1
|
Guo S, Cheng C, Wu Y, Shen K, Zhang D, Chen B, Wang X, Shen L, Zhang Q, Chai R, Wang G, Zhou F. Metabolomic and Cellular Mechanisms of Drug-Induced Ototoxicity and Nephrotoxicity: Therapeutic Implications of Uric Acid Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415041. [PMID: 40041973 PMCID: PMC12021111 DOI: 10.1002/advs.202415041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/02/2025] [Indexed: 04/26/2025]
Abstract
Certain medications, including cisplatin and neomycin, often cause both hearing loss and renal dysfunction. This study aims to uncover the common mechanisms behind drug-induced ototoxicity and nephrotoxicity to aid early diagnosis and treatment. Metabolomic analyses reveal simultaneous disruptions in endogenous metabolic networks in the kidney, inner ear, and serum after administrating cisplatin or neomycin. Notably, a marked elevation in uric acid (UA), a recognized indicator of renal tubular injury, is identified. Supplementing UA and inhibiting its renal excretion worsen hearing loss and hair cell damage. Single-cell nucleus sequencing and immunohistochemistry reveal major changes in xanthine oxidase and ABCG2, crucial for UA metabolism, primarily in cochlear stria vascularis cells rather than hair cells. Cisplatin triggers a significant release of UA from stria vascularis cells, reaching concentrations sufficient to induce autophagy-dependent ferroptosis in hair cells. In a coculture system, targeted interventions against these two proteins in stria vascularis cells, through either pharmacological inhibition or genetic manipulation, markedly decrease the elevated UA release and the subsequent ferroptosis of hair cells. These findings suggest a metabolic connection between the inner ear and the kidney, highlighting the therapeutic potential of modulating UA to mitigate drug-induced nephrotoxicity and ototoxicity.
Collapse
Affiliation(s)
- Suhan Guo
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Yunhao Wu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Kaidi Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Depeng Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Bin Chen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Xinyu Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Department of PharmacyGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Luping Shen
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Qixiang Zhang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Renjie Chai
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and PharmacokineticsState Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
2
|
Naganawa S, Ito R, Kawamura M, Taoka T, Yoshida T, Sone M. Direct Visualization of Tracer Permeation into the Endolymph in Human Patients Using MR Imaging. Magn Reson Med Sci 2025; 24:253-261. [PMID: 38569839 PMCID: PMC11996247 DOI: 10.2463/mrms.mp.2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024] Open
Abstract
PURPOSE The endolymph of the inner ear, vital for balance and hearing, has long been considered impermeable to intravenously administered gadolinium-based contrast agents (GBCAs) due to the tight blood-endolymph barrier. However, anecdotal observations suggested potential GBCA entry in delayed heavily T2-weighted 3D-real inversion recovery (IR) MRI scans. This study systematically investigated GBCA distribution in the endolymph using this 3D-real IR sequence. METHODS Forty-one patients suspected of endolymphatic hydrops (EHs) underwent pre-contrast, 4-h, and 24-h post-contrast 3D-real IR imaging. Signal intensity in cerebrospinal fluid (CSF), perilymph, and endolymph was measured and analyzed for temporal dynamics of GBCA uptake, correlations between compartments, and the influence of age and presence of EH. RESULTS Endolymph showed a delayed peak GBCA uptake at 24h, contrasting with peaks in perilymph and CSF at 4h. Weak to moderate positive correlations between endolymph and CSF contrast effect were observed at both 4 (r = 0.483) and 24h (r = 0.585), suggesting possible inter-compartmental interactions. Neither the presence of EH nor age significantly influenced endolymph enhancement. However, both perilymph and CSF contrast effects significantly correlated with age at both time points. CONCLUSION This study provides the first in vivo systematic confirmation of GBCA entering the endolymph following intravenous administration. Notably, endolymph uptake peaked at 24h, significantly later than perilymph and CSF. The lack of a link between endolymph contrast and both perilymph and age suggests distinct uptake mechanisms. These findings shed light on inner ear fluid dynamics and their potential implications in Ménière's disease and other inner ear disorders.
