1
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
2
|
Sloth RA, Axelsen TV, Espejo MS, Toft NJ, Voss NCS, Burton M, Thomassen M, Vahl P, Boedtkjer E. Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br J Cancer 2022; 127:1226-1238. [PMID: 35821297 DOI: 10.1038/s41416-022-01911-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While cellular metabolism and acidic waste handling accelerate during breast carcinogenesis, temporal patterns of acid-base regulation and underlying molecular mechanisms responding to the tumour microenvironment remain unclear. METHODS We explore data from human cohorts and experimentally investigate transgenic mice to evaluate the putative extracellular HCO3--sensor Receptor Protein Tyrosine Phosphatase (RPTP)γ during breast carcinogenesis. RESULTS RPTPγ expression declines during human breast carcinogenesis and particularly in high-malignancy grade breast cancer. Low RPTPγ expression associates with poor prognosis in women with Luminal A or Basal-like breast cancer. RPTPγ knockout in mice favours premalignant changes in macroscopically normal breast tissue, accelerates primary breast cancer development, promotes malignant breast cancer histopathologies, and shortens recurrence-free survival. In RPTPγ knockout mice, expression of Na+,HCO3--cotransporter NBCn1-a breast cancer susceptibility protein-is upregulated in normal breast tissue but, contrary to wild-type mice, shows no further increase during breast carcinogenesis. Associated augmentation of Na+,HCO3--cotransport in normal breast tissue from RPTPγ knockout mice elevates steady-state intracellular pH, which has known pro-proliferative effects. CONCLUSIONS Loss of RPTPγ accelerates cellular net acid extrusion and elevates NBCn1 expression in breast tissue. As these effects precede neoplastic manifestations in histopathology, we propose that RPTPγ-dependent enhancement of Na+,HCO3--cotransport primes breast tissue for cancer development.
Collapse
Affiliation(s)
- Rasmus A Sloth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Nicolai J Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ninna C S Voss
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark.,Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Pernille Vahl
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Ginzel JD, Acharya CR, Lubkov V, Mori H, Boone PG, Rochelle LK, Roberts WL, Everitt JI, Hartman ZC, Crosby EJ, Barak LS, Caron MG, Chen JQ, Hubbard NE, Cardiff RD, Borowsky AD, Lyerly HK, Snyder JC. HER2 Isoforms Uniquely Program Intratumor Heterogeneity and Predetermine Breast Cancer Trajectories During the Occult Tumorigenic Phase. Mol Cancer Res 2021; 19:1699-1711. [PMID: 34131071 DOI: 10.1158/1541-7786.mcr-21-0215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
HER2-positive breast cancers are among the most heterogeneous breast cancer subtypes. The early amplification of HER2 and its known oncogenic isoforms provide a plausible mechanism in which distinct programs of tumor heterogeneity could be traced to the initial oncogenic event. Here a Cancer rainbow mouse simultaneously expressing fluorescently barcoded wildtype (WTHER2), exon-16 null (d16HER2), and N-terminally truncated (p95HER2) HER2 isoforms is used to trace tumorigenesis from initiation to invasion. Tumorigenesis was visualized using whole-gland fluorescent lineage tracing and single-cell molecular pathology. We demonstrate that within weeks of expression, morphologic aberrations were already present and unique to each HER2 isoform. Although WTHER2 cells were abundant throughout the mammary ducts, detectable lesions were exceptionally rare. In contrast, d16HER2 and p95HER2 induced rapid tumor development. d16HER2 incited homogenous and proliferative luminal-like lesions which infrequently progressed to invasive phenotypes whereas p95HER2 lesions were heterogenous and invasive at the smallest detectable stage. Distinct cancer trajectories were observed for d16HER2 and p95HER2 tumors as evidenced by oncogene-dependent changes in epithelial specification and the tumor microenvironment. These data provide direct experimental evidence that intratumor heterogeneity programs begin very early and well in advance of screen or clinically detectable breast cancer. IMPLICATIONS: Although all HER2 breast cancers are treated equally, we show a mechanism by which clinically undetected HER2 isoforms program heterogenous cancer phenotypes through biased epithelial specification and adaptations within the tumor microenvironment.
