1
|
Wang J, Han K, Lu J. Screening of hub genes for sepsis-induced myopathy by weighted gene co-expression network analysis and protein-protein interaction network construction. BMC Musculoskelet Disord 2024; 25:834. [PMID: 39438952 PMCID: PMC11494751 DOI: 10.1186/s12891-024-07967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis-induced myopathy is one of the serious complications of sepsis, which severely affects the respiratory and peripheral motor systems of patients, reduces their quality of life, and jeopardizes their lives, as evidenced by muscle atrophy, loss of strength, and impaired regeneration after injury. The pathogenesis of sepsis-induced myopathy is complex, mainly including cytokine action, enhances free radical production in muscle, increases muscle protein hydrolysis, and decreases skeletal muscle protein synthesis, etc. The above mechanisms have been demonstrated in existing studies. However, it is still unclear how the overall pattern of gene co-expression affects the pathological process of sepsis-induced myopathy. Therefore, we intend to identify hub genes and signaling pathways. Weighted gene co-expression network analysis was our main approach to study gene expression profiles: skeletal muscle transcriptome in ICU patients with sepsis-induced multi-organ failure (GSE13205). After data pre-processing, about 15,181 genes were used to identify 13 co-expression modules. Then, 16 genes (FEM1B, KLHDC3, GPX3, NIFK, GNL2, EBNA1BP2, PES1, FBP2, PFKP, BYSL, HEATR1, WDR75, TBL3, and WDR43) were selected as the hub genes including 3 up-regulated genes and 13 down-regulated genes. Then, Gene Set Enrichment Analysis was performed to show that the hub genes were closely associated with skeletal muscle dysfunction, necrotic and apoptotic skeletal myoblasts, and apoptosis in sepsis-induced myopathy. Overall, 16 candidate biomarkers were certified as reliable features for more in-depth exploration of sepsis-induced myopathy in basic and clinical studies.
Collapse
Affiliation(s)
- Jianhao Wang
- Postgraduate School, Xinjiang Medical University, Xinjiang, 830000, China
| | - Kun Han
- Postgraduate School, Xinjiang Medical University, Xinjiang, 830000, China
| | - Jinshuai Lu
- Department of Emergency, People's Hospital of Xinjiang Uygur Autonomous Region, No 91, Tian Chi Road, Xinjiang, 830001, China.
| |
Collapse
|
2
|
Shapeti A, Barrasa-Fano J, Abdel Fattah AR, de Jong J, Sanz-Herrera JA, Pezet M, Assou S, de Vet E, Elahi SA, Ranga A, Faurobert E, Van Oosterwyck H. Force-mediated recruitment and reprogramming of healthy endothelial cells drive vascular lesion growth. Nat Commun 2024; 15:8660. [PMID: 39370485 PMCID: PMC11456588 DOI: 10.1038/s41467-024-52866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Force-driven cellular interactions are crucial for cancer cell invasion but remain underexplored in vascular abnormalities. Cerebral cavernous malformations (CCM), a vascular abnormality characterized by leaky vessels, involves CCM mutant cells recruiting wild-type endothelial cells to form and expand mosaic lesions. The mechanisms behind this recruitment remain poorly understood. Here, we use an in-vitro model of angiogenic invasion with traction force microscopy to reveal that hyper-angiogenic Ccm2-silenced endothelial cells enhance angiogenic invasion of neighboring wild-type cells through force and extracellular matrix-guided mechanisms. We demonstrate that mechanically hyperactive CCM2-silenced tips guide wild-type cells by transmitting pulling forces and by creating paths in the matrix, in a ROCKs-dependent manner. This is associated with reinforcement of β1 integrin and actin cytoskeleton in wild-type cells. Further, wild-type cells are reprogrammed into stalk cells and activate matrisome and DNA replication programs, thereby initiating proliferation. Our findings reveal how CCM2 mutants hijack wild-type cell functions to fuel lesion growth, providing insight into the etiology of vascular malformations. By integrating biophysical and molecular techniques, we offer tools for studying cell mechanics in tissue heterogeneity and disease progression.
Collapse
Affiliation(s)
- Apeksha Shapeti
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Abdel Rahman Abdel Fattah
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- CeMM The Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Janne de Jong
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Mylène Pezet
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie de Vet
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Seyed Ali Elahi
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
- KU Leuven, Department of Movement Sciences, Human Movement Biomechanics Research Group, Leuven, Belgium
| | - Adrian Ranga
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium
| | - Eva Faurobert
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, Grenoble, France.
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Belgium.
- KU Leuven, Prometheus, Division of Skeletal Tissue Engineering, Leuven, Belgium.
| |
Collapse
|
3
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. Cell Commun Signal 2024; 22:184. [PMID: 38493137 PMCID: PMC10944605 DOI: 10.1186/s12964-024-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS Comparing PDGF and TGFβ stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567076. [PMID: 38014184 PMCID: PMC10680757 DOI: 10.1101/2023.11.14.567076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ and identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. We also analyzed data sets from SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. This analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition. JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of Oncotransformation. Int J Mol Sci 2022; 23:ijms23147603. [PMID: 35886950 PMCID: PMC9321586 DOI: 10.3390/ijms23147603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 12/19/2022] Open
Abstract
The Transformics Assay is an in vitro test which combines the BALB/c 3T3 Cell Transformation Assay (CTA) with microarray transcriptomics. It has been shown to improve upon the mechanistic understanding of the CTA, helping to identify mechanisms of action leading to chemical-induced transformation thanks to RNA extractions in specific time points along the process of in vitro transformation. In this study, the lowest transforming concentration of the carcinogenic benzo(a)pyrene (B(a)P) has been tested in order to find molecular signatures of initial events relevant for oncotransformation. Application of Enrichment Analysis (Metacore) to the analyses of the results facilitated key biological interpretations. After 72 h of exposure, as a consequence of the molecular initiating event of aryl hydrocarbon receptor (AhR) activation, there is a cascade of cellular events and microenvironment modification, and the immune and inflammatory responses are the main processes involved in cell response. Furthermore, pathways and processes related to cell cycle regulation, cytoskeletal adhesion and remodeling processes, cell differentiation and transformation were observed.
