1
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Distinct conformational states enable transglutaminase 2 to promote cancer cell survival versus cell death. Commun Biol 2024; 7:982. [PMID: 39134806 PMCID: PMC11319651 DOI: 10.1038/s42003-024-06672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Transglutaminase 2 (TG2) is a GTP-binding, protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that bind and stabilize the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotides bind and stabilize a monomeric closed conformation while calcium binds to an open state that can form higher order oligomers. SAXS analysis suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time resolved SAXS to show that LM11 increases the ability of calcium to bind and stabilize an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Kara A Zielinski
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, 14853, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA.
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA.
| | - Shawn K Milano
- Department of Chemistry and Chemical Biology, Cornell University, 14853, Ithaca, NY, USA
- Department of Molecular Medicine, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
2
|
Buccarelli M, Castellani G, Fiorentino V, Pizzimenti C, Beninati S, Ricci-Vitiani L, Scattoni ML, Mischiati C, Facchiano F, Tabolacci C. Biological Implications and Functional Significance of Transglutaminase Type 2 in Nervous System Tumors. Cells 2024; 13:667. [PMID: 38667282 PMCID: PMC11048792 DOI: 10.3390/cells13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Transglutaminase type 2 (TG2) is the most ubiquitously expressed member of the transglutaminase family. TG2 catalyzes the transamidation reaction leading to several protein post-translational modifications and it is also implicated in signal transduction thanks to its GTP binding/hydrolyzing activity. In the nervous system, TG2 regulates multiple physiological processes, such as development, neuronal cell death and differentiation, and synaptic plasticity. Given its different enzymatic activities, aberrant expression or activity of TG2 can contribute to tumorigenesis, including in peripheral and central nervous system tumors. Indeed, TG2 dysregulation has been reported in meningiomas, medulloblastomas, neuroblastomas, glioblastomas, and other adult-type diffuse gliomas. The aim of this review is to provide an overview of the biological and functional relevance of TG2 in the pathogenesis of nervous system tumors, highlighting its involvement in survival, tumor inflammation, differentiation, and in the resistance to standard therapies.
Collapse
Affiliation(s)
- Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Cristina Pizzimenti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy;
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.); (F.F.)
| | - Claudio Tabolacci
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
3
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
4
|
Aplin C, Zielinski KA, Pabit S, Ogunribido D, Katt WP, Pollack L, Cerione RA, Milano SK. Defining the conformational states that enable transglutaminase 2 to promote cancer cell survival versus cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578794. [PMID: 38370687 PMCID: PMC10871292 DOI: 10.1101/2024.02.04.578794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.
Collapse
Affiliation(s)
- Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Deborah Ogunribido
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - William P. Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
5
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
6
|
Selcuk K, Leitner A, Braun L, Le Blanc F, Pacak P, Pot S, Vogel V. Transglutaminase 2 has higher affinity for relaxed than for stretched fibronectin fibers. Matrix Biol 2024; 125:113-132. [PMID: 38135164 DOI: 10.1016/j.matbio.2023.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal β-sandwich and C-terminal β-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal β-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.
Collapse
Affiliation(s)
- Kateryna Selcuk
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Lukas Braun
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Fanny Le Blanc
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Paulina Pacak
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Simon Pot
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland.
| |
Collapse
|
7
|
Goksoy Solak Y, Yegen G, Onder S, Tekin S, Soyluk O, Gul N, Tanakol R, Aral F, Kubat Uzum A. Transglutaminase 2 expression is associated with increased risk of lymph node metastasis and recurrence in papillary thyroid cancer. Endocrine 2023; 82:353-360. [PMID: 37340285 DOI: 10.1007/s12020-023-03427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Transglutaminase 2 (TG2) is associated with mobilization, invasion, and chemoresistance of tumor cells. We aimed to determine whether the immunohistochemical staining with TG2 antibody differs between metastatic and non-metastatic papillary thyroid cancer patients. METHODS We included 76 patients with papillary thyroid cancer (72% female, median age 52 (24-81) years, follow-up time 107 (60-216) months). Thirty of them with no metastasis, 30 of them with only lymph node metastasis and 16 patients with distant ± lymph node metastasis. Immunohistochemical staining of TG2 antibody was evaluated in the primary tumor and extra-tumoral tissue. We also divided subjects into two groups according to their primary tumor TG2 staining score (group A, high risk group: ≥3, n = 43; group B, low risk group: <3, n = 33). RESULTS Vascular invasion (p < 0.001), thyroid capsule invasion (p < 0.001), extrathyroidal extension (p < 0.001), intrathyroidal dissemination (p = 0.001), lymph node metastasis (p < 0.001), presence of aggressive histology (p < 0.001) were significantly higher in group A. No significant difference was found between the groups in terms of distant metastasis. Based on ATA risk classification 95.5% of patients with low risk were in group B but 86.8% of intermediate risk and 56.3% of high risk were in group A. In regression analysis, lymph node metastasis increased by 1.9 times with each one point increase in TG2 staining score. CONCLUSION TG2 staining score of the primary tumor may be a predictive factor for lymph node metastasis. High or low TG2 scores may effect the frequency of follow-up and decision of treatment regimens.
Collapse
Affiliation(s)
- Yagmur Goksoy Solak
- Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Gulcin Yegen
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semen Onder
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sakin Tekin
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ozlem Soyluk
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurdan Gul
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Refik Tanakol
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ferihan Aral
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Kubat Uzum
- Department of Endocrinology and Metabolism, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Malkomes P, Lunger I, Oppermann E, Lorenz J, Faqar-Uz-Zaman SF, Han J, Bothur S, Ziegler P, Bankov K, Wild P, Bechstein WO, Rieger MA. Transglutaminase 2 is associated with adverse colorectal cancer survival and represents a therapeutic target. Cancer Gene Ther 2023; 30:1346-1354. [PMID: 37443286 PMCID: PMC10581896 DOI: 10.1038/s41417-023-00641-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Molecular markers for predicting prognosis of colorectal cancer (CRC) patients are urgently needed for effective disease management. We reported previously that the multifunctional enzyme Transglutaminase 2 (TGM2) is essential for CRC cell survival by inactivation of the tumor suppressor p53. Based on these data, we determined the clinical relevance of TGM2 expression and explored its potential as prognostic marker and therapeutic target in CRC. We profiled TGM2 protein expression in tumor samples of 279 clinically characterized CRC patients using immunohistochemical staining. TGM2 expression was upregulated in matched tumor samples in comparison to normal tissue. A strong TGM2 expression was associated with advanced tumor stages and predicted worse prognosis regarding progression-free and overall-survival, even at early stages. Inhibition of TGM2 in CRC cell lines by the inhibitors LDN27219 and Tyrphostin resulted in a strong reduction of cancer cell proliferation and tumorsphere formation in vitro by induction of p53-mediated apoptosis. Primary patient-derived tumorsphere formation was significantly reduced by inhibition of TGM2. Treatment of mice with TGM2 inhibitors exhibited a significant deceleration of tumor progression. Our data indicate that high TGM2 expression in CRC is associated with worse prognosis and may serve as a therapeutic target in CRC patients with strong TGM2 expression.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilaria Lunger
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Johannes Lorenz
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Sara Fatima Faqar-Uz-Zaman
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Jiaoyan Han
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Sabrina Bothur
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Paul Ziegler
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Peter Wild
- Dr. Senckenberg Institute of Pathology, Goethe University, Frankfurt am Main, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Wolf Otto Bechstein
- Department for General, Visceral, Transplant and Thoracic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Michael A Rieger
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany.
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Valdivia A, Vagadia PP, Guo G, O'Brien E, Matei D, Schiltz GE. Discovery and Characterization of PROTACs Targeting Tissue Transglutaminase (TG2). J Med Chem 2023. [PMID: 37449845 PMCID: PMC10388319 DOI: 10.1021/acs.jmedchem.2c01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional enzyme involved in the cross-linking of extracellular matrix proteins, formation of complexes with fibronectin (FN) and integrins, and GTP hydrolysis. TG2 is activated in several pathological conditions, including cancer. We recently described a novel series of ligands that bind to TG2 and inhibit its interaction with FN. Because TG2 acts via multiple mechanisms, we set out to pursue a targeted protein degradation strategy to abolish TG2's myriad functions. Here, we report the synthesis and characterization of a series of VHL-based degraders that reduce TG2 in ovarian cancer cells in a proteasome-dependent manner. Degradation of TG2 resulted in significantly reduced cancer cell adhesion and migration in vitro in scratch-wound and migration assays. These results strongly indicate that further development of more potent and in vivo efficient TG2 degraders could be a new strategy for reducing the dissemination of ovarian and other cancers.
