1
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Y KN, Arjunan A, Maigandan D, Dharmarajan A, Perumalsamy LR. Advances and challenges in therapeutic resistant biomarkers of neuroblastoma: A comprehensive review. Biochim Biophys Acta Rev Cancer 2024; 1879:189222. [PMID: 39577750 DOI: 10.1016/j.bbcan.2024.189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance is one of the significant challenges in Neuroblastoma. Owing to its molecular diversity, the therapeutic resistance mechanisms of Neuroblastoma are highly complicated. The traditional chemo and radio therapeutics fail to provide adequate solutions to the treatment resistance, demanding in-depth research to improvise the existing prognostic and therapeutic regimens. To address this knowledge gap, several investigations are being employed, such as unravelling the molecular signalling mechanisms involved in drug resistance at genomics and proteomics levels, development of biomarkers for assessing the therapeutic success, development of novel drug targets for cancer stem cells, targeted immunotherapy and combination therapies. This review collates the ongoing research efforts to address the challenges faced in Neuroblastoma treatment resistance and uncovers the importance of transitioning biomarker discoveries into clinical practice.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Amrutha Arjunan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Devi Maigandan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Arun Dharmarajan
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102 Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| |
Collapse
|
3
|
He E, Shi B, Liu Z, Chang K, Zhao H, Zhao W, Cui H. Identification of the molecular subtypes and construction of risk models in neuroblastoma. Sci Rep 2023; 13:11790. [PMID: 37479876 PMCID: PMC10362029 DOI: 10.1038/s41598-023-35401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023] Open
Abstract
The heterogeneity of neuroblastoma directly affects the prognosis of patients. Individualization of patient treatment to improve prognosis is a clinical challenge at this stage and the aim of this study is to characterize different patient populations. To achieve this, immune-related cell cycle genes, identified in the GSE45547 dataset using WGCNA, were used to classify cases from multiple datasets (GSE45547, GSE49710, GSE73517, GES120559, E-MTAB-8248, and TARGET) into subgroups by consensus clustering. ESTIMATES, CIBERSORT and ssGSEA were used to assess the immune status of the patients. And a 7-gene risk model was constructed based on differentially expressed genes between subtypes using randomForestSRC and LASSO. Enrichment analysis was used to demonstrate the biological characteristics between different groups. Key genes were screened using randomForest to construct neural network and validated. Finally, drug sensitivity was assessed in the GSCA and CellMiner databases. We classified the 1811 patients into two subtypes based on immune-related cell cycle genes. The two subtypes (Cluster1 and Cluster2) exhibited distinct clinical features, immune levels, chromosomal instability and prognosis. The same significant differences were demonstrated between the high-risk and low-risk groups. Through our analysis, we identified neuroblastoma subtypes with unique characteristics and established risk models which will improve our understanding of neuroblastoma heterogeneity.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Ziyu Liu
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Kaili Chang
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Hailan Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Wei Zhao
- Tianjin Medical University, Tianjin, China
- Basic Medical Sciences School of Tianjin Medical University, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China.
- Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
4
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Gangras P, Gelfanova V, Williams GD, Handelman SK, Smith RM, Debets MF. Investigating SH-SY5Y Neuroblastoma Cell Surfaceome as a Model for Neuronal-Targeted Novel Therapeutic Modalities. Int J Mol Sci 2022; 23:ijms232315062. [PMID: 36499391 PMCID: PMC9739866 DOI: 10.3390/ijms232315062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
The SH-SY5Y neuroblastoma cells are a widely used in vitro model approximating neurons for testing the target engagement of therapeutics designed for neurodegenerative diseases and pain disorders. However, their potential as a model for receptor-mediated delivery and uptake of novel modalities, such as antibody-drug conjugates, remains understudied. Investigation of the SH-SY5Y cell surfaceome will aid in greater in vitro to in vivo correlation of delivery and uptake, thereby accelerating drug discovery. So far, the majority of studies have focused on total cell proteomics from undifferentiated and differentiated SH-SY5Y cells. While some studies have investigated the expression of specific proteins in neuroblastoma tissue, a global approach for comparison of neuroblastoma cell surfaceome to the brain and dorsal root ganglion (DRG) neurons remains uninvestigated. Furthermore, an isoform-specific evaluation of cell surface proteins expressed on neuroblastoma cells remains unexplored. In this study, we define a bioinformatic workflow for the identification of high-confidence surface proteins expressed on brain and DRG neurons using tissue proteomic and transcriptomic data. We then delineate the SH-SY5Y cell surfaceome by surface proteomics and show that it significantly overlaps with the human brain and DRG neuronal surface proteome. We find that, for 32% of common surface proteins, SH-SY5Y-specific major isoforms are alternatively spliced, maintaining their protein-coding ability, and are predicted to localize to the cell surface. Validation of these isoforms using surface proteomics confirms a SH-SY5Y-specific alternative NRCAM (neuron-glia related cell adhesion molecule) isoform, which is absent in typical brain neurons, but present in neuroblastomas, making it a receptor of interest for neuroblastoma-specific therapeutics.
Collapse
|
6
|
Hou R, Yu Y, Jiang J. Prostaglandin E2 in neuroblastoma: Targeting synthesis or signaling? Biomed Pharmacother 2022; 156:113966. [DOI: 10.1016/j.biopha.2022.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
7
|
Bioinformatics analysis of miRNAs in the neuroblastoma 11q-deleted region reveals a role of miR-548l in both 11q-deleted and MYCN amplified tumour cells. Sci Rep 2022; 12:19729. [PMID: 36396668 PMCID: PMC9671919 DOI: 10.1038/s41598-022-24140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma is a childhood tumour that is responsible for approximately 15% of all childhood cancer deaths. Neuroblastoma tumours with amplification of the oncogene MYCN are aggressive, however, another aggressive subgroup without MYCN amplification also exists; rather, they have a deleted region at chromosome arm 11q. Twenty-six miRNAs are located within the breakpoint region of chromosome 11q and have been checked for a possible involvement in development of neuroblastoma due to the genomic alteration. Target genes of these miRNAs are involved in pathways associated with cancer, including proliferation, apoptosis and DNA repair. We could show that miR-548l found within the 11q region is downregulated in neuroblastoma cell lines with 11q deletion or MYCN amplification. In addition, we showed that the restoration of miR-548l level in a neuroblastoma cell line led to a decreased proliferation of these cells as well as a decrease in the percentage of cells in the S phase. We also found that miR-548l overexpression suppressed cell viability and promoted apoptosis, while miR-548l knockdown promoted cell viability and inhibited apoptosis in neuroblastoma cells. Our results indicate that 11q-deleted neuroblastoma and MYCN amplified neuroblastoma coalesce by downregulating miR-548l.
Collapse
|
8
|
Yu Y, Zhao Y, Choi J, Shi Z, Guo L, Elizarraras J, Gu A, Cheng F, Pei Y, Lu D, Fabbri M, Agarwal S, Zhang C, Jung SY, Foster JH, Yang J. ERK Inhibitor Ulixertinib Inhibits High-Risk Neuroblastoma Growth In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14225534. [PMID: 36428626 PMCID: PMC9688897 DOI: 10.3390/cancers14225534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Approximately 80% of relapsed NB show RAS-MAPK pathway mutations that activate ERK, resulting in the promotion of cell proliferation and drug resistance. Ulixertinib, a first-in-class ERK-specific inhibitor, has shown promising antitumor activity in phase 1 clinical trials for advanced solid tumors. Here, we show that ulixertinib significantly and dose-dependently inhibits cell proliferation and colony formation in different NB cell lines, including PDX cells. Transcriptomic analysis revealed that ulixertinib extensively inhibits different oncogenic and neuronal developmental pathways, including EGFR, VEGF, WNT, MAPK, NGF, and NTRK1. The proteomic analysis further revealed that ulixertinib inhibits the cell cycle and promotes apoptosis in NB cells. Additionally, ulixertinib treatment significantly sensitized NB cells to the conventional chemotherapeutic agent doxorubicin. Furthermore, ulixertinib potently inhibited NB tumor growth and prolonged the overall survival of the treated mice in two different NB mice models. Our preclinical study demonstrates that ulixertinib, either as a single agent or in combination with current therapies, is a novel and practical therapeutic approach for NB.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanling Zhao
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongmin Choi
- Advanced Technology Cores/Office of Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongcheng Shi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Linjie Guo
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John Elizarraras
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andy Gu
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Dai Lu
- Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Muller Fabbri
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
| | - Saurabh Agarwal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77003, USA
| | - Jennifer H. Foster
- Texas Children’s Hospital, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: (J.H.F.); (J.Y.); Tel.: +1-832-822-4556 (J.H.F.); +1-202-476-5772 (J.Y.)