Collapse
|
6
|
Hossain MM, Nakayama K, Shanta K, Razia S, Ishikawa M, Ishibashi T, Yamashita H, Sato S, Iida K, Kanno K, Ishikawa N, Kiyono T, Kyo S. Establishment of a Novel In Vitro Model of Endometriosis with Oncogenic KRAS and PIK3CA Mutations for Understanding the Underlying Biology and Molecular Pathogenesis. Cancers (Basel) 2021; 13:cancers13133174. [PMID: 34202354 PMCID: PMC8269352 DOI: 10.3390/cancers13133174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Endometriosis is a common gynecological condition that causes pelvic pain and infertility. Despite having normal histological features, several cells bear cancer-associated somatic mutations that result in local tissue invasion but rarely metastasize. Several cancer-associated genes, such as KRAS and PIK3CA, are frequently mutated in the endometriotic epithelium. However, the functional behavior and molecular pathogenesis of this disorder remain unclear. In this study, we developed an immortalized endometriotic epithelial cell line with mutations in KRAS and PIK3CA, which are genes associated with aggressive behaviors, such as increased cell migration, invasion, and proliferation. Through microarray analysis, the KRAS- and PIK3CA-specific gene signatures were identified; LOX and PTX3 were found to be responsible for this metastatic behavior. Knockdown of these two genes by siRNA markedly reduced the metastatic ability of the cells. Our findings suggest that inhibition of LOX and PTX3 may be an alternative therapeutic strategy to reduce the incidence of endometriosis. Abstract Endometriosis-harboring cancer-associated somatic mutations of PIK3CA and KRAS provides new opportunities for studying the multistep processes responsible for the functional and molecular changes in this disease. We aimed to establish a novel in vitro endometriosis model to clarify the functional behavior and molecular pathogenesis of this disorder. Immortalized HMOsisEC10 human ovarian endometriotic epithelial cell line was used in which KRAS and PIK3CA mutations were introduced. Migration, invasion, proliferation, and microarray analyses were performed using KRAS and PIK3CA mutant cell lines. In vitro assays showed that migration, invasion, and proliferation were significantly increased in KRAS and PIK3CA mutant cell lines, indicating that these mutations played causative roles in the aggressive behavior of endometriosis. Microarray analysis identified a cluster of gene signatures; among them, two significantly upregulated cancer-related genes, lysyl oxidase (LOX) and pentraxin3 (PTX3), were associated with cell proliferation, invasion, and migration capabilities. Furthermore, siRNA knockdown of the two genes markedly reduced the metastatic ability of the cells. These results suggest that endometriosis with KRAS or PIK3CA mutations can significantly enhance cell migration, invasion, and proliferation by upregulating LOX and PTX3. We propose that LOX and PTX3 silencing using small molecules could be an alternative therapeutic regimen for severe endometriosis.
Collapse
Affiliation(s)
- Mohammad Mahmud Hossain
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
- Correspondence: (K.N.); (T.K.)
| | - Kamrunnahar Shanta
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| | - Noriyoshi Ishikawa
- Department of Organ Pathology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan;
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa 277-8577, Japan
- Correspondence: (K.N.); (T.K.)
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Faculty of Medicine, Izumo 693-8501, Japan; (M.M.H.); (K.S.); (S.R.); (M.I.); (T.I.); (H.Y.); (S.S.); (K.I.); (K.K.); (S.K.)
| |
Collapse
|
7
|
Frank SR, Köllmann CP, Luong P, Galli GG, Zou L, Bernards A, Getz G, Calogero RA, Frödin M, Hansen SH. p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. J Cell Biol 2018; 217:3183-3201. [PMID: 29934311 PMCID: PMC6122998 DOI: 10.1083/jcb.201710058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
ARHGAP35 encoding p190A RhoGAP is a cancer-associated gene with a mutation spectrum suggestive of a tumor-suppressor function. In this study, we demonstrate that loss of heterozygosity for ARHGAP35 occurs in human tumors. We sought to identify tumor-suppressor capacities for p190A RhoGAP (p190A) and its paralog p190B in epithelial cells. We reveal an essential role for p190A and p190B to promote contact inhibition of cell proliferation (CIP), a function that relies on RhoGAP activity. Unbiased mRNA sequencing analyses establish that p190A and p190B modulate expression of genes associated with the Hippo pathway. Accordingly, we determine that p190A and p190B induce CIP by repressing YAP-TEAD-regulated gene transcription through activation of LATS kinases and inhibition of the Rho-ROCK pathway. Finally, we demonstrate that loss of a single p190 paralog is sufficient to elicit nuclear translocation of YAP and perturb CIP in epithelial cells cultured in Matrigel. Collectively, our data reveal a novel mechanism consistent with a tumor-suppressor function for ARHGAP35.
Collapse
Affiliation(s)
- Scott R Frank
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Clemens P Köllmann
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Phi Luong
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Giorgio G Galli
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Lihua Zou
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - André Bernards
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Gad Getz
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Raffaele A Calogero
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Steen H Hansen
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Kim JG, Choi KC, Hong CW, Park HS, Choi EK, Kim YS, Park JB. Tyr42 phosphorylation of RhoA GTPase promotes tumorigenesis through nuclear factor (NF)-κB. Free Radic Biol Med 2017; 112:69-83. [PMID: 28712859 DOI: 10.1016/j.freeradbiomed.2017.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023]
Abstract
Dysregulation of reactive oxygen species (ROS) levels is implicated in the pathogenesis of several diseases, including cancer. However, the molecular mechanisms for ROS in tumorigenesis have not been well established. In this study, hydrogen peroxide activated nuclear factor-κB (NF-κB) and RhoA GTPase. In particular, we found that hydrogen peroxide lead to phosphorylation of RhoA at Tyr42 via tyrosine kinase Src. Phospho-Tyr42 (p-Tyr42) residue of RhoA is a binding site for Vav2, a guanine nucleotide exchange factor (GEF), which then activates p-Tyr42 form of RhoA. P-Tyr42 RhoA then binds to IκB kinase γ (IKKγ), leading to IKKβ activation. Furthermore, RhoA WT and phospho-mimic RhoA, RhoA Y42E, both promoted tumorigenesis, whereas the dephospho-mimic RhoA, RhoA Y42F suppressed it. In addition, hydrogen peroxide induced NF-κB activation and cell proliferation, along with expression of c-Myc and cyclin D1 in the presence of RhoA WT and RhoA Y42E, but not RhoA Y42F. Indeed, levels of p-Tyr42 Rho, p-Src, and p-65 are significantly increased in human breast cancer tissues and show correlations between each of the two components. Conclusively, the posttranslational modification of as RhoA p-Tyr42 may be essential for promoting tumorigenesis in response to generation of ROS.