Collapse
Affiliation(s)
- Andres Valdivia
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Purav P Vagadia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangxu Guo
- WuXi AppTec, Shanghai 200131, People's Republic of China
| | - Eilidh O'Brien
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Jesse Brown VA Medical Center, Chicago, Illinois 60612, United States
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
Gao J, Wang S, Wan H, Lan J, Yan Y, Yin D, Zhou W, Hun S, He Q. Prognostic Value of Transglutaminase 2 in Patients with Solid Tumors: A Meta-analysis. Genet Test Mol Biomarkers 2023; 27:36-43. [PMID: 36809173 DOI: 10.1089/gtmb.2022.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Background: Transglutaminase 2 (TG2), a member of the transglutaminase family, also known as tissue transglutaminase, plays a fundamental role in cancer growth and progression. In this study, we aimed to comprehensively review the evidence of TG2 as a prognostic biomarker in solid tumors. Methods: PubMed, Embase, and Cochrane databases were searched for human studies with clearly described cancer types if they presented the relationship between TG2 expression and prognostic indicators from inception to February 2022. Two authors independently screened the eligible studies and extracted the relevant data. The association between TG2 and overall survival (OS), disease-free survival (DFS), and relapse-free survival (RFS) were described as hazard ratios (HR) and their corresponding 95% confidence intervals (CIs). Statistical heterogeneity was assessed using Cochrane Q-test and Higgins I-squared statistic. A sensitivity analysis was conducted by sequentially omitting the impact of each study. Publication bias was assessed by Egger's funnel plot. Results: A total of 2864 patients with various cancers from 11 individual studies were enrolled. Results showed that elevated TG2 protein expression and mRNA expression predicted a shorter OS, with a combined HR of 1.93 (95% CI: 1.41-2.63) or HR of 1.95 (95% CI: 1.27-2.99), respectively. Moreover, data suggested that elevated TG2 protein expression was correlated with a shorter DFS (HR = 1.76, 95% CI: 1.36-2.29); whereas elevated TG2 mRNA expression was associated with a shorter DFS (HR = 1.71, 95% CI: 1.30-2.24). Conclusions: Our meta-analysis indicated that TG2 might serve as a promising biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Jie Gao
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengjiang Wang
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiyan Wan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinfeng Lan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Yan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongmei Yin
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenjing Zhou
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shouyong Hun
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qi He
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Chen X, Adhikary G, Newland JJ, Xu W, Ma E, Naselsky W, Eckert RL. The transglutaminase 2 cancer cell survival factor maintains mTOR activity to drive an aggressive cancer phenotype. Mol Carcinog 2023; 62:90-100. [PMID: 35848131 PMCID: PMC9771885 DOI: 10.1002/mc.23446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Transglutaminase 2 (TG2) is an important cancer stem-like cell survival protein that is highly expressed in epidermal squamous cell carcinoma and drives an aggressive cancer phenotype. In the present study, we show that TG2 knockdown or inactivation results in a reduction in mammalian target of rapamycin (mTOR) level and activity in epidermal cancer stem-like cells which are associated with reduced spheroid formation, invasion, and migration, and reduced cancer stem cell and epithelial-mesenchymal transition (EMT) marker expression. Similar changes were observed in both cultured cells and tumors. mTOR knockdown or treatment with rapamycin phenocopies the reduction in spheroid formation, invasion, and migration, and cancer stem cell and EMT marker expression. Moreover, mTOR appears to be a necessary mediator of TG2 action, as a forced expression of constitutively active mTOR in TG2 knockdown cells partially restores the aggressive cancer phenotype and cancer stem cell and EMT marker expression. Tumor studies show that rapamycin reduces tumor growth and cancer stem cell marker expression and EMT. These studies suggest that TG2 stimulates mTOR activity to stimulate cancer cell stemness and EMT and drive aggressive tumor growth.
Collapse
Affiliation(s)
- Xi Chen
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gautam Adhikary
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - John J. Newland
- Surgery - Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wen Xu
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Emily Ma
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Warren Naselsky
- Surgery - Division of Thoracic Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Richard L. Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
- Dermatology, University of Maryland School of Medicine, Baltimore, Maryland
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Canella R, Brugnoli F, Gallo M, Keillor JW, Terrazzan A, Ferrari E, Grassilli S, Gates EWJ, Volinia S, Bertagnolo V, Bianchi N, Bergamini CM. A Multidisciplinary Approach Establishes a Link between Transglutaminase 2 and the Kv10.1 Voltage-Dependent K + Channel in Breast Cancer. Cancers (Basel) 2022; 15:cancers15010178. [PMID: 36612174 PMCID: PMC9818547 DOI: 10.3390/cancers15010178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Since the multifunctionality of transglutaminase 2 (TG2) includes extra- and intracellular functions, we investigated the effects of intracellular administration of TG2 inhibitors in three breast cancer cell lines, MDA-MB-231, MDA-MB-436 and MDA-MB-468, which are representative of different triple-negative phenotypes, using a patch-clamp technique. The first cell line has a highly voltage-dependent a membrane current, which is low in the second and almost absent in the third one. While applying a voltage protocol to responsive single cells, injection of TG2 inhibitors triggered a significant decrease of the current in MDA-MB-231 that we attributed to voltage-dependent K+ channels using the specific inhibitors 4-aminopyridine and astemizole. Since the Kv10.1 channel plays a dominant role as a marker of cell migration and survival in breast cancer, we investigated its relationship with TG2 by immunoprecipitation. Our data reveal their physical interaction affects membrane currents in MDA-MB-231 but not in the less sensitive MDA-MB-436 cells. We further correlated the efficacy of TG2 inhibition with metabolic changes in the supernatants of treated cells, resulting in increased concentration of methyl- and dimethylamines, representing possible response markers. In conclusion, our findings highlight the interference of TG2 inhibitors with the Kv10.1 channel as a potential therapeutic tool depending on the specific features of cancer cells.
Collapse
Affiliation(s)
- Rita Canella
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455854
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
13
|
Kolligundla LP, Gupta S, Lata S, Mulukala SKN, Killaka P, Akif M, Pasupulati AK. Identification of Novel GTP Analogs as Potent and Specific Reversible Inhibitors for Transglutaminase 2. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2123917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lakshmi P. Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Samriddhi Gupta
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Surabhi Lata
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep K. N. Mulukala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Praneeth Killaka
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohd Akif
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K. Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Identification of Prognostic Genes in Gliomas Based on Increased Microenvironment Stiffness. Cancers (Basel) 2022; 14:cancers14153659. [PMID: 35954323 PMCID: PMC9367320 DOI: 10.3390/cancers14153659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
With a median survival time of 15 months, glioblastoma multiforme is one of the most aggressive primary brain cancers. The crucial roles played by the extracellular matrix (ECM) stiffness in glioma progression and treatment resistance have been reported in numerous studies. However, the association between ECM-stiffness-regulated genes and the prognosis of glioma patients remains to be explored. Thus, using bioinformatics analysis, we first identified 180 stiffness-dependent genes from an RNA-Seq dataset, and then evaluated their prognosis in The Cancer Genome Atlas (TCGA) glioma dataset. Our results showed that 11 stiffness-dependent genes common between low- and high-grade gliomas were prognostic. After validation using the Chinese Glioma Genome Atlas (CGGA) database, we further identified four stiffness-dependent prognostic genes: FN1, ITGA5, OSMR, and NGFR. In addition to high-grade glioma, overexpression of the four-gene signature also showed poor prognosis in low-grade glioma patients. Moreover, our analysis confirmed that the expression levels of stiffness-dependent prognostic genes in high-grade glioma were significantly higher than in low-grade glioma, suggesting that these genes were associated with glioma progression. Based on a pathophysiology-inspired approach, our findings illuminate the link between ECM stiffness and the prognosis of glioma patients and suggest a signature of four stiffness-dependent genes as potential therapeutic targets.