Collapse
Affiliation(s)
- Joshua D Ginzel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Chaitanya R Acharya
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Veronica Lubkov
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.,Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine and The Center for Immunology and Infectious Disease, University of California-Davis, Davis, California
| | - Peter G Boone
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina.,Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Lauren K Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Wendy L Roberts
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical School, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical School, Durham, North Carolina
| | - Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Lawrence S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Jane Q Chen
- Department of Pathology and Laboratory Medicine and The Center for Immunology and Infectious Disease, University of California-Davis, Davis, California
| | - Neil E Hubbard
- Department of Pathology and Laboratory Medicine and The Center for Immunology and Infectious Disease, University of California-Davis, Davis, California
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine and The Center for Immunology and Infectious Disease, University of California-Davis, Davis, California
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine and The Center for Immunology and Infectious Disease, University of California-Davis, Davis, California
| | - H Kim Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina. .,Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
4
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Targeting the Acidic Tumor Microenvironment: Unexpected Pro-Neoplastic Effects of Oral NaHCO 3 Therapy in Murine Breast Tissue. Cancers (Basel) 2020; 12:cancers12040891. [PMID: 32268614 PMCID: PMC7226235 DOI: 10.3390/cancers12040891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022] Open
Abstract
The acidic tumor microenvironment modifies malignant cell behavior. Here, we study consequences of the microenvironment in breast carcinomas. Beginning at carcinogen-based breast cancer induction, we supply either regular or NaHCO3-containing drinking water to female C57BL/6j mice. We evaluate urine and blood acid-base status, tumor metabolism (microdialysis sampling), and tumor pH (pH-sensitive microelectrodes) in vivo. Based on freshly isolated epithelial organoids from breast carcinomas and normal breast tissue, we assess protein expression (immunoblotting, mass spectrometry), intracellular pH (fluorescence microscopy), and cell proliferation (bromodeoxyuridine incorporation). Oral NaHCO3 therapy increases breast tumor pH in vivo from 6.68 ± 0.04 to 7.04 ± 0.09 and intracellular pH in breast epithelial organoids by ~0.15. Breast tumors develop with median latency of 85.5 ± 8.2 days in NaHCO3-treated mice vs. 82 ± 7.5 days in control mice. Oral NaHCO3 therapy does not affect tumor growth, histopathology or glycolytic metabolism. The capacity for cellular net acid extrusion is increased in NaHCO3-treated mice and correlates negatively with breast tumor latency. Oral NaHCO3 therapy elevates proliferative activity in organoids from breast carcinomas. Changes in protein expression patterns-observed by high-throughput proteomics analyses-between cancer and normal breast tissue and in response to oral NaHCO3 therapy reveal complex influences on metabolism, cytoskeleton, cell-cell and cell-matrix interaction, and cell signaling pathways. We conclude that oral NaHCO3 therapy neutralizes the microenvironment of breast carcinomas, elevates the cellular net acid extrusion capacity, and accelerates proliferation without net effect on breast cancer development or tumor growth. We demonstrate unexpected pro-neoplastic consequences of oral NaHCO3 therapy that in breast tissue cancel out previously reported anti-neoplastic effects.
Collapse
|
6
|
Na+,HCO3–-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 2018; 37:5569-5584. [DOI: 10.1038/s41388-018-0353-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
|
7
|
Abstract
Although immunotherapy has been at the forefront of cancer therapy for the last several years, better clinical responses are still desired. Interleukin-33 is perhaps one of the most overlooked antitumor cytokines. Its ability to promote type 1 immune responses, which control tumor growth in preclinical animal models is overshadowed by its association with type 2 immunity and poor prognosis in some human cancers. Accumulating evidence shows that IL-33 is a powerful new tool for restoring and enhancing the body's natural antitumor immunity cycle. Furthermore, the antitumor mechanisms of IL-33 are two-fold, as it can directly boost CD8+ T cell function and restore dendritic cell dysfunction in vivo. Mechanistic studies have identified a novel pathway induced by IL-33 and its receptor ST2 in which dendritic cells avoid dysfunction and retain cross-priming abilities in tumor-bearing conditions. Here, we also comment on IL-33 data in human cancers and explore the idea that endogenous IL-33 may not deserve its reputation for promoting tumor growth. In fact, tumors may hijack the IL-33/ST2 axis to avoid immune surveillance and escape antitumor immunity.