Collapse
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Kyoung-Chan Choi
- Department of Pathology, Chuncheon Sacred Hospital Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Gyeongsangbuk-do 41944, Republic of Korea
| | - Hwee-Seon Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea; Department of Microbiology, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea; Institute of Cell Differentiation and Ageing, Hallym University College of Medicine, Chuncheon, Kangwon-do 24252, Republic of Korea.
| |
Collapse
|
9
|
Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B. Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology 2017; 158:3109-3125. [PMID: 28977589 PMCID: PMC5659689 DOI: 10.1210/en.2017-00348] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Developmental exposure to environmental factors has been linked to obesity risk later in life. Nuclear receptors are molecular sensors that play critical roles during development and, as such, are prime candidates to explain the developmental programming of disease risk by environmental chemicals. We have previously characterized the obesogen tributyltin (TBT), which activates the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor (RXR) to increase adiposity in mice exposed in utero. Mesenchymal stem cells (MSCs) from these mice are biased toward the adipose lineage at the expense of the osteoblast lineage, and MSCs exposed to TBT in vitro are shunted toward the adipose fate in a PPARγ-dependent fashion. To address where in the adipogenic cascade TBT acts, we developed an in vitro commitment assay that permitted us to distinguish early commitment to the adipose lineage from subsequent differentiation. TBT and RXR activators (rexinoids) had potent effects in committing MSCs to the adipose lineage, whereas the strong PPARγ activator rosiglitazone was inactive. We show that activation of RXR is sufficient for adipogenic commitment and that rexinoids act through RXR to alter the transcriptome in a manner favoring adipogenic commitment. RXR activation alters expression of enhancer of zeste homolog 2 (EZH2) and modifies genome-wide histone 3 lysine 27 trimethylation (H3K27me3) in promoting adipose commitment and programming subsequent differentiation. These data offer insights into the roles of RXR and EZH2 in MSC lineage specification and shed light on how endocrine-disrupting chemicals such as TBT can reprogram stem cell fate.
Collapse
Affiliation(s)
- Bassem M. Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Medical Scientist Training Program, University of California, Irvine, Irvine, California 92697
| | - Eric S. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Timothy J. Abreo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Victor T. Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Zdena Moosova
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Masaryk University, Faculty of Science, RECETOX, 625 00 Brno, Czech Republic
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
10
|
Kim JG, Kim MJ, Choi WJ, Moon MY, Kim HJ, Lee JY, Kim J, Kim SC, Kang SG, Seo GY, Kim PH, Park JB. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK. J Cell Physiol 2016; 232:1104-1113. [DOI: 10.1002/jcp.25572] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Jae-Gyu Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Myoung-Ju Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Won-Ji Choi
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Mi-Young Moon
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Hee-Jun Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Sung-Chan Kim
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| | - Seung Goo Kang
- Division of Biomedical Convergence; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Goo-Young Seo
- Department of Molecular Bioscience; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Pyeung-Hyeun Kim
- Department of Molecular Bioscience; School of Biomedical Science and Institute of Bioscience and Biotechnology; Kangwon National University; Chuncheon Kangwon-do Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
- Institute of Cell Differentiation and Aging; Hallym University College of Medicine; Chuncheon Kangwon-do Republic of Korea
| |
Collapse
|
11
|
von Elsner L, Hagemann S, Just I, Rohrbeck A. C3 exoenzyme impairs cell proliferation and apoptosis by altering the activity of transcription factors. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1021-31. [PMID: 27351882 PMCID: PMC4977334 DOI: 10.1007/s00210-016-1270-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
C3 exoenzyme from C. botulinum is an ADP-ribosyltransferase that inactivates selectively RhoA, B, and C by coupling an ADP-ribose moiety. Rho-GTPases are involved in various cellular processes, such as regulation of actin cytoskeleton, cell proliferation, and apoptosis. Previous studies of our group with the murine hippocampal cell line HT22 revealed a C3-mediated inhibition of cell proliferation after 48 h and a prevention of serum-starved cells from apoptosis. For both effects, alterations of various signaling pathways are already known, including also changes on the transcriptional level. Investigations on the transcriptional activity in HT22 cells treated with C3 for 48 h identified five out of 48 transcription factors namely Sp1, ATF2, E2F-1, CBF, and Stat6 with a significantly regulated activity. For validation of identified transcription factors, studies on the protein level of certain target genes were performed. Western blot analyses exhibited an enhanced abundance of Sp1 target genes p21 and COX-2 as well as an increase in phosphorylation of c-Jun. In contrast, the level of p53 and apoptosis-inducing GADD153, a target gene of ATF2, was decreased. Our results reveal that C3 regulates the transcriptional activity of Sp1 and ATF2 resulting downstream in an altered protein abundance of various target genes. As the affected proteins are involved in the regulation of cell proliferation and apoptosis, thus the C3-mediated anti-proliferative and anti-apoptotic effects are consequences of the Rho-dependent alterations of the activity of certain transcriptional factors.
Collapse
Affiliation(s)
- Leonie von Elsner
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany.
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| |
Collapse
|
12
|
Yang X, Zhou X, Tone P, Durkin ME, Popescu NC. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett 2016; 12:1591-1596. [PMID: 27446476 DOI: 10.3892/ol.2016.4781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the most common types of cancer and has a very poor prognosis; thus, the development of effective therapies for the treatment of advanced HCC is of high clinical priority. In the present study, the anti-oncogenic effect of combined knockdown of c-Myc expression and ectopic restoration of deleted in liver cancer 1 (DLC1) expression was investigated in human liver cancer cells. Expression of c-Myc in human HCC cells was knocked down by stable transfection with a Myc-specific short hairpin (sh) RNA vector. DLC1 expression in Huh7 cells was restored by adenovirus transduction, and the effects of DLC1 expression and c-Myc knockdown on Ras homolog gene family, member A (RhoA) levels, cell proliferation, soft agar colony formation and cell invasion were measured. Downregulation of c-Myc or re-expression of DLC1 led to a marked reduction in RhoA levels, which was associated with decreases in cell proliferation, soft agar colony formation and invasiveness; this inhibitory effect was augmented with a combination of DLC1 transduction and c-Myc suppression. To determine whether liver cell-specific delivery of DLC1 was able to enhance the inhibitory effect of c-Myc knockdown on tumor growth in vivo, DLC1 vector DNA complexed with galactosylated polyethylene glycol-linear polyethyleneimine was administered by tail vein injection to mice bearing subcutaneous xenografts of Huh7 cells transfected with shMyc or control shRNA. A cooperative inhibitory effect of DLC1 expression and c-Myc knockdown on the growth of Huh7-derived tumors was observed, suggesting that targeted liver cell delivery of DLC1 and c-Myc shRNA may serve as a possible gene therapy modality for the treatment of human HCC.
Collapse
Affiliation(s)
- Xuyu Yang
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, MD 2089-4262, USA
| | - Xiaoling Zhou
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA
| | - Paul Tone
- Department of Medicine, Richmond University Medical Center, Staten Island, NY 10310, USA
| | - Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| | - Nicholas C Popescu
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 2089-4262, USA; Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4262, USA
| |
Collapse
|
13
|
Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks. MICROARRAYS 2016; 5:microarrays5020013. [PMID: 27600078 PMCID: PMC5003489 DOI: 10.3390/microarrays5020013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL) and serum response factor (SRF) drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B), which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB) showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.