Collapse
Affiliation(s)
- Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiaki Taoka
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tadao Yoshida
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michihiko Sone
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Li J, Oh SI, Liu C, Zhao B. Inhibition of GABARAP or GABARAPL1 prevents aminoglycoside- induced hearing loss. Proc Natl Acad Sci U S A 2025; 122:e2416453122. [PMID: 39928869 PMCID: PMC11848329 DOI: 10.1073/pnas.2416453122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/06/2025] [Indexed: 02/12/2025] Open
Abstract
Aminoglycosides (AGs) are highly potent, broad-spectrum antibiotics frequently used as first-line treatments for multiple life-threatening infections. Despite their severe ototoxicity, causing irreversible hearing loss in millions of people annually, no preventive therapy has been approved. We previously reported that GABARAP and several other central autophagy proteins are essential for AG-induced hearing loss. This finding opens avenues for the rational design and development of inhibitors that selectively target proteins in this pathway, thereby mitigating AG ototoxicity. In this study, we generated a mouse model with a targeted deletion of GABARAPL1, a homolog of GABARAP, and another model deficient in both GABARAP and GABARAPL1. We found that normal hearing is unaffected by the depletion of these proteins. Remarkably, both proteins are essential for AG-induced hearing loss, with GABARAP playing a more significant role. To further explore the therapeutic potential, we designed and validated short hairpin RNAs targeting the mouse and human GABARAP gene. By inhibiting GABARAP expression in inner ear hair cells using adeno-associated virus-mediated RNA interference, we successfully prevented AG-induced hair cell death and subsequent hearing loss. Our findings underscore the critical role of GABARAP in AG ototoxicity and highlight its potential as a therapeutic target for preventing AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Seung-Il Oh
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN46202
| |
Collapse
|
4
|
Ouyang L, Ma L, Feng Y. Protective effects of MET channels on aminoglycosides- and cisplatin-induced ototoxicity. Int J Med Sci 2025; 22:732-744. [PMID: 39898250 PMCID: PMC11783074 DOI: 10.7150/ijms.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Aminoglycosides and cisplatin drugs are extensively utilized for their high efficacy in treating various conditions in the clinic, however, their ototoxic side effects warrant significant attention. These drugs could penetrate the inner ear via specific channels or transporters, which not only affect the survival of hair cells but also induce the overproduction of reactive oxygen species. Currently, scientific research mainly addresses this issue through the downstream intervention of reactive oxygen species. However, recent studies have revealed that directly reducing the uptake of these drugs by hair cells can effectively avoid initial damage. In particular, the interactions between drugs and hair cells, as well as the specific functions of relevant channels and transporters, can be explored in detail through the use of molecular dynamics simulations. The swift advancement in the field of structural biology has shed light on the structural functions of various channels and transporters closely related to drug absorption, such as electromechanical transduction channels (MET) and organic cation transporter-2, etc., providing theoretical basis and potential targets for novel ear protection strategies. It is, therefore, imperative to investigate the regulatory role of the MET channel in the up-taking of ototoxic drugs, serving as a pivotal point for the development of preventative and therapeutic approaches. This review aims to highlight the mechanism of inhibition of ototoxic substances absorption by auditory hair cells, explore how to develop novel ear protection methods by targeting these channels and transporters, and provide a new perspective and strategy for addressing drug-induced ototoxicity. The approach to protecting hair cells by targeting these channels and transporters not only broadens our understanding of the underlying mechanisms of ototoxicity, but could also spur further research and progress in the field of auditory protection.
Collapse
Affiliation(s)
- Lile Ouyang
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410028, China
| | - Lu Ma
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha 410028, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Yong Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410028, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha 410028, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha 410008, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang 421000, China
| |
Collapse
|
5
|
Jeong M, Kurihara S, Stankovic KM. An In Vitro Oxidative Stress Model of the Human Inner Ear Using Human-Induced Pluripotent Stem Cell-Derived Otic Progenitor Cells. Antioxidants (Basel) 2024; 13:1407. [PMID: 39594548 PMCID: PMC11591063 DOI: 10.3390/antiox13111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The inner ear organs responsible for hearing (cochlea) and balance (vestibular system) are susceptible to oxidative stress due to the high metabolic demands of their sensorineural cells. Oxidative stress-induced damage to these cells can cause hearing loss or vestibular dysfunction, yet the precise mechanisms remain unclear due to the limitations of animal models and challenges of obtaining living human inner ear tissue. Therefore, we developed an in vitro oxidative stress model of the pre-natal human inner ear using otic progenitor cells (OPCs) derived from human-induced pluripotent stem cells (hiPSCs). OPCs, hiPSCs, and HeLa cells were exposed to hydrogen peroxide or ototoxic drugs (gentamicin and cisplatin) that induce oxidative stress to evaluate subsequent cell viability, cell death, reactive oxygen species (ROS) production, mitochondrial activity, and apoptosis (caspase 3/7 activity). Dose-dependent reductions in OPC cell viability were observed post-exposure, demonstrating their vulnerability to oxidative stress. Notably, gentamicin exposure induced ROS production and cell death in OPCs, but not hiPSCs or HeLa cells. This OPC-based human model effectively simulates oxidative stress conditions in the human inner ear and may be useful for modeling the impact of ototoxicity during early pregnancy or evaluating therapies to prevent cytotoxicity.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
| | - Sho Kurihara
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Otolaryngology-Head and Neck Surgery, The Jikei University School of Medicine, 3-25-8 Nishishimbashi Minato-ku, Tokyo 105-8461, Japan
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.J.); (S.K.)
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
7
|
Koizumi T, Seo T, Saito K, Fujita H, Kitahara T. Gray-tone appearances on 4-hour delayed gadolinium-enhanced magnetic resonance imaging indicate severe inner ear pathology and symptoms in sudden sensorineural hearing loss. Laryngoscope Investig Otolaryngol 2024; 9:e1295. [PMID: 38984072 PMCID: PMC11231738 DOI: 10.1002/lio2.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/17/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Objective Hybrid of reversed image of positive endolymph signal and negative image of perilymph signal (HYDROPS) in delayed gadolinium-enhanced magnetic resonance imaging (MRI) typically depicts normal inner ear as "white-tone" and endolymphatic hydrops as "black-transparent" appearances, whereas ears with auditory and vestibular disorders are occasionally depicted as "gray-tone." This study aimed to investigate the pathological basis of sudden sensorineural hearing loss (SSNHL) patients with "gray-tone" appearances on HYDROPS. Methods Delayed gadolinium-enhanced MRI examinations were conducted on 29 subjects with unilateral SSNHL. We mainly analyzed positive perilymph image (PPI) and positive endolymph image (PEI), which were components HYDROPS. Results On PPI, signal intensity (SI) values extracted from the cochlear and vestibular region of interest (ROI) were higher in the SSNHL ears with dizziness/vertigo symptom at the first visit compared to the healthy ear. Additionally, the PPI/PEI enhancement pattern in the vestibule was associated with a high prevalence of hearing and vestibular deteriorations at the first visit and poor hearing improvement after treatment. Conclusion Enhancement on PPI/PEI may result from leakage of gadolinium into the inner ear following breakdown of the blood-labyrinth barrier, with high SI being correlated with the amount of leakage. Particularly, a significant leakage into the endolymphatic space, defined as PPI+/PEI+, indicates severe inner ear pathology. Ultimately, we emphasize that the "gray-tone" appearance in the inner ear on HYDROPS comprises enhancements on both PPI and PEI and propose a new classification for evaluating SSNHL Peri- and Endolymphatic image Enhancement pattern in Delayed gadolinium-enhanced MRI (SPEED). Level of Evidence 4.