Collapse
Affiliation(s)
- Donye Dominguez
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine–Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Lu B, Yang M, Wang Q. Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med (Berl) 2016; 94:535-43. [PMID: 26922618 DOI: 10.1007/s00109-016-1397-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 gene family and mainly expressed in the nucleus of tissue lining cells, stromal cells, and activated myeloid cells. IL-33 is considered a damage-associated molecular pattern (DAMP) molecule and plays an important role in many physiological and pathological settings such as tissue repair, allergy, autoimmune disease, infectious disease, and cancer. The biological functions of IL-33 include maintaining tissue homeostasis, enhancing type 1 and 2 cellular immune responses, and mediating fibrosis during chronic inflammation. IL-33 exerts diverse functions through signaling via its receptor ST2, which is expressed in many types of cells including regulatory T cells (Treg), group 2 innate lymphoid cells (ILC2s), myeloid cells, cytotoxic NK cells, Th2 cells, Th1 cells, and CD8(+) T cells. Tumor development results in downregulation of IL-33 in epithelial cells but upregulation of IL-33 in the tumor stroma and serum. The current data suggest that IL-33 expression in tumor cells increases immunogenicity and promotes type 1 antitumor immune responses through CD8(+) T cells and NK cells, whereas IL-33 in tumor stroma and serum facilitates immune suppression via Treg and myeloid-derived suppressor cell (MDSC). Understanding the role of IL-33 in cancer immunobiology sheds lights on targeting this cytokine for cancer immunotherapy.
Collapse
Affiliation(s)
- Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | - Min Yang
- Department of Immunology, Institute of Medical Biotechnology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
9
|
Castillo-Lluva S, Hontecillas-Prieto L, Blanco-Gómez A, Del Mar Sáez-Freire M, García-Cenador B, García-Criado J, Pérez-Andrés M, Orfao A, Cañamero M, Mao JH, Gridley T, Castellanos-Martín A, Pérez-Losada J. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene 2015; 34:4777-4790. [PMID: 26096931 PMCID: PMC4560637 DOI: 10.1038/onc.2015.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/25/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022]
Abstract
Breast cancer is a major cause of mortality in women. The transcription factor SNAI2 has been implicated in the pathogenesis of several types of cancer, including breast cancer of basal origin. Here we show that SNAI2 is also important in the development of breast cancer of luminal origin in MMTV-ErbB2 mice. SNAI2 deficiency leads to longer latency and fewer luminal tumors, both of these being characteristics of pretumoral origin. These effects were associated with reduced proliferation and a decreased ability to generate mammospheres in normal mammary glands. However, the capacity to metastasize was not modified. Under conditions of increased ERBB2 oncogenic activity after pregnancy plus SNAI2 deficiency, both pretumoral defects-latency and tumor load-were compensated. However, the incidence of lung metastases was dramatically reduced. Furthermore, SNAI2 was required for proper postlactational involution of the breast. At 3 days post lactational involution, the mammary glands of Snai2-deficient mice exhibited lower levels of pSTAT3 and higher levels of pAKT1, resulting in decreased apoptosis. Abundant noninvoluted ducts were still present at 30 days post lactation, with a greater number of residual ERBB2+ cells. These results suggest that this defect in involution leads to an increase in the number of susceptible target cells for transformation, to the recovery of the capacity to generate mammospheres and to an increase in the number of tumors. Our work demonstrates the participation of SNAI2 in the pathogenesis of luminal breast cancer, and reveals an unexpected connection between the processes of postlactational involution and breast tumorigenesis in Snai2-null mutant mice.
Collapse
Affiliation(s)
- S Castillo-Lluva
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - L Hontecillas-Prieto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - A Blanco-Gómez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - M Del Mar Sáez-Freire
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - B García-Cenador
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - J García-Criado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - M Pérez-Andrés
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Unidad de Citometría de flujo, Universidad de Salamanca, IBSAL, Salamanca, Spain
| | - A Orfao
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Unidad de Citometría de flujo, Universidad de Salamanca, IBSAL, Salamanca, Spain
| | - M Cañamero
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - J H Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), University of California, Berkeley, Berkeley, CA, USA
| | - T Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - A Castellanos-Martín
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - J Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca/CSIC, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Abstract
Increased metabolism and insufficient blood supply cause acidic waste product accumulation in solid cancers. During carcinogenesis, cellular acid extrusion is upregulated but the underlying molecular mechanisms and their consequences for cancer growth and progression have not been established. Genome-wide association studies have indicated a possible link between the Na⁺, HCO₃⁻-cotransporter NBCn1 (SLC4A7) and breast cancer. We tested the functional consequences of NBCn1 knockout (KO) for breast cancer development. NBCn1 protein expression increased 2.5-fold during breast carcinogenesis and was responsible for the increased net acid extrusion and alkaline intracellular pH of breast cancer compared with normal breast tissue. Genetic disruption of NBCn1 delayed breast cancer development: tumor latency was ~50% increased while tumor growth rate was ~65% reduced in NBCn1 KO compared with wild-type (WT) mice. Breast cancer histopathology in NBCn1 KO mice differed from that in WT mice and included less aggressive tumor types. The extracellular tumor microenvironment in NBCn1 KO mice contained higher concentrations of glucose and lower concentrations of lactate than that in WT mice. Independently of NBCn1 genotype, the cleaved fraction of poly(ADP-ribose) polymerase (PARP)-1 and expression of monocarboxylate transporter (MCT)1 increased while phosphorylation of Akt and ERK1 decreased as functions of tumor volume. Cell proliferation, evaluated from Ki-67 and phospho-histone H₃staining, was ~60% lower in breast cancer of NBCn1 KO than that of WT mice when corrected for variations in tumor size. We conclude that NBCn1 facilitates acid extrusion from breast cancer tissue, maintains the alkaline intracellular environment and promotes aggressive cancer development and growth.