Collapse
|
15
|
Sengupta S, Mondal M, Prasasvi KR, Mukherjee A, Magod P, Urbach S, Friedmann-Morvinski D, Marin P, Somasundaram K. Differentiated glioma cell-derived Fibromodulin activates Integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. eLife 2022; 11:78972. [PMID: 35642785 PMCID: PMC9259034 DOI: 10.7554/elife.78972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.
Collapse
Affiliation(s)
- Shreoshi Sengupta
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Mainak Mondal
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Kaval Reddy Prasasvi
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Arani Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| | - Prerna Magod
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
| |
Collapse
|
16
|
Luo Z, Yao X, Li M, Fang D, Fei Y, Cheng Z, Xu Y, Zhu B. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv Drug Deliv Rev 2022; 185:114301. [PMID: 35439570 DOI: 10.1016/j.addr.2022.114301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved unprecedented clinical success against hematologic malignancies. However, the transition of CAR-T cell therapies for solid tumors is limited by heterogenous antigen expression, immunosuppressive microenvironment (TME), immune adaptation of tumor cells and impeded CAR-T-cell infiltration/transportation. Recent studies increasingly reveal that tumor physical microenvironment could affect various aspects of tumor biology and impose profound impacts on the antitumor efficacy of CAR-T therapy. In this review, we discuss the critical roles of four physical cues in solid tumors for regulating the immune responses of CAR-T cells, which include solid stress, interstitial fluid pressure, stiffness and microarchitecture. We highlight new strategies exploiting these features to enhance the therapeutic potency of CAR-T cells in solid tumors by correlating with the state-of-the-art technologies in this field. A perspective on the future directions for developing new CAR-T therapies for solid tumor treatment is also provided.
Collapse
|
17
|
Katt WP, Aplin C, Cerione RA. Exploring the Role of Transglutaminase in Patients with Glioblastoma: Current Perspectives. Onco Targets Ther 2022; 15:277-290. [PMID: 35340676 PMCID: PMC8943831 DOI: 10.2147/ott.s329262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue transglutaminase (tTG) is a rather unique GTP-binding/protein crosslinking enzyme that has been shown to play important roles in a number of cellular processes that impact both normal physiology and disease states. This is especially the case in the context of aggressive brain tumors, such as glioblastoma. The diverse roles played by tTG in cancer survival and progression have led to significant interest in recent years in using tTG as a therapeutic target. In this review, we provide a brief overview of the transglutaminase family, and then discuss the primary biochemical activities exhibited by tTG with an emphasis on the role it plays in glioblastoma progression. Finally, we consider current approaches to target tTG which might eventually have clinical impact.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14850, USA,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA,Correspondence: Richard A Cerione, Tel +1 607-253-3650, Email
| |
Collapse
|
18
|
Rorke EA, Adhikary G, Szmacinski H, Lakowicz JR, Weber DJ, Godoy-Ruiz R, Puranik P, Keillor JW, Gates EW, Eckert RL. Sulforaphane covalently interacts with the transglutaminase 2 cancer maintenance protein to alter its structure and suppress its activity. Mol Carcinog 2022; 61:19-32. [PMID: 34610184 PMCID: PMC8665039 DOI: 10.1002/mc.23356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/03/2023]
Abstract
Type 2 transglutaminase (TG2) functions as an important cancer cell survival protein in a range of cancers including epidermal squamous cell carcinoma. TG2 exists in open and closed conformations each of which has a distinct and mutually exclusive activity. The closed conformation has GTP-binding/GTPase activity while the open conformation functions as a transamidase to catalyze protein-protein crosslinking. GTP-binding/GTPase activity is required for TG2 maintenance of the aggressive cancer phenotype. Thus, identifying agents that convert TG2 from the closed to the open GTP-binding/GTPase inactive conformation is an important cancer prevention/treatment strategy. Sulforaphane (SFN) is an important diet-derived cancer prevention agent that is known to possess a reactive isothiocyanate group and has potent anticancer activity. Using a biotin-tagged SFN analog (Biotin-ITC) and kinetic analysis we show that SFN covalently and irreversibly binds to recombinant TG2 to inhibit transamidase activity and shift TG2 to an open/extended conformation, leading to a partial inhibition of GTP binding. We also show that incubation of cancer cells or cancer cell extract with Biotin-ITC results in formation of a TG2/Biotin-ITC complex and that SFN treatment of cancer cells inhibits TG2 transamidase activity and shifts TG2 to an open/extended conformation. These findings identify TG2 as a direct SFN anticancer target in epidermal squamous cell carcinoma.
Collapse
Affiliation(s)
- Ellen A. Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Gautam Adhikary
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Henryk Szmacinski
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Joseph R. Lakowicz
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - David J. Weber
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Raquel Godoy-Ruiz
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Purushottamachar Puranik
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | | | - Eric W.J Gates
- Department of Chemistry, University of Ottawa, ON, Canada
| | - Richard L. Eckert
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201,Center for Biomolecular Therapueutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
19
|
Yasmin IA, Mohana Sundaram S, Banerjee A, Varier L, Dharmarajan A, Warrier S. Netrin-like domain of sFRP4, a Wnt antagonist inhibits stemness, metastatic and invasive properties by specifically blocking MMP-2 in cancer stem cells from human glioma cell line U87MG. Exp Cell Res 2021; 409:112912. [PMID: 34762897 DOI: 10.1016/j.yexcr.2021.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Rapid proliferation, high stemness potential, high invasiveness and apoptotic evasion are the distinctive hallmarks of glioma malignancy. The dysregulation of the Wnt/β-catenin pathway is the key factor regulating glioma malignancy. Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), which has a prominent pro-apoptotic role in glioma stem cells, has two functional domains, the netrin-like domain (NLD), and cysteine-rich domain (CRD) both of which contribute to apoptotic properties of the whole protein. However, there are no reports elucidating the specific effects of individual domains of sFRP4 in inhibiting the invasive properties of glioma. This study explores the efficacy of the domains of sFRP4 in inhibiting the key hallmarks of glioblastoma such as invasion, metastasis, and stemness. We overexpressed sFRP4 and its domains in the glioblastoma cell line, U87MG cells and observed that both CRD and NLD domains played prominent roles in attenuating cancer stem cell properties. Significantly, we could demonstrate for the first time that both NLD and CRD domains negatively impacted the key driver of metastasis and migration, the matrix metalloproteinase-2 (MMP-2). Mechanistically, compared to CRD, NLD domain suppressed MMP-2 mediated invasion more effectively in glioma cells as observed in matrigel invasion assay and a function-blocking antibody assay. Fluorescent matrix degradation assay further revealed that NLD reduces matrix degradation. NLD also significantly disrupted fibronectin assembly and decreased cell adhesion in another glioma cell line LN229. In conclusion, the NLD peptide of sFRP4 could be a potent short peptide therapeutic candidate for targeting MMP-2-mediated invasion in the highly malignant glioblastoma multiforme.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | - S Mohana Sundaram
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | - Anasuya Banerjee
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India
| | | | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600 116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560 065, India.