Collapse
Affiliation(s)
- Toshizo Koizumi
- Department of Otolaryngology–Head and Neck SurgeryNippon Life HospitalOsakaJapan
| | - Toru Seo
- Department of OtolaryngologySt. Marianna University Yokohama Seibu HospitalYokohamaJapan
| | - Kazuya Saito
- Department of OtolaryngologyIzumi City General HospitalIzumiJapan
| | - Hiroto Fujita
- Department of Otolaryngology–Head and Neck SurgeryNippon Life HospitalOsakaJapan
| | - Tadashi Kitahara
- Department of Otolaryngology–Head and Neck SurgeryNara Medical UniversityKashiharaJapan
| |
Collapse
|
8
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Lee J, Fernandez K, Cunningham LL. Hear and Now: Ongoing Clinical Trials to Prevent Drug-Induced Hearing Loss. Annu Rev Pharmacol Toxicol 2024; 64:211-230. [PMID: 37562496 DOI: 10.1146/annurev-pharmtox-033123-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.
Collapse
Affiliation(s)
- John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lisa L Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
10
|
Ahn Y, Patil CD, Nozohouri E, Zoubi S, Patel D, Bickel U. Higher Brain Uptake of Gentamicin and Ceftazidime under Isoflurane Anesthesia Compared to Ketamine/Xylazine. Pharmaceutics 2024; 16:135. [PMID: 38276505 PMCID: PMC10820362 DOI: 10.3390/pharmaceutics16010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
We have recently shown that the volatile anesthetics isoflurane and sevoflurane acutely enhance the brain uptake of the hydrophilic markers sucrose and mannitol about two-fold from an awake condition, while the combined injection of the anesthetic agents ketamine and xylazine has no effect. The present study investigated two small-molecule hydrophilic drugs with potential neurotoxicity, the antibiotic agents ceftazidime and gentamicin. Transport studies using an in vitro blood-brain barrier (BBB) model, a monolayer of induced pluripotent stem cell-derived human brain microvascular endothelial cells seeded on Transwells, and LC-MS/MS analysis demonstrated the low permeability of both drugs in the range of sucrose, with permeability coefficients of 6.62 × 10-7 ± 2.34 × 10-7 cm/s for ceftazidime and 7.38 × 10-7 ± 2.29 × 10-7 cm/s for gentamicin. In vivo brain uptake studies of ceftazidime or gentamicin after IV doses of 25 mg/kg were performed in groups of 5-6 mice anesthetized at typical doses for surgical procedures with either isoflurane (1.5-2% v/v) or ketamine/xylazine (100:10 mg/kg I.P.). The brain uptake clearance, Kin, for ceftazidime increased from 0.033 ± 0.003 μL min-1 g-1 in the ketamine/xylazine group to 0.057 ± 0.006 μL min-1 g-1 in the isoflurane group (p = 0.0001), and from 0.052 ± 0.016 μL min-1 g-1 to 0.101 ± 0.034 μL min-1 g-1 (p = 0.0005) for gentamicin. We did not test the dose dependency of the uptake, because neither ceftazidime nor gentamicin are known substrates of any active uptake or efflux transporters at the BBB. In conclusion, the present study extends our previous findings with permeability markers and suggests that inhalational anesthetic isoflurane increases the BBB permeability of hydrophilic small-molecule endobiotics or xenobiotics when compared to the injection of ketamine/xylazine. This may be of clinical relevance in the case of potential neurotoxic substances.
Collapse
Affiliation(s)
- Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Chanakya D. Patil
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sumaih Zoubi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA (S.Z.); (D.P.)
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
11
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
12
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
13
|
Janky K, Steyger PS. Mechanisms and Impact of Aminoglycoside-Induced Vestibular Deficits. Am J Audiol 2023; 32:746-760. [PMID: 37319406 PMCID: PMC10721243 DOI: 10.1044/2023_aja-22-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.
Collapse
Affiliation(s)
- Kristen Janky
- Department of Audiology, Boys Town National Research Hospital, Omaha, NE
| | - Peter S. Steyger
- Bellucci Translational Hearing Center, Creighton University, Omaha, NE
| |
Collapse
|
14
|
Rivetti S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals (Basel) 2023; 16:1353. [PMID: 37895824 PMCID: PMC10610175 DOI: 10.3390/ph16101353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics largely used in children, but they have potential toxic side effects, including ototoxicity. Ototoxicity from aminoglycosides is permanent and is a consequence of its action on the inner ear cells via multiple mechanisms. Both uncontrollable risk factors and controllable risk factors are involved in the pathogenesis of aminoglycoside-related ototoxicity and, because of the irreversibility of ototoxicity, an important undertaking for preventing ototoxicity includes antibiotic stewardship to limit the use of aminoglycosides. Aminoglycosides are fundamental in the treatment of numerous infectious conditions at neonatal and pediatric age. In childhood, normal auditory function ensures adequate neurocognitive and social development. Hearing damage from aminoglycosides can therefore strongly affect the normal growth of the child. This review describes the molecular mechanisms of aminoglycoside-related ototoxicity and analyzes the risk factors and the potential otoprotective strategies in pediatric patients.