Collapse
|
11
|
Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 2014; 35:7369-82. [PMID: 24798974 DOI: 10.1007/s13277-014-2006-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/22/2014] [Indexed: 12/16/2022] Open
Abstract
The Tumor protein D52 (TPD52) gene was identified nearly 20 years ago through its overexpression in human cancer, and a substantial body of data now strongly supports TPD52 representing a gene amplification target at chromosome 8q21.13. This review updates progress toward understanding the significance of TPD52 overexpression and targeting, both in tumors known to be characterized by TPD52 overexpression/amplification, and those where TPD52 overexpression/amplification has been recently or variably reported. We highlight recent findings supporting microRNA regulation of TPD52 expression in experimental systems and describe progress toward deciphering TPD52's cellular functions, particularly in cancer cells. Finally, we provide an overview of TPD52's potential as a cancer biomarker and immunotherapeutic target. These combined studies highlight the potential value of genes such as TPD52, which are overexpressed in many cancer types, but have been relatively understudied.
Collapse
|
12
|
Yallowitz AR, Alexandrova EM, Talos F, Xu S, Marchenko ND, Moll UM. p63 is a prosurvival factor in the adult mammary gland during post-lactational involution, affecting PI-MECs and ErbB2 tumorigenesis. Cell Death Differ 2014; 21:645-54. [PMID: 24440910 DOI: 10.1038/cdd.2013.199] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023] Open
Abstract
In embryogenesis, p63 is essential to develop mammary glands. In the adult mammary gland, p63 is highly expressed in the basal cell layer that comprises myoepithelial and interspersed stem/progenitor cells, and has limited expression in luminal epithelial cells. In adult skin, p63 has a crucial role in the maintenance of epithelial stem cells. However, it is unclear whether p63 also has an equivalent role as a stem/progenitor cell factor in adult mammary epithelium. We show that p63 is essential in vivo for the survival and maintenance of parity-identified mammary epithelial cells (PI-MECs), a pregnancy-induced heterogeneous population that survives post-lactational involution and contain multipotent progenitors that give rise to alveoli and ducts in subsequent pregnancies. p63+/- glands are normal in virgin, pregnant and lactating states. Importantly, however, during the apoptotic phase of post-lactational involution p63+/- glands show a threefold increase in epithelial cell death, concomitant with increased activation of the oncostatin M/Stat3 and p53 pro-apoptotic pathways, which are responsible for this phase. Thus, p63 is a physiologic antagonist of these pathways specifically in this regressive stage. After the restructuring phase when involution is complete, mammary glands of p63+/- mice again exhibit normal epithelial architecture by conventional histology. However, using Rosa(LSL-LacZ);WAP-Cre transgenics (LSL-LacZ, lox-stop-lox β-galactosidase), a genetic in vivo labeling system for PI-MECs, we find that p63+/- glands have a 30% reduction in the number of PI-MEC progenitors and their derivatives. Importantly, PI-MECs are also cellular targets of pregnancy-promoted ErbB2 tumorigenesis. Consistent with their PI-MEC pool reduction, one-time pregnant p63+/- ErbB2 mice are partially protected from breast tumorigenesis, exhibiting extended tumor-free and overall survival, and reduced tumor multiplicity compared with their p63+/+ ErbB2 littermates. Conversely, in virgin ErbB2 mice p63 heterozygosity provides no survival advantage. In sum, our data establish that p63 is an important survival factor for pregnancy-identified PI-MEC progenitors in breast tissue in vivo.