Collapse
|
14
|
Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, Vazquez I, Talebi A, Renzi F, Dehairs J, Swinnen JV, Sablina AA. Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism. Cancer Cell 2016; 29:751-766. [PMID: 27165746 DOI: 10.1016/j.ccell.2016.04.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/22/2015] [Accepted: 04/06/2016] [Indexed: 12/28/2022]
Abstract
Large-scale heterozygous deletions are a hallmark of cancer genomes. The concomitant loss of multiple genes creates vulnerabilities that are impossible to reveal through the study of individual genes. To delineate the functional outcome of chromosome 8p loss of heterozygosity (LOH), a common aberration in breast cancer, we modeled 8p LOH using TALEN-based genomic engineering. 8p LOH alters fatty acid and ceramide metabolism. The shift in lipid metabolism triggers invasiveness and confers tumor growth under stress conditions due to increased autophagy. The resistance of 8p-deleted cells to chemotherapeutic drugs concurs with poorer survival rates of breast cancer patients harboring an 8p LOH. The autophagy dependency of 8p-deleted cells provides the rational basis for treatment of 8p LOH tumors with autophagy inhibitors.
Collapse
Affiliation(s)
- Yanyan Cai
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jonathan Crowther
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tibor Pastor
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | | | - Maria Francesca Baietti
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Magdalena De Troyer
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Iria Vazquez
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Ali Talebi
- Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Fabrizio Renzi
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | | | - Anna A Sablina
- VIB Center for the Biology of Disease, VIB, Leuven 3000, Belgium; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
15
|
PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget 2015; 5:8466-77. [PMID: 25193865 PMCID: PMC4226697 DOI: 10.18632/oncotarget.2327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Myc serves as a crucial regulator in multiple cellular events. Cumulative evidences demonstrate that anomalous c-Myc overexpression correlates with proliferation, invasion and metastasis in various human tumors. However, the transcriptionally activating mechanisms responsible for c-Myc overexpression are complex and continue to be intangible. Here we showed that Piwi-Like RNA-Mediated Gene Silencing 2 (PIWIL2) can upregulate c-Myc via binding with NME/NM23 nucleoside diphosphate kinase 2 (NME2). PIWIL2 promotes c-Myc transcription by interacting with and facilitating NME2 to bind to G4-motif region within c-Myc promoter. Interestingly, in a c-Myc-mediated manner, PIWIL2 upregulates RhoA, which in turn induces filamentary F-actin. Deficiency of PIWIL2 results in obstacle for c-Myc expression, cell cycle progress and cell proliferation. Taken together, our present work demonstrates that PIWIL2 modulates tumor cell proliferation and F-actin filaments via promoting c-Myc expression.
Collapse
|
16
|
Iglesias-Gato D, Chuan YC, Jiang N, Svensson C, Bao J, Paul I, Egevad L, Kessler BM, Wikström P, Niu Y, Flores-Morales A. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer 2015; 14:8. [PMID: 25623341 PMCID: PMC4320819 DOI: 10.1186/s12943-014-0280-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/22/2014] [Indexed: 02/05/2023] Open
Abstract
Background Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored. Methods RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth. Results Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo. Conclusions OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-014-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Yin-Choy Chuan
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ning Jiang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Charlotte Svensson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Jing Bao
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Indranil Paul
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Lars Egevad
- Section of Urology, Department of Surgical Science Karolinska Institutet, 17176, Stockholm, Sweden.
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7BN, Oxford, UK.
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden.
| | - Yuanjie Niu
- Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Amilcar Flores-Morales
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
17
|
Bustelo XR. A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Small GTPases 2014; 1:69-74. [PMID: 21686122 DOI: 10.4161/sgtp.1.1.12986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/09/2023] Open
Abstract
The GTPase RhoA and the transcriptional factor c-Myc are closely intertwined in cancer cells. Although this cross-talk results in potent synergistic effects that favor the transformed phenotype of cancer cells, recent results from our laboratory indicate that c-Myc also participates in a negative feed-back loop that blocks specific RhoA signaling branches connected to the induction of stress fibers, focal adhesions and actomyosin contractility. Using microarray analysis, we have unveiled a RhoA/c-Myc-dependent gene signature in charge of this negative cross-talk. This signature is composed of upregulated and repressed transcripts encoding cytoskeletal modulators located downstream of both RhoA and Rock. Our results also indicate that this negative feed-back loop modifies the invasion and adhesion properties of RhoA-transformed cells, suggesting that it may be important to ensure fluid cytoskeletal dynamics of cancer cells. Preliminary data indicate that c-Myc may also use a different transcriptional program to interfere with the RhoA/Rock-dependent cytoskeletal branch in non-transformed cells.
Collapse
Affiliation(s)
- Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer; CSIC-University of Salamanca; Campus Unamuno; Salamanca, Spain
| |
Collapse
|
18
|
Omelchenko DO, Rzhaninova AA, Goldshtein DV. Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Wei JS, Johansson P, Chen L, Song YK, Tolman C, Li S, Hurd L, Patidar R, Wen X, Badgett TC, Cheuk ATC, Marshall JC, Steeg PS, Vaqué Díez JP, Yu Y, Gutkind JS, Khan J. Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma. PLoS One 2013; 8:e77731. [PMID: 24147068 PMCID: PMC3797724 DOI: 10.1371/journal.pone.0077731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022] Open
Abstract
Neuroblastoma is one of the most genomically heterogeneous childhood malignances studied to date, and the molecular events that occur during the course of the disease are not fully understood. Genomic studies in neuroblastoma have showed only a few recurrent mutations and a low somatic mutation burden. However, none of these studies has examined the mutations arising during the course of disease, nor have they systemically examined the expression of mutant genes. Here we performed genomic analyses on tumors taken during a 3.5 years disease course from a neuroblastoma patient (bone marrow biopsy at diagnosis, adrenal primary tumor taken at surgical resection, and a liver metastasis at autopsy). Whole genome sequencing of the index liver metastasis identified 44 non-synonymous somatic mutations in 42 genes (0.85 mutation/MB) and a large hemizygous deletion in the ATRX gene which has been recently reported in neuroblastoma. Of these 45 somatic alterations, 15 were also detected in the primary tumor and bone marrow biopsy, while the other 30 were unique to the index tumor, indicating accumulation of de novo mutations during therapy. Furthermore, transcriptome sequencing on the 3 tumors demonstrated only 3 out of the 15 commonly mutated genes (LPAR1, GATA2, and NUFIP1) had high level of expression of the mutant alleles, suggesting potential oncogenic driver roles of these mutated genes. Among them, the druggable G-protein coupled receptor LPAR1 was highly expressed in all tumors. Cells expressing the LPAR1 R163W mutant demonstrated a significantly increased motility through elevated Rho signaling, but had no effect on growth. Therefore, this study highlights the need for multiple biopsies and sequencing during progression of a cancer and combinatorial DNA and RNA sequencing approach for systematic identification of expressed driver mutations.
