1
|
Mokmued K, Obeng G, Kawamoto E, Caidengbate S, Leangpanich S, Akama Y, Gaowa A, Shimaoka M, Park EJ. miR-200c-3p regulates α4 integrin-mediated T cell adhesion and migration. Exp Cell Res 2024; 440:114146. [PMID: 38936759 DOI: 10.1016/j.yexcr.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
A microRNA miR-200c-3p is a regulator of epithelial-mesenchymal transition to control adhesion and migration of epithelial and mesenchymal cells. However, little is known about whether miR-200c-3p affects lymphocyte adhesion and migration mediated by integrins. Using TK-1 (a T lymphoblast cell) as a model of T cell, here we show that repressed expression of miR-200c-3p upregulated α4 integrin-mediated adhesion to and migration across mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Conversely, overexpression of miR-200c-3p downregulated α4 integrin-mediated adhesion and migration. Unlike in epithelial cells, miR-200c-3p did not target talin, a conformation activator of integrin, but, targeted E26-transformation-specific sequence 1 (ETS1), a transcriptional activator of α4 integrin, in T cells. Treatment of the miR-200c-3p-low-expressing TK-1 cells that possessed elevated α4 integrin with ETS1 small interfering RNA (siRNA) resulted in the reversion of the α4 integrin expression, supporting that ETS1 is a target of miR-200c-3p. A potential proinflammatory immune-modulator retinoic acid (RA) treatment of TK-1 cells elicited a significant reduction of miR-200c-3p and simultaneously a marked increase in ETS1 and α4 integrin expression. An anti-inflammatory cytokine TGF-β1 treatment elevated miR-200c-3p, thereby downregulating ETS1 and α4 integrin expression. These results suggest that miR-200c-3p is an important regulator of α4 integrin expression and functions and may be controlled by RA and TGF-β1 in an opposite way. Overexpression of miR-200c-3p could be a novel therapeutic option for treatment of gut inflammation through suppressing α4 integrin-mediated T cell migration.
Collapse
Affiliation(s)
- Khwanchanok Mokmued
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Siqingaowa Caidengbate
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Supasuta Leangpanich
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
2
|
Bartholf DeWitt S, Hoskinson Plumlee S, Brighton HE, Sivaraj D, Martz E, Zand M, Kumar V, Sheth MU, Floyd W, Spruance JV, Hawkey N, Varghese S, Ruan J, Kirsch DG, Somarelli JA, Alman B, Eward WC. Loss of ATRX promotes aggressive features of osteosarcoma with increased NF-κB signaling and integrin binding. JCI Insight 2022; 7:e151583. [PMID: 36073547 PMCID: PMC9536280 DOI: 10.1172/jci.insight.151583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS) is a lethal disease with few known targeted therapies. Here, we show that decreased ATRX expression is associated with more aggressive tumor cell phenotypes, including increased growth, migration, invasion, and metastasis. These phenotypic changes correspond with activation of NF-κB signaling, extracellular matrix remodeling, increased integrin αvβ3 expression, and ETS family transcription factor binding. Here, we characterize these changes in vitro, in vivo, and in a data set of human OS patients. This increased aggression substantially sensitizes ATRX-deficient OS cells to integrin signaling inhibition. Thus, ATRX plays an important tumor-suppression role in OS, and loss of function of this gene may underlie new therapeutic vulnerabilities. The relationship between ATRX expression and integrin binding, NF-κB activation, and ETS family transcription factor binding has not been described in previous studies and may impact the pathophysiology of other diseases with ATRX loss, including other cancers and the ATR-X α thalassemia intellectual disability syndrome.
Collapse
Affiliation(s)
- Suzanne Bartholf DeWitt
- Department of Orthopaedic Surgery and
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | - Maryam Zand
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Maya U. Sheth
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacob V. Spruance
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan Hawkey
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery and
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Jianhua Ruan
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - David G. Kirsch
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ben Alman
- Department of Orthopaedic Surgery and
| | - William C. Eward
- Department of Orthopaedic Surgery and
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Sun L, Li Y, Yu Y, Wang P, Zhu S, Wu K, Liu Y, Wang R, Min L, Chang C. Inhibition of Cancer Cell Migration and Glycolysis by Terahertz Wave Modulation via Altered Chromatin Accessibility. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9860679. [PMID: 39759157 PMCID: PMC11697589 DOI: 10.34133/2022/9860679] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2025]
Abstract
Metastasis and metabolic disorders contribute to most cancer deaths and are potential drug targets in cancer treatment. However, corresponding drugs inevitably induce myeloid suppression and gastrointestinal toxicity. Here, we report a nonpharmaceutical and noninvasive electromagnetic intervention technique that exhibited long-term inhibition of cancer cells. Firstly, we revealed that optical radiation at the specific wavelength of 3.6 μm (i.e., 83 THz) significantly increased binding affinity between DNA and histone via molecular dynamics simulations, providing a theoretical possibility for THz modulation- (THM-) based cancer cell intervention. Subsequent cell functional assays demonstrated that low-power 3.6 μm THz wave could successfully inhibit cancer cell migration by 50% and reduce glycolysis by 60%. Then, mRNA sequencing and assays for transposase-accessible chromatin using sequencing (ATAC-seq) indicated that low-power THM at 3.6 μm suppressed the genes associated with glycolysis and migration by reducing the chromatin accessibility of certain gene loci. Furthermore, THM at 3.6 μm on HCT-116 cancer cells reduced the liver metastasis by 60% in a metastatic xenograft mouse model by splenic injection, successfully validated the inhibition of cancer cell migration by THM in vivo. Together, this work provides a new paradigm for electromagnetic irradiation-induced epigenetic changes and represents a theoretical basis for possible innovative therapeutic applications of THM as the future of cancer treatments.
Collapse
Affiliation(s)
- Lan Sun
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Yangmei Li
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Yun Yu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Peiliang Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- Aerospace Information Research Institute, School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Electromagnetic Illumination and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengquan Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing 100171China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Yan Liu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Ruixing Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing 100171China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071China
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Pillars and Gaps of S-Nitrosylation-Dependent Epigenetic Regulation in Physiology and Cancer. Life (Basel) 2021; 11:life11121424. [PMID: 34947954 PMCID: PMC8704633 DOI: 10.3390/life11121424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule produced by three isoforms of nitric oxide synthase, which release NO during the metabolism of the amino acid arginine. NO participates in pathophysiological responses of many different tissues, inducing concentration-dependent effect. Indeed, while low NO levels generally have protective effects, higher NO concentrations induce cytotoxic/cytostatic actions. In recent years, evidences have been accumulated unveiling S-nitrosylation as a major NO-dependent post-translational mechanism ruling gene expression. S-nitrosylation is a reversible, highly regulated phenomenon in which NO reacts with one or few specific cysteine residues of target proteins generating S-nitrosothiols. By inducing this chemical modification, NO might exert epigenetic regulation through direct effects on both DNA and histones as well as through indirect actions affecting the functions of transcription factors and transcriptional co-regulators. In this light, S-nitrosylation may also impact on cancer cell gene expression programs. Indeed, it affects different cell pathways and functions ranging from the impairment of DNA damage repair to the modulation of the activity of signal transduction molecules, oncogenes, tumor suppressors, and chromatin remodelers. Nitrosylation is therefore a versatile tool by which NO might control gene expression programs in health and disease.