Collapse
Affiliation(s)
- A R Yallowitz
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - E M Alexandrova
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - F Talos
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - S Xu
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - N D Marchenko
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| | - U M Moll
- Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
13
|
Roslan N, Bièche I, Bright RK, Lidereau R, Chen Y, Byrne JA. TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Mol Carcinog 2013; 53:807-19. [PMID: 23661506 DOI: 10.1002/mc.22038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/27/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
TPD52 and ERBB2 co-expression has been persistently reported in human breast cancer and animal models of this disease, but the significance of this is unknown. We identified significant positive associations between relative TPD52 and ERBB2 transcript levels in human diagnostic breast cancer samples, and maximal TPD52 expression in the hormone receptor (HR)- and ERBB2-positive sub-group. High-level TPD52 expression was associated with significantly reduced metastasis-free survival, within the overall cohort (log rank test, P = 8.6 × 10(-4), n = 375) where this was an independent predictor of metastasis-free survival (hazard ratio, 2.69, 95% confidence interval 1.59-4.54, P = 2.2 × 10(-4), n = 359), and the HR- and ERBB2-positive sub-group (log rank test, P = 0.035, n = 47). Transient TPD52 knock-down in the ERBB2-amplified breast cancer cell lines SK-BR-3 and BT-474 produced significant apoptosis, both singly and in combination with transient ERBB2 knock-down. Unlike ERBB2 knock-down, transient TPD52 knock-down produced no reduction in pAKT levels in SK-BR-3 or BT-474 cells. We then derived multiple SK-BR-3 cell lines in which TPD52 levels were stably reduced, and measured significant inverse correlations between pERBB2 and TPD52 levels in viable TPD52-depleted and control cell lines, all of which showed similar proliferative capacities. Our results therefore identify TPD52 as a survival factor in ERBB2-amplified breast cancer cells, and suggest complementary cellular functions for TPD52 and ERBB2.
Collapse
Affiliation(s)
- Nuruliza Roslan
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia; The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Moreira Sousa C, McGuire JR, Thion MS, Gentien D, de la Grange P, Tezenas du Montcel S, Vincent-Salomon A, Durr A, Humbert S. The Huntington disease protein accelerates breast tumour development and metastasis through ErbB2/HER2 signalling. EMBO Mol Med 2013; 5:309-25. [PMID: 23300147 PMCID: PMC3569645 DOI: 10.1002/emmm.201201546] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 01/23/2023] Open
Abstract
In Huntington disease (HD), polyglutamine expansion in the huntingtin protein causes specific neuronal death. The consequences of the presence of mutant huntingtin in other tissues are less well understood. Here we propose that mutant huntingtin influences breast cancer progression. Indeed, we show that mammary tumours appear earlier in mouse breast cancer models expressing mutant huntingtin as compared to control mice expressing wild-type huntingtin. Tumours bearing mutant huntingtin have a modified gene expression pattern that reflects enhanced aggressiveness with the overexpression of genes favouring invasion and metastasis. In agreement, mutant huntingtin accelerates epithelial to mesenchymal transition and enhances cell motility and invasion. Also, lung metastasis is higher in HD conditions than in control mice. Finally, we report that in HD, the dynamin dependent endocytosis of the ErbB2/HER2 receptor tyrosine kinase is reduced. This leads to its accumulation and to subsequent increases in cell motility and proliferation. Our study may thus have important implications for both cancer and HD.
Collapse
|
15
|
Biological features of core networks that result from a high-fat diet in hepatic and pulmonary tissues in mammary tumour-bearing, obesity-resistant mice. Br J Nutr 2012; 110:241-55. [DOI: 10.1017/s0007114512004965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously demonstrated that the chronic consumption of a high-fat diet (HFD) promotes lung and liver metastases of 4T1 mammary carcinoma cells in obesity-resistant BALB/c mice. To examine early transcriptional responses to tumour progression in the liver and lungs of HFD-fed mice, 4-week-old female BALB/c mice were divided into four groups: sham-injected, control diet (CD)-fed; sham-injected, HFD-fed (SH); 4T1 cell-injected, CD-fed (TC); 4T1 cell-injected, HFD-fed (TH). Following 16 weeks of either a CD or HFD, 4T1 cells were injected into the mammary fat pads of mice in the TC and TH groups and all mice were continuously fed identical diets. At 14 d post-injection, RNA was isolated from hepatic and pulmonary tissues for microarray analysis of mRNA expression. Functional annotation and core network analyses were conducted for the TH/SH Unique gene set. Inflammation in hepatic tissues and cell mitosis in pulmonary tissues were the most significant biological functions in the TH/SH Unique gene set. The biological core networks of the hepatic TH/SH Unique gene set were characterised as those genes involved in the activation of acute inflammatory responses (Orm1, Lbp, Hp and Cfb), disordered lipid metabolism and deregulated cell cycle progression. Networks of the pulmonary Unique gene set displayed the deregulation of cell cycle progression (Cdc20, Cdk1 and Bub1b). These HFD-influenced alterations may have led to favourable conditions for the formation of both pro-inflammatory and pro-mitotic microenvironments in the target organs that promote immune cell infiltration and differentiation, as well as the infiltration and proliferation of metastatic tumour cells.