| |
Collapse
|
9
|
Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, Kang W, Liu H, Qing G. EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun 2022; 13:12. [PMID: 35013218 PMCID: PMC8748958 DOI: 10.1038/s41467-021-27609-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Efforts to therapeutically target EZH2 have generally focused on inhibition of its methyltransferase activity, although it remains less clear whether this is the central mechanism whereby EZH2 promotes cancer. In the current study, we show that EZH2 directly interacts with both MYC family oncoproteins, MYC and MYCN, and promotes their stabilization in a methyltransferase-independent manner. By competing against the SCFFBW7 ubiquitin ligase to bind MYC and MYCN, EZH2 counteracts FBW7-mediated MYC(N) polyubiquitination and proteasomal degradation. Depletion, but not enzymatic inhibition, of EZH2 induces robust MYC(N) degradation and inhibits tumor cell growth in MYC(N) driven neuroblastoma and small cell lung carcinoma. Here, we demonstrate the MYC family proteins as global EZH2 oncogenic effectors and EZH2 pharmacologic degraders as potential MYC(N) targeted cancer therapeutics, pointing out that MYC(N) driven cancers may develop inherent resistance to the canonical EZH2 enzymatic inhibitors currently in clinical development.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Chan Chen
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Zemin Song
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Honghong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Minghui Ye
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Wenqian Kang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Hudan Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Guoliang Qing
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Castro-Piedras I, Sharma M, Brelsfoard J, Vartak D, Martinez EG, Rivera C, Molehin D, Bright RK, Fokar M, Guindon J, Pruitt K. Nuclear Dishevelled targets gene regulatory regions and promotes tumor growth. EMBO Rep 2021; 22:e50600. [PMID: 33860601 DOI: 10.15252/embr.202050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Dishevelled (DVL) critically regulates Wnt signaling and contributes to a wide spectrum of diseases and is important in normal and pathophysiological settings. However, how it mediates diverse cellular functions remains poorly understood. Recent discoveries have revealed that constitutive Wnt pathway activation contributes to breast cancer malignancy, but the mechanisms by which this occurs are unknown and very few studies have examined the nuclear role of DVL. Here, we have performed DVL3 ChIP-seq analyses and identify novel target genes bound by DVL3. We show that DVL3 depletion alters KMT2D binding to novel targets and changes their epigenetic marks and mRNA levels. We further demonstrate that DVL3 inhibition leads to decreased tumor growth in two different breast cancer models in vivo. Our data uncover new DVL3 functions through its regulation of multiple genes involved in developmental biology, antigen presentation, metabolism, chromatin remodeling, and tumorigenesis. Overall, our study provides unique insight into the function of nuclear DVL, which helps to define its role in mediating aberrant Wnt signaling.
Collapse
Affiliation(s)
- Isabel Castro-Piedras
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Monica Sharma
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jennifer Brelsfoard
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - David Vartak
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edgar G Martinez
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cristian Rivera
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Robert K Bright
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mohamed Fokar
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, USA
| | - Josee Guindon
- Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
11
|
Equine Genital Squamous Cell Carcinoma Associated with EcPV2 Infection: RANKL Pathway Correlated to Inflammation and Wnt Signaling Activation. BIOLOGY 2021; 10:biology10030244. [PMID: 33801021 PMCID: PMC8003831 DOI: 10.3390/biology10030244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Equine genital squamous cell carcinomas (egSCCs) associated with papilloma virus (PV) infection have been recently proposed as model for human PV-induced SCC. In both species, PV mucosal infections often induce cervical, oropharyngeal, penile, anal, vaginal, and vulvar cancer. The aim of this study was to clarify the molecular mechanisms behind egSCCs associated with equine papillomavirus 2 (EcPV2) infection investigating receptor activator of nuclear factor-kappa B ligand (RANKL), Wnt, and interleukin (IL)17 signaling pathways. RANKL has been recently demonstrated to play a crucial role in several human tumors, associated with a poor prognosis and metastatic spread; novel targeted therapies through RANKL silencing monoclonal antibodies have been undertaken. EcPV2-E6 DNA was checked, and viral presence was confirmed in 91% of cases, whereas oncogene expression was 60.8% for E6 and 34.7% for E2. RANKL, NFKBp50, NFKBp65, IL6, IL17, IL23p19, IL8, IL12p35, IL12p40, BCATN1, FOSL1, and LEF1 gene expression showed a significant upregulation in tumor samples compared to healthy tissues. Our results describe an inflammatory environment characterized by the increased expression of several cytokines and the activation of RANKL/RANK, IL17A, and canonical and non-canonical Wnt signaling pathways. These results may be helpful to identify new targets for immunotherapy strategies confirming egSCCs as a model for the human disease. Abstract Equine genital squamous cell carcinomas (egSCCs) are among the most common equine tumors after sarcoids, severely impairing animal health and welfare. Equus caballus papillomavirus type 2 (EcPV2) infection is often related to these tumors. The aim of this study was to clarify the molecular mechanisms behind egSCCs associated with EcPV2 infection, investigating receptor activator of nuclear factor-kappa B ligand (RANKL) signaling in NF-kB pathway, together with the Wnt and IL17 signaling pathways. We analyzed the innate immune response through gene expression evaluation of key cytokines and transcription factors. Moreover, Ki67 index was assessed with immunohistochemistry. EcPV2-E6 DNA was checked, and viral presence was confirmed in 21 positive out to 23 cases (91%). Oncogene expression was confirmed in 14 cases (60.8%) for E6 and in 8 (34.7%) for E2. RANKL, nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB)-p50, NFKBp65, interleukin (IL)-6, IL17, IL23p19, IL8, IL12p35, IL12p40, β-catenin (BCATN1), FOS like 1 (FOSL1), and lymphoid enhancer binding factor 1 (LEF1) showed a significant upregulation in tumor samples compared to healthy tissues. Our results describe an inflammatory environment characterized by the activation of RANKL/RANK and IL17 with the relative downstream pathways, and a positive modulation of inflammatory cytokines genes such as IL6 and IL8. Moreover, the increase of BCATN1, FOSL1, and LEF1 gene expression suggests an activation of both canonical and non-canonical Wnt signaling pathway that could be critical for carcinogenesis and tumor progression.
Collapse
|
12
|
Wang Y, Lan W, Xu M, Song J, Mao J, Li C, Du X, Jiang Y, Li E, Zhang R, Wang Q. Cancer-associated fibroblast-derived SDF-1 induces epithelial-mesenchymal transition of lung adenocarcinoma via CXCR4/β-catenin/PPARδ signalling. Cell Death Dis 2021; 12:214. [PMID: 33637678 PMCID: PMC7910618 DOI: 10.1038/s41419-021-03509-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) contribute to tumour epithelial-mesenchymal transition (EMT) via interaction with cancer cells. However, the molecular mechanisms underlying tumour-promoting EMT of CAFs in lung adenocarcinoma (ADC) remain unclear. Here, we observed that CAFs isolated from lung ADC promoted EMT via production of stromal cell-derived factor-1 (SDF-1) in conditioned medium (CM). CAF-derived SDF-1 enhanced invasiveness and EMT by upregulating CXCR4, β-catenin, and PPARδ, while downregulating these proteins reversed the effect. Furthermore, RNAi-mediated CXCR4 knockdown suppressed β-catenin and PPARδ expression, while β-catenin inhibition effectively downregulated PPARδ without affecting CXCR4; however, treatment with a PPARδ inhibitor did not inhibit CXCR4 or β-catenin expression. Additionally, pairwise analysis revealed that high expression of CXCR4, β-catenin, and PPARδ correlated positively with 75 human lung adenocarcinoma tissues, which was predictive of poor prognosis. Thus, targeting the CAF-derived, SDF-1-mediated CXCR4 β-catenin/ PPARδ cascade may serve as an effective targeted approach for lung cancer treatment.
Collapse
Affiliation(s)
- Yingyan Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China.
- Laboratory Center for Diagnostics, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| | - Wen Lan
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
- Department of Respiratory Medicine, Ganzhou Municipal Hospital, No. 49 Dagong Road Zhanggong district, Ganzhou, 341000, Jiangxi Province, China
| | - Mingxin Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
| | - Jing Song
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Chunyan Li
- Department of Gastroenterology, The First Affiliated Hospital, Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Xiaohui Du
- Department of Scientific Research Center, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
| | - Yunling Jiang
- Laboratory Center for Diagnostics, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
| | - Rui Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, Liaoning Province, China.
| |
Collapse
|
13
|
Otte J, Dyberg C, Pepich A, Johnsen JI. MYCN Function in Neuroblastoma Development. Front Oncol 2021; 10:624079. [PMID: 33585251 PMCID: PMC7873735 DOI: 10.3389/fonc.2020.624079] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Dysregulated expression of the transcription factor MYCN is frequently detected in nervous system tumors such as childhood neuroblastoma. Here, gene amplification of MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-derived cells. This abnormal MYCN expression is one of the strongest predictors of poor prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is an early event in these cancers leading to a peculiar dysregulation of cells that results in embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic resistance, and metabolic flexibility.