Collapse
|
5
|
Ratti M, Grizzi G, Passalacqua R, Lampis A, Cereatti F, Grassia R, Hahne JC. NTRK fusions in colorectal cancer: clinical meaning and future perspective. Expert Opin Ther Targets 2021; 25:677-683. [PMID: 34488530 DOI: 10.1080/14728222.2021.1978070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Despite the efforts of the scientific community, the prognosis of metastatic colorectal cancer (mCRC) remains poor. Actionable gene fusions such as Neurotrophic Tropomyosin Receptor Kinases (NTRK) rearrangements are rare but might represent a new target to improve outcomes in this setting. The first-generation TRK inhibitors, larotrectinib and entrectinib, have demonstrated efficacy and safety in mCRC cancer patients exhibiting NTRK pathogenic fusions. Moreover, second-generation molecules are emerging, able to overcome the acquired resistance to NTRK blocking. AREAS COVERED This review aims to report the current knowledge and the available evidence on NTRK fusion in mCRC, with a focus on molecular bases, clinical characteristics, prognostic meaning, and new therapeutic approaches, from the perspective of the clinical oncologist. EXPERT OPINION Considering the limited options associated with the treatment of mCRC patients, the possibility of identifying new molecular biomarkers is an urgent clinical need. The availability of new molecular targets and the combinations of different agents might represent the true breakthrough point, allowing for change in the clinical course of colorectal cancer patients.
Collapse
Affiliation(s)
- Margherita Ratti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Giulia Grizzi
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Rodolfo Passalacqua
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Fabrizio Cereatti
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Roberto Grassia
- Department of Medical Oncology, Azienda Socio Sanitaria Territoriale of Cremona, Cremona, Italy
| | - Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
6
|
Nazir SU, Kumar R, Dil-Afroze, Rasool I, Bondhopadhyay B, Singh A, Tripathi R, Singh N, Khan A, Tanwar P, Agrawal U, Mehrotra R, Hussain S. Differential expression of Ets-1 in breast cancer among North Indian population. J Cell Biochem 2019; 120:14552-14561. [PMID: 31016780 DOI: 10.1002/jcb.28716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly aggressive disease contributing to high mortality rate among females across the globe owing to wide geographical variations, change in lifestyle along with rapid tumor growth, drug resistance, and high metastasis rate. To understand the molecular and genetic basis of breast cancer progression; we studied the role of E26 transformation-specific-1 (Ets-1) transcription factor which is implicated to have a role in carcinogenesis like invasion, metastasis, angiogenesis, etc. Our findings revealed an overexpression of Ets-1 gene in 75 breast cancer tumors as compared with their normal adjacent tissues. The findings significantly established a co-relation between Ets-1 expression in breast cancer tissue with hormonal receptor profiles and ductal-lobular histological subtypes in Indian population. In addition, a differential expression pattern of Ets-1 was observed between high, moderate, and low grades of breast cancer patients. The present study demonstrates a crucial role of Ets-1 transcription factor which may serve as a potential biomarker for breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Dil-Afroze
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Ishrat Rasool
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Banashree Bondhopadhyay
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ankita Singh
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Richa Tripathi
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Neha Singh
- Institute of Clinical Sciences, Sahlgrenska University Hospital, Gothenberg University, Gothenberg, Sweden
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Ravi Mehrotra
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| |
Collapse
|
7
|
Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H. Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 2018; 46:2243-2251. [PMID: 29309620 PMCID: PMC5861456 DOI: 10.1093/nar/gkx1297] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-modal interactions are frequently observed in intrinsically disordered regions (IDRs) of proteins upon binding to their partners. In many cases, post-translational modifications in IDRs are accompanied by coupled folding and binding. From both molecular simulations and biochemical experiments with mutational studies, we show that the IDR including a Ser rich region (SRR) of the transcription factor Ets1, just before the DNA-binding core domain, undergoes multi-modal interactions when the SRR is not phosphorylated. In the phosphorylated state, the SRR forms a few specific complex structures with the Ets1 core, covering the recognition helix in the core and drastically reducing the DNA binding affinities as the auto-inhibitory state. The binding kinetics of mutated Ets1 indicates that aromatic residues in the SRR can be substituted with other hydrophobic residues for the interactions with the Ets1 core.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Noji-higashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Masaaki Shiina
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Junichi Higo
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Ogata
- Graduate School of Medicine, Yokohama City University, Fuku-ura 3–9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Yamada-oka 3-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Zhang X, Wu D, Aldarouish M, Yin X, Li C, Wang C. ETS-1: A potential target of glycolysis for metabolic therapy by regulating glucose metabolism in pancreatic cancer. Int J Oncol 2016; 50:232-240. [PMID: 27878249 DOI: 10.3892/ijo.2016.3770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies of all types of cancer due to lack of early symptoms and its resistance to conventional therapy. In our previous study, we have shown that v‑ets erythroblastosis virus E26 oncogene homolog‑1 (ETS‑1) promote cell migration and invasion in pancreatic cancer cells. However, the function of ETS‑1 in regulation of glycolysis and autophagy during progression of pancreatic cancer has not been defined yet. In this study, we sought to identify the potential role for silencing ETS‑1 in reducing the expression of glucose transporter‑1 (GLUT‑1) to disturb glycolysis through alteration of 'Warburg effect', by which could result in AMP‑activated protein kinase (AMPK) activation, autophagy induction and reduction of cell viability. MTT assay was applied to assess the cell viability in ETS‑1 silencing cells and control groups. Glucose absorption rate, lactate production rate and cellular ATP level were measured by standard colorimetric assay kits. The levels of mRNAs of ETS‑1, GLUT‑1, autophagy‑related gene 5 (ATG5) and ATG7 were analyzed by qRT‑PCR. The expression of ETS‑1, GLUT‑1, ATG5, ATG7, p‑AMPK, and LC3II proteins were evaluated by western blot analysis. GraphPad Prism 5.0 was used for all statistical analysis. We found that cell viability was obviously attenuated after silencing ETS‑1. Besides, our results also showed that the expression of GLUT‑1 significantly declined in ETS‑1 silencing cell lines which resulted in a lower glucose utilization and lactate production. Furthermore, the inhibition of glycolysis, which depends on glucose utilization and lactate production, reduced the generation of energy in the form of ATP. Moreover, the reduction of cellular ATP was associated with stimulation of AMP‑activated protein kinase (AMPK) and induction of autophagy. Our results indicated that ETS‑1 induced autophagy after inhibition of glycolysis, and thus led to comparative decrease of cell viability. These results implied that ETS‑1 could be a potential target for tumor metabolic therapy.
Collapse
Affiliation(s)
- Xiu Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dan Wu
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu 224000, P.R. China
| | - Mohanad Aldarouish
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaodong Yin
- Department of Oncology, Binhai People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| | - Chunyan Li
- Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Palumbo A, Da Costa NDOM, Bonamino MH, Pinto LFR, Nasciutti LE. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol Cancer 2015; 14:145. [PMID: 26227631 PMCID: PMC4521350 DOI: 10.1186/s12943-015-0409-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The recent exponential increase in our knowledge of cellular and molecular mechanisms involved in carcinogenesis has largely failed to translate into new therapies and clinical practices. This lack of success may result in part from the fact that most studies focus on tumor cells as potential therapeutic targets and neglect the complex microenvironment that undergoes profound changes during tumor development. Furthermore, an unfortunate association of factors such as tumor genetic complexity, overestimation of biomarker and drug potentials, as well as a poor understanding of tumor microenvironment in diagnosis and prognosis leads to the current levels of treatment failure regarding a vast majority of cancer types. A growing body of evidence points to the importance of the functional diversity of immune and structural cells during tumor development. In this sense, the lack of technologies that would allow for molecular screening of individual stromal cell types poses a major challenge for the development of therapies targeting the tumor microenvironment. Progress in microenvironment genetic studies represents a formidable opportunity for the development of new selective drugs because stromal cells have lower mutation rates than malignant cells, and should prove to be good targets for therapy.
Collapse
Affiliation(s)
- Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil. .,Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Nathalia de Oliveira Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Martin Hernan Bonamino
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil. .,Fundação Oswaldo Cruz, Vice-presidência de Pesquisa e Laboratórios de Referência, Rio de Janeiro, Brasil, Av. Brasil, 4365 - Pavilhão Mourisco - Manguinhos, 21040-900, Rio de Janeiro, RJ, Brasil.