Collapse
Affiliation(s)
- Jun S. Wei
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| | - Peter Johansson
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Li Chen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Young K. Song
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Catherine Tolman
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Samuel Li
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Laura Hurd
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rajesh Patidar
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xinyu Wen
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- The Advanced Biomedical Computing Center, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Frederick, Maryland, United States of America
| | - Thomas C. Badgett
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Adam T. C. Cheuk
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jean-Claude Marshall
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Patricia S. Steeg
- Women’s Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - José P. Vaqué Díez
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Yanlin Yu
- Cancer Modeling Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Cell Growth Regulation Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail: ; (JK)
| |
Collapse
|
20
|
Menacho-Márquez M, García-Escudero R, Ojeda V, Abad A, Delgado P, Costa C, Ruiz S, Alarcón B, Paramio JM, Bustelo XR. The Rho exchange factors Vav2 and Vav3 favor skin tumor initiation and promotion by engaging extracellular signaling loops. PLoS Biol 2013; 11:e1001615. [PMID: 23935450 PMCID: PMC3720258 DOI: 10.1371/journal.pbio.1001615] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment.
Collapse
Affiliation(s)
- Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Virginia Ojeda
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
| | - Antonio Abad
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
| | - Pilar Delgado
- Centro de Biología Molecular “Severo Ochoa,” CSIC–Madrid Autonomous University, Madrid, Spain
| | - Clotilde Costa
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Sergio Ruiz
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular “Severo Ochoa,” CSIC–Madrid Autonomous University, Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)–University of Salamanca, Salamanca, Spain
| |
Collapse
|
21
|
Yuryev A. In silico pathway analysis: the final frontier towards completely rational drug design. Expert Opin Drug Discov 2013; 3:867-76. [PMID: 23484964 DOI: 10.1517/17460441.3.8.867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pathway and network analyses are rapidly becoming the mainstream tools for functional interpretation of high-throughput data and for drug discovery. Current scientific literature has plenty of examples on how pathway analysis tools are used across all steps of drug development pipeline. Pathway and network analyses already enable rational selection of drug targets based on the knowledge about disease biology. Pathway analysis tools are also popular for the analysis of drug action and validation of drug efficacy and toxicity. This article overviews current achievements of pathway analysis and suggests future directions for its application in drug development such as rational design of combinatorial therapy and personalized medicine.
Collapse
Affiliation(s)
- Anton Yuryev
- Ariadne Genomics, Inc., Application Science Department, 9430 Key West avenue, Suite 113, Rockville, MD 20850, USA +1 240 453 6296, ext. 213 ; +1 270 912 6658 ;
| |
Collapse
|
22
|
Citterio C, Menacho-Márquez M, García-Escudero R, Larive RM, Barreiro O, Sánchez-Madrid F, Paramio JM, Bustelo XR. The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 2012; 5:ra71. [PMID: 23033540 DOI: 10.1126/scisignal.2002962] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The guanosine triphosphatases of the Rho and Rac subfamilies regulate protumorigenic pathways and are activated by guanine nucleotide exchange factors (Rho GEFs), which could be potential targets for anticancer therapies. We report that two Rho GEFs, Vav2 and Vav3, play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and many of the steps involved in lung-specific metastasis. The involvement of Vav proteins in these processes did not correlate with Rac1 and RhoA activity or cell migration, implying the presence of additional biological programs. Microarray analyses revealed that Vav2 and Vav3 controlled a vast transcriptional program in breast cancer cells through mechanisms that were shared between the two proteins, isoform-specific or synergistic. Furthermore, the abundance of Vav-regulated transcripts was modulated by Rac1-dependent and Rac1-independent pathways. This transcriptome encoded therapeutically targetable proteins that played nonredundant roles in primary tumorigenesis and lung-specific metastasis, such as integrin-linked kinase (Ilk), the transforming growth factor-β family ligand inhibin βA, cyclooxygenase-2, and the epithelial cell adhesion molecule Tacstd2. It also contained gene signatures that predicted disease outcome in breast cancer patients. These results identify possible targets for treating breast cancer and lung metastases and provide a potential diagnostic tool for clinical use.
Collapse
Affiliation(s)
- Carmen Citterio
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Garcia JL, Couceiro J, Gomez-Moreta JA, Gonzalez Valero JM, Briz AS, Sauzeau V, Lumbreras E, Delgado M, Robledo C, Almunia ML, Bustelo XR, Hernandez JM. Expression of VAV1 in the tumour microenvironment of glioblastoma multiforme. J Neurooncol 2012; 110:69-77. [PMID: 22864683 DOI: 10.1007/s11060-012-0936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/06/2012] [Indexed: 11/26/2022]
Abstract
Even though much progress has been made towards understanding the molecular nature of glioma, the survival rates of patients affected by this tumour have not changed significantly over recent years. Better knowledge of this malignancy is still needed in order to predict its outcome and improve patient treatment. VAV1 is an GDP/GTP exchange factor for Rho/Rac proteins with oncogenic potential that is involved in the regulation of cytoskeletal dynamics and cell migration. Here we report its overexpression in 59 patients diagnosed with high-grade glioma, and the associated upregulation of a number of genes coding for proteins also involved in cell invasion- and migration-related processes. Unexpectedly, immunohistochemical experiments revealed that VAV1 is not expressed in glioma cells. Instead, VAV1 is found in non-tumoural astrocyte-like cells that are located either peritumouraly or perivascularly. We propose that the expression of VAV1 is linked to synergistic signalling cross-talk between cancer and infiltrating cells. Interestingly, we show that the pattern of expression of VAV1 could have a role in the neoplastic process in glioblastoma tumours.