Collapse
Affiliation(s)
- Serena Rivetti
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
15
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Feeney MP, Schairer KS, Putterman DB. Wideband Acoustic Reflex Measurement. Semin Hear 2023; 44:84-92. [PMID: 36925659 PMCID: PMC10014201 DOI: 10.1055/s-0043-1763296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Acoustic reflex thresholds (ART) obtained using pure-tone probe stimuli as part of a traditional immittance test battery can be used to evaluate site of lesion and provide a cross-check with behavioral results. ARTs obtained as part of a wideband acoustic immittance (WAI) test battery using a click as the probe stimulus can be used in the same way with the added benefit that they may provide lower ARTs than those obtained using a pure-tone probe. Another benefit of the WAI ART test is that it can be completed without requiring a hermetic seal or pressurizing the ear canal. A new adaptive method of obtaining ARTs using WAI techniques may cut test time in half, thus making this an attractive option for future clinical use. More advanced uses of WAI ART tests include the measurement of AR growth functions. These may be used to investigate the possible effects of synaptopathy related to high levels of noise exposure and possible auditory deficits related to ototoxicity.
Collapse
Affiliation(s)
- M Patrick Feeney
- VA Portland Health Care System, National Center for Rehabilitative Auditory Research, Portland, Oregon.,Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Kim S Schairer
- Hearing and Balance Research Program, James H. Quillen VA Medical Center, Mountain Home, Tennessee.,Department of Audiology & Speech Language Pathology, East Tennessee State University, Johnson City, Tennessee
| | - Daniel B Putterman
- VA Portland Health Care System, National Center for Rehabilitative Auditory Research, Portland, Oregon.,Department of Otolaryngology, Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
17
|
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell 2022; 57:2204-2220.e6. [PMID: 36113482 PMCID: PMC9529990 DOI: 10.1016/j.devcel.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Aminoglycosides (AGs) are potent antibiotics that are capable of treating a wide variety of life-threatening infections; however, they are ototoxic and cause irreversible damage to cochlear hair cells. Despite substantial progress, little is known about the molecular pathways critical for hair cell function and survival that are affected by AG exposure. We demonstrate here that gentamicin, a representative AG antibiotic, binds to and within minutes triggers translocation of RIPOR2 in murine hair cells from stereocilia to the pericuticular area. Then, by interacting with a central autophagy component, GABARAP, RIPOR2 affects autophagy activation. Reducing the expression of RIPOR2 or GABARAP completely prevents AG-induced hair cell death and subsequent hearing loss in mice. Additionally, abolishing the expression of PINK1 or Parkin, two key mitochondrial autophagy proteins, prevents hair cell death and subsequent hearing loss caused by AG. In summary, our study demonstrates that RIPOR2-mediated autophagic dysfunction is essential for AG-induced hearing loss.
Collapse
Affiliation(s)
- Jinan Li
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bo Zhao
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
19
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Dhar G, Paikra SK, Mishra M. Aminoglycoside treatment alters hearing-related genes and depicts behavioral defects in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21871. [PMID: 35150449 DOI: 10.1002/arch.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 μg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.
Collapse
Affiliation(s)
- Gyanaseni Dhar
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Sanjeev K Paikra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
- Centre for Nanomaterials, National Institute of technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
21
|
Thulasiram MR, Ogier JM, Dabdoub A. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Front Cell Dev Biol 2022; 10:841708. [PMID: 35309932 PMCID: PMC8931286 DOI: 10.3389/fcell.2022.841708] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The stria vascularis (SV) is a highly vascularized tissue lining the lateral wall of the cochlea. The SV maintains cochlear fluid homeostasis, generating the endocochlear potential that is required for sound transduction. In addition, the SV acts as an important blood-labyrinth barrier, tightly regulating the passage of molecules from the blood into the cochlea. A healthy SV is therefore vital for hearing function. Degeneration of the SV is a leading cause of age-related hearing loss, and has been associated with several hearing disorders, including Norrie disease, Meniere's disease, Alport syndrome, Waardenburg syndrome, and Cytomegalovirus-induced hearing loss. Despite the SV's important role in hearing, there is still much that remains to be discovered, including cell-specific function within the SV, mechanisms of SV degeneration, and potential protective or regenerative therapies. In this review, we discuss recent discoveries elucidating the molecular regulatory networks of SV function, mechanisms underlying degeneration of the SV, and otoprotective strategies for preventing drug-induced SV damage. We also highlight recent clinical developments for treating SV-related hearing loss and discuss future research trajectories in the field.
Collapse
Affiliation(s)
- Matsya R Thulasiram
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline M Ogier
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Alain Dabdoub
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proc Natl Acad Sci U S A 2022; 119:2117946119. [PMID: 35197290 PMCID: PMC8892513 DOI: 10.1073/pnas.2117946119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
Aminoglycosides (AGs) are commonly used antibiotics that cause deafness through the irreversible loss of cochlear sensory hair cells (HCs). How AGs enter the cochlea and then target HCs remains unresolved. Here, we performed time-lapse multicellular imaging of cochlea in live adult hearing mice via a chemo-mechanical cochleostomy. The in vivo tracking revealed that systemically administered Texas Red-labeled gentamicin (GTTR) enters the cochlea via the stria vascularis and then HCs selectively. GTTR uptake into HCs was completely abolished in transmembrane channel-like protein 1 (TMC1) knockout mice, indicating mechanotransducer channel-dependent AG uptake. Blockage of megalin, the candidate AG transporter in the stria vascularis, by binding competitor cilastatin prevented GTTR accumulation in HCs. Furthermore, cilastatin treatment markedly reduced AG-induced HC degeneration and hearing loss in vivo. Together, our in vivo real-time tracking of megalin-dependent AG transport across the blood-labyrinth barrier identifies new therapeutic targets for preventing AG-induced ototoxicity.
