|
Dillon CP, Green DR. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:1-23. [PMID: 27558815 DOI: 10.1007/978-3-319-39406-0_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
42
|
Wu Y, Lindblad JL, Garnett J, Kamber Kaya HE, Xu D, Zhao Y, Flores ER, Hardy J, Bergmann A. Genetic characterization of two gain-of-function alleles of the effector caspase DrICE in Drosophila. Cell Death Differ 2015; 23:723-32. [PMID: 26542461 DOI: 10.1038/cdd.2015.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022] Open
Abstract
Caspases are the executioners of apoptosis. Although much is known about their physiological roles and structures, detailed analyses of missense mutations of caspases are lacking. As mutations within caspases are identified in various human diseases, the study of caspase mutants will help to elucidate how caspases interact with other components of the apoptosis pathway and how they may contribute to disease. DrICE is the major effector caspase in Drosophila required for developmental and stress-induced cell death. Here, we report the isolation and characterization of six de novo drICE mutants, all of which carry point mutations affecting amino acids conserved among caspases in various species. These six mutants behave as recessive loss-of-function mutants in a homozygous condition. Surprisingly, however, two of the newly isolated drICE alleles are gain-of-function mutants in a heterozygous condition, although they are loss-of-function mutants homozygously. Interestingly, they only behave as gain-of-function mutants in the presence of an apoptotic signal. These two alleles carry missense mutations affecting conserved amino acids in close proximity to the catalytic cysteine residue. This is the first time that viable gain-of-function alleles of caspases are described in any intact organism and provides a significant exception to the expectation that mutations of conserved amino acids always abolish the pro-apoptotic activity of caspases. We discuss models about how these mutations cause the gain-of-function character of these alleles.
Collapse
Affiliation(s)
- Y Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Lindblad
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - J Garnett
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H E Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - D Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Zhao
- University of Massachusetts Amherst, Amherst, MA, USA
| | - E R Flores
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Hardy
- University of Massachusetts Amherst, Amherst, MA, USA
| | - A Bergmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
43
|
Singh N, Hassan A, Bose K. Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. FASEB J 2015; 30:186-200. [PMID: 26370846 DOI: 10.1096/fj.15-272997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Assembly of a death-inducing signaling complex is a key event in the extrinsic apoptotic pathway, enabling activation of the caspase cascade and subsequent cell death. However, the molecular events governing DISC assembly have remained largely elusive because of the lack of information on mechanism and specificity regulating the death effector domain (DED)-DED interaction network. Using molecular modeling, mutagenesis, and biochemical and ex vivo experiments, we identified the precise binding interface and hot spots crucial for intermolecular DED chain assembly. Mutation of key interface residues (Leu42/Phe45) in procaspase-8 DED-A completely abrogated DED chain formation in HEK293 cells and prevented its association with FADD. A significant 2.6-3.6-fold reduction in procaspase-8 activation was observed in functional cell-death assays after substitution of the interfacial residues. Based on our results we propose a new model for DISC formation that refines the current understanding of the activation mechanism. Upon stimulation, FADD self-associates weakly via reciprocal interaction between helices α1/α4 and α2/α3 of the DED to form an oligomeric signaling platform that provides a stage for the initial recruitment of procaspase-8 through direct interaction with α1/α4 of DED-A, followed by sequential interaction mediated by helices α2/α5 of DED-B, to form the procaspase-8 DED chain that is crucial for its activation and subsequent cell death.