Collapse
Affiliation(s)
- Juan Luis Garcia
- Research Unit, IECSCYL-Hospital Universitario de Salamanca. IBSAL, IBMCC (USALCSIC), Paseo San Vicente 58, 37007, Salamanca, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harada A, Okada S, Konno D, Odawara J, Yoshimi T, Yoshimura S, Kumamaru H, Saiwai H, Tsubota T, Kurumizaka H, Akashi K, Tachibana T, Imbalzano AN, Ohkawa Y. Chd2 interacts with H3.3 to determine myogenic cell fate. EMBO J 2012; 31:2994-3007. [PMID: 22569126 DOI: 10.1038/emboj.2012.136] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/18/2012] [Indexed: 11/09/2022] Open
Abstract
Cell differentiation is mediated by lineage-determining transcription factors. We show that chromodomain helicase DNA-binding domain 2 (Chd2), a SNF2 chromatin remodelling enzyme family member, interacts with MyoD and myogenic gene regulatory sequences to specifically mark these loci via deposition of the histone variant H3.3 prior to cell differentiation. Directed and genome-wide analysis of endogenous H3.3 incorporation demonstrates that knockdown of Chd2 prevents H3.3 deposition at differentiation-dependent, but not housekeeping, genes and inhibits myogenic gene activation. The data indicate that MyoD determines cell fate and facilitates differentiation-dependent gene expression through Chd2-dependent deposition of H3.3 at myogenic loci prior to differentiation.
Collapse
Affiliation(s)
- Akihito Harada
- Department of Advanced Medical Initiatives, JST-CREST, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lau CL, Perreau VM, Chen MJ, Cate HS, Merlo D, Cheung NS, O'Shea RD, Beart PM. Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 2012; 227:1199-211. [PMID: 21604263 DOI: 10.1002/jcp.22838] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhibitors of Rho kinase (ROCK) have potential for management of neurological disorders by inhibition of glial scarring. Since astrocytes play key roles in brain physiology and pathology, we determined changes in the astrocytic transcriptome produced by the ROCK inhibitor Fasudil to obtain mechanistic insights into its beneficial action during brain injury. Cultured murine astrocytes were treated with Fasudil (100 µM) and morphological analyses revealed rapid stellation by 1 h and time-dependent (2-24 h) dissipation of F-actin-labelled stress fibres. Microarray analyses were performed on RNA and the time-course of global gene profiling (2, 6, 12 and 24 h) provided a comprehensive description of transcriptomic changes. Hierarchical clustering of differentially expressed genes and analysis for over-represented gene ontology groups using the DAVID database focused attention on Fasudil-induced changes to major biological processes regulating cellular shape and motility (actin cytoskeleton, axon guidance, transforming growth factor-β (TGFβ) signalling and tight junctions). Bioinformatic analyses of transcriptomic changes revealed how these biological processes contributed to changes in astrocytic motility and cytoskeletal reorganisation. Here genes associated with extracellular matrix were also involved, but unexpected was a subset of alterations (EAAT2, BDNF, anti-oxidant species, metabolic and signalling genes) indicative of adoption by astrocytes of a pro-survival phenotype. Expression profiles of key changes with Fasudil and another ROCK inhibitor Y27632 were validated by real-time PCR. Although effects of ROCK inhibition have been considered to be primarily cytoskeletal via reduction of glial scarring, we demonstrate additional advantageous actions likely to contribute to their ameliorative actions in brain injury.
Collapse
Affiliation(s)
- Chew L Lau
- Florey Neuroscience Institutes, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Chang I, Tanaka Y, Gupta A, Dahiya R. MicroRNA-34a suppresses malignant transformation by targeting c-Myc transcriptional complexes in human renal cell carcinoma. Carcinogenesis 2011; 33:294-300. [PMID: 22159222 DOI: 10.1093/carcin/bgr286] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the functional effects of microRNA-34a (miR-34a) on c-Myc transcriptional complexes in renal cell carcinoma. miR-34a down-regulated expression of multiple oncogenes including c-Myc by targeting its 3' untranslated region, which was revealed by luciferase reporter assays. miR-34a was also found to repress RhoA expression by suppressing the c-Myc-Skp2-Miz1 transcriptional complex that activates RhoA. Overexpression of c-Myc reversed miR-34a suppression of RhoA expression and inhibition of cell invasion, suggesting that miR-34a inhibits invasion by suppressing RhoA through c-Myc. miR-34a was also found to repress the c-Myc-P-TEFb transcription elongation complex, indicating one of the mechanisms by which miR-34a has profound effects on cellular functions. Our results demonstrate that miR-34a suppresses assembly and function of the c-Myc complex that activates or elongates transcription, indicating a novel role of miR-34a in the regulation of transcription by c-Myc.
Collapse
Affiliation(s)
- Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The melanoma antigen (MAGE) protein family contains more than 25 members that share a conserved MAGE homology domain (MHD). Type I MAGE genes exhibit cancer/testis-specific expression patterns and antigenic properties which render them ideal candidates for cancer immunotherapies. Maged1, a type II MAGE gene, is ubiquitously expressed and has been previously shown to play an important role in neuronal apoptosis during development. Recent studies have expanded the functional tissues and processes in which Maged1 activity is important and uncovered interacting partners of MAGED1 protein, adding novel layers to Maged1 functions. Maged1 plays a role in anti-tumorigenesis in a variety of cell types, and the down-regulation of MAGED1 has been observed in tumor cells. Moreover, MAGED1 can interact with a specific group of nuclear members and regulate circadian clock functions. These newly identified functions will enrich the molecular and clinical studies of the MAGE family of proteins.
Collapse
Affiliation(s)
- Xiaohan Wang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China
| | | | | |
Collapse
|
28
|
Giang Ho TT, Stultiens A, Dubail J, Lapière CM, Nusgens BV, Colige AC, Deroanne CF. RhoGDIα-dependent balance between RhoA and RhoC is a key regulator of cancer cell tumorigenesis. Mol Biol Cell 2011; 22:3263-75. [PMID: 21757538 PMCID: PMC3164471 DOI: 10.1091/mbc.e11-01-0020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RhoGTPases are key signaling molecules regulating main cellular functions such as migration, proliferation, survival, and gene expression through interactions with various effectors. Within the RhoA-related subclass, RhoA and RhoC contribute to several steps of tumor growth, and the regulation of their expression affects cancer progression. Our aim is to investigate their respective contributions to the acquisition of an invasive phenotype by using models of reduced or forced expression. The silencing of RhoC, but not of RhoA, increased the expression of genes encoding tumor suppressors, such as nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1), and decreased migration and the anchorage-independent growth in vitro. In vivo, RhoC small interfering RNA (siRhoC) impaired tumor growth. Of interest, the simultaneous knockdown of RhoC and NAG-1 repressed most of the siRhoC-related effects, demonstrating the central role of NAG-1. In addition of being induced by RhoC silencing, NAG-1 was also largely up-regulated in cells overexpressing RhoA. The silencing of RhoGDP dissociation inhibitor α (RhoGDIα) and the overexpression of a RhoA mutant unable to bind RhoGDIα suggested that the effect of RhoC silencing is indirect and results from the up-regulation of the RhoA level through competition for RhoGDIα. This study demonstrates the dynamic balance inside the RhoGTPase network and illustrates its biological relevance in cancer progression.