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer José de Alencar Gomes da Silva, Rua André Cavalcanti, 37 - 6° andar - Centro, 20231-050, Rio de Janeiro, RJ, Brasil.
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Prédio de Ciências da Saúde - Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373 - bloco F, sala 26, 21941-902, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
10
|
Cao L, Xie B, Yang X, Liang H, Jiang X, Zhang D, Xue P, Chen D, Shao Z. MiR-324-5p Suppresses Hepatocellular Carcinoma Cell Invasion by Counteracting ECM Degradation through Post-Transcriptionally Downregulating ETS1 and SP1. PLoS One 2015; 10:e0133074. [PMID: 26177288 PMCID: PMC4503725 DOI: 10.1371/journal.pone.0133074] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancies, which is highly metastatic and the third common cause of cancer deaths in the world. The invasion and metastasis of cancer cells is a multistep and complex process which is mainly initiated by extracellular matrix (ECM) degradation. Aberrant expression of microRNA has been investigated in HCC and shown to play essential roles during HCC progression. In the present study, we found that microRNA-324-5p (miR-324-5p) was downregulated in both HCC cell lines and tissues. Ectopic miR-324-5p led to the reduction of HCC cells invasive and metastatic capacity, whereas inhibition of miR-324-5p promoted the invasion of HCC cells. Matrix metalloproteinase 2 (MMP2) and MMP9, the major regulators of ECM degradation, were found to be downregulated by ectopic miR-324-5p, while upregulated by miR-324-5p inhibitor. E26 transformation-specific 1 (ETS1) and Specificity protein 1 (SP1), both of which could modulate MMP2 and MMP9 expression and activity, were presented as the direct targets of and downregulated by miR-324-5p. Downregulation of ETS1 and SP1 mediated the inhibitory function of miR-324-5p on HCC migration and invasion. Our study demonstrates that miR-324-5p suppresses hepatocellular carcinoma cell invasion and might provide new clues to invasive HCC therapy.
Collapse
Affiliation(s)
- Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Binhui Xie
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuewei Yang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huihong Liang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - De Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Shao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Thang ND, Yajima I, Ohnuma S, Ohgami N, Kumasaka MY, Ichihara G, Kato M. Enhanced constitutive invasion activity in human nontumorigenic keratinocytes exposed to a low level of barium for a long time. ENVIRONMENTAL TOXICOLOGY 2015; 30:161-167. [PMID: 23804419 DOI: 10.1002/tox.21881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
We have recently demonstrated that exposure to barium for a short time (≤4 days) and at a low level (5 µM = 687 µg/L) promotes invasion of human nontumorigenic HaCaT cells, which have characteristics similar to those of normal keratinocytes, suggesting that exposure to barium for a short time enhances malignant characteristics. Here we examined the effect of exposure to low level of barium for a long time, a condition mimicking the exposure to barium through well water, on malignant characteristics of HaCaT keratinocytes. Constitutive invasion activity, focal adhesion kinase (FAK) protein expression and activity, and matrix metalloproteinase 14 (MMP14) protein expression in primary cultured normal human epidermal keratinocytes, HaCaT keratinocytes, and HSC5 and A431 human squamous cell carcinoma cells were augmented following an increase in malignancy grade of the cells. Constitutive invasion activity, FAK phosphorylation, and MMP14 expression levels of HaCaT keratinocytes after treatment with 5 µM barium for 4 months were significantly higher than those of control untreated HaCaT keratinocytes. Taken together, our results suggest that exposure to a low level of barium for a long time enhances constitutive malignant characteristics of HaCaT keratinocytes via regulatory molecules (FAK and MMP14) for invasion.
Collapse
Affiliation(s)
- Nguyen D Thang
- Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan; Department of Biochemistry and Plant Biology, Vietnam National University, Hanoi, Vietnam
| | | | | | | | | | | | | |
Collapse
|
12
|
Li C, Wang Z, Chen Y, Zhou M, Zhang H, Chen R, Shi F, Wang C, Rui Z. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells. Oncol Rep 2014; 33:559-65. [PMID: 25421630 PMCID: PMC4306275 DOI: 10.3892/or.2014.3613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays crucial roles in a spectrum of malignancies. ETS-1 has gained attention in cancer research for its importance in cell migration, invasion and proliferation. In the present study, we focused on the effect of ETS-1 on epithelial-mesenchymal transition (EMT), which is characterized by reduced E-cadherin expression and increased N-cadherin expression. We found that ETS-1 mRNA expression was positively correlated with N-cadherin and negatively correlated with E-cadherin mRNA expression in five pancreatic cancer cell lines. To elucidate the functionality of ETS-1 on EMT in pancreatic cancer cells, we constructed a green fluorescent protein (GFP)-expressing plasmid carrying ETS-1 short hairpin RNA (shRNA), and transfected Panc-1 cells with the plasmid. We detected reduced N-cadherin and vascular endothelial growth factor yet higher E-cadherin expression in the ETS-1-silenced cells compared with the control group. In addition, we observed reduced cell migration and increased adhesion in these cells. Our data showed that ETS-1 actively functioned as a regulator of EMT in Panc-1 cells, and provide additional evidence supporting a fundamental role for ETS-1 in metastatic pancreatic cancer cells. These results suggest that analysis of ETS-1 expression levels may provide an avenue for evaluating prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhonghan Wang
- Department of Internal Medicine, Nanjing Government Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Zhou
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zongdao Rui
- Department of General Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
13
|
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014; 26:222-34. [PMID: 25117710 PMCID: PMC4169234 DOI: 10.1016/j.ccr.2014.06.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022]
Abstract
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitro and tumor growth in vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
Collapse
Affiliation(s)
- Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ying Huang
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ross Tomaino
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Ehrenberger
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wenbin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael B Yaffe
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
14
|
Zhang W, Zhao J, Lee JF, Gartung A, Jawadi H, Lambiv WL, Honn KV, Lee MJ. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis. J Biol Chem 2013; 288:32126-32137. [PMID: 24064218 PMCID: PMC3820853 DOI: 10.1074/jbc.m113.495218] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Indexed: 12/17/2022] Open
Abstract
Sphingosine-1-phosphate (S1P)-regulated chemotaxis plays critical roles in various physiological and pathophysiological conditions. S1P-regulated chemotaxis is mediated by the S1P family of G-protein-coupled receptors. However, molecular details of the S1P-regulated chemotaxis are incompletely understood. Cultured human lung adenocarcinoma cell lines abundantly express S1P receptor subtype 3 (S1P3), thus providing a tractable in vitro system to characterize molecular mechanism(s) underlying the S1P3 receptor-regulated chemotactic response. S1P treatment enhances CD44 expression and induces membrane localization of CD44 polypeptides via the S1P3/Rho kinase (ROCK) signaling pathway. Knockdown of CD44 completely diminishes the S1P-stimulated chemotaxis. Promoter analysis suggests that the CD44 promoter contains binding sites of the ETS-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) transcriptional factor. ChIP assay confirms that S1P treatment stimulates the binding of ETS-1 to the CD44 promoter region. Moreover, S1P induces the expression and nuclear translocation of ETS-1. Knockdown of S1P3 or inhibition of ROCK abrogates the S1P-induced ETS-1 expression. Furthermore, knockdown of ETS-1 inhibits the S1P-induced CD44 expression and cell migration. In addition, we showed that S1P3/ROCK signaling up-regulates ETS-1 via the activity of JNK. Collectively, we characterized a novel signaling axis, i.e., ROCK-JNK-ETS-1-CD44 pathway, which plays an essential role in the S1P3-regulated chemotactic response.