Collapse
Affiliation(s)
- Jörg Otte
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - Adena Pepich
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Children's and Women's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Gan L, Ren Y, Lu J, Ma J, Shen X, Zhuang Z. Synergistic Effect of 3-Bromopyruvate in Combination with Rapamycin Impacted Neuroblastoma Metabolism by Inhibiting Autophagy. Onco Targets Ther 2020; 13:11125-11137. [PMID: 33149623 PMCID: PMC7605667 DOI: 10.2147/ott.s273108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background Alterations in the cell metabolism, such as enhanced aerobic glycolysis, have been identified as a prominent hallmark of cancer cells. 3-Bromopyruvate (3-BrPA) is a proverbial hexokinase (HK)-II inhibitor, which can inhibit cancer cell energy metabolism. Rapamycin is a new type macrocyclic lactone, which can inhibit the serine/threonine protein kinase mTOR. In order to comprehend the influence of 3-BrPA on autophagy activity in vitro, we conducted a series of experiments using different human neuroblastoma (NB) cell lines. Materials and Methods The human NB cell lines were exposed to 3-BrPA and/or rapamycin, and the proliferation activity of the cells was detected by Cell Counting Kit-8 (CCK-8) assay. The mRNA expression of the cells treated with 3-BrPA and/or rapamycin was analyzed by quantitative real-time polymerase chain reaction (QPCR) assay. The protein expression of the cells was analyzed by Western Blotting (WB) assay. The effects of 3-BrPA and/or rapamycin treatment on cell cycle and cell apoptosis were analyzed by flow cytometry assay. Meanwhile, the cellular glucose absorption rate, lactate secretion rate and ATP content were also analyzed through the relevant metabolic analysis kits. Results Our results showed that 3-BrPA can induce growth inhibition in a dose-dependent pattern by cell apoptosis. 3-BrPA combined with rapamycin played a synergistic suppression role in NB cells, affected the cell apoptosis, cell cycle and the metabolic pathway. Up-regulated LC3-II accumulation was conscious in NB cells incubated with 3-BrPA and rapamycin. Rapamycin individually discourages the mTOR signaling pathway, while combined with 3-BrPA can enhance this phenomenon and influence cell metabolism of the NB cells. Conclusion The results suggested that 3-BrPA combined with rapamycin could induce cell apoptosis in NB cells by inhibiting mTOR activity. In conclusion, our research proposed that the dual inhibitory effect of the mTOR signaling pathway and the glycolytic activity may indicate a valid therapeutic tactic for NB chemoprevention.
Collapse
Affiliation(s)
- Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Yang Ren
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Jicheng Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Junzhe Ma
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Xudong Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow Unive rsity, Suzhou, Jiangsu Province 215004, People's Republic of China
| |
Collapse
|
15
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Suenaga Y, Nakatani K, Nakagawara A. De novo evolved gene product NCYM in the pathogenesis and clinical outcome of human neuroblastomas and other cancers. Jpn J Clin Oncol 2020; 50:839-846. [PMID: 32577751 DOI: 10.1093/jjco/hyaa097] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
NCYM is an antisense transcript of MYCN oncogene and promotes tumor progression. NCYM encodes a de novo protein whose open reading frame evolved from noncoding genomic regions in the ancestor of Homininae. Because of its topology, NCYM is always co-amplified with MYCN oncogene, and the mutual regulations between NCYM and MYCN maintain their expressions at high levels in MYCN-amplified tumors. NCYM stabilizes MYCN by inhibiting GSK3β, whereas MYCN stimulates transcription of both NCYM and MYCN. NCYM mRNA and its noncoding transcript variants MYCNOS have been shown to stimulate MYCN expression via direct binding to MYCN promoter, indicating that both coding and noncoding transcripts of NCYM induce MYCN expression. In contrast to the noncoding functions of NCYM, NCYM protein also promotes calpain-mediated cleavage of c-MYC. The cleaved product called Myc-nick inhibits cell death and promotes cancer cell migration. Furthermore, NCYM-mediated inhibition of GSK3β results in the stabilization of β-catenin, which promotes aggressiveness of bladder cancers. These MYCN-independent functions of NCYM showed their clinical significance in MYCN-non-amplified tumors, including adult tumors. This year is the 30th anniversary of the identification of NCYM/MYCNOS gene. On this special occasion, we summarize the current understanding of molecular functions and the clinical significance of NCYM and discuss future directions to achieve therapeutic strategies targeting NCYM.
Collapse
|
17
|
5-aza-2'-Deoxycytidine Induces a RIG-I-Related Innate Immune Response by Modulating Mitochondria Stress in Neuroblastoma. Cells 2020; 9:cells9091920. [PMID: 32824929 PMCID: PMC7564572 DOI: 10.3390/cells9091920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neuroblastoma (NB) is one of the most common malignant solid tumors to occur in children, characterized by a wide range of genetic and epigenetic aberrations. We studied whether modifications of the latter with a 5-aza-2′-deoxycytidine (decitabine, Dac) DNA methyltransferase inhibitor can provide a therapeutic advantage in NB. Methods: NB cells with or without MYCN amplification were treated with Dac. We used flow cytometry to measure cell apoptosis and death and mitochondrial reactive oxygen species (mtROS), microarray to analyze gene expression profile and bisulfite pyrosequencing to determine the methylation level of the DDX58/RIG-I promoter. Western blot was used to detect markers related to innate immune response and apoptotic signaling, while immunofluorescent imaging was used to determine dsRNA. We generated mtDNA depleted ρ0 cells using long-term exposure to low-dose ethidium bromide. Results: Dac preferentially induced a RIG-I-predominant innate immune response and cell apoptosis in SK-N-AS NB cells, significantly reduced the methylation level of the DDX58/RIG-I promoter and increased dsRNA accumulation in the cytosol. Dac down regulated mitochondrial genes related to redox homeostasis, but augmented mtROS production. ρ0 cells demonstrated a blunted response in innate immune response and apoptotic cell death, as well as greatly diminished dsRNA. The response of NB cells to CDDP and poly(I:C) was potentiated by Dac in association with increased mtROS, which was blunted in ρ0 cells. Conclusions: This study indicates that Dac effectively induces a RIG-I-related innate immune response and apoptotic signaling primarily in SK-N-AS NB cells by hypomethylating DDX58/RIG-I promoter, elevated mtROS and increased dsRNA. Dac can potentiate the cytotoxic effects of CDDP and poly(I:C) in NB cells.
Collapse
|
18
|
A Wnt-BMP4 Signaling Axis Induces MSX and NOTCH Proteins and Promotes Growth Suppression and Differentiation in Neuroblastoma. Cells 2020; 9:cells9030783. [PMID: 32210188 PMCID: PMC7140810 DOI: 10.3390/cells9030783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
The Wnt and bone morphogenetic protein (BMP) signaling pathways are known to be crucial in the development of neural crest lineages, including the sympathetic nervous system. Surprisingly, their role in paediatric neuroblastoma, the prototypic tumor arising from this lineage, remains relatively uncharacterised. We previously demonstrated that Wnt/b-catenin signaling can have cell-type-specific effects on neuroblastoma phenotypes, including growth inhibition and differentiation, and that BMP4 mRNA and protein were induced by Wnt3a/Rspo2. In this study, we characterised the phenotypic effects of BMP4 on neuroblastoma cells, demonstrating convergent induction of MSX homeobox transcription factors by Wnt and BMP4 signaling and BMP4-induced growth suppression and differentiation. An immunohistochemical analysis of BMP4 expression in primary neuroblastomas confirms a striking absence of BMP4 in poorly differentiated tumors, in contrast to a high expression in ganglion cells. These results are consistent with a tumor suppressive role for BMP4 in neuroblastoma. RNA sequencing following BMP4 treatment revealed induction of Notch signaling, verified by increases of Notch3 and Hes1 proteins. Together, our data demonstrate, for the first time, Wnt-BMP-Notch signaling crosstalk associated with growth suppression of neuroblastoma.
Collapse
|
19
|
Zhao X, Li D, Yang F, Lian H, Wang J, Wang X, Fang E, Song H, Hu A, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. Long Noncoding RNA NHEG1 Drives β-Catenin Transactivation and Neuroblastoma Progression through Interacting with DDX5. Mol Ther 2020; 28:946-962. [PMID: 31982037 DOI: 10.1016/j.ymthe.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functional roles and underlying mechanisms of lncRNAs in neuroblastoma (NB), the most common malignant solid tumor in pediatric population, still remain elusive. Herein, through integrating analysis of a public RNA sequencing dataset, neuroblastoma highly expressed 1 (NHEG1) was identified as a risk-associated lncRNA, contributing to an unfavorable outcome of NB. Depletion of NHEG1 led to facilitated differentiation and decreased growth and aggressiveness of NB cells. Mechanistically, NHEG1 bound to and stabilized DEAD-box helicase 5 (DDX5) protein through repressing proteasome-mediated degradation, resulting in β-catenin transactivation that altered target gene expression associated with NB progression. We further determined a lymphoid enhancer binding factor 1 (LEF1)/transcription factor 7-like 2 (TCF7L2)/NHEG1/DDX5/β-catenin axis with a positive feedback loop and demonstrated that NHEG1 harbored oncogenic properties via its interplay with DDX5. Administration of small interfering RNAs against NHEG1 or DDX5 reduced tumor growth and prolonged survival of nude mice bearing xenografts. High NHEG1 or DDX5 expression was associated with poor survival of NB patients. These results indicate that lncRNA NHEG1 exhibits oncogenic activity that affects NB progression via stabilizing the DDX5 protein, which might serve as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Heng Lian
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| |
Collapse
|
20
|
Wachowiak R, Mayer S, Suttkus A, Martynov I, Lacher M, Melling N, Izbicki JR, Tachezy M. CHL1 and NrCAM are Primarily Expressed in Low Grade Pediatric Neuroblastoma. Open Med (Wars) 2019; 14:920-927. [PMID: 31989042 PMCID: PMC6972343 DOI: 10.1515/med-2019-0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 10/19/2019] [Indexed: 12/28/2022] Open
Abstract
Background Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an important role in development and regeneration of the central nervous system. However, they are also associated with cancerogenesis and progression in adult malignancies, thus gain increasing importance in cancer research. We therefore studied the expression of CHL1 and NrCAM according to the course of disease in children with neuroblastoma. Methods CHL1 and NrCAM expression levels were histologically assessed by tissue microarrays from surgically resected neuroblastoma specimens of 56 children. Expression of both markers was correlated to demographics as well as clinical data including metastatic dissemination and survival. Results CHL1 was expressed in 9% and NrCAM in 51% of neuroblastoma tissue samples. Expression of CHL1 was higher in patients with low Hughes grade 1a/b (p=0.01). NrCAM was more often detected in patients with a low International Staging System (INSS) score 1/2 (p=0.04). Conclusion CHL1 and NrCAM expression was associated with low-grade pediatric neuroblastoma. These adhesion molecules may play a role in early tumor development of neuroblastoma.