| |
Collapse
|
20
|
Sima LE, Chen S, Cardenas H, Zhao G, Wang Y, Ivan C, Huang H, Zhang B, Matei D. Loss of host tissue transglutaminase boosts antitumor T cell immunity by altering STAT1/STAT3 phosphorylation in ovarian cancer. J Immunother Cancer 2021; 9:jitc-2021-002682. [PMID: 34593619 PMCID: PMC8487211 DOI: 10.1136/jitc-2021-002682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue transglutaminase (TG2), an enzyme overexpressed in cancer cells, promotes metastasis and resistance to chemotherapy. Its distinct effects in cancer versus the host compartments have not been elucidated. METHODS Here, by using a TG2-/- syngeneic ovarian cancer mouse model, we assessed the effects of TG2 deficiency in the host tissues on antitumor immunity and tumor progression. Multicolor flow cytometry was used to phenotype immune cell populations in the peritoneal environment. Cancer cells recovered from malignant ascites were characterized by RNA sequencing, proliferation, and apoptosis assays. RESULTS We observed that host TG2 loss delayed tumor growth and ascites accumulation and caused increased infiltration of CD8+ T cells and decreased numbers of myeloid cells in the peritoneal fluid. Tumor antigen-specific CD8+ T cell cytotoxic responses were enhanced in ascites from TG2-/- versus TG2+/+ mice and CD8+ T cell depletion caused accelerated ascites accumulation in TG2-/- mice. CD8+ T cells from tumor-bearing TG2-/- mice displayed an effector T cell phenotype, differentiated toward effector memory (Tem). Mechanistically, absence of TG2 augmented signals promoting T cell activation, such as increased cytokine-induced STAT1 and attenuated STAT3 phosphorylation in T cells. Additionally, immune-suppressive myeloid cell populations were reduced in the peritoneal milieu of TG2-/- tumor-bearing mice. In response to the more robust immune response caused by loss of TG2, cancer cells growing intraperitoneally exhibited an interferon-γ(IFN-γ) responsive gene signature and underwent apoptosis. In human specimens, stromal, not tumor, TG2 expression correlated indirectly with numbers of tumor-infiltrating lymphocytes. CONCLUSIONS Collectively, our data demonstrate decreased tumor burden, increased activation and effector function of T cells, and loss of immunosuppressive signals in the tumor microenvironment of TG2-/- mice. We propose that TG2 acts as an attenuator of antitumor T cell immunity and is a new immunomodulatory target.
Collapse
Affiliation(s)
- Livia Elena Sima
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Siqi Chen
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Horacio Cardenas
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hao Huang
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bin Zhang
- Department of Medicine; Hematology/Oncology Division, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Keillor JW, Johnson GVW. Transglutaminase 2 as a therapeutic target for neurological conditions. Expert Opin Ther Targets 2021; 25:721-731. [PMID: 34607527 DOI: 10.1080/14728222.2021.1989410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.
Collapse
Affiliation(s)
- Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
22
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
23
|
Neuronal and Endothelial Transglutaminase-2 Expression during Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Neuroscience 2020; 461:140-154. [PMID: 33253822 DOI: 10.1016/j.neuroscience.2020.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Transglutiminase-2 (TG2) is a multifunctional enzyme that has been implicated in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) using global knockout mice and TG2 selective inhibitors. Previous studies have identified the expression of TG2 in subsets of macrophages-microglia and astrocytes after EAE. The aims of the current investigation were to examine neuronal expression of TG2 in rodent models of chronic-relapsing and non-relapsing EAE and through co-staining with intracellular and cell death markers, provide insight into the putative role of TG2 in neuronal pathology during disease progression. Here we report that under normal physiological conditions there is a low basal expression of TG2 in the nucleus of neurons, however following EAE or MS, robust induction of cytoplasmic TG2 occurs in most neurons surrounding perivascular lesion sites. Importantly, TG2-positive neurons also labeled for phosphorylated Extracellular signal-regulated kinase 1/2 (ERK1/2) and the apoptotic marker cleaved caspase-3. In white and gray matter lesions, high levels of TG2 were also found within the vasculature and endothelial cells as well as in tissue migrating pericytes or fibroblasts, though rarely did TG2 colocalize with cells identified with glial cell markers (astrocytes, oligodendrocytes and microglia). TG2 induction occurred concurrently with the upregulation of the blood vessel permeability factor and angiogenic molecule Vascular Endothelial Growth Factor (VEGF). Extracellular TG2 was found to juxtapose with fibronectin, within and surrounding blood vessels. Though molecular and pharmacological studies have implicated TG2 in the induction and severity of EAE, the cell autonomous functions of this multifunctional enzyme during disease progression remains to be elucidated.
Collapse
|
24
|
Rudlong J, Cheng A, Johnson GVW. The role of transglutaminase 2 in mediating glial cell function and pathophysiology in the central nervous system. Anal Biochem 2019; 591:113556. [PMID: 31866289 DOI: 10.1016/j.ab.2019.113556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitously expressed transglutaminase 2 (TG2) has diverse functions in virtually all cell types, with its role depending not only on cell type, but also on specific subcellular localization. In the central nervous system (CNS) different types of glial cells, such as astrocytes, microglia, and oligodendrocytes and their precursor cells (OPCs), play pivotal supportive functions. This review is focused on what is currently known about the role of TG2 in each type of glial cell, in the context of normal function and pathophysiology. For example, astrocytic TG2 facilitates their migration and proliferation, but hinders their ability to protect neurons after CNS injury. The review also examines the interactions between glial cell types, and how TG2 in one cell type may affect another, as well as implications for specific TG2 populations as therapeutic targets in CNS pathology.
Collapse
Affiliation(s)
- Jacob Rudlong
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Anson Cheng
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA.
| |
Collapse
|
25
|
Wolf KJ, Chen J, Coombes J, Aghi MK, Kumar S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. NATURE REVIEWS. MATERIALS 2019; 4:651-668. [PMID: 32647587 PMCID: PMC7347297 DOI: 10.1038/s41578-019-0135-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 05/15/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Several decades of research have provided great insight into GBM progression; however, the prognosis remains poor with a median patient survival time of ~ 15 months. The tumour microenvironment (TME) of GBM plays a crucial role in mediating tumour progression and thus is being explored as a therapeutic target. Progress in the development of treatments targeting the TME is currently limited by a lack of model systems that can accurately recreate the distinct extracellular matrix composition and anatomic features of the brain, such as the blood-brain barrier and axonal tracts. Biomaterials can be applied to develop synthetic models of the GBM TME to mimic physiological and pathophysiological features of the brain, including cellular and ECM composition, mechanical properties, and topography. In this Review, we summarize key features of the GBM microenvironment and discuss different strategies for the engineering of GBM TME models, including 2D and 3D models featuring chemical and mechanical gradients, interfaces and fluid flow. Finally, we highlight the potential of engineered TME models as platforms for mechanistic discovery and drug screening as well as preclinical testing and precision medicine.
Collapse
Affiliation(s)
- Kayla J. Wolf
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Joseph Chen
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
| | - Jason Coombes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Manish K. Aghi
- Department of Neurosurgery, University of California San Francisco (UCSF), San Francisco, California, 94158
| | - Sanjay Kumar
- University of California, Berkeley – University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, 94720, USA
| |
Collapse
|
26
|
Abstract
Gluten is known to be the main triggering factor for celiac disease (CeD), an immune-mediated disorder. CeD is therefore managed using a strict and lifelong gluten-free diet (GFD), the only effective treatment available currently. However, the GFD is restrictive. Hence, efforts are being made to explore alternative therapies. Based on their mechanisms of action on various molecular targets involved in the pathogenesis of CeD, these therapies may be classified into one of the following five broad approaches. The first approach focuses on decreasing the immunogenic content of gluten, using strategies like genetically modified wheat, intra-intestinal gluten digestion using glutenases, microwave thermal treatment of hydrated wheat kernels, and gluten pretreatment with either bacterial/ fungal derived endopeptidases or microbial transglutaminase. The second approach involves sequestering gluten in the gut lumen before it is digested into immunogenic peptides and absorbed, using binder drugs like polymer p(HEMA-co-SS), single chain fragment variable (scFv), and anti- gluten antibody AGY. The third approach aims to prevent uptake of digested gluten through intestinal epithelial tight junctions, using a zonulin antagonist. The fourth approach involves tissue transglutaminase (tTG) inhibitors to prevent the enhancement of immunogenicity of digested gluten by the intestinal tTG enzyme. The fifth approach seeks to prevent downstream immune activation after uptake of gluten immunogenic peptides through the intestinal mucosal epithelial layer. Examples include HLA-DQ2 blockers that prevent presentation of gluten derived- antigens by dendritic cells to T cells, immune- tolerizing therapies like the vaccine Nexvax2 and TIMP-Glia, cathepsin inhibitors, immunosuppressants like corticosteroids, azathioprine etc., and anti-cytokine agents targeting TNF-α and interleukin-15. Apart from these approaches, research is being done to evaluate the effectiveness of probiotics/prebiotics, helminth therapy using Necator americanus, low FODMAP diet, and pancreatic enzyme supplementation in CeD symptom control; however, the mechanisms by which they play a beneficial role in CeD are yet to be clearly established. Overall, although many therapies being explored are still in the pre-clinical phase, some like the zonulin antagonist, immune tolerizing therapies and glutenases have reached phase II/III clinical trials. While these potential options appear exciting, currently they may at best be used to supplement rather than supplant the GFD.