Collapse
Affiliation(s)
- Wenliang Zhang
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jiawei Zhao
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Jen-Fu Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | - Allison Gartung
- From the Department of Pathology,; the Bioactive Lipid Research Program
| | | | | | - Kenneth V Honn
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute
| | - Menq-Jer Lee
- From the Department of Pathology,; the Bioactive Lipid Research Program,; the Karmanos Cancer Institute; the Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
15
|
Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, Morisaki I, Lamont RJ, Amano A. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 2013; 16:131-45. [PMID: 23991831 DOI: 10.1111/cmi.12211] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023]
Abstract
Recent epidemiological studies have revealed a significant association between periodontitis and oral squamous cell carcinoma (OSCC). Furthermore, matrix metalloproteinase 9 (MMP9) is implicated in the invasion and metastasis of tumour cells. We examined the involvement of Porphyromonas gingivalis, a periodontal pathogen, in OSCC invasion through induced expression of proMMP and its activation. proMMP9 was continuously secreted from carcinoma SAS cells, while P. gingivalis infection increased proenzyme expression and subsequently processed it to active MMP9 in culture supernatant, which enhanced cellular invasion. In contrast, Fusobacterium nucleatum, another periodontal organism, failed to demonstrate such activities. The effects of P. gingivalis were observed with highly invasive cells, but not with the low invasivetype. P. gingivalis also stimulated proteinase-activated receptor 2 (PAR2) and enhanced proMMP9 expression, which promoted cellular invasion. P. gingivalis mutants deficient in gingipain proteases failed to activate MMP9. Infected SAS cells exhibited activation of ERK1/2, p38, and NF-kB, and their inhibitors diminished both proMMP9-overexpression and cellular invasion. Together, our results show that P. gingivalis activates the ERK1/2-Ets1, p38/HSP27, and PAR2/NF-kB pathways to induce proMMP9 expression, after which the proenzyme is activated by gingipains to promote cellular invasion of OSCC cell lines. These findings suggest a novel mechanism of progression and metastasis of OSCC associated with periodontitis.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Oral Frontier Biology, Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer. Cell Signal 2013; 25:1689-98. [DOI: 10.1016/j.cellsig.2013.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 12/26/2022]
|
17
|
Verschoor ML, Verschoor CP, Singh G. Ets-1 global gene expression profile reveals associations with metabolism and oxidative stress in ovarian and breast cancers. Cancer Metab 2013; 1:17. [PMID: 24280356 PMCID: PMC4178218 DOI: 10.1186/2049-3002-1-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background The Ets-1 proto-oncogene is frequently upregulated in cancer cells, with known involvement in cancer angiogenesis, metastasis, and more recently energy metabolism. In this study we have performed various bioinformatic analyses on existing microarray data to further clarify the role of Ets-1 in ovarian cancer, and validated these results with functional assays. Methods Functional pathway analyses were conducted on existing microarray data comparing 2008 and 2008-Ets1 ovarian cancer cells. Methods included over-representation analysis, functional class scoring and pathway topology, and network representations were visualized in Cytoscape. Oxidative stress regulation was examined in ovarian cancer cells by measuring protein expression and enzyme activity of glutathione peroxidases, as well as intracellular reactive oxygen species using dichlorofluorescin fluorescence. A stable Ets-1 knockdown MDA-MB-231 cell line was created using short hairpin RNA, and glycolytic dependence of these cells was measured following treatment with 2-deoxy-D-glucose and Hoechst nuclear staining to determine cell number. High-resolution respirometry was performed to measure changes in basal oxygen flux between MDA-MB-231 cells and MDA-Ets1KD variants. Results Enrichments in oxidoreductase activity and various metabolic pathways were observed upon integration of the different analyses, suggesting that Ets-1 is important in their regulation. As oxidative stress is closely associated with these pathways, we functionally validated our observations by showing that Ets-1 overexpression resulted in decreased reactive oxygen species with increased glutathione peroxidase expression and activity, thereby regulating cellular oxidative stress. To extend our findings to another cancer type, we developed an Ets-1 knockdown breast cancer cell model, which displayed decreased glycolytic dependence and increased oxygen consumption following Ets-1 knockdown confirming our earlier findings. Conclusions Collectively, this study confirms the important role of Ets-1 in the regulation of cancer energy metabolism in ovarian and breast cancers. Furthermore, Ets-1 is a key regulator of oxidative stress in ovarian cancer cells by mediating alterations in glutathione antioxidant capacity.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Medical Science, McMaster University, 1280 Main Street W, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | |
Collapse
|
18
|
Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis. Proc Natl Acad Sci U S A 2013; 110:11121-6. [PMID: 23784775 DOI: 10.1073/pnas.1300873110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efforts to improve the clinical outcome of highly aggressive triple-negative breast cancer (TNBC) have been hindered by the lack of effective targeted therapies. Thus, it is important to identify the specific gene targets/pathways driving the invasive phenotype to develop more effective therapeutics. Here we show that ubiquitin-associated and SH3 domain-containing B (UBASH3B), a protein tyrosine phosphatase, is overexpressed in TNBC, where it supports malignant growth, invasion, and metastasis largely through modulating epidermal growth factor receptor (EGFR). We also show that UBASH3B is a functional target of anti-invasive microRNA200a (miR200a) that is down-regulated in TNBC. Importantly, the oncogenic potential of UBASH3B is dependent on its tyrosine phosphatase activity, which targets CBL ubiquitin ligase for dephosphorylation and inactivation, leading to EGFR up-regulation. Thus, UBASH3B may function as a crucial node in bridging multiple invasion-promoting pathways, thereby providing a potential therapeutic target for TNBC.
Collapse
|
19
|
Fleming JL, Gable DL, Samadzadeh-Tarighat S, Cheng L, Yu L, Gillespie JL, Toland AE. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice. PeerJ 2013; 1:e68. [PMID: 23646287 PMCID: PMC3642704 DOI: 10.7717/peerj.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA) expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs) compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h) and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.
Collapse
Affiliation(s)
- Jessica L Fleming
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Dustin L Gable
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Somayeh Samadzadeh-Tarighat
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Luke Cheng
- Biomedical Science Program, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- The Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Jessica L Gillespie
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
20
|
Switzer CH, Cheng RYS, Ridnour LA, Glynn SA, Ambs S, Wink DA. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 2012; 14:R125. [PMID: 22971289 PMCID: PMC4053102 DOI: 10.1186/bcr3319] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/12/2012] [Indexed: 02/04/2023] Open
Abstract
Introduction The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced phenotypes in ER- human breast cancer cells. Methods Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase (NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical NO-donor, diethlylenetriamine NONOate (DETANO). Results Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling. Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1 transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1 transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-cadherin, S100A8, IL-8 and αβ-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation, matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion. Conclusions These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked to poor patient survival.
Collapse
|
21
|
Shaikhibrahim Z, Ochsenfahrt J, Fuchs K, Kristiansen G, Perner S, Wernert N. ERG is specifically associated with ETS-2 and ETV-4, but not with ETS-1, in prostate cancer. Int J Mol Med 2012; 30:1029-33. [PMID: 22922762 PMCID: PMC3572757 DOI: 10.3892/ijmm.2012.1097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/22/2012] [Indexed: 11/06/2022] Open
Abstract
The erythroblast transformation-specific (ETS) family of transcription factors plays important roles in both physiological and pathological conditions. Even though many studies have focused on single ETS factors within a single tissue and within the context of specific promoters, the functional impact of multiple ETS members present within a specific cell type has not yet been investigated, especially in prostate cancer (PCa). As the most prominent gene rearrangement in PCa leads to the overexpression of the ETS-related gene (ERG), the aim of this study was to investigate whether ERG is part of a complex integrated transcriptional network that involves other ETS factors. More specifically, as the ETS family consists of 27 members, we focused our efforts initially on investigating whether ERG is associated with the three family members, ETS-1, ETS-2 and ETS variant gene‑4 (ETV‑4), in PCa as a proof of principle. Using western blot analysis, we show that ERG, ETS-1, ETS-2 and ETV-4 are expressed in PC3 cell nuclear extracts and in protein lysates prepared from human PCa prostatectomy specimens. Immunoprecipitations using an anti-ERG antibody were used with PC3 cell nuclear extracts as well as with a pooled protein lysate sample prepared from the PCa tissue samples of five patients. Importantly, our results revealed that ERG is specifically associated with ETS-2 and ETV-4, but not with ETS-1, in PC3 cell nuclear extracts and PCa tissue protein lysates. Our findings strongly support the notion that ERG is part of a complex integrated transcriptional network that involves other ETS factors, which are likely to cooperate or influence the activity of ERG in PCa. The functional impact of multiple ETS factors being associated with ERG in PCa requires further study, as it may provide insights into the mechanism by which ERG exerts its influence in PCa and may subsequently contribute to our understanding of the molecular basis of PCa.