Collapse
Affiliation(s)
- Robin Wachowiak
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Steffi Mayer
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Anne Suttkus
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Illya Martynov
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University Hospital Leipzig, Liebigstrasse 20 A, 04103 Leipzig, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
21
|
Nowosad K, Hordyjewska-Kowalczyk E, Tylzanowski P. Mutations in gene regulatory elements linked to human limb malformations. J Med Genet 2019; 57:361-370. [PMID: 31857429 DOI: 10.1136/jmedgenet-2019-106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/09/2019] [Accepted: 11/03/2019] [Indexed: 01/08/2023]
Abstract
Most of the human genome has a regulatory function in gene expression. The technological progress made in recent years permitted the revision of old and discovery of new mutations outside of the protein-coding regions that do affect human limb morphology. Steadily increasing discovery rate of such mutations suggests that until now the largely neglected part of the genome rises to its well-deserved prominence. In this review, we describe the recent technological advances permitting this unprecedented advance in identifying non-coding mutations. We especially focus on the mutations in cis-regulatory elements such as enhancers, and trans-regulatory elements such as miRNA and long non-coding RNA, linked to hereditary or inborn limb defects. We also discuss the role of chromatin organisation and enhancer-promoter interactions in the aetiology of limb malformations.
Collapse
Affiliation(s)
- Karol Nowosad
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Hordyjewska-Kowalczyk
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemko Tylzanowski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland .,Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Scholz BA, Sumida N, de Lima CDM, Chachoua I, Martino M, Tzelepis I, Nikoshkov A, Zhao H, Mehmood R, Sifakis EG, Bhartiya D, Göndör A, Ohlsson R. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat Genet 2019; 51:1723-1731. [DOI: 10.1038/s41588-019-0535-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
|
23
|
Madueke I, Hu WY, Hu D, Swanson SM, Griend DV, Abern M, Prins GS. The role of WNT10B in normal prostate gland development and prostate cancer. Prostate 2019; 79:1692-1704. [PMID: 31433503 PMCID: PMC9639854 DOI: 10.1002/pros.23894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND WNT signaling is implicated in embryonic development, and in adult tissue homeostasis, while its deregulation is evident in disease. This study investigates the unique roles of canonical WNT10B in both normal prostate development and prostate cancer (PCa) progression. METHODS Organ culture and rat ventral prostates (VPs) were used to study Wnt10b ontogeny and growth effect of WNT10B protein. PB-SV40 LTag rat VPs were utilized for Wnt expression polymerase chain reaction (PCR) array and immunohistochemistry. Human localized PCa tissue microarrays (TMAs) were investigated for differential WNT10B expression. Human RNA-seq data sets were queried for differential expression of WNT10B in metastatic and localized PCa. Knockdown of WNT10B in PC3 cells was utilized to study its effects on proliferation, stemness, epithelial to mesenchymal transition (EMT), and xenograft propagation. RESULTS Wnt10b expression was highest at birth and rapidly declined in the postnatal rat VP. Exogenous WNT10B addition to culture developing VPs decreased growth suggesting an antiproliferative role. VPs from PB-SV40 LTag rats with localized PCa showed a 25-fold reduction in Wnt10b messenger RNA (mRNA) expession, confirmed at the protein level. Human PCa TMAs revealed elevated WNT10B protein in prostate intraepithelial neoplasia compared with normal prostates but reduced levels in localized PCa specimens. In contrast, RNA-seq data set of annotated human PCa metastasis found a significant increase in WNT10B mRNA expression compared with localized tumors suggesting stage-specific functions of WNT10B. Similarly, WNT10B mRNA levels were increased in metastatic cell lines PC3, PC3M, as well as in HuSLC, a PCa stem-like cell line, as compared with disease-free primary prostate epithelial cells. WNT10B knockdown in PC3 cells reduced expression of EMT genes, MMP9 and stemness genes NANOG and SOX2 and markedly reduced the stem cell-like side population. Furthermore, loss of WNT10B abrogated the ability of PC3 cells to propagate tumors via serial transplantation. CONCLUSIONS Taken together, these results suggest a dual role for WNT10B in normal development and in PCa progression with opposing functions depending on disease stage. We propose that decreased WNT10B levels in localized cancer allow for a hyperproliferative state, whereas increased levels in advanced disease confer a stemness and malignant propensity which is mitigated by knocking down WNT10B levels. This raises the potential for WNT10B as a novel target for therapeutic intervention in metastatic PCa.
Collapse
Affiliation(s)
- Ikenna Madueke
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Danping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Steven M. Swanson
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Donald Vander Griend
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Michael Abern
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| | - Gail S. Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
24
|
Wang J, Jiang J, Chen H, Wang L, Guo H, Yang L, Xiao D, Qing G, Liu H. FDA-approved drug screen identifies proteasome as a synthetic lethal target in MYC-driven neuroblastoma. Oncogene 2019; 38:6737-6751. [PMID: 31406244 DOI: 10.1038/s41388-019-0912-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022]
Abstract
MYCN amplification in neuroblastoma predicts poor prognosis and resistance to therapy. Yet pharmacological strategies of direct MYC inhibition remain unsuccessful due to its "undruggable" protein structure. We herein developed a synthetic lethal screen against MYCN-amplified neuroblastomas using clinically approved therapeutic reagents. We performed a high-throughput screen, from a library of 938 FDA-approved drugs, for candidates that elicit synthetic lethal effects in MYC-driven neuroblastoma cells. The proteasome inhibitors, which are FDA approved for the first-line treatment of multiple myeloma, emerge as top hits to elicit MYC-mediated synthetic lethality. Proteasome inhibition activates the PERK-eIF2α-ATF4 axis in MYC-transformed cells and induces BAX-mediated apoptosis through ATF4-dependent NOXA and TRIB3 induction. A combination screen reveals the proteasome inhibitor bortezomib (BTZ) and the histone deacetylase (HDAC) inhibitor vorinostat (SAHA) concertedly induce dramatic cell death in part through synergistic activation of BAX. This combination causes marked tumor suppression in vivo, supporting dual proteasome/HDAC inhibition as a potential therapeutic approach for MYC-driven cancers. This FDA-approved drug screen with in vivo validation thus provides a rationale for clinical evaluation of bortezomib, alone or in combination with vorinostat, in MYC-driven neuroblastoma patients.
Collapse
Affiliation(s)
- Jingchao Wang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.,Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Jue Jiang
- Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Hui Chen
- Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Liyuan Wang
- Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Hao Guo
- Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Likun Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Daibiao Xiao
- Medical Research Institute, Wuhan University, 430071, Wuhan, China
| | - Guoliang Qing
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Medical Research Institute, Wuhan University, 430071, Wuhan, China.
| | - Hudan Liu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China. .,Medical Research Institute, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
25
|
Becker J, Wilting J. WNT Signaling in Neuroblastoma. Cancers (Basel) 2019; 11:cancers11071013. [PMID: 31331081 PMCID: PMC6679057 DOI: 10.3390/cancers11071013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The term WNT (wingless-type MMTV integration site family) signaling comprises a complex molecular pathway consisting of ligands, receptors, coreceptors, signal transducers and transcriptional modulators with crucial functions during embryonic development, including all aspects of proliferation, morphogenesis and differentiation. Its involvement in cancer biology is well documented. Even though WNT signaling has been divided into mainly three distinct branches in the past, increasing evidence shows that some molecular hubs can act in various branches by exchanging interaction partners. Here we discuss developmental and clinical aspects of WNT signaling in neuroblastoma (NB), an embryonic tumor with an extremely broad clinical spectrum, ranging from spontaneous differentiation to fatal outcome. We discuss implications of WNT molecules in NB onset, progression, and relapse due to chemoresistance. In the light of the still too high number of NB deaths, new pathways must be considered.