Collapse
Affiliation(s)
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
27
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
28
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Transglutaminase 2: The Maestro of the Oncogenic Mediators in Renal Cell Carcinoma. Med Sci (Basel) 2019; 7:medsci7020024. [PMID: 30736384 PMCID: PMC6409915 DOI: 10.3390/medsci7020024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional crosslinking enzyme that displays transamidation, protein disulfide isomerase, protein kinase, as well as GTPase and ATPase activities. TG2 can also act as an adhesion molecule involved in the syndecan and integrin receptor signaling. In recent years, TG2 was implicated in cancer progression, survival, invasion, migration, and stemness of many cancer types, including renal cell carcinoma (RCC). Von Hippel-Lindau mutations leading to the subsequent activation of Hypoxia Inducible Factor (HIF)-1-mediated signaling pathways, survival signaling via the PI3K/Akt pathway resulting in Epithelial Mesenchymal Transition (EMT) metastasis and angiogenesis are the main factors in RCC progression. A number of studies have shown that TG2 was important in HIF-1- and PI3K-mediated signaling, VHL and p53 stabilization, glycolytic metabolism and migratory phenotype in RCC. This review focuses on the role of TG2 in the regulation of molecular pathways nurturing not only the development and propagation of RCC, but also drug-resistance and metastatic potential.
Collapse
|
30
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
31
|
Role of Transglutaminase 2 in Migration of Tumor Cells and How Mouse Models Fit. Med Sci (Basel) 2018; 6:medsci6030070. [PMID: 30200219 PMCID: PMC6164270 DOI: 10.3390/medsci6030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
A search for the "magic bullet", a molecule, the targeting abilities of which could stop the migration of tumor cells, is currently underway, but remains in the early stages. There are still many unknowns regarding the cell migration. The main approach is the employment of mouse models, that are sources of valuable information, but still cannot answer all of the questions. One of the molecules of interest is Transglutaminase 2 (TG2). It is a well-described molecule involved in numerous pathways and elevated in metastatic tumors. The question remains whether mice and humans can give the same answer considering TG2.
Collapse
|
32
|
Lee MY, Wu MF, Cherng SH, Chiu LY, Yang TY, Sheu GT. Tissue transglutaminase 2 expression is epigenetically regulated in human lung cancer cells and prevents reactive oxygen species-induced apoptosis. Cancer Manag Res 2018; 10:2835-2848. [PMID: 30197536 PMCID: PMC6112806 DOI: 10.2147/cmar.s155582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Tissue transglutaminase 2 (TG2) is a stress-regulated protein and associated with cancer cell survival. However, the effects of TG2 expression in human non-small-cell lung cancer (NSCLC) cells on reactive oxygen species (ROS) production and redox homeostasis have not been fully elucidated. Materials and methods We investigated the TG2 expression and activity in A549, H1299, H1355, and H460 lung cancer cells by Western blots and quantitative polymerase chain reaction assay. The enzyme-linked immunosorbent assay was used for transglutaminase activity. The epigenetic expression was characterized with histone deacetylase inhibitor trichostatin A and DNA methyltransferase inhibitor 5-Aza treatment. TG2 expression was inhibited by siRNA transfection and the intracellular calcium was measured by Flow-3AM assay, apoptosis was analyzed by Annexin V/propidium iodide assay, and intracellular ROS was detected by fluorescence-activated cell sorting analysis. The ROS scavenger N-acetyl-L-cysteine (NAC) was applied to reduce TG2-knockdown-induced oxidative stress. Results Only A549 cells expressing high levels of TG2 correlated with high TG2 activity. The expression of TG2 can be regulated by epigenetic regulation in A549, H1299, and H1355 cells. The data also show that TG2 reduction induces apoptosis in A549 and H1299 cells. Furthermore, increased intracellular ROS and calcium levels were both detected in TG2-reduced cells. Moreover, endoplasmic reticulum stress inhibitor (salubrinal) and antioxidant NAC were able to reduce ROS and calcium levels to recover cell viability. Interestingly, the extrinsic and intrinsic apoptosis pathways were activated with a p53 independence upon TG2 reduction. TG2 reduction not only attenuated AKT activation but also reduced superoxide dismutase 2 (SOD2) expression. Exogenous NAC partially recovered SOD2 expression, indicating that mitochondrial-mediated apoptosis accounts for a part of but not all of the TG2-reduction-related death. Conclusion TG2 plays a protection role in NSCLC cell lines. Regardless of the endogenous level of TG2 and p53 status, reduction of TG2 may result in oxidative stress that induces apop-tosis. Therefore, target TG2 expression represents a logical strategy for NSCLC management.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Chiayi City, Taiwan.,Graduate Institute of Natural Healing Science, Nanhua University, Chiayi City, Taiwan
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan,
| | - Shur-Hueih Cherng
- Department of Biotechnology, Hung Kuang University, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Tarng Sheu
- Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, .,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, .,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan,
| |
Collapse
|
33
|
Chrobok NL, Bol JGJM, Jongenelen CA, Brevé JJP, El Alaoui S, Wilhelmus MMM, Drukarch B, van Dam AM. Characterization of Transglutaminase 2 activity inhibitors in monocytes in vitro and their effect in a mouse model for multiple sclerosis. PLoS One 2018; 13:e0196433. [PMID: 29689097 PMCID: PMC5918173 DOI: 10.1371/journal.pone.0196433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The neurodegenerative disease multiple sclerosis (MS) is pathologically characterized by the massive influx of immune cells into the central nervous system. This contributes to demyelination and axonal damage which causes symptoms such as motor and cognitive dysfunctions. The migration of leukocytes from the blood vessel is orchestrated by a multitude of factors whose determination is essential in reducing cellular influx in MS patients and the experimental autoimmune encephalomyelitis (EAE) animal model. The here studied enzyme tissue Transglutaminase (TG2) is present intracellularly, on the cell surface and extracellularly. There it contributes to cellular adhesion and migration via its transamidation activity and possibly by facilitating cellular interaction with the extracellular matrix. Previous data from our group showed reduced motor symptoms and cellular infiltration after using a pharmacological TG2 transamidation activity inhibitor in a rat EAE model. However, it remained elusive if the cross-linking activity of the enzyme resulted in the observed effects. To follow-up, we now characterized two new small molecule TG2 activity inhibitors, BJJF078 and ERW1041E. Both compounds are potent inhibitor of recombinant human and mouse Transglutaminase enzyme activity, mainly TG2 and the close related enzyme TG1. In addition they did not affect the binding of TG2 to the extracellular matrix substrate fibronectin, a process via which TG2 promotes cellular adhesion and migration. We found, that ERW1041E but not BJJF078 resulted in reduced EAE disease motor-symptoms while neither caused apparent changes in pathology (cellular influx), Transglutaminase activity or expression of inflammation related markers in the spinal cord, compared to vehicle treated controls. Although we cannot exclude issues on bioavailability and in vivo efficacy of the used compounds, we hypothesize that extracellular TG1/TG2 activity is of greater importance than (intra-)cellular activity in mouse EAE pathology.
Collapse
Affiliation(s)
- Navina L. Chrobok
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - John G. J. M. Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis A. Jongenelen
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - John J. P. Brevé
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Micha M. M. Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Chihong Z, Yutian L, Danying W, Ruibin J, Huaying S, Linhui G, Jianguo F. Prognostic value of Transglutaminase 2 in non-small cell lung cancer patients. Oncotarget 2018; 8:45577-45584. [PMID: 28715877 PMCID: PMC5542209 DOI: 10.18632/oncotarget.17374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Transglutaminase 2 (TG2) plays important roles in cell survival and cancer progression. In this study, we examined TG2 expression in specimen of 194 patients diagnosed with non-small cell lung cancer (NSCLC), and found that the TG2 gene expression was significantly higher in lung cancer tissues as compared to paired incisal marginal tissues or normal tissues. Our data revealed that patients with lower level of TG2 expression detected in cancer tissues had longer disease free survival and overall survival as compared to the patients with higher TG2 expression. We also found that TG2 expression level correlated to NSCLC recurrence. These results suggest a potential prognosis impact of TG2 for NSCLC patients.