Collapse
Affiliation(s)
- Nitu Singh
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Ali Hassan
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
44
|
Farkas SA, Vymetalkova V, Vodickova L, Vodicka P, Nilsson TK. DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes. Epigenomics 2015; 6:179-91. [PMID: 24811787 DOI: 10.2217/epi.14.7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM The onset and progression of colorectal cancer (CRC) involves a cascade of genetic and/or epigenetic events. The aim of the present study was to address the DNA methylation status of genes relevant in colorectal carcinogenesis and its progression, such as genes frequently mutated in CRC, genes involved in the DNA repair and Wnt signaling pathway. MATERIAL & METHODS We analyzed methylation status in totally 160 genes in 12 paired colorectal tumors and adjacent healthy mucosal tissues using the Illumina Infinium Human Methylation 450 BeadChip. RESULTS We found significantly aberrant methylation in 23 genes (NEIL1, NEIL3, DCLRE1C, NHEJ1, GTF2H5, CCNH, CTNNB1, DKK2, DKK3, FZD5 LRP5, TLE3, WNT2, WNT3A, WNT6, TCF7L1, CASP8, EDNRB1, GPC6, KIAA1804, MYO1B, SMAD2 and TTN). External validation by mRNA expression showed a good agreement between hypermethylation in cancer and down-regulated mRNA expression of the genes EDNRB1, GPC6 and SMAD2, and between hypomethylation and up-regulated mRNA expression of the CASP8 and DCLRE1C genes. CONCLUSION Aberrant methylation of the DCLRE1C and GPC6 genes are presented here for the first time and are therefore of special interest for further validation as novel candidate biomarker genes in CRC, and merit further validation with specific assays.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine, Örebro University Hospital; Örebro, Sweden
| | | | | | | | | |
Collapse
|
45
|
Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ 2014; 22:526-39. [PMID: 25526085 DOI: 10.1038/cdd.2014.216] [Citation(s) in RCA: 933] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
Caspases are proteases with a well-defined role in apoptosis. However, increasing evidence indicates multiple functions of caspases outside apoptosis. Caspase-1 and caspase-11 have roles in inflammation and mediating inflammatory cell death by pyroptosis. Similarly, caspase-8 has dual role in cell death, mediating both receptor-mediated apoptosis and in its absence, necroptosis. Caspase-8 also functions in maintenance and homeostasis of the adult T-cell population. Caspase-3 has important roles in tissue differentiation, regeneration and neural development in ways that are distinct and do not involve any apoptotic activity. Several other caspases have demonstrated anti-tumor roles. Notable among them are caspase-2, -8 and -14. However, increased caspase-2 and -8 expression in certain types of tumor has also been linked to promoting tumorigenesis. Increased levels of caspase-3 in tumor cells causes apoptosis and secretion of paracrine factors that promotes compensatory proliferation in surrounding normal tissues, tumor cell repopulation and presents a barrier for effective therapeutic strategies. Besides this caspase-2 has emerged as a unique caspase with potential roles in maintaining genomic stability, metabolism, autophagy and aging. The present review focuses on some of these less studied and emerging functions of mammalian caspases.
Collapse
Affiliation(s)
- S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
46
|
Gurung P, Kanneganti TD. Novel roles for caspase-8 in IL-1β and inflammasome regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:17-25. [PMID: 25451151 DOI: 10.1016/j.ajpath.2014.08.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/20/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Caspase-8 is an initiator and apical activator caspase that plays a central role in apoptosis. Caspase-8-deficient mice are embryonic lethal, which makes study of caspase-8 in primary immune cells difficult. Recent advances have rescued caspase-8-deficient mice by crossing them to mice deficient in receptor-interacting serine-threonine kinase 3 (RIPK3). These genetic tools have made it possible to study the role of caspase-8 in vivo and in primary immune cells. Several recent studies have identified novel roles for caspase-8 in modulating IL-1β and inflammation, showing that caspase-8 directly regulates IL-1β independent of inflammasomes or indirectly through the regulation of inflammasomes, depending on the stimulus or stimuli that initiate the signaling cascade. Here, we address recent findings on caspase-8 and its role in modulating IL-1β and inflammation.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
47
|
Choi J, Corder NLB, Koduru B, Wang Y. Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic Biol Med 2014; 72:267-84. [PMID: 24816297 PMCID: PMC4099059 DOI: 10.1016/j.freeradbiomed.2014.04.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.