Collapse
|
16
|
Davis VL, Shaikh F, Gallagher KM, Villegas M, Rea SL, Cline JM, Hughes CL. Inhibition of Neu-induced mammary carcinogenesis in transgenic mice expressing ERΔ3, a dominant negative estrogen receptor α variant. Discov Oncol 2012; 3:227-39. [PMID: 22968785 DOI: 10.1007/s12672-012-0122-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/24/2012] [Indexed: 12/25/2022] Open
Abstract
The estrogen receptor α (ERα) splicing variant with an in-frame deletion of exon 3 (ERΔ3) is frequently expressed in the normal breast, but its influence on tumorigenesis has not been explored. In vitro, ERΔ3 has dominant negative activity, suggesting it may suppress estrogen stimulation in the breast. ERΔ3 may inhibit classical signaling on estrogen response element (ERE)-regulated genes as well as activate non-classical pathways at Sp1 and AP-1 sites. Transgenic mice were developed that express mouse ERΔ3 in all tissues examined, including the mammary gland. To investigate if ERΔ3 expression affects tumorigenesis, ERΔ3 mice were crossbred with MMTV-Neu mice. Mammary tumor onset was significantly delayed in ERΔ3/Neu versus MMTV-Neu females and metastatic incidence and burden was significantly reduced. Consequently, ERΔ3 expression suppressed tumor development and metastasis in this aggressive model of HER2/Neu-positive breast cancer. To determine if ER ligands with anticancer activity may augment ERΔ3 protection, the bitransgenic mice were treated with tamoxifen and soy isoflavones starting at age 2 months. Soy protein with isoflavones (181 mg/1,800 kcal) did not affect tumor development in MMTV-Neu or ERΔ3/Neu mice; however, metastatic progression was not inhibited in soy-treated ERΔ3/Neu mice, as it was in untreated ERΔ3/Neu mice. In contrast, tamoxifen (20 mg/1,800 kcal) significantly enhanced tumor prevention in ERΔ3/Neu versus MMTV-Neu mice (98% vs. 81% tumor free). The results in ERΔ3/Neu mice demonstrate that ERΔ3 influences estrogen-dependent mammary carcinogenesis and, thus, may be protective in women expressing ERΔ3 in the breast. However, exposure to different estrogens may augment or block its beneficial effects.
Collapse
Affiliation(s)
- Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Margalit O, Simon AJ, Yakubov E, Puca R, Yosepovich A, Avivi C, Jacob-Hirsch J, Gelernter I, Harmelin A, Barshack I, Rechavi G, D'Orazi G, Givol D, Amariglio N. Zinc supplementation augments in vivo antitumor effect of chemotherapy by restoring p53 function. Int J Cancer 2011; 131:E562-8. [PMID: 21932419 DOI: 10.1002/ijc.26441] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/05/2011] [Indexed: 02/02/2023]
Abstract
Activated p53 is necessary for tumor suppression. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of functional p53. HIPK2 modulates wild-type p53 activity toward proapoptotic transcription and tumor suppression by the phosphorylation of serine 46. Knock-down of HIPK2 interferes with tumor suppression and sensitivity to chemotherapy. Combined administration of adriamycin and zinc restores activity of misfolded p53 and enables the induction of its proapoptotic and tumor suppressor functions in vitro and in vivo. We therefore looked for a cancer model where HIPK2 expression is low. MMTV-neu transgenic mice overexpressing HER2/neu, develop mammary tumors at puberty with a long latency, showing very low expression of HIPK2. Here we show that whereas these tumors are resistant to adriamycin treatment, a combination of adriamycin and zinc suppresses tumor growth in vivo in these mice, an effect evidenced by the histological features of the mammary tumors. The combined treatment of adriamycin and zinc also restores wild-type p53 conformation and induces proapoptotic transcription activity. These findings may open up new possibilities for the treatment of human cancers via the combination of zinc with chemotherapeutic agents, for a selected group of patients expressing low levels of HIPK2, with an intact p53. In addition, HIPK2 may serve as a new biomarker for tumor aggressiveness.