Collapse
Affiliation(s)
- Juergen Becker
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.
| | - Joerg Wilting
- Department of Anatomy and Cell Biology, University Medical School Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany
| |
Collapse
|
26
|
El-Shazly SS, Hassan NM, Abdellateif MS, El Taweel MA, Abd-Elwahab N, Ebeid EN. The role of β-catenin and paired-like homeobox 2B (PHOX2B) expression in neuroblastoma patients; predictive and prognostic value. Exp Mol Pathol 2019; 110:104272. [PMID: 31220430 DOI: 10.1016/j.yexmp.2019.104272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND The expression of β-catenin and paired-like homeobox 2B (PHOX2B) expression were assessed in Neuroblastoma (NB) patients as a diagnostic, prognostic and/or predictive markers. METHODS Bone marrow (BM) samples of 52 NB patients were assessed for the expression of β-catenin by immunohistochemistry (IHC), and PHOX2B by real time PCR (RT-PCR), compared to 12 healthy normal controls (NC). The data were correlated to the clinic-pathological features of the patients, response to treatment and disease relapse. RESULTS β-catenin was expressed in 40 (76.92%) patients (P < .001). While PHOX2B was expressed in 32/52 (61.5%) patients, with a fold change of 0.29 (0.01-40.0, P = .096). β-catenin expression associated significantly with advanced tumor stage, high risk, positive results by MIBG and bone scan (P = .002, P < .001, P = .006, P = .013; respectively). Also it associated significantly with synaptophysin expression in the BM biopsy (P < .001), with a significant concordance (K = 0.519, P < .001). The expression of β-catenin associated significantly with PHOX2B gene expression [28/32 (87.5%), P = .04], and its fold change (P = .027), with a significant measure of agreement (K = 0.297, P = .022). The fold change of PHOX2B gene expression associated significantly with the high risk of the patients (P = .04). Poor response to treatment associated significantly with the expression of neuron specific enolase (NSE), β-catenin and PHOX2B in NB patients (P = .021, P = .019 and P = .040; respectively). The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of synaptophysin for the diagnosis of BM metastasis in NB patients were (69%, 65.2%, 71.4%, 62.5%; respectively, P = .024). While with β-catenin (93.1%, 43.5%, 67.5%, 83.3%; respectively, P = .003), and PHOX2B expression (65.5%, 34.5%, 59.4%, 50%; respectively, P = .574). CONCLUSION β-Catenin could be used as a sensitive and reliable marker for detection of BM metastasis and also a good predictor for resistance to treatment in NB patients. While, PHOX2B gene expression in BM aspirate could be a marker for high risk patients and poor response to treatment.
Collapse
Affiliation(s)
- Samar S El-Shazly
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt.
| | - Maha A El Taweel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Nahed Abd-Elwahab
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Emad N Ebeid
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
27
|
Szemes M, Greenhough A, Malik K. Wnt Signaling Is a Major Determinant of Neuroblastoma Cell Lineages. Front Mol Neurosci 2019; 12:90. [PMID: 31040767 PMCID: PMC6476918 DOI: 10.3389/fnmol.2019.00090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 01/09/2023] Open
Abstract
The neural crest (NC), which has been referred to as the fourth germ layer, comprises a multipotent cell population which will specify diverse cells and tissues, including craniofacial cartilage and bones, melanocytes, the adrenal medulla and the peripheral nervous system. These cell fates are known to be determined by gene regulatory networks (GRNs) acting at various stages of NC development, such as induction, specification, and migration. Although transcription factor hierarchies and some of their interplay with morphogenetic signaling pathways have been characterized, the full complexity of activities required for regulated development remains uncharted. Deregulation of these pathways may contribute to tumorigenesis, as in the case of neuroblastoma, a frequently lethal embryonic cancer thought to arise from the sympathoadrenal lineage of the NC. In this “Hypothesis and Theory” article, we utilize the next generation sequencing data from neuroblastoma cells and tumors to evaluate the possible influences of Wnt signaling on NC GRNs and on neuroblastoma cell lineages. We propose that Wnt signaling is a major determinant of regulatory networks that underlie mesenchymal/neural crest cell (NCC)-like cell identities through PRRX1 and YAP/TAZ transcription factors. Furthermore, Wnt may also co-operate with Hedgehog signaling in driving proneural differentiation programmes along the adrenergic (ADRN) lineage. Elucidation of Signaling Regulatory Networks can augment and complement GRNs in characterizing cell identities, which may in turn contribute to the design of improved therapeutics tailored to primary and relapsing neuroblastoma.
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
28
|
Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher-Göppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S. Transcriptome 3'end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun 2018; 9:5331. [PMID: 30552333 PMCID: PMC6294251 DOI: 10.1038/s41467-018-07580-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Diversification at the transcriptome 3'end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. Here, we identify extensive transcriptome 3'end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome 3'end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including a differentiation RNA-operon. PCF11 shapes inputs converging on WNT-signalling, and governs cell cycle, proliferation, apoptosis and neurodifferentiation. Postnatal PCF11 down-regulation induces a neurodifferentiation program, and low-level PCF11 in neuroblastoma associates with favourable outcome and spontaneous tumour regression. Our findings document a critical role for APA in tumorigenesis and describe a novel mechanism for cell fate reprogramming in neuroblastoma with potentially important clinical implications. We provide an interactive data repository of transcriptome-wide APA covering > 170 RNAis, and an APA-network map with regulatory hubs.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- McManus Laboratory, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Michal Levin
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Surendra Tattikota
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Sergey Tokalov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Mainul Hoque
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Denise Scherzinger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Federico Marini
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Ansgar Poetsch
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- Institute for Plant Biochemistry, Ruhr-University Bochum, Bochum, 44801, Germany
- School of Biomedical & Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, 79104, Germany
| | | | - Hans Christian Probst
- Institute for Immunology, University Medical Centre Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael Schaefer
- Department of Anaesthesiology and Research Centre Translational Neurosciences, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Karl J Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Centre (DKFZ), Heidelberg, 69120, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany.
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany.
- German Centre for Cardiovascular Research (DZHK), Mainz, 55131, Germany.
| |
Collapse
|
29
|
Shakhova I, Li Y, Yu F, Kaneko Y, Nakamura Y, Ohira M, Izumi H, Mae T, Varfolomeeva SR, Rumyantsev AG, Nakagawara A. PPP3CB contributes to poor prognosis through activating nuclear factor of activated T-cells signaling in neuroblastoma. Mol Carcinog 2018; 58:426-435. [PMID: 30457174 DOI: 10.1002/mc.22939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
We previously identified a gain-of-function mutation in PPP3CB in a neuroblastoma (NB) with MYCN amplification. Here we investigated the functional and clinical role of PPP3CB in NB. High PPP3CB expression was an independent indicator predicting poor prognosis of NB. Overexpression of wildtype or mutated PPP3CB (PPP3CBmut) promoted cell growth, but PPP3CB knockdown decreased cell growth in NB cells. Forced expressions of PPP3CB and PPP3CBmut activated NFAT2 and NFAT4 transcription factors and inhibited GSK3β activity, resulting in the increase in the expressions of c-Myc, MYCN, and β-catenin, which were downregulated in response to PPP3CB knockdown. Treatment with calcineurin inhibitor cyclosporin A (CsA) or FK506 suppressed cell proliferation and induced apoptotic cell death in both MYCN-amplified and MYCN-non-amplified NB cell lines. Expression of PPP3CB protein was decreased in response to two calcineurin inhibitors. c-Myc, MYCN, and β-catenin were downregulated at the mRNA and protein levels in CsA or FK506-treated NB cells. Our data indicate that elevated expression of PPP3CB and the expression of its constitutively active mutant contribute to the aggressive behavior of NB tumors and therefore suggest that inhibition of calcineurin activity might have therapeutic potential for high-risk NB.
Collapse
Affiliation(s)
- Irina Shakhova
- Chiba Cancer Center Research Institute, Chiba, Japan.,Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Yuanyuan Li
- Chiba Cancer Center Research Institute, Chiba, Japan.,Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Fan Yu
- Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | - Miki Ohira
- Chiba Cancer Center Research Institute, Chiba, Japan.,Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | - Hideki Izumi
- Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Takao Mae
- Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| | - Svetlana R Varfolomeeva
- Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Alexander G Rumyantsev
- Federal Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| | - Akira Nakagawara
- Chiba Cancer Center Research Institute, Chiba, Japan.,Life Science Institute, Saga Medical Center KOSEIKAN, Saga, Japan
| |
Collapse
|
30
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
31
|
Szemes M, Greenhough A, Melegh Z, Malik S, Yuksel A, Catchpoole D, Gallacher K, Kollareddy M, Park JH, Malik K. Wnt Signalling Drives Context-Dependent Differentiation or Proliferation in Neuroblastoma. Neoplasia 2018; 20:335-350. [PMID: 29505958 PMCID: PMC5909736 DOI: 10.1016/j.neo.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/09/2023]
Abstract
Neuroblastoma is one of the commonest and deadliest solid tumours of childhood, and is thought to result from disrupted differentiation of the developing sympathoadrenergic lineage of the neural crest. Neuroblastoma exhibits intra- and intertumoural heterogeneity, with high risk tumours characterised by poor differentiation, which can be attributable to MYCN-mediated repression of genes involved in neuronal differentiation. MYCN is known to co-operate with oncogenic signalling pathways such as Alk, Akt and MEK/ERK signalling, and, together with c-MYC has been shown to be activated by Wnt signalling in various tissues. However, our previous work demonstrated that Wnt3a/Rspo2 treatment of some neuroblastoma cell lines can, paradoxically, decrease c-MYC and MYCN proteins. This prompted us to define the neuroblastoma-specific Wnt3a/Rspo2-driven transcriptome using RNA sequencing, and characterise the accompanying changes in cell biology. Here we report the identification of ninety Wnt target genes, and show that Wnt signalling is upstream of numerous transcription factors and signalling pathways in neuroblastoma. Using live-cell imaging, we show that Wnt signalling can drive differentiation of SK-N-BE(2)-C and SH-SY5Y cell-lines, but, conversely, proliferation of SK-N-AS cells. We show that cell-lines that differentiate show induction of pro-differentiation BMP4 and EPAS1 proteins, which is not apparent in the SK-N-AS cells. In contrast, SK-N-AS cells show increased CCND1, phosphorylated RB and E2F1 in response to Wnt3a/Rspo2, consistent with their proliferative response, and these proteins are not increased in differentiating lines. By meta-analysis of the expression of our 90 genes in primary tumour gene expression databases, we demonstrate discrete expression patterns of our Wnt genes in patient cohorts with different prognosis. Furthermore our analysis reveals interconnectivity within subsets of our Wnt genes, with one subset comprised of novel putative drivers of neuronal differentiation repressed by MYCN. Assessment of β-catenin immunohistochemistry shows high levels of β-catenin in tumours with better differentiation, further supporting a role for canonical Wnt signalling in neuroblastoma differentiation.