Collapse
|
23
|
Triamcinolone acetonide can be detected in cerebrospinal fluid after intratympanic injection. Eur J Pharm Biopharm 2021; 170:52-58. [PMID: 34864199 DOI: 10.1016/j.ejpb.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 11/21/2022]
Abstract
Intratympanically applied treatments are of increasing interest to the otologic community to treat sudden sensorineural hearing loss or vestibular disorders but also to deliver gene therapy agents, or biologics to the inner ear. Further diversion from the middle ear and perilymph to blood circulation and cerebrospinal fluid via the cochlear aqueduct are one of the limiting factors and so far not understood well enough. In this study, intratympanically applied triamcinolone acetonide was determined in cerebrospinal fluid. Additionally, perilymph was sampled through the round window membrane as well as at the lateral semicircular canal to determine drug levels. Of the twenty-one included patients, triamcinolone acetonide was quantifiable in cerebrospinal fluid in 43% at very low levels (range 0 ng/ml - 6.2 ng/ml) which did not correlate with perilymph levels. Drug levels at the two different perilymph sampling sites were within a range of 13.5 ng/ml to 1180.0 ng/ml. Results suggest an equal distribution of triamcinolone acetonide to semicircular canals, which might support the use of triamcinolone acetonide as a treatment option for vestibular pathologies such as Menièrés disease. On the other hand, the distribution to cerebrospinal fluid might be limiting current approaches in gene therapy where a central distribution is unwanted.
Collapse
|
24
|
Abstract
Ototoxicity refers to damage to the inner ear that leads to functional hearing loss or vestibular disorders by selected pharmacotherapeutics as well as a variety of environmental exposures (eg, lead, cadmium, solvents). This article reviews the fundamental mechanisms underlying ototoxicity by clinically relevant, hospital-prescribed medications (ie, aminoglycoside antibiotics or cisplatin, as illustrative examples). Also reviewed are current strategies to prevent prescribed medication-induced ototoxicity, with several clinical or candidate interventional strategies being discussed.
Collapse
Affiliation(s)
- Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
25
|
Samocha-Bonet D, Wu B, Ryugo DK. Diabetes mellitus and hearing loss: A review. Ageing Res Rev 2021; 71:101423. [PMID: 34384902 DOI: 10.1016/j.arr.2021.101423] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
Diabetes (type 2) and sensorineural hearing loss are common health problems manifested with ageing. While both type 1 and type 2 diabetes have been associated with hearing loss, a causal link has been difficult to establish. Individuals with diabetes have twice the incidence of hearing loss compared to those without diabetes and those with prediabetes have a 30% higher rate of hearing loss. Whether hearing loss is associated with diabetes independent of glycemic control remains to be determined. Hearing loss has its own set of risk factors and shares others with diabetes. This review will summarize the complex relationship between diabetes and sensorineural hearing loss.
Collapse
Affiliation(s)
- Dorit Samocha-Bonet
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, 2010, Australia.
| | - Buffy Wu
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - David K Ryugo
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia; School of Medical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia; Department of Otolaryngology Head and Neck and Skull Base Surgery, St. Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| |
Collapse
|
26
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
27
|
Westman MR, Putterman DB, Garinis AC, Hunter LL, Feeney MP. Wideband Acoustic Reflex Growth in Adults With Cystic Fibrosis. Am J Audiol 2021; 30:825-833. [PMID: 33661027 PMCID: PMC9126118 DOI: 10.1044/2020_aja-20-00117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/25/2020] [Accepted: 11/05/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose Individuals with cystic fibrosis (CF) are often treated with intravenous (IV) aminoglycoside (AG) antibiotics to manage life-threatening bacterial infections. Preclinical animal data suggest that, in addition to damaging cochlear hair cells, this class of antibiotics may cause cochlear synaptopathy and/or damage to higher auditory structures. The acoustic reflex growth function (ARGF) is a noninvasive, objective measure of neural function in the auditory system. A shallow ARGF (small reflex-induced changes in middle ear function with increasing elicitor level) has been associated with synaptopathy due to noise exposure in rodent and human studies. In this study, the ARGF was obtained in CF patients with normal hearing, some of whom have been treated with IV AGs, and a control group without CF. The hypothesis was that patients with IV-AG exposure would have a shallow ARGF due to cochlear synaptopathy caused by ototoxicity. Method Wideband ARGFs were examined in four groups of normal-hearing participants: a control group of 29 individuals without CF; and in 57 individuals with CF grouped by lifetime IV-AG exposure: 15 participants with no exposure, 21 with low exposure, and 21 with high exposure. Procedures included pure-tone audiometry, clinical immittance, wideband acoustic immittance battery, including ARGFs, and transient evoked otoacoustic emissions. Results CF subjects with normal pure-tone thresholds and either high or low lifetime IV-AG exposure had enhanced ARGFs compared to controls and CF participants without IV-AG exposure. The groups did not differ in transient evoked otoacoustic emission signal-to-noise ratio. Conclusion These results diverge from the shallow ARGF pattern observed in studies of noise-induced cochlear synaptopathy and are suggestive of a central mechanism of auditory dysfunction in patients with AG-induced ototoxicity.
Collapse
Affiliation(s)
- Martha R. Westman
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Minneapolis
| | - Daniel B. Putterman
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| | - Angela C. Garinis
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
- Oregon Hearing Research Center, Oregon Health & Science University, Portland
| | | | - M. Patrick Feeney
- National Center for Rehabilitative Auditory Research (NCRAR), VA Portland Health Care System, OR
- Department of Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland
| |
Collapse
|
28
|
Coffin AB, Boney R, Hill J, Tian C, Steyger PS. Detecting Novel Ototoxins and Potentiation of Ototoxicity by Disease Settings. Front Neurol 2021; 12:725566. [PMID: 34489859 PMCID: PMC8418111 DOI: 10.3389/fneur.2021.725566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.