Collapse
Affiliation(s)
- Zaki Shaikhibrahim
- Institute of Pathology, University Hospital of Bonn, D-53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Shaikhibrahim Z, Lindstrot A, Buettner R, Wernert N. Regulation of prostate cancer immunity-related genes in PC3 prostate cancer cells by ETS-1. Oncol Lett 2012; 3:513-516. [PMID: 22740941 DOI: 10.3892/ol.2011.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/21/2011] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent forms of cancer affecting males worldwide, and knowledge of the immune defenses involved in PCa remains incomplete. Since the identification of immunity-related genes may have enormous implications for the understanding of PCa immunology, we recently reported the identification of immunity-related genes in PCa tissues and found potential binding sites for the ETS family prototype, ETS-1, in the majority of genes identified. Therefore, as a continuation of our previous study, we investigated whether ETS-1 regulates these genes in an in vitro PCa cell line model, PC3 cells. We specifically blocked ETS-1 in PC3 cells by transfection with an ETS-1 inverse antisense expression vector or a mock control vector. We then assessed the effect of the blockade on the expression of the recently identified PCa immunity-related genes using a comprehensive oligo gene expression microarray analysis. The results showed that ETS-1 is involved in the activation or repression of the recently identified immunity-related genes in PCa. These findings provide insights into the regulation of immunity-related genes in PCa, and emphasize the importance of ETS-1 in prostate cancer immunology.
Collapse
|
23
|
Zhang Y, Gong M, Yuan H, Park HG, Frierson HF, Li H. Chimeric transcript generated by cis-splicing of adjacent genes regulates prostate cancer cell proliferation. Cancer Discov 2012; 2:598-607. [PMID: 22719019 DOI: 10.1158/2159-8290.cd-12-0042] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Gene fusion is a common event in cancer. The fusion RNA and protein products often play causal roles in tumorigenesis and therefore represent ideal diagnostic and therapeutic targets. Formerly, fusion chimeric products in cancer were thought to be produced solely by chromosomal translocation. Here, we show that a chimeric SLC45A3-ELK4 RNA is generated in the absence of chromosomal rearrangement. We showed that it is not a product of RNA trans-splicing, but formed by cis-splicing of adjacent genes/read-through. The binding of CCCTC-binding factor (CTCF) to the insulator sequences inversely correlates with the expression of the chimera transcript. The SLC45A3-ELK4 fusion, but not wild-type, ELK4 plays important roles in regulating cell growth in both androgen-dependent and -independent prostate cancer cells. The level of the chimeric transcript correlates with disease progression, with the highest levels in prostate cancer metastases. Our results suggest that gene fusions can arise from cis-splicing of adjacent genes without corresponding DNA changes. SIGNIFICANCE With the absence of corresponding DNA rearrangement, chimeric fusion SLC45A3-ELK4 transcript in prostate cancer cells is generated by cis-splicing of adjacent genes/gene read-through instead of trans-splicing. SLC45A3-ELK4 controls prostate cancer cell proliferation, and the chimera level correlates with prostate cancer disease progression.
Collapse
Affiliation(s)
- Yanmei Zhang
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mohseny AB, Xiao W, Carvalho R, Spaink HP, Hogendoorn PCW, Cleton-Jansen AM. An osteosarcoma zebrafish model implicates Mmp-19 and Ets-1 as well as reduced host immune response in angiogenesis and migration. J Pathol 2012; 227:245-53. [PMID: 22297719 DOI: 10.1002/path.3998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/06/2012] [Accepted: 01/25/2012] [Indexed: 01/14/2023]
Abstract
About 40% of osteosarcoma patients die of metastases. Novel strategies to improve treatment of metastatic patients require a better understanding of the processes involved, like angiogenesis, migration, and the immune response. However, the rarity of osteosarcoma and its heterogeneity make this neoplasm difficult to study. Recently we reported malignant transformation of mouse mesenchymal stem cells (MSCs) which formed osteosarcoma upon transplantation into mice. Here we studied these cells in zebrafish embryos and found that transformed MSCs induced angiogenesis and migrated through the bodies of the embryos, but this was never observed with non-transformed normal MSCs (progenitors of the transformed MSCs). Whole genome expression analysis of both the cells and the host showed that angiogenesis and migration-related genes matrix metalloproteinase 19 (Mmp-19) and erythroblastosis virus E26 oncogene homologue 1 (Ets-1) were overexpressed in transformed MSCs compared to normal MSCs. Investigating the host response, embryos injected with transformed MSCs showed decreased expression of immune response-related genes, especially major histocompatibility complex class 1 (mhc1ze), as compared to embryos injected with normal MSCs. These findings contribute to the identification of genetic events involved in angiogenesis, migration, and host response providing targets as well as an appropriate model for high-throughput drug screens.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Bone Neoplasms/blood supply
- Bone Neoplasms/enzymology
- Bone Neoplasms/genetics
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Carbocyanines/metabolism
- Cell Movement
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Fluorescent Dyes/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Mesenchymal Stem Cell Transplantation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Invasiveness
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Oligonucleotide Array Sequence Analysis
- Osteosarcoma/blood supply
- Osteosarcoma/enzymology
- Osteosarcoma/genetics
- Osteosarcoma/immunology
- Osteosarcoma/secondary
- Proto-Oncogene Protein c-ets-1/genetics
- Proto-Oncogene Protein c-ets-1/metabolism
- Time Factors
- Tumor Escape
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Alexander B Mohseny
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Khanna A, Okkeri J, Bilgen T, Tiirikka T, Vihinen M, Visakorpi T, Westermarck J. ETS1 mediates MEK1/2-dependent overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A) in human cancer cells. PLoS One 2011; 6:e17979. [PMID: 21445343 PMCID: PMC3062549 DOI: 10.1371/journal.pone.0017979] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 01/06/2023] Open
Abstract
EGFR-MEK-ERK signaling pathway has an established role in promoting malignant growth and disease progression in human cancers. Therefore identification of transcriptional targets mediating the oncogenic effects of the EGFR-MEK-ERK pathway would be highly relevant. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a recently characterized human oncoprotein. CIP2A promotes malignant cell growth and is over expressed at high frequency (40–80%) in most of the human cancer types. However, the mechanisms inducing its expression in cancer still remain largely unexplored. Here we present systematic analysis of contribution of potential gene regulatory mechanisms for high CIP2A expression in cancer. Our data shows that evolutionary conserved CpG islands at the proximal CIP2A promoter are not methylated both in normal and cancer cells. Furthermore, sequencing of the active CIP2A promoter region from altogether seven normal and malignant cell types did not reveal any sequence alterations that would increase CIP2A expression specifically in cancer cells. However, treatment of cancer cells with various signaling pathway inhibitors revealed that CIP2A mRNA expression was sensitive to inhibition of EGFR activity as well as inhibition or activation of MEK-ERK pathway. Moreover, MEK1/2-specific siRNAs decreased CIP2A protein expression. Series of CIP2A promoter-luciferase constructs were created to identify proximal −27 to −107 promoter region responsible for MEK-dependent stimulation of CIP2A expression. Additional mutagenesis and chromatin immunoprecipitation experiments revealed ETS1 as the transcription factor mediating stimulation of CIP2A expression through EGFR-MEK pathway. Thus, ETS1 is probably mediating high CIP2A expression in human cancers with increased EGFR-MEK1/2-ERK pathway activity. These results also suggest that in addition to its established role in invasion and angiogenesis, ETS1 may support malignant cellular growth via regulation of CIP2A expression and protein phosphatase 2A inhibition.