Collapse
Affiliation(s)
- Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| | - Nicole L B Corder
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Bhargav Koduru
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yiyan Wang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| |
Collapse
|
48
|
Li C, Egloff AM, Sen M, Grandis JR, Johnson DE. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol 2014; 8:1220-30. [PMID: 24816188 DOI: 10.1016/j.molonc.2014.03.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 01/25/2023] Open
Abstract
Little is known regarding molecular markers in head and neck squamous cell carcinoma (HNSCC) that predict responsiveness to different therapeutic regimens or predict HNSCC progression. Mutations in procaspase-8 occur in 9% of HNSCC primary tumors, but the functional consequences of these mutations are poorly understood. In this study, we examined the impact of four, representative, HNSCC-associated procaspase-8 mutations on activation of the extrinsic apoptosis pathway, as well as cellular migration and invasion, and in vivo tumor growth. All four mutant proteins acted to potently inhibit activation of apoptosis following treatment with TRAIL or agonistic anti-Fas. In contrast to wild-type procaspase-8, the mutant proteins were not recruited to FADD following treatment with TRAIL or anti-Fas, but may be constitutively bound by FADD. Three of the four procaspase-8 mutants promoted enhanced cellular migration and invasion through matrigel, relative to that seen with the wild-type procaspase-8 protein. Procaspase-8 mutation also stimulated the growth of HNSCC xenograft tumors. These findings indicate that HNSCC-associated procaspase-8 mutations inhibit activation of the extrinsic apoptosis pathway and are likely to represent markers for resistance to therapeutic regimens incorporating death receptor activators. Moreover, procaspase-8 mutations may serve as markers of HNSCC tumor progression, as exemplified by enhanced migration, invasion, and tumor growth.
Collapse
Affiliation(s)
- Changyou Li
- Department of Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Ann Marie Egloff
- Department of Otolaryngology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Daniel E Johnson
- Department of Medicine, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| |
Collapse
|
49
|
Ando M, Kawazu M, Ueno T, Fukumura K, Yamato A, Soda M, Yamashita Y, Choi YL, Yamasoba T, Mano H. Cancer-associated missense mutations of caspase-8 activate nuclear factor-κB signaling. Cancer Sci 2013; 104:1002-8. [PMID: 23659359 DOI: 10.1111/cas.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a 5-year survival rate of ~50%. With the use of a custom cDNA-capture system coupled with massively parallel sequencing, we have now investigated transforming mechanisms for this malignancy. The cDNAs of cancer-related genes (n = 906) were purified from a human HNSCC cell line (T3M-1 Cl-10) and subjected to high-throughput resequencing, and the clinical relevance of non-synonymous mutations thus identified was evaluated with luciferase-based reporter assays. A CASP8 (procaspase-8) cDNA with a novel G-to-C point mutation that results in the substitution of alanine for glycine at codon 325 was identified, and the mutant protein, CASP8 (G325A), was found to activate nuclear factor-κB (NF-κB) signaling to an extent far greater than that achieved with the wild-type protein. Moreover, forced expression of wild-type CASP8 suppressed the growth of T3M-1 Cl-10 cells without notable effects on apoptosis. We further found that most CASP8 mutations previously detected in various epithelial tumors also increase the ability of the protein to activate NF-κB signaling. Such NF-κB activation was shown to be mediated through the COOH-terminal region of the second death effector domain of CASP8. Although CASP8 mutations associated with cancer have been thought to promote tumorigenesis as a result of attenuation of the proapoptotic function of the protein, our results now show that most such mutations, including the novel G325A identified here, separately confer a gain of function with regard to activation of NF-κB signaling, indicating another role of CASP8 in the transformation of human malignancies including HNSCC.
Collapse
Affiliation(s)
- Mizuo Ando
- Department of Medical Genomics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Caspases are a family of endoproteases that provide critical links in cell regulatory networks controlling inflammation and cell death. The activation of these enzymes is tightly controlled by their production as inactive zymogens that gain catalytic activity following signaling events promoting their aggregation into dimers or macromolecular complexes. Activation of apoptotic caspases results in inactivation or activation of substrates, and the generation of a cascade of signaling events permitting the controlled demolition of cellular components. Activation of inflammatory caspases results in the production of active proinflammatory cytokines and the promotion of innate immune responses to various internal and external insults. Dysregulation of caspases underlies human diseases including cancer and inflammatory disorders, and major efforts to design better therapies for these diseases seek to understand how these enzymes work and how they can be controlled.
Collapse
Affiliation(s)
- David R McIlwain
- The Campbell Family Institute for Breast Cancer Research and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | | | | |
Collapse
|