Collapse
Key Words
- alk, anaplastic lymphoma kinase
- atra, all-trans-retinoic acid
- bmp4, bone morphogenetic protein 4
- ccnd1, cyclin d1
- egf, epidermal growth factor
- epas1, endothelial pas domain protein 1
- erk, extracellular signal-regulated kinases
- emt, epithelial-mesenchymal transition
- kegg, kyoto encyclopedia of genes and genomes
- mapk, mitogen-activated protein kinase
- mek, mitogen-activated protein kinase kinase
- pbs, phosphate-buffered saline
- qrt-pcr, quantitative reverse-transcriptase polymerase chain reaction
- rb, retinoblastoma
- rnaseq, rna sequencing
- rspo2, r-spondin-2
- sds-page, sodium-dodecyl sulphate-polyacrylamide gel electrophoresis
- tcf/lef, t-cell factor/lymphoid enhancer binding factor
Collapse
Affiliation(s)
- Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alexander Greenhough
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Aysen Yuksel
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, Westmead NSW, 2145, Australia
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, Westmead NSW, 2145, Australia
| | - Kelli Gallacher
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
32
|
Becker J, Wilting J. WNT signaling, the development of the sympathoadrenal-paraganglionic system and neuroblastoma. Cell Mol Life Sci 2018; 75:1057-1070. [PMID: 29058015 PMCID: PMC5814469 DOI: 10.1007/s00018-017-2685-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022]
Abstract
Neuroblastoma (NB) is a tumor of the sympathoadrenal system arising in children under 15 years of age. In Germany, NB accounts for 7% of childhood cancer cases, but 11% of cancer deaths. It originates from highly migratory progenitor cells that leave the dorsal neural tube and contribute neurons and glial cells to sympathetic ganglia, and chromaffin and supportive cells to the adrenal medulla and paraganglia. Clinically, histologically and molecularly, NBs present as extremely heterogeneous, ranging from very good to very poor prognosis. The etiology of NB still remains unclear and needs to be elucidated, however, aberrant auto- and paracrine embryonic cell communications seem to be likely candidates to initiate or facilitate the emergence, progression and regression of NB. The wingless-type MMTV integration site (WNT) family of proteins represents an evolutionary highly conserved signaling system that orchestrates embryogenesis. At least 19 ligands in the human, numerous receptors and co-receptors are known, which control not only proliferation, but also cell polarity, migration and differentiation. Here we seek to interconnect aspects of WNT signaling with sympathoadrenal and paraganglionic development to define new WNT signaling cues in the etiology and progression of NB.
Collapse
Affiliation(s)
- Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
33
|
Johnsen JI, Dyberg C, Fransson S, Wickström M. Molecular mechanisms and therapeutic targets in neuroblastoma. Pharmacol Res 2018; 131:164-176. [PMID: 29466695 DOI: 10.1016/j.phrs.2018.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.
Collapse
Affiliation(s)
- John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden.
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Susanne Fransson
- Department of Pathology and Genetics, Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| |
Collapse
|
34
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
35
|
Zins K, Schäfer R, Paulus P, Dobler S, Fakhari N, Sioud M, Aharinejad S, Abraham D. Frizzled2 signaling regulates growth of high-risk neuroblastomas by interfering with β-catenin-dependent and β-catenin-independent signaling pathways. Oncotarget 2018; 7:46187-46202. [PMID: 27323822 PMCID: PMC5216790 DOI: 10.18632/oncotarget.10070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates β-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed β-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of β-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed β-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.
Collapse
Affiliation(s)
- Karin Zins
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | | | - Patrick Paulus
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Silvia Dobler
- Department of Anesthesiology and Operative Intensive Care Medicine, Kepler University Hospital, Linz, A-4040, Austria
| | - Nazak Fakhari
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, N-0310, Norway
| | - Seyedhossein Aharinejad
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria
| | - Dietmar Abraham
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, A-1090, Austria.,Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, A-1090, Austria
| |
Collapse
|
36
|
Lasorsa VA, Formicola D, Pignataro P, Cimmino F, Calabrese FM, Mora J, Esposito MR, Pantile M, Zanon C, De Mariano M, Longo L, Hogarty MD, de Torres C, Tonini GP, Iolascon A, Capasso M. Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression. Oncotarget 2017; 7:21840-52. [PMID: 27009842 PMCID: PMC5008327 DOI: 10.18632/oncotarget.8187] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023] Open
Abstract
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Daniela Formicola
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Piero Pignataro
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Flora Cimmino
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | | | - Jaume Mora
- Hospital Sant Joan de Déu, Developmental Tumor Biology Laboratory and Department of Oncology, Esplugues de Llobregat, Barcelona, Spain
| | - Maria Rosaria Esposito
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Marcella Pantile
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Carlo Zanon
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Marilena De Mariano
- U.O.C. Bioterapie, IRCCS AOU San Martino-IST, National Cancer Research Institute, Genoa, Italy
| | - Luca Longo
- U.O.C. Bioterapie, IRCCS AOU San Martino-IST, National Cancer Research Institute, Genoa, Italy
| | - Michael D Hogarty
- Children's Hospital of Philadelphia, Division of Oncology, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Carmen de Torres
- Hospital Sant Joan de Déu, Developmental Tumor Biology Laboratory and Department of Oncology, Esplugues de Llobregat, Barcelona, Spain
| | - Gian Paolo Tonini
- Pediatric Research Institute (IRP), Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
| | - Achille Iolascon
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Mario Capasso
- University of Naples Federico II, Department of Molecular Medicine and Medical Biotechnology, Naples, Italy.,CEINGE Biotecnolgie Avanzate, Naples, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| |
Collapse
|
37
|
Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells. Anticancer Drugs 2017; 28:469-479. [PMID: 28240680 DOI: 10.1097/cad.0000000000000478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.
Collapse
|
38
|
Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A 2017; 114:E6623-E6631. [PMID: 28739923 DOI: 10.1073/pnas.1706055114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.
Collapse
|
39
|
Sodium selenate activated Wnt/β-catenin signaling and repressed amyloid-β formation in a triple transgenic mouse model of Alzheimer's disease. Exp Neurol 2017; 297:36-49. [PMID: 28711506 DOI: 10.1016/j.expneurol.2017.07.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/21/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidences show that selenium dietary intake is inversely associated with the mortality of Alzheimer's disease (AD). Sodium selenate has been reported to reduce neurofibrillary tangles (NFT) in the tauopathic mouse models, but its effects on the Wnt/β-catenin signaling pathway and APP processing remain unknown during AD formation. In this paper, triple transgenic AD mice (3×Tg-AD) had been treated with sodium selenate in drinking water for 10month before the detection of hippocampal pathology. Increased Aβ generation, tau hyperphosphorylation and neuronal apoptosis were found in the hippocampus of AD model mouse. Down-regulation of Wnt/β-catenin signaling is closely associated with the alteration of AD pathology. Treatment with sodium selenate significantly promoted the activity of protein phosphatases of type 2A (PP2A) and repressed the hallmarks of AD. Activation of PP2A by sodium selenate could increase active β-catenin level and inhibit GSK3β activity in the hippocampal tissue and primarily cultured neurons of AD model mouse, leading to activation of Wnt/β-catenin signaling and transactivation of target genes, including positively-regulated genes c-myc, survivin, TXNRD2 and negatively-regulated gene BACE1. Meanwhile, APP phosphorylation was also reduced on the Thr668 residue after selenate treatment, causing the decreases of APP cleavage and Aβ generation. These findings reveal that the Wnt/β-catenin signaling is a potential target for prevention of AD and sodium selenate may be developed as a new drug for AD treatment.