Collapse
Affiliation(s)
- Anchit Khanna
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB), University of Tampere, Tampere, Finland
| | - Juha Okkeri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Turker Bilgen
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Timo Tiirikka
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mauno Vihinen
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Tapio Visakorpi
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jukka Westermarck
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Pathology, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
26
|
Verschoor ML, Wilson LA, Singh G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 2011; 88:204-19. [PMID: 20393586 DOI: 10.1139/y09-135] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondria are unique cellular organelles that contain their own genome and, in conjunction with the nucleus, are able to transcribe and translate genes encoding components of the electron transport chain (ETC). To do so, the mitochondria must communicate with the nucleus via the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), which are produced as a byproduct of aerobic respiration within the mitochondria. Mitochondrial signaling is proposed to be altered in cancer cells, where the mitochondria are frequently found to harbor mutations within their genome and display altered functional characteristics leading to increased glycolysis. As signaling molecules, ROS oxidize and inhibit MAPK phosphatases resulting in enhanced proliferation and survival, an effect particularly advantageous to cancer cells. In terms of transcriptional regulation, ROS affect the phosphorylation, activation, oxidation, and DNA binding of transcription factors such as AP-1, NF-kappaB, p53, and HIF-1alpha, leading to changes in target gene expression. Increased ROS production by defective cancer cell mitochondria also results in the upregulation of the transcription factor Ets-1, a factor that has been increasingly associated with aggressive cancers.
Collapse
Affiliation(s)
- Meghan L Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
27
|
Holterman CE, Franovic A, Payette J, Lee S. ETS-1 oncogenic activity mediated by transforming growth factor alpha. Cancer Res 2010; 70:730-40. [PMID: 20068146 DOI: 10.1158/0008-5472.can-09-2090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inappropriate expression of Ets-1 is observed in a variety of human cancers, and its forced expression in cultured cells results in transformation, autonomous proliferation, and tumor formation. The basis by which Ets-1 confers autonomous growth, one of the primary hallmarks of cancer cells and a critical component of persistent proliferation, has yet to be fully explained. Using a variety of cancer cell lines, we show that inhibition of Ets-1 blocks tumor formation and cell proliferation in vivo and autonomous growth in culture. A screen of multiple diffusible growth factors revealed that inhibition of Ets-1 results in the specific downregulation of transforming growth factor alpha (TGFalpha), the proximal promoter region of which contains multiple ETS family DNA binding sites that can be directly bound and regulated by Ets-1. Notably, rescuing TGFalpha expression in Ets-1-silenced cells was sufficient to restore tumor cell proliferation in vivo and autonomous growth in culture. These results reveal a previously unrecognized mechanism by which Ets-1 oncogenic activity can be explained in human cancer through its ability to regulate the important cellular mitogen TGFalpha.
Collapse
Affiliation(s)
- Chet E Holterman
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
28
|
Dwyer JM, Liu JP. Ets2 transcription factor, telomerase activity and breast cancer. Clin Exp Pharmacol Physiol 2009; 37:83-7. [PMID: 19566835 DOI: 10.1111/j.1440-1681.2009.05236.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The enzyme telomerase maintains telomeres (ends of chromosomes) by synthesizing telomeric DNA at each end of the chromosomes. Its association with telomeres has implicated telomerase in cell immortalization. 2. Numerous studies have shown significant levels of telomerase activity in 85% of various types of cancer. Transcriptional control of the catalytic subunit, telomerase reverse transcriptase (TERT), dominates regulation of telomerase. Although several major factors have been identified in regulating TERT, they cannot explain all the transcriptional activity of the hTERT gene. 3. The Ets transcription factor (TF) family is becoming a regular feature in tumourigenesis, particularly in breast cancer. However, the roles and mechanisms of different Ets TFs are largely unknown. 4. The present minireview discusses the research that identified Ets as a regulator of telomerase required for breast cancer cell survival and proliferation, highlighting the discoveries central to understanding the molecular acts used by Ets TFs to mediate TERT gene transcription.
Collapse
Affiliation(s)
- Julie M Dwyer
- Department of Immunology, Molecular Signalling Laboratory, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Bosman JD, Yehiely F, Evans JR, Cryns VL. Regulation of alphaB-crystallin gene expression by the transcription factor Ets1 in breast cancer. Breast Cancer Res Treat 2009; 119:63-70. [PMID: 19205872 DOI: 10.1007/s10549-009-0330-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
Abstract
Recent studies indicate that the small heat shock protein alphaB-crystallin is expressed in poor prognosis basal-like breast tumors and likely contributes to their aggressive phenotype. However, the mechanisms underlying the deregulated expression of alphaB-crystallin in basal-like tumors are poorly understood. Using a bioinformatics approach, we identified a putative DNA binding motif in the human alphaB-crystallin promoter for the proto-oncogene Ets1, a member of the ETS transcription factor family that bind to DNA at palindromic ETS-binding sites (EBS). Here we demonstrate that ectopic expression of Ets1 activates the alphaB-crystallin promoter by an EBS-dependent mechanism and increases alphaB-crystallin protein levels, while silencing Ets1 reduces alphaB-crystallin promoter activity and protein levels. Chromatin immunoprecipitation analyses showed that endogenous Ets1 binds to the alphaB-crystallin promoter in basal-like breast cancer cells in vivo. Interrogation of publically available gene expression data revealed that Ets1 is expressed in human basal-like breast tumors and is associated with poor survival. Collectively, our results point to a previously unrecognized link between the oncogenic transcription factor Ets1 and alphaB-crystallin in basal-like breast cancer.
Collapse
Affiliation(s)
- Joshua D Bosman
- Cell Death Regulation Laboratory, Departments of Medicine and Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
30
|
Ellinger J, von Rücker A, Wernert N, Büttner R, Bastian PJ, Müller SC. [Prostate cancer research. Biomarkers as promising options for optimized diagnosis and treatment]. Urologe A 2008; 47:1190-2. [PMID: 18651121 DOI: 10.1007/s00120-008-1833-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A better understanding of signal transduction and gene regulation during prostate carcinogenesis will allow the development of novel diagnostic and prognostic biomarkers and a better prediction of the individual course of prostate cancer disease. It will also enhance the design and development of specific small molecular components aiming for specific therapies. The research groups in Bonn succeeded in the competition for an endowed professorship supported by the Rudolf Becker Stiftung (German Science Endowment Fund) settled in the"Centrum für integrierte Onkologie" funded by the German Cancer Aid. This should be the perfect breeding ground for future research in the field of prostate cancer.
Collapse
Affiliation(s)
- J Ellinger
- Klinik und Poliklinik für Urologie, Universitätsklinikum, Bonn, Deutschland
| | | | | | | | | | | |
Collapse
|
31
|
Xu D, Dwyer J, Li H, Duan W, Liu JP. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 2008; 283:23567-80. [PMID: 18586674 DOI: 10.1074/jbc.m800790200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) underlies cancer cell immortalization, and the expression of hTERT is regulated strictly at the gene transcription. Here, we report that transcription factor Ets2 is required for hTERT gene expression and breast cancer cell proliferation. Silencing Ets2 induces a decrease of hTERT gene expression and increase in human breast cancer cell death. Reconstitution with recombinant hTERT rescues the apoptosis induced by Ets2 depression. In vitro and in vivo analyses show that Ets2 binds to the EtsA and EtsB DNA motifs on the hTERT gene promoter. Mutation of either Ets2 binding site reduces the hTERT promoter transcriptional activity. Moreover, Ets2 forms a complex with c-Myc as demonstrated by co-immunoprecipitation and glutathione S-transferase pulldown assays. Immunological depletion of Ets2, or mutation of the EtsA DNA motif, disables c-Myc binding to the E-box, whereas removal of c-Myc or mutation of the E-box also compromises Ets2 binding to EtsA. Thus, hTERT gene expression is maintained by a mechanism involving Ets2 interactions with the c-Myc transcription factor and the hTERT gene promoter, a protein-DNA complex critical for hTERT gene expression and breast cancer cell proliferation.