Collapse
Affiliation(s)
- Zhu Chihong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Ling Yutian
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Wan Danying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jiang Ruibin
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Sheng Huaying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Gu Linhui
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| | - Feng Jianguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
35
|
Katt WP, Antonyak MA, Cerione RA. The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discov Today 2018; 23:575-591. [PMID: 29362136 PMCID: PMC5864117 DOI: 10.1016/j.drudis.2018.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (tTG) is capable of binding and hydrolyzing GTP, as well as catalyzing an enzymatic transamidation reaction that crosslinks primary amines to glutamine residues. tTG adopts two vastly different conformations, depending on whether it is functioning as a GTP-binding protein or a crosslinking enzyme. It has been shown to have important roles in several different aspects of cancer progression, making it an attractive target for therapeutic intervention. Here, we highlight many of the major findings involving tTG since its discovery 60 years ago, and describe recent drug discovery efforts that target specific activities or conformations of this unique protein.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| |
Collapse
|
36
|
Harb OA, Elsayed WSH, Ismail EI, Toam MM, Ammar MG. Thioredoxin-Interact ing-Pro t e in [TXNIP] and Transglutaminase 2 [TGM2] Expression in Meningiomas of Different Grades and the Role of Their Expression in
Meningioma Recurrence and Prognosis. Asian Pac J Cancer Prev 2017; 18:2299-2308. [PMID: 28843270 PMCID: PMC5697495 DOI: 10.22034/apjcp.2017.18.8.2299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background: Meningiomas are common central nervous system (CNS) tumors that account for thirty percent of
primary intracranial tumors.. The accuracy of predicting meningioma recurrence and progression is not enough. So, there
is a real need for discovering recent factors for identification of the relapse risk, progression rates, which patients will
need aggressive treatment and predicting and improving patients’ survival. Thioredoxin-interacting-protein [TXNIP]
is an alpha-arrestin-protein family member that is mapped on chromosome 1-q21–22 and is found to participate in
cellular redox reactions regulations and control. Transglutaminase 2 (TGM2) is a transglutaminase enzyme family
member that is found in many human cells, it may act as an enzyme, a structural protein and also has multiple roles
in many cellular activities. Aim of our study: It was to explore the expression of TXNIP, TGM2 and Ki-67 using
immunohistochemistry in different pathological grades of meningiomas, and to investigate the relevance between
their expressions, clinicopathological criteria, disease recurrence and prognosis of meningioma patients. Methods: we
included 50 cases of meningioma of different pathological grades; all patients were managed according to their grade
by surgery alone, with radiotherapy or combined modalities. Sections from paraffin blocks prepared from samples of all
patients stained by TXNIP, TGM2 and Ki-67 using immunohistochemistry. Results: high expression of TXNIP in 28
out of 50 (56%) cases of meningioma of different pathological grades and was positively correlated with meningioma
lower grade, low KI labeling index (p=0.000), adequacy of resection, negatively correlated with high incidence of
recurrence after surgery and it was negatively correlated with meningioma higher pathological grades (p=0.000). We
detected high expression of TGM2 in 21 out of 50 (42%) cases of meningioma and it was positively correlated with
meningioma higher grade (p= 0.002), high KI labeling index (p=0.000), high incidence of recurrence after surgery,
progression to higher pathological grades and was negatively correlated with adequacy of resection of meningioma
(p=0.000). Conclusion: There is inverse relation between both [TXNIP and TGM2 expression in meningiomas and the
combination of decreased expression of TXNIP and increased expression of TGM2 could predict risk of meningioma
recurrence and progression in to higher pathological grades.
Collapse
Affiliation(s)
- Ola A Harb
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt.
| | | | | | | | | |
Collapse
|
37
|
Szondy Z, Korponay-Szabó I, Király R, Sarang Z, Tsay GJ. Transglutaminase 2 in human diseases. Biomedicine (Taipei) 2017; 7:15. [PMID: 28840829 PMCID: PMC5571667 DOI: 10.1051/bmdcn/2017070315] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Transglutaminase 2 (TG2) is an inducible transamidating acyltransferase that catalyzes Ca(2+)-dependent protein modifications. In addition to being an enzyme, TG2 also serves as a G protein for several seven transmembrane receptors and acts as a co-receptor for integrin β1 and β3 integrins distinguishing it from other members of the transglutaminase family. TG2 is ubiquitously expressed in almost all cell types and all cell compartments, and is also present on the cell surface and gets secreted to the extracellular matrix via non-classical mechanisms. TG2 has been associated with various human diseases including inflammation, cancer, fibrosis, cardiovascular disease, neurodegenerative diseases, celiac disease in which it plays either a protective role, or contributes to the pathogenesis. Thus modulating the biological activities of TG2 in these diseases will have a therapeutic value.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Dental Biochemistry, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Ilma Korponay-Szabó
- Department of Pediatrics and Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary - Celiac Disease Center, Heim Pál Children's Hospital, Budapest 1089, Hungary
| | - Robert Király
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4010, Hungary
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan - School of medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
38
|
Kerr C, Szmacinski H, Fisher ML, Nance B, Lakowicz JR, Akbar A, Keillor JW, Wong TL, Godoy-Ruiz R, Toth EA, Weber DJ, Eckert RL. Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival. Oncogene 2017; 36:2981-2990. [PMID: 27941875 PMCID: PMC5444990 DOI: 10.1038/onc.2016.452] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Type 2 transglutaminase (TG2) is an important cancer stem cell survival protein that exists in open and closed conformations. The major intracellular form is the closed conformation that functions as a GTP-binding GTPase and is required for cancer stem cell survival. However, at a finite rate, TG2 transitions to an open conformation that exposes the transamidase catalytic site involved in protein-protein crosslinking. The activities are mutually exclusive, as the closed conformation has GTP binding/GTPase activity, and the open conformation transamidase activity. We recently showed that GTP binding, but not transamidase activity, is required for TG2-dependent cancer stem cell invasion, migration and tumour formation. However, we were surprised that transamidase site-specific inhibitors reduce cancer stem cell survival. We now show that compounds NC9, VA4 and VA5, which react exclusively at the TG2 transamidase site, inhibit both transamidase and GTP-binding activities. Transamidase activity is inhibited by direct inhibitor binding at the transamidase site, and GTP binding is blocked because inhibitor interaction at the transamidase site locks the protein in the extended/open conformation to disorganize/inactivate the GTP binding/GTPase site. These findings suggest that transamidase site-specific inhibitors can inhibit GTP binding/signalling by driving a conformation change that disorganizes the TG2 GTP binding to reduce TG2-dependent signalling, and that drugs designed to target this site may be potent anti-cancer agents.
Collapse
Affiliation(s)
- Candace Kerr
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Henryk Szmacinski
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Matthew L. Fisher
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Bailey Nance
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Joseph R. Lakowicz
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Abdullah Akbar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario
| | - Tin Lok Wong
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Reproductive Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
39
|
Huaying S, Dong Y, Chihong Z, Xiaoqian Q, Danying W, Jianguo F. Transglutaminase 2 Inhibitor KCC009 Induces p53-Independent Radiosensitization in Lung Adenocarcinoma Cells. Med Sci Monit 2016; 22:5041-5048. [PMID: 28002389 PMCID: PMC5198751 DOI: 10.12659/msm.901605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The expression of transglutaminase 2 (TG2) is correlated to DNA damage repair and apoptosis through the p53 pathway. The present study aimed to investigate the potential radiosensitization effect and possible mechanisms of the TG2 inhibitor KCC009 in lung cancer in vitro. Material/Methods A single hit multi-target model was used to plot survival curves and to calculate the sensitizing enhancement ratios in lung cancer wild-type or mutant p53 of H1299 cells. We performed analyses for changes of cell cycling and apoptotic responses of cells; Western blot analysis and real-time SYBR Green PCR assay were used to determine the changes of mRNA/protein expressions; ELISA assay was used for examination of cytochrome c release in cytoplasm. Results Our results showed that KCC009 induced radiosensitization in both H1299/WT-p53 and H1299/M175H-p53 cells. KCC009+IR induced G0/G1 arrest in H1299/WT cells and G2/M arrest in H1299/M175H-p53 cells. KCC009+IR also induced apoptosis in both cell lines. In addition, KCC009+IR decreased the TG2 expression, and increased the p53 expression in H1299/WT cells but not in H1299/M175H-p53 cells. KCC009+IR also increased the expression of p21, Bax, p-caspase-3, and decreased Bcl-2 and CyclinD expression in H1299/WT cells. While KCC009+IR induced phosphorylation of caspase-3 and increase Cyt-C level in the cytoplasm of, and decreased CyclinB, Bcl-2 expression in H1299/M175H-p53 cells, we noticed that Cyt-C level in the nucleus decreased in the H1299/WT cells. Conclusions KCC009, a TG2 inhibitor, exhibits potent radiosensitization effects in human lung cancer cells expressing wild-type or mutant p53 with different mechanisms.