Collapse
Affiliation(s)
| | | | - Jordan Hill
- Washington State University Vancouver, Vancouver, WA, United States
| | - Cong Tian
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Peter S. Steyger
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
- National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
29
|
Chai Y, He W, Yang W, Hetrick AP, Gonzalez JG, Sargsyan L, Wu H, Jung TTK, Li H. Intratympanic Lipopolysaccharide Elevates Systemic Fluorescent Gentamicin Uptake in the Cochlea. Laryngoscope 2021; 131:E2573-E2582. [PMID: 33956344 PMCID: PMC8453712 DOI: 10.1002/lary.29610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Objectives/Hypothesis Lipopolysaccharide (LPS), a key component of bacterial endotoxins, activates macrophages and triggers the release of inflammatory cytokines in mammalian tissues. Recent studies have shown that intratympanic injection of LPS simulates acute otitis media (AOM) and results in morphological and functional changes in the inner ear. Here we established an AOM mouse model with LPS to investigate the uptake of ototoxic gentamicin in the inner ear, and elucidated the underlying mechanism by focusing on cochlear inflammation as a result of AOM. Study Design Preclinical rodent animal model. Methods Fluorescently tagged gentamicin (GTTR) was systemically administered to mice with AOM. Iba1‐positive macrophage morphology and inner ear cytokine profile were evaluated by immunofluorescence technique and a mouse cytokine array kit, respectively. Results We observed characteristic symptoms of AOM in the LPS‐treated ears with elevated hearing thresholds indicating a conductive hearing loss. More importantly, the LPS‐induced AOM activated cochlear inflammatory responses, manifested by macrophage infiltration, particularly in the organ of Corti and the spiral ligament, in addition to the up‐regulation of proinflammatory cytokines. Meanwhile, GTTR uptake in the stria vascularis and sensory hair cells from all the LPS‐treated ears was significantly enhanced at 24, 48, and 72‐hour post‐treatment, as the most prominent enhancement was observed in the 48‐hour group. Conclusion In summary, this study suggests that the pathological cochlea is more susceptible to ototoxic drugs, including aminoglycosides, and justified the clinical concern of aminoglycoside ototoxicity in the AOM treatment. Laryngoscope, 131:E2573–E2582, 2021
Collapse
Affiliation(s)
- Yongchuan Chai
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiwei He
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiqiang Yang
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Jessica G Gonzalez
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Timothy T K Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| |
Collapse
|
30
|
Sargsyan L, Hetrick AP, Gonzalez JG, Leek MR, Martin GK, Li H. Effects of combined gentamicin and furosemide treatment on cochlear ribbon synapses. Neurotoxicology 2021; 84:73-83. [PMID: 33667563 DOI: 10.1016/j.neuro.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
It is well-established that aminoglycoside antibiotics are ototoxic, and the toxicity can be drastically enhanced by the addition of loop diuretics, resulting in rapid irreversible hair cell damage. Using both electrophysiologic and morphological approaches, we investigated whether this combined treatment affected the cochlea at the region of ribbon synapses, consequently resulting in auditory synaptopathy. A series of varied gentamicin and furosemide doses were applied to C57BL/6 mice, and auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were measured to assess ototoxic damage within the cochlea. In brief, the treatment effectively induced cochlear damage and promoted a certain reorganization of synaptic ribbons, while a reduction of ribbon density only occurred after a substantial loss of outer hair cells. In addition, both the ABR wave I amplitude and the ribbon density were elevated in low-dose treatment conditions, but a correlation between the two events was not significant for individual cochleae. In sum, combined gentamicin and furosemide treatment, at titrated doses below those that produce hair cell damage, typically triggers synaptic plasticity rather than a permanent synaptic loss.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA
| | | | - Marjorie R Leek
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Glen K Martin
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, CA 92357, USA; Department of Otolaryngology - Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA.
| |
Collapse
|
31
|
Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, Chi F, Li H, Ren D. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol 2020; 236:5235-5252. [PMID: 33368220 DOI: 10.1002/jcp.30228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Intratympanic injection of gentamicin has proven to be an effective therapy for intractable vestibular dysfunction. However, most studies to date have focused on the cochlea, so little is known about the distribution and uptake of gentamicin by the counterpart of the auditory system, specifically vestibular hair cells (HCs). Here, with a combination of in vivo and in vitro approaches, we used a gentamicin-Texas Red (GTTR) conjugate to investigate the mechanisms of gentamicin vestibulotoxicity in the developing mammalian utricular HCs. In vivo, GTTR fluorescence was concentrated in the apical cytoplasm and the cellular membrane of neonatal utricular HCs, but scarce in the nucleus of HCs and supporting cells. Quantitative analysis showed the GTTR uptake by striolar HCs was significantly higher than that in the extrastriola. In addition, the GTTR fluorescence intensity in the striola was increased gradually from 1 to 8 days, peaking at 8-9 days postnatally. In vitro, utricle explants were incubated with GTTR and candidate uptake conduits, including mechanotransduction (MET) channels and endocytosis in the HC, were inhibited separately. GTTR uptake by HCs could be inhibited by quinine, a blocker of MET channels, under both normal and stressed conditions. Meanwhile, endocytic inhibition only reduced GTTR uptake in the CoCl2 hypoxia model. In sum, the maturation of MET channels mediated uptake of GTTR into vestibular HCs. Under stressed conditions, MET channels play a pronounced role, manifested by channel-dependent stress enhanced GTTR permeation, while endocytosis participates in GTTR entry in a more selective manner.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Ziyu He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Chunfu Dai