Collapse
Affiliation(s)
- Dakang Xu
- Department of Immunology, Central and Eastern Clinical School, Monash University, AMREP, Prahran, Victoria 3181, Australia.
| | | | | | | | | |
Collapse
|
32
|
Transforming Growth Factor-β1 Promotes Matrix Metalloproteinase-9–Mediated Oral Cancer Invasion through Snail Expression. Mol Cancer Res 2008; 6:10-20. [DOI: 10.1158/1541-7786.mcr-07-0208] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Dwyer J, Li H, Xu D, Liu JP. Transcriptional regulation of telomerase activity: roles of the the Ets transcription factor family. Ann N Y Acad Sci 2008; 1114:36-47. [PMID: 17986575 DOI: 10.1196/annals.1396.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Telomerase maintains telomeres to preclude cell senescence. It remains elusive how telomerase activity is repressed in differentiated cells, but retained at high levels in stem cells and cancer. Recent studies suggest that the Ets transcription factor family, downstream of the mitogen signaling pathways of MAP kinase, regulates telomerase activity at the gene transcription level of human telomerase reverse transcriptase (hTERT). Several Ets transcription factors are involved in regulating hTERT gene expression, both directly and indirectly through the proto-oncogene c-myc. ER81 may mediate telomerase activation in telomerase-negative fibroblasts stimulated by oncogenes Her2/Neu, Ras, and Raf. Ets2 may also play an important role in regulating the hTERT gene; but further studies are required to decipher the mechanisms in the regulation of telomerase activity.
Collapse
Affiliation(s)
- Julie Dwyer
- Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Monge M, Colas E, Doll A, Gonzalez M, Gil-Moreno A, Planaguma J, Quiles M, Arbos MA, Garcia A, Castellvi J, Llaurado M, Rigau M, Alazzouzi H, Xercavins J, Alameda F, Reventos J, Abal M. ERM/ETV5 up-regulation plays a role during myometrial infiltration through matrix metalloproteinase-2 activation in endometrial cancer. Cancer Res 2007; 67:6753-9. [PMID: 17638886 DOI: 10.1158/0008-5472.can-06-4487] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have described recently the Ets family transcription factor, ERM/ETV5, specifically up-regulated in endometrioid endometrial carcinoma (EEC) and associated with myometrial infiltration. Ets family members have been correlated to tumor progression by up-regulating the expression of matrix-degrading proteases. In the present study, we investigated the possibility that in EEC, ERM/ETV5 may act by inducing the expression of genes involved in extracellular matrix remodeling. Unraveling the molecular events associated with the initiation of tumor invasion would represent an obvious improvement for EEC patients. The overexpression of ERM/ETV5 induced scattering in the endometrial cancer cell line Hec-1A, correlating to increased matrix metalloproteinase-2 (MMP-2) gelatinase activity. Both chromatin immunoprecipitation and reversion experiments with RNA interference and specific MMP-2 inhibitor showed a functional link between ERM/ETV5 overexpression and MMP-2 activation. The increased MMP-2 activity associated with overexpressed ERM/ETV5 in a mouse model conferred invasive capacity to endometrial tumors. Orthotopically implanted overexpressing ERM/ETV5 tumors presented a more aggressive and infiltrative pattern of myometrial invasion. Finally, the specific localization of ERM/ETV5 and MMP-2 at the invasive front of myometrial infiltrating human endometrial carcinomas further reinforced the hypothesis of a role for ERM/ETV5 in the early steps of endometrial dissemination. Taken together, these results lead us to propose that in EEC, ERM/ETV5 acts through MMP-2 gelatinolytic activity to confer invasive capabilities, associated with an initial switch to myometrial infiltration. They also postulate ERM/ETV5 as a valuable marker for patient stratification and a transcription pathway that should be evaluated for therapies specifically targeting the initial steps of EEC dissemination.
Collapse
Affiliation(s)
- Marta Monge
- Research Institute Vall d'Hebron University Hospital, Department of Gynecological Oncology, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boylan KLM, Gosse MA, Staggs SE, Janz S, Grindle S, Kansas GS, Van Ness BG. A Transgenic Mouse Model of Plasma Cell Malignancy Shows Phenotypic, Cytogenetic, and Gene Expression Heterogeneity Similar to Human Multiple Myeloma. Cancer Res 2007; 67:4069-78. [PMID: 17483317 DOI: 10.1158/0008-5472.can-06-3699] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is an incurable plasma cell malignancy for which existing animal models are limited. We have previously shown that the targeted expression of the transgenes c-Myc and Bcl-X(L) in murine plasma cells produces malignancy that displays features of human myeloma, such as localization of tumor cells to the bone marrow and lytic bone lesions. We have isolated and characterized in vitro cultures and adoptive transfers of tumors from Bcl-xl/Myc transgenic mice. Tumors have a plasmablastic morphology and variable expression of CD138, CD45, CD38, and CD19. Spectral karyotyping analysis of metaphase chromosomes from primary tumor cell cultures shows that the Bcl-xl/Myc tumors contain a variety of chromosomal abnormalities, including trisomies, translocations, and deletions. The most frequently aberrant chromosomes are 12 and 16. Three sites for recurring translocations were also identified on chromosomes 4D, 12F, and 16C. Gene expression profiling was used to identify differences in gene expression between tumor cells and normal plasma cells (NPC) and to cluster the tumors into two groups (tumor groups C and D), with distinct gene expression profiles. Four hundred and ninety-five genes were significantly different between both tumor groups and NPCs, whereas 124 genes were uniquely different from NPCs in tumor group C and 204 genes were uniquely different from NPCs in tumor group D. Similar to human myeloma, the cyclin D genes are differentially dysregulated in the mouse tumor groups. These data suggest the Bcl-xl/Myc tumors are similar to a subset of plasmablastic human myelomas and provide insight into the specific genes and pathways underlying the human disease.
Collapse
|
36
|
Abstract
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFbeta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Rd, Sec 3, Hualien 970, Taiwan.
| |
Collapse
|
37
|
Song H, Ki SH, Kim SG, Moon A. Activating Transcription Factor 2 Mediates Matrix Metalloproteinase-2 Transcriptional Activation Induced by p38 in Breast Epithelial Cells. Cancer Res 2006; 66:10487-96. [PMID: 17079470 DOI: 10.1158/0008-5472.can-06-1461] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mounting evidence suggests a role for matrix metalloproteinase (MMP)-2 in the malignant progression of breast cancer cells. We showed previously that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells through Rac-MKK3/6-p38 pathway resulted in MMP-2 up-regulation. Activation of p38 pathway by MKK6 caused a selective up-regulation of MMP-2. In this study, we aimed to elucidate the transcriptional regulation of MMP-2 by p38 pathway leading to the invasive phenotype of MCF10A cells. By using 5' deletion mutant constructs of MMP-2 promoter, we showed that deletion of the region containing activator protein-1 (AP-1) site caused the greatest reduction of MMP-2 promoter activity both in MKK6- and H-Ras-activated MCF10A cells, suggesting that the AP-1 binding site is critical for the MMP-2 promoter activation. DNA binding and transcriptional activities of AP-1 were increased by MKK6 or H-Ras as evidenced by electrophoretic mobility shift assay and luciferase assay using an AP-1-driven plasmid. By doing immunoinhibition assay and chromatin immunoprecipitation assay, we revealed the activating transcription factor (ATF) 2 as a transcription factor for MMP-2 gene expression through binding to the functional AP-1 site. Activation of ATF2, which depended on p38 activity, was crucial for MMP-2 promoter activity as well as induction of invasive and migrative phenotypes in MCF10A cells. This is the first report revealing ATF2 as an essential transcription factor linking MKK3/6-p38 signaling pathway to MMP-2 up-regulation, providing evidence for a direct role of ATF2 activation in malignant phenotypic changes of human breast epithelial cells.