Collapse
Affiliation(s)
- Sheng Huaying
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Yao Dong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zhu Chihong
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Qian Xiaoqian
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wan Danying
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Feng Jianguo
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland).,Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
40
|
Stallcup WB, You WK, Kucharova K, Cejudo-Martin P, Yotsumoto F. NG2 Proteoglycan-Dependent Contributions of Pericytes and Macrophages to Brain Tumor Vascularization and Progression. Microcirculation 2016; 23:122-33. [PMID: 26465118 DOI: 10.1111/micc.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022]
Abstract
The NG2 proteoglycan promotes tumor growth as a component of both tumor and stromal cells. Using intracranial, NG2-negative B16F10 melanomas, we have investigated the importance of PC and Mac NG2 in brain tumor progression. Reduced melanoma growth in Mac-NG2ko and PC-NG2ko mice demonstrates the importance of NG2 in both stromal compartments. In each genotype, the loss of PC-endothelial cell interaction diminishes the formation of endothelial junctions and assembly of the basal lamina. Tumor vessels in Mac-NG2ko mice have smaller diameters, reduced patency, and increased leakiness compared to PC-NG2ko mice, thus decreasing tumor blood supply and increasing hypoxia. While the reduced PC interaction with endothelial cells in PC-NG2ko mice results from the loss of PC activation of β1 integrin signaling in endothelial cells, reduced PC-endothelial cell interaction in Mac-NG2ko mice results from 90% reduced Mac recruitment. The absence of Mac-derived signals in Mac-NG2ko mice causes the loss of PC association with endothelial cells. Reduced Mac recruitment may be due to diminished activation of integrins in the absence of NG2, causing decreased Mac interaction with endothelial adhesion molecules that are needed for extravasation. These results reflect the complex interplay that occurs between Mac, PC, and endothelial cells during tumor vascularization.
Collapse
Affiliation(s)
- William B Stallcup
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Weon-Kyoo You
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Biologics Business, Research and Development Center, Hanwha Chemical, Daejon, South Korea
| | - Karolina Kucharova
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Pilar Cejudo-Martin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA
| | - Fusanori Yotsumoto
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Center, La Jolla, California, USA.,Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
41
|
Carbone C, Di Gennaro E, Piro G, Milone MR, Pucci B, Caraglia M, Budillon A. Tissue transglutaminase (TG2) is involved in the resistance of cancer cells to the histone deacetylase (HDAC) inhibitor vorinostat. Amino Acids 2016; 49:517-528. [PMID: 27761756 DOI: 10.1007/s00726-016-2338-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Vorinostat demonstrated preclinical and clinical efficacy in human cancers and is the first histone deacetylase inhibitor (HDACi) approved for cancer treatment. Tissue transglutaminase (TG2) is a multifunctional enzyme that catalyzes a Ca2+ dependent transamidating reaction resulting in covalent cross-links between proteins. TG2 acts also as G-protein in trans-membrane signaling and as a cell surface adhesion mediator. TG2 up-regulation has been demonstrated in several cancers and its expression levels correlate with resistance to chemotherapy and metastatic potential. We demonstrated that the anti-proliferative effect of the HDACi vorinostat is paralleled by the induction of TG2 mRNA and protein expression in cancer cells but not in ex vivo treated peripheral blood lymphocytes. This effect was also shared by other pan-HDACi and resulted in increased TG2 transamidating activity. Notably, high TG2 basal levels in a panel of cancer cell lines correlated with lower vorinostat antiproliferative activity. Notably, in TG2-knockdown cancer cells vorinostat anti-proliferative and pro-apoptotic effects were enhanced, whereas in TG2-full-length transfected cells were impaired, suggesting that TG2 could represent a mechanism of intrinsic or acquired resistance to vorinostat. In fact, co-treatment of tumor cells with inhibitors of TG2 transamidating activity potentiated the antitumor effect of vorinostat. Moreover, vorinostat-resistant MCF7 cells selected by stepwise increasing concentrations of the drug, significantly overexpressed TG2 protein compared to parental cells, and co-treatment of these cells with TG2 inhibitors reversed vorinostat-resistance. Taken together, our data demonstrated that TG2 is involved in the resistance of cancer cells to vorinostat, as well as to other HDACi.
Collapse
Affiliation(s)
- Carmine Carbone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy.,Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy
| | - Geny Piro
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy.,Laboratory of Oncology and Molecular Therapy, Department of Medicine, University of Verona, Verona, Italy
| | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, 80131, Naples, Italy. .,Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale-IRCCS, Naples, Italy.
| |
Collapse
|
42
|
Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids 2016; 49:425-439. [PMID: 27562794 DOI: 10.1007/s00726-016-2320-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
The ability of cancer cells to metastasize represents the most devastating feature of cancer. Currently, there are no specific biomarkers or therapeutic targets that can be used to predict the risk or to treat metastatic cancer. Many recent reports have demonstrated elevated expression of transglutaminase 2 (TG2) in multiple drug-resistant and metastatic cancer cells. TG2 is a multifunctional protein mostly known for catalyzing Ca2+-dependent -acyl transferase reaction to form protein crosslinks. Besides this transamidase activity, many Ca2+-independent and non-enzymatic activities of TG2 have been identified. Both, the enzymatic and non-enzymatic activities of TG2 have been implicated in diverse pathophysiological processes such as wound healing, cell growth, cell survival, extracellular matrix modification, apoptosis, and autophagy. Tumors have been frequently referred to as 'wounds that never heal'. Based on the observation that TG2 plays an important role in wound healing and inflammation is known to facilitate cancer growth and progression, we discuss the evidence that TG2 can reprogram inflammatory signaling networks that play fundamental roles in cancer progression. TG2-regulated signaling bestows on cancer cells the ability to proliferate, to resist cell death, to invade, to reprogram glucose metabolism and to metastasize, the attributes that are considered important hallmarks of cancer. Therefore, inhibiting TG2 may offer a novel therapeutic approach for managing and treatment of metastatic cancer. Strategies to inhibit TG2-regulated pathways will also be discussed.
Collapse
Affiliation(s)
- Navneet Agnihotri
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 110 014, India.
| | - Kapil Mehta
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,MolQ Personalized Medicine, 4505 Maple Street, Bellaire, TX, 77401, USA.
| |
Collapse
|
43
|
Parisi L, Zomer Volpato F, Cagol N, Siciliano M, Migliaresi C, Motta A, Sala R. An innovative protocol for schwann cells extracellular matrix proteins extraction. J Biomed Mater Res A 2016; 104:3175-3180. [PMID: 27500379 DOI: 10.1002/jbm.a.35854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/15/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
Abstract
The evidence that extracellular matrix (ECM) components could represent new targets for drugs designed to approach degenerative disease, requires their analysis. Before the analysis, proteins should be extracted from ECM and solubilized. Currently, few protocols for ECM proteins extraction and solubilization are available in literature, and most of them are based mainly on the use of proteolytic enzymes, such as trypsin, which often lead to proteins damage. Moreover, no methods have been so far proposed to solubilize Schwann Cell ECM, which may represent an important target for the therapy of neurodegenerative disorders. In our study, we propose to solubilize SC ECM through the use of surfactants and urea. We compared our method of solubilization, with one of that proposed in literature for a general ECM, mainly based on the use of enzymes. We want to highlight the benefit of solubilizing SC ECM, avoiding the use of proteolytic enzymes. To compare the amount of proteins extracted with both methods, MicroBCA assay was used, while the quality of the proteins extracted was observed through the SDS-PAGE. The results obtained confirm a better solubilization of SC ECM proteins with the proposed protocol, both quantitatively and qualitatively, showing a higher concentration of proteins extracted and a better enrichment of protein fractions, if compared to the enzyme-based protocol. Our results show that SC ECM could be efficiently solubilized through the use of surfactant and urea, avoiding the use of enzyme-base methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3175-3180, 2016.