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
32
|
Toll-like Receptor 4 Signaling and Downstream Neutrophilic Inflammation Mediate Endotoxemia-Enhanced Blood-Labyrinth Barrier Trafficking. Otol Neurotol 2020; 41:123-132. [PMID: 31568132 DOI: 10.1097/mao.0000000000002447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Both toll-like receptor 4 (TLR4) and downstream neutrophil activity are required for endotoxemia-enhanced blood-labyrinth barrier (BLB) trafficking. BACKGROUND Aminoglycoside and cisplatin are valuable clinical therapies; however, these drugs often cause life-long hearing loss. Endotoxemia enhances the ototoxicity of aminoglycosides and cisplatin in a TLR4 dependent mechanism for which downstream proinflammatory signaling orchestrates effector immune cells including neutrophils. Neutrophil-mediated vascular injury (NMVI) can enhance molecular trafficking across endothelial barriers and may contribute to endotoxemia-enhanced drug-induced ototoxicity. METHODS Lipopolysaccharide (LPS) hypo-responsive TLR4-KO mice and congenitally neutropenic granulocyte colony-stimulating factor (GCSF) GCSF-KO mice were studied to investigate the relative contributions of TLR4 signaling and downstream neutrophil activity to endotoxemia-enhanced BLB trafficking. C57Bl/6 wild-type mice were used as a positive control. Mice were treated with LPS and 24 hours later cochleae were analyzed for gene transcription of innate inflammatory cytokine/chemokine signaling molecules, neutrophil recruitment, and vascular trafficking of the paracellular tracer biocytin-TMR. RESULTS Cochlear transcription of innate proinflammatory cytokines/chemokines was increased in endotoxemic C57Bl/6 and GCSF-KO, but not in TLR4-KO mice. More neutrophils were recruited to endotoxemic C57Bl/6 cochleae compared with both TLR4 and GCSF-KO cochleae. Endotoxemia enhanced BLB trafficking of biocytin-TMR in endotoxemic C57Bl/6 cochleae and this was attenuated in both TLR4 and GCSF-KO mice. CONCLUSION Together these results suggest that TLR4-mediated innate immunity cytokine/chemokine signaling alone is not sufficient for endotoxemia-enhanced trafficking of biocytin-TMR and that downstream neutrophil activity is required to enhance BLB trafficking. Clinically, targeting neutrophilic inflammation could protect hearing during aminoglycoside, cisplatin, or other ototoxic drug therapies.
Collapse
|
33
|
Hanawa A, Ogata G, Sawamura S, Asai K, Kanzaki S, Hibino H, Einaga Y. In Vivo Real-Time Simultaneous Examination of Drug Kinetics at Two Separate Locations Using Boron-Doped Diamond Microelectrodes. Anal Chem 2020; 92:13742-13749. [PMID: 32786440 DOI: 10.1021/acs.analchem.0c01707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methylcobalamin, which is used for the clinical treatment of patients with neuropathy, can have an impact on the sensorineural components associated with the cochlea, and it is possible that the auditory threshold in a certain population of patients with deafness may be recovered. Nonetheless, it remains uncertain whether the action site of methylcobalamin is localized inside or outside the cochlea and which cellular or tissue element is targeted by the drug. In the present work, we developed a method to realize in vivo real-time simultaneous examination of the drug kinetics in two separate locations using boron-doped diamond microelectrodes. First, the analytical performance of methylcobalamin was studied and the measurement protocol was optimized in vitro. Then, the optimized protocol was applied to carry out real-time measurements inside the cochlea and the leg muscle in live guinea pigs while systemically administering methylcobalamin. The results showed that the methylcobalamin concentration in the cochlea was below the limit of detection for the microelectrodes or the drug did not reach the cochlea, whereas the compound clearly reached the leg muscle.
Collapse
Affiliation(s)
- Ai Hanawa
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Kai Asai
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Sho Kanzaki
- Department of Otolaryngology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
34
|
Morán-Zendejas R, Delgado-Ramírez M, Xu J, Valdés-Abadía B, Aréchiga-Figueroa IA, Cui M, Rodríguez-Menchaca AA. In vitro and in silico characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. Br J Pharmacol 2020; 177:4548-4560. [PMID: 32726456 DOI: 10.1111/bph.15214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Aminoglycoside antibiotics are positively charged molecules that are known to inhibit several ion channels. In this study, we have shown that aminoglycosides also inhibit the activity of Kir4.1 channels. Aminoglycosides inhibit Kir4.1 channels by a pore-blocking mechanism, plugging the central vestibule of the channel. EXPERIMENTAL APPROACH Patch-clamp recordings were made in HEK-293 cells transiently expressing Kir4.1 channels to analyse the effects of gentamicin, neomycin and kanamycin. In silico modelling followed by mutagenesis were realized to identify the residues critical for aminoglycosides binding to Kir4.1. KEY RESULTS Aminoglycoside antibiotics block Kir4.1 channels in a concentration- and voltage-dependent manner, getting access to the protein from the intracellular side of the plasma membrane. Aminoglycosides block Ki4.1 with a rank order of potency as follows: gentamicin ˃ neomycin ˃ kanamycin. The residues T128 and principally E158, facing the central cavity of Kir4.1, are important structural determinants for aminoglycosides binding to the channel, as determined by our in silico modelling and confirmed by mutagenesis experiments. CONCLUSION AND IMPLICATIONS Kir4.1 channels are also target of aminoglycoside antibiotics, which could affect potassium transport in several tissues.