Collapse
Affiliation(s)
- T T Giang Ho
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, B-4000 Sart-Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
29
|
Construction of a computable cell proliferation network focused on non-diseased lung cells. BMC SYSTEMS BIOLOGY 2011; 5:105. [PMID: 21722388 PMCID: PMC3160372 DOI: 10.1186/1752-0509-5-105] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 07/02/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD), and fibrosis. Unfortunately, no such network has been available prior to this work. RESULTS To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics), and contains a total of 848 nodes (biological entities) and 1597 edges (relationships between biological entities). The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN) are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data. CONCLUSIONS To the best of our knowledge, this lung-focused Cell Proliferation Network provides the most comprehensive connectivity map in existence of the molecular mechanisms regulating cell proliferation in the lung. The network is based on fully referenced causal relationships obtained from extensive evaluation of the literature. The computable structure of the network enables its application to the qualitative and quantitative evaluation of cell proliferation using systems biology data sets. The network is available for public use.
Collapse
|
30
|
Grigoletto A, Lestienne P, Rosenbaum J. The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta Rev Cancer 2011; 1815:147-57. [DOI: 10.1016/j.bbcan.2010.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 01/29/2023]
|
31
|
Chen B, Gao Y, Jiang T, Ding J, Zeng Y, Xu R, Jiang X. Inhibition of tumor cell migration and invasion through knockdown of Rac1 expression in medulloblastoma cells. Cell Mol Neurobiol 2011; 31:251-7. [PMID: 21076938 PMCID: PMC11498523 DOI: 10.1007/s10571-010-9615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/07/2010] [Indexed: 12/31/2022]
Abstract
Medulloblastoma is one of the common malignant brain tumors in children or young adults and its overall disease-free 5-year survival rate is approximately 50% due to tumor progression, invasion, and metastasis. This study aimed to determine whether one of Rho GTPases, Rac1 can affect the morphology, motility, and invasion of medulloblastoma cells through knockdown of Rac1 expression. Medulloblastoma Daoy cells were used to manipulate Rac1 expression using Rac1 shRNA, Rac1N17, and Rac1L61 constructs. Reverse transcriptase-PCR and western blot were used to detect expression of Rac1 mRNA and protein, respectively. Invasion and migration assays were performed to assess invasion and migration capacity of Daoy cells, respectively. The data showed that Rac1 mRNA and protein were overexpressed in Daoy cells. Deletion of Rac1 decreased the cross-linked actin network and pseudopodia and also inhibited the number of migration cells migrated or invaded to the other side of the filter compared to control cells. These data indicated that the invasion and migration in Daoy cells were inhibited by deletion of Rac1, and suggest that targeting Rac1 by Rac1 shRNA may further be evaluated and used as a potential anticancer strategy to treat medulloblastoma.
Collapse
Affiliation(s)
- Baodong Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
- Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, Guangzhou, 510282 China
- Department of Neurosurgery, The Second people’s Hospital in Shenzhen, Shenzhen, 518035 Guangdong China
| | - Yongzhong Gao
- Department of Neurosurgery, The Second people’s Hospital in Shenzhen, Shenzhen, 518035 Guangdong China
| | - Taipeng Jiang
- Department of Neurosurgery, The Second people’s Hospital in Shenzhen, Shenzhen, 518035 Guangdong China
| | - Jianjun Ding
- Department of Neurosurgery, The Second people’s Hospital in Shenzhen, Shenzhen, 518035 Guangdong China
| | - Yanjun Zeng
- Biomechanics and Medical Information Institute, Beijing University of Technology, Beijing, 100022 China
| | - Ruxiang Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
- Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, Guangzhou, 510282 China
- Department of Neurosurgery, Military General Hospital of Beijing PLA, Beijing, 100700 China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
- Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Southern Medical University, Guangzhou, 510282 China
| |
Collapse
|
32
|
Liu S. The ROCK signaling and breast cancer metastasis. Mol Biol Rep 2010; 38:1363-6. [PMID: 20602258 DOI: 10.1007/s11033-010-0238-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 06/23/2010] [Indexed: 01/04/2023]
Abstract
Metastasis is the predominant cause of death in most breast cancer patients. The molecular mechanisms underlying metastasis from primary tumors to distant organs are not clearly characterized. In this review, we depict the role of ROCK signaling in regulating cell motility and growth, and discuss the contribution of this signaling to breast cancer metastasis.
Collapse
Affiliation(s)
- Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
33
|
Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR. A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 2010; 29:3781-92. [PMID: 20453885 PMCID: PMC2896432 DOI: 10.1038/onc.2010.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GTPase RhoA participates in a number of cellular processes, including cytoskeletal organization, mitogenesis and tumorigenesis. We have previously shown that the transforming activity of an oncogenic version of RhoA (Q63L mutant) was highly dependent on the transcriptional factor c–Myc. In contrast to these positive effects in the RhoA route, we show here that c–Myc affects negatively the F–actin cytoskeleton induced by RhoAQ63L and its downstream effector, the serine/threonine kinase Rock. This effect entails the activation of a transcriptional program that requires synergistic interactions with RhoA–derived signals and that includes the upregulation of the GTPase Cdc42 and its downstream element Pak1 as well as the repression of specific integrin subunits. The negative effects of c–Myc in the F–actin cytoskeleton are eliminated by the establishment of cell–to–cell contacts, an effect associated with the rescue of Pak1 and integrin levels at the post–transcriptional and transcriptional levels, respectively. These results reveal the presence of a hitherto unknown signaling feed–back loop between RhoA and c–Myc oncogenes that can contribute to maintain fluid cytoskeletal dynamics in cancer cells.
Collapse
Affiliation(s)
- V Sauzeau
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Campus Unamuno, Salamanca, Spain
| | | | | | | |
Collapse
|
34
|
Liu S, Goldstein RH, Scepansky EM, Rosenblatt M. Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res 2009; 69:8742-51. [PMID: 19887617 DOI: 10.1158/0008-5472.can-09-1541] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rho-associated kinase (ROCK) signaling plays a fundamental role in regulating cell morphology, adhesion, and motility. Aberrant expression of ROCK is related to tumor metastases and poor clinical outcome. Here, we show that ROCK expression is increased in metastatic human mammary tumors and breast cancer cell lines compared with nonmetastatic tumors and cell lines. Overexpression of ROCK confers a metastatic phenotype on the nonmetastatic MCF-7 cell line. Inhibition of ROCK activity, by either a specific ROCK inhibitor (Y27632) or ROCK-targeted small interfering RNAs, reduces cell migration and proliferation in vitro and metastasis to bone in vivo using a novel "human breast cancer metastasis to human bone" mouse model. Expression of the c-Myc-regulated miR-17-92 cluster is shown to be elevated in metastatic breast cancer cells compared with nonmetastatic cells and diminished by Y27632 treatment. Furthermore, blockade of miR-17 is shown to decrease breast cancer cell invasion/migration in vitro and metastasis in vivo. Together, these findings suggest that augmented ROCK signaling contributes to breast cancer metastasis. The effects of ROCK on tumor cell invasion/motility and growth may derive from regulating cytoskeletal actin-myosin contraction and modulating the c-Myc pathway, including c-Myc-dependent microRNAs. Inhibition of ROCK or the pathway it stimulates, therefore, may represent a novel approach for treatment of breast cancer metastases.