Collapse
Affiliation(s)
- L Parisi
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy.
| | - F Zomer Volpato
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - N Cagol
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - M Siciliano
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - C Migliaresi
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - A Motta
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - R Sala
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| |
Collapse
|
44
|
Singh G, Zhang J, Ma Y, Cerione RA, Antonyak MA. The Different Conformational States of Tissue Transglutaminase Have Opposing Affects on Cell Viability. J Biol Chem 2016; 291:9119-32. [PMID: 26893378 PMCID: PMC4861479 DOI: 10.1074/jbc.m115.699108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Tissue transglutaminase (tTG) is an acyltransferase/GTP-binding protein that contributes to the development of various diseases. In human cancer cells, tTG activates signaling pathways that promote cell growth and survival, whereas in other disorders (i.e. neurodegeneration), overexpression of tTG enhances cell death. Therefore, it is important to understand how tTG is differentially regulated and functioning to promote diametrically distinct cellular outcomes. Previous structural studies revealed that tTG adopts either a nucleotide-bound closed conformation or a transamidation-competent open conformation. Here we provide evidence showing that these different conformational states determine whether tTG promotes, or is detrimental to, cell survival, with the open conformation of the protein being responsible for inducing cell death. First, we demonstrate that a nucleotide binding-defective form of tTG, which has previously been shown to induce cell death, assumes an open conformation in solution as assessed by an enhanced sensitivity to trypsin digestion and by small angle x-ray scattering (SAXS) analysis. We next identify two pairs of intramolecular hydrogen bonds that, based on existing x-ray structures, are predicted to form between the most C-terminal β-barrel domain and the catalytic core domain of tTG. By disrupting these hydrogen bonds, we are able to generate forms of tTG that constitutively assume an open conformation and induce apoptosis. These findings provide important insights into how tTG participates in the pathogenesis of neurodegenerative diseases, particularly with regard to the actions of a C-terminal truncated form of tTG (TG-Short) that has been linked to such disorders and induces apoptosis by assuming an open-like conformation.
Collapse
Affiliation(s)
| | | | - Yilun Ma
- From the Department of Molecular Medicine and
| | - Richard A Cerione
- From the Department of Molecular Medicine and the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
45
|
Blandin AF, Noulet F, Renner G, Mercier MC, Choulier L, Vauchelles R, Ronde P, Carreiras F, Etienne-Selloum N, Vereb G, Lelong-Rebel I, Martin S, Dontenwill M, Lehmann M. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions. Cancer Lett 2016; 376:328-38. [PMID: 27063097 DOI: 10.1016/j.canlet.2016.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Fanny Noulet
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Guillaume Renner
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Marie-Cécile Mercier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Laurence Choulier
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Romain Vauchelles
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Philippe Ronde
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, France
| | - Nelly Etienne-Selloum
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France; Department of Pharmacy, Centre Paul Strauss, Strasbourg, France
| | - Gyorgy Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Isabelle Lelong-Rebel
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Sophie Martin
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Monique Dontenwill
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France
| | - Maxime Lehmann
- Integrins and Cancer, Faculté de Pharmacie, UMR7213 CNRS, LBP, Tumoral Signaling and Therapeutic Targets Department, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
46
|
Heo JC, Jung TH, Lee S, Kim HY, Choi G, Jung M, Jung D, Lee HK, Lee JO, Park JH, Hwang D, Seol HJ, Cho H. Effect of bexarotene on differentiation of glioblastoma multiforme compared with ATRA. Clin Exp Metastasis 2016; 33:417-29. [DOI: 10.1007/s10585-016-9786-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
|
47
|
Aftab Q, Sin WC, Naus CC. Reduction in gap junction intercellular communication promotes glioma migration. Oncotarget 2016; 6:11447-64. [PMID: 25926558 PMCID: PMC4484468 DOI: 10.18632/oncotarget.3407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/19/2015] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma Multiforme (GBM), an aggressive form of adult brain tumor, is difficult to treat due to its invasive nature. One of the molecular changes observed in GBM is a decrease in the expression of the gap junction protein Connexin43 (Cx43); however, how a reduction in Cx43 expression contributes to glioma malignancy is still unclear. In this study we examine whether a decrease in Cx43 protein expression has a role in enhanced cell migration, a key feature associated with increased tumorigenicity. We used a 3D spheroid migration model that mimics the in vivo architecture of tumor cells to quantify migration changes. We found that down-regulation of Cx43 expression in the U118 human glioma cell line increased migration by reducing cell-ECM adhesion, and changed the migration pattern from collective to single cell. In addition gap junction intercellular communication (GJIC) played a more prominent role in mediating migration than the cytoplasmic interactions of the C-terminal tail. Live imaging revealed that reducing Cx43 expression enhanced relative migration by increasing the cell speed and affecting the direction of migration. Taken together our findings reveal an unexplored role of GJIC in facilitating collective migration.
Collapse
Affiliation(s)
- Qurratulain Aftab
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC
| | - Wun-Chey Sin
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC
| | - Christian C Naus
- Department of Cellular & Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, BC
| |
Collapse
|
48
|
Tissue transglutaminase-interleukin-6 axis facilitates peritoneal tumor spreading and metastasis of human ovarian cancer cells. Lab Anim Res 2015; 31:188-97. [PMID: 26755922 PMCID: PMC4707147 DOI: 10.5625/lar.2015.31.4.188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Inflammation has recently been implicated in cancer formation and progression. As tissue transglutaminase (TG2) has been associated with both inflammatory signaling and tumor cell behavior, we propose that TG2 may be an important link inducing interleukin-6 (IL-6)-mediated cancer cell aggressiveness, including cancer stem cell-like characteristics and distant hematogenous metastasis. We evaluated the effect of differential TG2 and IL-6 expression on in vivo distant metastasis of human ovarian cancer cells. IL-6 production in human ovarian cancer cells was dependent on their TG2 expression levels. The size and efficiency of tumor sphere formation were correlated with TG2 expression levels and were dependent on TG2-mediated IL-6 secretion in human ovarian cancer cells. Primary tumor growth and propagation in the peritoneum and distant hematogenous metastasis into the liver and lung were also dependent on TG2 and downstream IL-6 expression levels in human ovarian cancer cells. In this report, we provide evidence that TG2 is an important link in IL-6-mediated tumor cell aggressiveness, and that TG2 and downstream IL-6 could be important mediators of distant hematogenous metastasis of human ovarian cancer cells. Intervention specific to TG2 and/or downstream IL-6 in ovarian cancer cells could provide a promising means to control tumor metastasis.
Collapse
|
49
|
|
50
|
CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer. Oncogene 2015; 35:3718-28. [PMID: 26568304 DOI: 10.1038/onc.2015.439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/03/2015] [Accepted: 10/19/2015] [Indexed: 11/08/2022]
Abstract
The multifunctional enzyme transglutaminase 2 (TG2) primarily catalyzes cross-linking reactions of proteins via (γ-glutamyl) lysine bonds. Several recent findings indicate that altered regulation of intracellular TG2 levels affects renal cancer. Elevated TG2 expression is observed in renal cancer. However, the molecular mechanism underlying TG2 degradation is not completely understood. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase. Previous studies reveal that CHIP deficiency mice displayed a reduced life span with accelerated aging in kidney tissues. Here we show that CHIP promotes polyubiquitination of TG2 and its subsequent proteasomal degradation. In addition, TG2 upregulation contributes to enhanced kidney tumorigenesis. Furthermore, CHIP-mediated TG2 downregulation is critical for the suppression of kidney tumor growth and angiogenesis. Notably, our findings are further supported by decreased CHIP expression in human renal cancer tissues and renal cancer cells. The present work reveals that CHIP-mediated TG2 ubiquitination and proteasomal degradation represent a novel regulatory mechanism that controls intracellular TG2 levels. Alterations in this pathway result in TG2 hyperexpression and consequently contribute to renal cancer.
Collapse
|