Collapse
Affiliation(s)
- Ofer Margalit
- Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fernández-Medarde A, Santos E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta Rev Cancer 2010; 1815:170-88. [PMID: 21111786 DOI: 10.1016/j.bbcan.2010.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 11/14/2010] [Indexed: 12/31/2022]
Abstract
RasGrf1 and RasGrf2 are highly homologous mammalian guanine nucleotide exchange factors which are able to activate specific Ras or Rho GTPases. The RasGrf genes are preferentially expressed in the central nervous system, although specific expression of either locus may also occur elsewhere. RasGrf1 is a paternally-expressed, imprinted gene that is expressed only after birth. In contrast, RasGrf2 is not imprinted and shows a wider expression pattern. A variety of isoforms for both genes are also detectable in different cellular contexts. The RasGrf proteins exhibit modular structures composed by multiple domains including CDC25H and DHPH motifs responsible for promoting GDP/GTP exchange, respectively, on Ras or Rho GTPase targets. The various domains are essential to define their intrinsic exchanger activity and to modulate the specificity of their functional activity so as to connect different upstream signals to various downstream targets and cellular responses. Despite their homology, RasGrf1 and RasGrf2 display differing target specificities and non overlapping functional roles in a variety of signaling contexts related to cell growth and differentiation as well as neuronal excitability and response or synaptic plasticity. Whereas both RasGrfs are activatable by glutamate receptors, G-protein-coupled receptors or changes in intracellular calcium concentration, only RasGrf1 is reported to be activated by LPA, cAMP, or agonist-activated Trk and cannabinoid receptors. Analysis of various knockout mice strains has uncovered a specific functional contribution of RasGrf1 in processes of memory and learning, photoreception, control of post-natal growth and body size and pancreatic β-cell function and glucose homeostasis. For RasGrf2, specific roles in lymphocyte proliferation, T-cell signaling responses and lymphomagenesis have been described.
Collapse
|
19
|
Seagroves TN, Peacock DL, Liao D, Schwab LP, Krueger R, Handorf CR, Haase VH, Johnson RS. VHL deletion impairs mammary alveologenesis but is not sufficient for mammary tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2269-82. [PMID: 20382704 PMCID: PMC2861092 DOI: 10.2353/ajpath.2010.090310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
Abstract
Overexpression of hypoxia inducible factor-1 (HIF-1)alpha, which is common in most solid tumors, correlates with poor prognosis and high metastatic risk in breast cancer patients. Because HIF-1alpha protein stability is tightly controlled by the tumor suppressor von Hippel-Lindau (VHL), deletion of VHL results in constitutive HIF-1alpha expression. To determine whether VHL plays a role in normal mammary gland development, and if HIF-1alpha overexpression is sufficient to initiate breast cancer, Vhl was conditionally deleted in the mammary epithelium using the Cre/loxP system. During first pregnancy, loss of Vhl resulted in decreased mammary epithelial cell proliferation and impaired alveolar differentiation; despite these phenotypes, lactation was sufficient to support pup growth. In contrast, in multiparous dams, Vhl(-/-) mammary glands exhibited a progressive loss of alveolar epithelium, culminating in lactation failure. Deletion of Vhl in the epithelium also impacted the mammary stroma, as there was increased microvessel density accompanied by hemorrhage and increased immune cell infiltration. However, deletion of Vhl was not sufficient to induce mammary tumorigenesis in dams bred continuously for up to 24 months of age. Moreover, co-deletion of Hif1a could not rescue the Vhl(-/-)-dependent phenotype as dams were unable to successfully lactate during the first lactation. These results suggest that additional VHL-regulated genes besides HIF1A function to maintain the proliferative and regenerative potential of the breast epithelium.