Collapse
Affiliation(s)
- Sijin Liu
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111-1800, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Rock proteins are Rho GTPase-dependent serine/ threonine kinases with crucial roles in F-actin dynamics and cell transformation. By analogy with other protein kinase families, it can be assumed that Rock proteins act, at least in part, through the regulation of gene expression events. However, with the exception of some singular transcriptional targets recently identified, the actual impact of these kinases on the overall cell transcriptome remains unknown. To address this issue, we have used a microarray approach to compare the transcriptomes of exponentially growing NIH3T3 cells that had been untreated or treated with Y27632, a well known specific inhibitor for Rock kinase activity. We show here that the Rock pathway promotes a weak impact on the fibroblast transcriptome, since its inhibition only results in changes in the expression of 2.3% of all the genes surveyed in the microarrays. Most Y27632-dependent genes are downregulated at moderate levels, indicating that the Rock pathway predominantly induces the upregulation of transcriptionally active genes. Although functionally diverse, a common functional leitmotiv of Y27632-dependent genes is the implication of their protein products in cytoskeletal-dependent processes. Taken together, these results indicate that Rock proteins can modify cytoskeletal dynamics by acting at post-transcriptional and transcriptional levels. In addition, they suggest that the main target of these serine/threonine kinases is the phosphoproteome and not the transcriptome.
Collapse
|
36
|
Andrechek ER, Mori S, Rempel RE, Chang JT, Nevins JR. Patterns of cell signaling pathway activation that characterize mammary development. Development 2008; 135:2403-13. [PMID: 18550711 DOI: 10.1242/dev.019018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous work has detailed the histological and biochemical changes associated with mammary development and remodeling. We have now made use of gene expression profiling, and in particular of the previously described signatures of cell signaling pathway activation, to explore the events associated with mammary gland development. We find that there is elevated E2F-specific pathway activity prior to lactation and relatively low levels of other important signaling pathways, such as RAS, MYC and SRC. Upon lactation and continuing into the involution phase, these patterns reverse with a dramatic increase in RAS, SRC and MYC pathway activity and a decline in E2F activity. At the end of involution, these patterns return to that of the adult non-lactating mammary gland. The importance of the changes in E2F pathway activity, particularly during the proliferative phase of mammary development, was confirmed through the analysis of mice deficient for various E2F proteins. Taken together, these results reveal a complex pattern of pathway activity in relation to the various phases of mammary gland development.
Collapse
Affiliation(s)
- Eran R Andrechek
- Duke Institute for Genome Sciences and Policy, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
37
|
Mullin M, Lightfoot K, Clarke R, Miller M, Lahesmaa R, Cantrell D. The RhoA transcriptional program in pre-T cells. FEBS Lett 2007; 581:4309-17. [PMID: 17716670 PMCID: PMC1964784 DOI: 10.1016/j.febslet.2007.07.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 02/07/2023]
Abstract
The GTPase RhoA is essential for the development of pre-T cells in the thymus. To investigate the mechanisms used by RhoA to control thymocyte development we have used Affymetrix gene profiling to identify RhoA regulated genes in T cell progenitors. The data show that RhoA plays a specific and essential role in pre-T cells because it is required for the expression of transcription factors of the Egr-1 and AP-1 families that have critical functions in thymocyte development. Loss of RhoA function in T cell progenitors causes a developmental block that pheno-copies the consequence of losing pre-TCR expression in Recombinase gene 2 (Rag2) null mice. Transcriptional profiling reveals both common and unique gene targets for RhoA and the pre-TCR indicating that RhoA participates in the pre-TCR induced transcriptional program but also mediates pre-TCR independent gene transcription.
Collapse
Affiliation(s)
- M. Mullin
- Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ont., Canada M5G 1X5
| | - K. Lightfoot
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
| | - R. Clarke
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
| | - M. Miller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FIN-20521 Turku, Finland
| | - R. Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FIN-20521 Turku, Finland
| | - D. Cantrell
- University of Dundee/WTB, Division of Cell Biology and Immunology, Dow Street, Dundee DD15EH, United Kingdom
- Corresponding author. Fax: +44 1382 345783.
| |
Collapse
|
38
|
Agudo-Ibáñez L, Núñez F, Calvo F, Berenjeno IM, Bustelo XR, Crespo P. Transcriptomal profiling of site-specific Ras signals. Cell Signal 2007; 19:2264-76. [PMID: 17714917 PMCID: PMC2085357 DOI: 10.1016/j.cellsig.2007.06.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/19/2007] [Indexed: 11/30/2022]
Abstract
Ras proteins are distributed in distinct plasma-membrane microdomains and endomembranes. The biochemical signals generated by Ras therein differ qualitatively and quantitatively, but the extent to which this spatial variability impacts on the genetic program switched-on by Ras is unknown. We have used microarray technology to identify the transcriptional targets of localization-specific Ras subsignals in NIH3T3 cells expressing H-RasV12 selectively tethered to distinct cellular microenvironments. We report that the transcriptomes resulting from site-specific Ras activation show a significant overlap. However, distinct genetic signatures can also be found for each of the Ras subsignals. Our analyses unveil 121 genes uniquely regulated by Ras signals emanating from plasma-membrane microdomains. Interestingly, not a single gene is specifically controlled by lipid raft-anchored Ras. Furthermore, only 9 genes are exclusive for Ras signals from endomembranes. Also, we have identified 31 genes common to the site-specific Ras subsignals capable of inducing cellular transformation. Among these are the genes coding for Vitamin D receptor and for p120-GAP and we have assessed their impact in Ras-induced transformation. Overall, this report reveals the complexity and variability of the different genetic programs orchestrated by Ras from its main sublocalizations.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Fátima Núñez
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Fernando Calvo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
| | - Inmaculada M. Berenjeno
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cancer, CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Salamanca E-37007, Spain
| | - Piero Crespo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Biología Molecular, Unidad de Biomedicina, CSIC-Universidad de Cantabria, Santander, E-39011, Spain
- * Corresponding author. Tel.: +34 942 200959; fax: +34 942 201945. E-mail address: (P. Crespo)
| |
Collapse
|