Collapse
Affiliation(s)
- Hyun Song
- College of Pharmacy, Duksung Women's University, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
38
|
Okuducu AF, Zils U, Michaelis SAM, Mawrin C, von Deimling A. Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer 2006; 107:1365-72. [PMID: 16894529 DOI: 10.1002/cncr.22130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The transcription factor avian erythroblastosis virus E26 (V-Ets) oncogene homolog 1 (Ets-1) is involved in tumor development and progression through the transcriptional regulation of several matrix-degrading enzyme systems, including matrix metalloproteinases (MMPs). It has been demonstrated that the MMPs are expressed strongly in high-grade meningiomas. To determine the biologic significance of Ets-1 in the progression of benign meningiomas, the authors investigated the expressions of Ets-1 and its target genes MMP-2 and MMP-9 in primary and recurrent, Grade 1 meningiomas. METHODS The expression levels of Ets-1, MMP-2, and MMP-9 were examined by immunohistochemistry in 70 Grade 1 meningiomas, including 36 primary tumors without recurrence after 5 years of follow-up and 17 pairs of primary tumors and subsequent recurrences. RESULTS The results demonstrated higher expression of Ets-1, MMP-2, and MMP-9 proteins in meningiomas with subsequent recurrences compared with meningiomas from patients who had no recurrences (P < .001). In addition, Ets-1 expression was correlated with the expression of both MMP-2 and MMP-9. CONCLUSIONS Ets-1 may be involved in meningioma recurrence by up-regulating MMP-2 and MMP-9. Increased expression of these genes in World Health Organization grade 1 meningiomas may serve as an indicator for a high risk of recurrence.
Collapse
Affiliation(s)
- Ali Fuat Okuducu
- Institute of Neuropathology, Charite-Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Epigenetic mechanisms permit the stable inheritance of cellular properties without changes in DNA sequence or amount. In prostate carcinoma, epigenetic mechanisms are essential for development and progression, complementing, amplifying and diversifying genetic alterations. DNA hypermethylation affects at least 30 individual genes, while repetitive sequences including retrotransposons and selected genes become hypomethylated. Hypermethylation of several genes occurs in a coordinate manner early in carcinogenesis and can be exploited for cancer detection, whereas hypomethylation and further hypermethylation events are associated with progression. DNA methylation alterations interact with changes in chromatin proteins. Prominent alterations at this level include altered patterns of histone modification, increased expression of the EZH2 polycomb histone methyltransferase, and changes in transcriptional corepressors and coactivators. These changes may make prostate carcinoma particularly susceptible to drugs targeting chromatin and DNA modifications. They relate to crucial alterations in a network of transcription factors comprising ETS family proteins, the androgen receptor, NKX3.1, KLF, and HOXB13 homeobox proteins. This network controls differentiation and proliferation of prostate epithelial cells integrating signals from hormones, growth factors and cell adhesion proteins that are likewise distorted in prostate cancer. As a consequence, prostate carcinoma cells appear to be locked into an aberrant state, characterized by continued proliferation of largely differentiated cells. Accordingly, stem cell characteristics of prostate cancer cells appear to be secondarily acquired. The aberrant differentiation state of prostate carcinoma cells also results in distorted mutual interactions between epithelial and stromal cells in the tumor that promote tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- W A Schulz
- Department of Urology, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
40
|
Wai PY, Mi Z, Gao C, Guo H, Marroquin C, Kuo PC. Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J Biol Chem 2006; 281:18973-82. [PMID: 16670084 DOI: 10.1074/jbc.m511962200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a sialic acid-rich phosphoprotein secreted by a wide variety of cancers. We have shown previously that OPN is necessary for mediating hepatic metastasis in CT26 colorectal cancer cells. Although a variety of stimuli can induce OPN, the molecular mechanisms that regulate OPN gene transcription in colorectal cancer are unknown. We hypothesized that cis- and trans-regulatory elements determine OPN transcription in CT26 cells. OPN transcription was analyzed in CT26 cancer cells and compared with YAMC (young adult mouse colon) epithelial cells. Clonal deletion analysis of OPN promoter-luciferase constructs identified cis-regulatory regions. A specific promoter region, nucleotide (nt) -107 to -174, demonstrated a >8.0-fold increase in luciferase activity in CT26 compared with YAMC. Gel-shift assays sublocalized two cis-regulatory regions, nt -101 to -123 and nt -121 to -145, which specifically bind CT26 nuclear proteins. Competition with unlabeled mutant oligonucleotides revealed that the regions nt -115 to -118 and nt -129 to -134 were essential for protein binding. Subsequent supershift and chromatin immunoprecipitation assays confirmed the corresponding nuclear proteins to be Ets-1 and Runx2. Functional relevance was demonstrated through mutations in the Ets-1 and Runx2 consensus binding sites resulting in >60% decrease in OPN transcription. Ets-1 and Runx2 protein expression in CT26 was ablated using antisense oligonucleotides and resulted in a >7-fold decrease in OPN protein expression. Ets-1 and Runx2 are critical transcriptional regulators of OPN expression in CT26 colorectal cancer cells. Suppression of these transcription factors results in significant down-regulation of the OPN metastasis protein.
Collapse
Affiliation(s)
- Philip Y Wai
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hong W, Liu NZ, Zhang Q, Li XM, Ni Z. Expression of E26 transformation-specific-1, matrix metalloproteinases-1 and vascular endothelial growth factor in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2005; 13:2441-2445. [DOI: 10.11569/wcjd.v13.i20.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression of E26 transformation-specific-1 (Ets-1), matrix metalloproteinases-1 (MMP-1) and vascular endothelial growth factor (VEGF) in human colorectal carcinoma, and to explore the role of Ets-1 in the angiogenesis and metastasis of carcinoma.
METHODS: The expression of Ets-1, MMP-1 and VEGF were detected in colorectal carcinoma (n = 61) and normal colon tissues (n = 21) by the immunohistochemical method respectively.
RESULTS: Ets-1, MMP-1 and VEGF were negatively expressed in all normal mucosal tissues. The positive rates of Ets-1, MMP-1 and VEGF expression were 75.4%, 78.7% and 82.0% in colorectal carcinoma respectively. No significant correlation was found between their positive rates and tumor′s size as well as the differentiation (P >0.05). The expression of Ets-1, MMP-1 and VEGF were significantly correlated with Duke's staging (χ2 = 10.718, P <0.01; χ2 = 8.323, P <0.01; χ2 = 6.145, P <0.05), the depth of invasion (χ2 = 7.705, P <0.01; χ2 = 19.101, P <0.01; χ2 = 14.707, P <0.01), lymphatic invasion (χ2 = 9.333, P <0.01; χ2 = 3.965, P <0.05; χ2 = 4.638, P <0.05) and distant metastasis (χ2 = 5.472, P <0.05; χ2 = 4.125, P <0.05; χ2 = 5.034, P <0.05). Ets-1 expression was positively associated with MMP-1 and VEGF level (r = 0.447, P <0.01; r = 0.425, P <0.05).
CONCLUSION: Ets-1 was over-expressed in colorectal carcinoma, and its expression was related to clinical staging, invasion and metastasis. Ets-1 expression was also positively related to MMP-1 and VEGF level. Their expression can become referential indexes to predict the malignant behavior of colorectal carcinoma.
Collapse
|