Collapse
Affiliation(s)
- Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abe F, Dafferner AJ, Donkor M, Westphal SN, Scholar EM, Solheim JC, Singh RK, Hoke TA, Talmadge JE. Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol Immunother 2010; 59:47-62. [PMID: 19449184 PMCID: PMC11030983 DOI: 10.1007/s00262-009-0719-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/22/2009] [Indexed: 01/13/2023]
Abstract
Female mice transgenic for the rat proto-oncogene c-erb-B2, under control of the mouse mammary tumor virus (MMTV) promoter (neuN), spontaneously develop metastatic mammary carcinomas. The development of these mammary tumors is associated with increased number of GR-1(+)CD11b(+) myeloid derived suppressor cells (MDSCs) in the peripheral blood (PB), spleen and tumor. We report a complex relationship between tumor growth, MDSCs and immune regulatory molecules in non-mutated neu transgenic mice on a FVB background (FVB-neuN). The first and second tumors in FVB-neuN mice develop at a median of 265 (147-579) and 329 (161-523) days, respectively, resulting in a median survival time (MST) of 432 (201 to >500) days. During tumor growth, significantly increased number of MDSCs is observed in the PB and spleen, as well as, in infiltrating the mammary tumors. Our results demonstrate a direct correlation between tumor size and the number of MDSCs infiltrating the tumor and an inverse relationship between the frequency of CD4(+) T-cells and MDSCs in the spleen. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assessment of enzyme and cytokine transcript levels in the spleen, tumor, tumor-infiltrating non-parenchymal cells (NPCs) and mammary glands revealed a significant increase in transcript levels from grossly normal mammary glands and tumor-infiltrating NPCs during tumor progression. Tumor NPCs, as compared to spleen cells from wild-type (w/t) mice, expressed significantly higher levels of arginase-1 (ARG-1), nitric oxide synthase (NOS-2), vascular endothelial growth factor (VEGF-A) and significantly lower levels of interferon (IFN)-gamma, interleukin (IL)-2 and fms-like tyrosine kinase-3 ligand (Flt3L) transcript levels. Transcript levels in the spleens of tumor-bearing (TB) mice also differed from normal mice, although to a lesser extent than transcript levels from tumor-infiltrating NPCs. Furthermore, both spleen cells and NPCs from TB mice, but not control mice, suppressed alloantigen responses by syngeneic control spleen cells. Correlative studies revealed that the number of MDSCs in the spleen was directly associated with granulocyte colony stimulating factor (G-CSF) transcript levels in the spleen; while the number of MDSCs in the tumors was directly correlated with splenic granulocyte macrophage stimulating factor (GM-CSF) transcript levels, tumor volume and tumor cell number. Together our results support a role for MDSCs in tumor initiation and progressive, T-cell depression and loss of function provide evidence which support multiple mechanisms of MDSC expansion in a site-dependent manner.
Collapse
Affiliation(s)
- Fuminori Abe
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Alicia J. Dafferner
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Moses Donkor
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Sherry N. Westphal
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Eric M. Scholar
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Joyce C. Solheim
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Rakesh K. Singh
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - Traci A. Hoke
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| | - James E. Talmadge
- Laboratory of Transplantation Immunology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-7660 USA
| |
Collapse
|
21
|
Lawlor K, Nazarian A, Lacomis L, Tempst P, Villanueva J. Pathway-based biomarker search by high-throughput proteomics profiling of secretomes. J Proteome Res 2009; 8:1489-503. [PMID: 19199430 DOI: 10.1021/pr8008572] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An efficient means for the identification of prognostic and predictive biomarkers is essential in today's cancer management. A new approach toward biomarker discovery has therefore been proposed, where pathways instead of individual proteins would be monitored and targeted. Recently, the 'secretome', a biological fluid that may be enriched with secreted and/or shed proteins from adjacent disease-relevant cancer cells, has been targeted for biomarker discovery. We describe a novel method for secretome analysis using "stacking gels", label-free relative quantitation, and pathway analysis. The protocol presented here increases the throughput of secretome analysis by approximately 1 order of magnitude compared to earlier methodologies. In the first application, six cancer cell lines from three different tissues were studied. The global secretome data sets obtained were analyzed using pathway analysis software to attempt integrating the experimental findings into a cellular signaling context. This suggested that several secretome proteins might be interconnected with intracellular canonical pathways. This, in turn, may eventually allow the use of secretomes for discovery of pathway-based biomarkers. When this strategy was applied to two breast cancer cell lines, it appeared that the IGF signaling and the plasminogen activating system may be differentially regulated in invasive breast cancer, but this remains speculative until it is verified in a clinical setting. In summary, the methodology proposed optimizes cell culture with sample fractionation and LC-MS to obtain the highest yield from cultured cell secretomes, with a focus on rational biomarker discovery through putative linkage with cancer relevant pathways.
Collapse
Affiliation(s)
- Kevin Lawlor
- Protein Center and Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
22
|
Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V, Lavoie C, Turpin J, Cianflone K, Huntsman DG, Muller WJ. Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol 2007; 27:6361-71. [PMID: 17636013 PMCID: PMC2099621 DOI: 10.1128/mcb.00686-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid beta-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Fatty Acids/biosynthesis
- Female
- Fluorescent Antibody Technique, Direct
- Glucose/metabolism
- Humans
- Kinetics
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Nude
- Mice, Transgenic
- Models, Biological
- Mutation
- Neoplasm Transplantation
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/physiology
- Receptors, Tumor Necrosis Factor, Member 10c/genetics
- Receptors, Tumor Necrosis Factor, Member 10c/metabolism
- Transplantation, Homologous
Collapse
|