Collapse
|
40
|
Singhal SS, Nagaprashantha L, Singhal P, Singhal S, Singhal J, Awasthi S, Horne D. RLIP76 Inhibition: A Promising Developmental Therapy for Neuroblastoma. Pharm Res 2017; 34:1673-1682. [PMID: 28386633 DOI: 10.1007/s11095-017-2154-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022]
Abstract
Refractory and relapsed neuroblastoma (NB) present with significant challenges in clinical management. Though primary NBs largely with wild-type p53 respond well to interventions, dysfunctional signaling in the p53 pathways in a MYCN oncogene driven background is found in a number of children with NB. The p53-mutant NB is largely unresponsive to available therapies and p53-independent targeted therapeutics represents a vital need in pediatric oncology. We analyzed the findings on mercapturic acid pathway (MAP) transporter RLIP76, which has broad and critical effects on multiple pathways as essential for carcinogenesis, oxidative stress and drug-resistance, is over-expressed in NB. RLIP76 inhibition by antibodies or depletion by antisense causes apoptosis and sensitization to chemo-radiotherapy in many cancers. In addition, recent studies indicate that the interactions between p53, MYCN, and WNT regulate apoptosis resistance and protein ubiquitination. RLIP76 and p53 interact with each other and colocalize in NB cells. Targeted depletion/inhibition of RLIP76 causes apoptosis and tumor regression in NB irrespective of p53 status. In the present review, we discuss the mechanisms and the role of RLIP76 in oxidative stress, drug-resistance and clathrin-dependent endocytosis (CDE), and analyze the molecular basis for the role of RLIP76 targeted approaches in the context principal drivers of NB pathogenesis, progression and drug-resistance. The evidence from RLIP76 studies in other cancers, when taken in the context of our recent RLIP76 focused mechanistic studies in NB, provides strong basis for further characterization and development of RLIP76 targeted therapies for NB.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA.
| | - Lokesh Nagaprashantha
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Preeti Singhal
- University of Texas Health, San Antonio, Texas, 78229, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, California, 92092, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, USA
| | - David Horne
- Department of Molecular Medicine, Comprehensive Cancer Center and National Medical Center, Beckman Research Institute of City of Hope, Duarte, California, 91010, USA
| |
Collapse
|
41
|
Ahmed AA, Zhang L, Reddivalla N, Hetherington M. Neuroblastoma in children: Update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol 2017; 34:165-185. [PMID: 28662353 DOI: 10.1080/08880018.2017.1330375] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood accounting for 8-10% of all childhood malignancies. The tumor is characterized by a spectrum of histopathologic features and a heterogeneous clinical phenotype. Modern multimodality therapy results in variable clinical response ranging from cure in localized tumors to limited response in aggressive metastatic disease. Accurate clinical staging and risk assessment based on clinical, surgical, biologic and pathologic criteria are of pivotal importance in assigning prognosis and planning effective treatment approaches. Numerous studies have analyzed the presence of several clinicopathologic and biologic factors in association with the patient's prognosis and outcome. Although patient's age, tumor stage, histopathologic classification, and MYCN amplification are the most commonly validated prognostic markers, several new gene mutations have been identified in sporadic and familial neuroblastoma cases that show association with an adverse outcome. Novel molecular studies have also added data on chromosomal segmental aberrations in MYCN nonamplified tumors. In this review, we provide an updated summary of the clinical, serologic and genetic prognostic indicators in neuroblastoma including classic factors that have consistently played a role in risk stratification of patients as well as newly discovered biomarkers that may show a potential significance in patients' management.
Collapse
Affiliation(s)
- Atif A Ahmed
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Lei Zhang
- a Department of Pathology and Laboratory Medicine , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Naresh Reddivalla
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| | - Maxine Hetherington
- b Department of Hematology-Oncology , Children's Mercy Hospital/University of Missouri , Kansas City , Missouri , USA
| |
Collapse
|
42
|
Vieira GC, Chockalingam S, Melegh Z, Greenhough A, Malik S, Szemes M, Park JH, Kaidi A, Zhou L, Catchpoole D, Morgan R, Bates DO, Gabb PD, Malik K. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma. Oncotarget 2016; 6:40053-67. [PMID: 26517508 PMCID: PMC4741879 DOI: 10.18632/oncotarget.5548] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022] Open
Abstract
LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.
Collapse
Affiliation(s)
- Gabriella Cunha Vieira
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - S Chockalingam
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol, UK
| | - Alexander Greenhough
- Colorectal Cancer Laboratory, School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Sally Malik
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Marianna Szemes
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Ji Hyun Park
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Abderrahmane Kaidi
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Li Zhou
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Rhys Morgan
- Colorectal Cancer Laboratory, School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Peter David Gabb
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory and School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
43
|
Fabijanovic D, Zunic I, Martic TN, Skenderi F, Serman L, Vranic S. The expression of SFRP1, SFRP3, DVL1, and DVL2 proteins in testicular germ cell tumors. APMIS 2016; 124:942-949. [PMID: 27599467 DOI: 10.1111/apm.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Germ cell tumors of the testis are a heterogeneous group of neoplasms that affect male adolescents and young adults. Wnt signaling pathway components have been shown to be actively involved in normal and malignant germ cell differentiation and progression. In this study, we aimed to explore the expression patterns of the secreted frizzled-related protein (SFRP) and Disheveled protein family (DVL) in a subset of testicular germ cell tumors. Eighty-five formalin-fixed, paraffin-embedded tissue samples of the primary germ cell tumors of the testis were stained against SFRP1, SFRP3, DVL1, and DVL2 proteins using immunohistochemistry. SFRP1 and SFRP3 exhibited lower expression in both seminomas and mixed/non-seminomatous tumors, compared with atrophic/benign tissue (p < 0.001). SFRP3 expression was lower than SFRP1 expression within the seminoma group (p = 0.004), but not within the mixed/non-seminomatous group (p = 0.409). The majority of the tested cases (27/28, 96%) exhibited low DVL1 protein expression (median 0%, range 0-90%). In contrast, 20 out of 22 tested cases (91%) exhibited strong expression of DVL2 protein (median 80%, range 0-100%). No significant difference in DVL1 and DVL2 protein expression was observed between seminomas and mixed/non-seminomatous tumors (p = 0.68 and 0.29). The secreted frizzled-related protein and disheveled protein family members appear to be actively involved in the pathogenesis of primary testicular germ cell tumors.
Collapse
Affiliation(s)
- Dora Fabijanovic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iris Zunic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Faruk Skenderi
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Semir Vranic
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina.,School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
44
|
Dyberg C, Papachristou P, Haug BH, Lagercrantz H, Kogner P, Ringstedt T, Wickström M, Johnsen JI. Planar cell polarity gene expression correlates with tumor cell viability and prognostic outcome in neuroblastoma. BMC Cancer 2016; 16:259. [PMID: 27036398 PMCID: PMC4818482 DOI: 10.1186/s12885-016-2293-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 03/23/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The non-canonical Wnt/Planar cell polarity (PCP) signaling pathway is a major player in cell migration during embryonal development and has recently been implicated in tumorigenesis. METHODS Transfections with cDNA plasmids or siRNA were used to increase and suppress Prickle1 and Vangl2 expression in neuroblastoma cells and in non-tumorigenic cells. Cell viability was measured by trypan blue exclusion and protein expression was determined with western blotting. Transcriptional activity was studied with luciferase reporter assay and mRNA expression with real-time RT-PCR. Immunofluorescence stainings were used to study the effects of Vangl2 overexpression in non-tumorigenic embryonic cells. Statistical significance was tested with t-test or one-way ANOVA. RESULTS Here we show that high expression of the PCP core genes Prickle1 and Vangl2 is associated with low-risk neuroblastoma, suppression of neuroblastoma cell growth and decreased Wnt/β-catenin signaling. Inhibition of Rho-associated kinases (ROCKs) that are important in mediating non-canonical Wnt signaling resulted in increased expression of Prickle1 and inhibition of β-catenin activity in neuroblastoma cells. In contrast, overexpression of Vangl2 in MYC immortalized neural stem cells induced accumulation of active β-catenin and decreased the neural differentiation marker Tuj1. Similarly, genetically modified mice with forced overexpression of Vangl2 in nestin-positive cells showed decreased Tuj1 differentiation marker during embryonal development. CONCLUSIONS Our experimental data demonstrate that high expression of Prickle1 and Vangl2 reduce the growth of neuroblastoma cells and indicate different roles of PCP proteins in tumorigenic cells compared to normal cells. These results suggest that the activity of the non-canonical Wnt/PCP signaling pathway is important for neuroblastoma development and that manipulation of the Wnt/PCP pathway provides a possible therapy for neuroblastoma.
Collapse
Affiliation(s)
- Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden.
| | - Panagiotis Papachristou
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden.,Academic Primary Health Care Center, TioHundra AB, Box 905, SE-761 29, Norrtälje, Sweden
| | - Bjørn Helge Haug
- Department of Pediatrics, University-Hospital of Northern-Norway (UNN), 9037, Tromsø, Norway
| | - Hugo Lagercrantz
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| | - Thomas Ringstedt
- Neonatal Research Unit, Department of Women's and Children's Health, Astrid Lindgren Children's hospital, Q2:07, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital Q6:05, SE-171 76, Stockholm, Sweden
| |
Collapse
|
45
|
Middelbeek J, Visser D, Henneman L, Kamermans A, Kuipers AJ, Hoogerbrugge PM, Jalink K, van Leeuwen FN. TRPM7 maintains progenitor-like features of neuroblastoma cells: implications for metastasis formation. Oncotarget 2016; 6:8760-76. [PMID: 25797249 PMCID: PMC4496182 DOI: 10.18632/oncotarget.3315] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery. Transcriptional programs involved in neural crest development act as a context dependent gene regulatory network. In addition to BMP, Wnt and Notch signaling, activation of developmental gene expression programs depends on the physical characteristics of the tissue microenvironment. TRPM7, a mechanically regulated TRP channel with kinase activity, was previously found essential for embryogenesis and the maintenance of undifferentiated neural crest progenitors. Hence, we hypothesized that TRPM7 may preserve progenitor-like, metastatic features of neuroblastoma cells. Using multiple neuroblastoma cell models, we demonstrate that TRPM7 expression closely associates with the migratory and metastatic properties of neuroblastoma cells in vitro and in vivo. Moreover, microarray-based expression profiling on control and TRPM7 shRNA transduced neuroblastoma cells indicates that TRPM7 controls a developmental transcriptional program involving the transcription factor SNAI2. Overall, our data indicate that TRPM7 contributes to neuroblastoma progression by maintaining progenitor-like features.
Collapse
Affiliation(s)
- Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Daan Visser
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Linda Henneman
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin Kamermans
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Arthur J Kuipers
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Strate I, Tessadori F, Bakkers J. Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling. Development 2015; 142:1767-76. [PMID: 25968312 DOI: 10.1242/dev.113894] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glypicans are heparan sulphate proteoglycans (HSPGs) attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor, and interact with various extracellular growth factors and receptors. The Drosophila division abnormal delayed (dally) was the first glypican loss-of-function mutant described that displays disrupted cell divisions in the eye and morphological defects in the wing. In human, as in most vertebrates, six glypican-encoding genes have been identified (GPC1-6), and mutations in several glypican genes cause multiple malformations including congenital heart defects. To understand better the role of glypicans during heart development, we studied the zebrafish knypek mutant, which is deficient for Gpc4. Our results demonstrate that knypek/gpc4 mutant embryos display severe cardiac defects, most apparent by a strong reduction in cardiomyocyte numbers. Cell-tracing experiments, using photoconvertable fluorescent proteins and genetic labeling, demonstrate that Gpc4 'Knypek' is required for specification of cardiac progenitor cells and their differentiation into cardiomyocytes. Mechanistically, we show that Bmp signaling is enhanced in the anterior lateral plate mesoderm of knypek/gpc4 mutants and that genetic inhibition of Bmp signaling rescues the cardiomyocyte differentiation defect observed in knypek/gpc4 embryos. In addition, canonical Wnt signaling is upregulated in knypek/gpc4 embryos, and inhibiting canonical Wnt signaling in knypek/gpc4 embryos by overexpression of the Wnt inhibitor Dkk1 restores normal cardiomyocyte numbers. Therefore, we conclude that Gpc4 is required to attenuate both canonical Wnt and Bmp signaling in the anterior lateral plate mesoderm to allow cardiac progenitor cells to specify and differentiate into cardiomyocytes. This provides a possible explanation for how congenital heart defects arise in glypican-deficient patients.
Collapse
Affiliation(s)
- Ina Strate
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Federico Tessadori
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands
| | - Jeroen Bakkers
- Department of Cardiac Development and Genetics, Hubrecht Institute & University Medical Center Utrecht, Utrecht 3584 CT, The Netherlands Department of Medical Physiology, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
47
|
Yarmishyn AA, Batagov AO, Tan JZ, Sundaram GM, Sampath P, Kuznetsov VA, Kurochkin IV. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome. BMC Genomics 2014; 15 Suppl 9:S7. [PMID: 25522241 PMCID: PMC4290621 DOI: 10.1186/1471-2164-15-s9-s7] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. Results We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. Conclusions Our findings greatly extend the number of noncoding RNAs functionally implicated in tumor development and patient treatment and highlight their role as potential prognostic biomarkers of neuroblastomas.
Collapse
|
48
|
Selmi A, de Saint-Jean M, Jallas AC, Garin E, Hogarty MD, Bénard J, Puisieux A, Marabelle A, Valsesia-Wittmann S. TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer Lett 2014; 357:412-418. [PMID: 25475555 DOI: 10.1016/j.canlet.2014.11.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
In neuroblastoma, MYCN amplification is associated with a worse prognosis and is a criterion used in the clinic to provide intensive treatments to children even with localized disease. In correlation with MYCN amplification, upregulation of TWIST1, a transcription factor playing a crucial role in inhibition of apoptosis and differentiation, was previously reported. Clinical data set analysis of MYCN, MYC and TWIST1 expression permits us to confirm that TWIST1 expression is upregulated in MYCN amplified neuroblastoma but also in a subset of neuroblastoma harboring high expression of MYCN or MYC without gene amplification. In silico analyses reveal the presence of several MYC regulatory motifs (E-Boxes and INR) within the TWIST1 promoter. Using gel shift assay and reporter activity assays, we demonstrate that both N-Myc and c-Myc proteins can bind and activate the TWIST1 promoter. Therefore, we propose TWIST1 as a direct MYC transcriptional target.
Collapse
Affiliation(s)
- Abdelkader Selmi
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Maud de Saint-Jean
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Anne-Catherine Jallas
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Elisabeth Garin
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | - Jean Bénard
- CNRS UMR8126 Institut Gustave Roussy, Université Paris XI, Villejuif F-94805, France
| | - Alain Puisieux
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France
| | - Aurélien Marabelle
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Sandrine Valsesia-Wittmann
- Université Lyon 1, F-69000 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France.
| |
Collapse
|
49
|
Jansen SR, Holman R, Hedemann I, Frankes E, Elzinga CRS, Timens W, Gosens R, de Bont ES, Schmidt M. Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via β-catenin stabilization. J Cell Mol Med 2014; 19:210-26. [PMID: 25266063 PMCID: PMC4288364 DOI: 10.1111/jcmm.12418] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
Amplification of MYCN is the most well-known prognostic marker of neuroblastoma risk classification, but still is only observed in 25% of cases. Recent evidence points to the cyclic adenosine monophosphate (cAMP) elevating ligand prostaglandin E2 (PGE2 ) and β-catenin as two novel players in neuroblastoma. Here, we aimed to define the potential role of PGE2 and cAMP and its potential interplay with β-catenin, both of which may converge on neuroblastoma cell behaviour. Gain and loss of β-catenin function, PGE2 , the adenylyl cyclase activator forskolin and pharmacological inhibition of cyclooxygenase-2 (COX-2) were studied in two human neuroblastoma cell lines without MYCN amplification. Our findings show that PGE2 enhanced cell viability through the EP4 receptor and cAMP elevation, whereas COX-2 inhibitors attenuated cell viability. Interestingly, PGE2 and forskolin promoted glycogen synthase kinase 3β inhibition, β-catenin phosphorylation at the protein kinase A target residue ser675, β-catenin nuclear translocation and TCF-dependent gene transcription. Ectopic expression of a degradation-resistant β-catenin mutant enhances neuroblastoma cell viability and inhibition of β-catenin with XAV939 prevented PGE2 -induced cell viability. Finally, we show increased β-catenin expression in human high-risk neuroblastoma tissue without MYCN amplification. Our data indicate that PGE2 enhances neuroblastoma cell viability, a process which may involve cAMP-mediated β-catenin stabilization, and suggest that this pathway is of relevance to high-risk neuroblastoma without MYCN amplification.
Collapse
Affiliation(s)
- Sepp R Jansen
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Department of Paediatrics, Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vadnais C, Shooshtarizadeh P, Rajadurai CV, Lesurf R, Hulea L, Davoudi S, Cadieux C, Hallett M, Park M, Nepveu A. Autocrine Activation of the Wnt/β-Catenin Pathway by CUX1 and GLIS1 in Breast Cancers. Biol Open 2014; 3:937-46. [PMID: 25217618 PMCID: PMC4197442 DOI: 10.1242/bio.20148193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Autocrine activation of the Wnt/β-catenin pathway occurs in several cancers, notably in breast tumors, and is associated with higher expression of various Wnt ligands. Using various inhibitors of the FZD/LRP receptor complex, we demonstrate that some adenosquamous carcinomas that develop in MMTV-CUX1 transgenic mice represent a model for autocrine activation of the Wnt/β-catenin pathway. By comparing expression profiles of laser-capture microdissected mammary tumors, we identify Glis1 as a transcription factor that is highly expressed in the subset of tumors with elevated Wnt gene expression. Analysis of human cancer datasets confirms that elevated WNT gene expression is associated with high levels of CUX1 and GLIS1 and correlates with genes of the epithelial-to-mesenchymal transition (EMT) signature: VIM, SNAI1 and TWIST1 are elevated whereas CDH1 and OCLN are decreased. Co-expression experiments demonstrate that CUX1 and GLIS1 cooperate to stimulate TCF/β-catenin transcriptional activity and to enhance cell migration and invasion. Altogether, these results provide additional evidence for the role of GLIS1 in reprogramming gene expression and suggest a hierarchical model for transcriptional regulation of the Wnt/β-catenin pathway and the epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Charles Vadnais
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | - Charles V Rajadurai
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Robert Lesurf
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Laura Hulea
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sayeh Davoudi
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Chantal Cadieux
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael Hallett
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada McGill Centre for Bioinformatics, McGill University, Montreal, QC H3G 0B1, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Alain Nepveu
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| |
Collapse
|