Collapse
Affiliation(s)
- Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Belkis Valdés-Abadía
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
35
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
36
|
High-Dose Furosemide Enhances the Magnetic Resonance Signal of Systemic Gadolinium in the Mammalian Cochlea. Otol Neurotol 2020; 41:545-553. [DOI: 10.1097/mao.0000000000002571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Systemic Fluorescent Gentamicin Enters Neonatal Mouse Hair Cells Predominantly Through Sensory Mechanoelectrical Transduction Channels. J Assoc Res Otolaryngol 2020; 21:137-149. [PMID: 32152768 DOI: 10.1007/s10162-020-00746-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/10/2020] [Indexed: 01/25/2023] Open
Abstract
Systemically administered aminoglycoside antibiotics can enter inner ear hair cells and trigger apoptosis. However, the in vivo route(s) by which aminoglycoside antibiotics enter hair cells remains controversial. Aminoglycosides can enter mouse hair cells by endocytosis or by permeation through transmembrane ion channels such as sensory mechanoelectrical transduction (MET) channels, transient receptor potential (TRP) channels, P2X channels, Piezo2-containing ion channels, or a combination of these routes. Transmembrane channel-like 1 (TMC1) and TMC2 are essential for sensory MET and appear to be the pore-forming components of sensory MET channels. The present study tested the hypothesis that systemic fluorescent gentamicin enters mouse hair cells predominantly through sensory MET channels. We employed Tmc1Δ, Tmc2Δ, and Tmc1::mCherry mice. In Tmc1::mCherry mice, the transgene was integrated on the X chromosome, resulting in mosaic expression of TMC1-mCherry in the hair cells of female heterozygous mice. After systemic administration of gentamicin-conjugated Texas Red (GTTR) into Tmc1Δ;Tmc2Δ mice and wild-type mice at postnatal day 4 (P4), robust GTTR fluorescence was detected in wild-type hair cells, whereas little or no GTTR fluorescence was detected in Tmc1Δ;Tmc2Δ hair cells. When GTTR was injected into developing mice at P0, P2, P4, or P6, the GTTR fluorescent intensity gradually increased from P0 to P4 in wild-type hair cells, whereas the intensity was stably low from P0 through P6 in Tmc1Δ;Tmc2Δ hair cells. The increase in the GTTR intensity coincided with the spatio-temporal onset of sensory MET in wild-type hair cells. In Tmc1::mCherry cochleae, only hair cells that showed a significant uptake of systemic GTTR took up FM1-43. Transmission electron microscopy could detect no disruption of normal endocytosis at the apical surface of Tmc1Δ;Tmc2Δ hair cells in vitro. These results provide substantial novel evidence that in vivo gentamicin enters neonatal mouse hair cells predominantly through sensory MET channels and not via endocytosis.
Collapse
|
38
|
Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, Zhang H, Lv P, Jia Z. Transient Receptor Potential Cation Channel Subfamily Vanilloid 4 and 3 in the Inner Ear Protect Hearing in Mice. Front Mol Neurosci 2019; 12:296. [PMID: 31866822 PMCID: PMC6904345 DOI: 10.3389/fnmol.2019.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The transient receptor potential cation channel, vanilloid type (TRPV) 3, is a member of the TRPV subfamily that is expressed predominantly in the skin, hair follicles, and gastrointestinal tract. It is also distributed in the organ of Corti of the inner ear and colocalizes with TRPV1 or TRPV4, but its role in auditory function is unknown. In the present study, we demonstrate that TRPV3 is expressed in inner hair cells (HCs) but mainly in cochlear outer HCs in mice, with expression limited to the cytoplasm and not detected in stereocilia. We compared the number of HCs as well as distortion product otoacoustic emissions (DPOAE) and auditory brainstem response (ABR) thresholds between TRPV3 knockout (V3KO) and wild-type (V3WT) mice and found that although most mutants (72.3%) had normal hearing, a significant proportion (27.7%) showed impaired hearing associated with loss of cochlear HCs. Compensatory upregulation of TRPV4 in HCs prevented HC damage and kanamycin-induced hearing loss and preserved normal auditory function in most of these mice. Thus, TRPV4 and TRPV3 in cochlear HCs protect hearing in mice; moreover, the results suggest some functional redundancy in the functions of TRPV family members. Our findings provide novel insight into the molecular basis of auditory function in mammals that can be applied to the development of strategies to mitigate hearing loss.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaowei Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Lifang Huo
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yirui Ma
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
39
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
40
|
Jiang M, Li H, Johnson A, Karasawa T, Zhang Y, Meier WB, Taghizadeh F, Kachelmeier A, Steyger PS. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss. SCIENCE ADVANCES 2019; 5:eaaw1836. [PMID: 31328162 PMCID: PMC6636990 DOI: 10.1126/sciadv.aaw1836] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/13/2019] [Indexed: 05/26/2023]
Abstract
Aminoglycoside antibiotics are essential for treating life-threatening bacterial infections, despite the risk of lifelong hearing loss. Infections induce inflammation and up-regulate expression of candidate aminoglycoside-permeant cation channels, including transient receptor potential vanilloid-1 (TRPV1). Heterologous expression of TRPV1 facilitated cellular uptake of (fluorescently tagged) gentamicin that was enhanced by agonists, and diminished by antagonists, of TRPV1. Cochlear TRPV1 was immunolocalized near the apical membranes of sensory hair cells, adjacent supporting cells, and marginal cells in the stria vascularis. Exposure to immunostimulatory lipopolysaccharides, to simulate of bacterial infections, increased cochlear expression of TRPV1 and hair cell uptake of gentamicin. Lipopolysaccharide exposure exacerbated aminoglycoside-induced auditory threshold shifts and loss of cochlear hair cells in wild-type, but not in heterozygous Trpv1+/- or Trpv1 knockout, mice. Thus, TRPV1 facilitates cochlear uptake of aminoglycosides, and bacteriogenic stimulation upregulates TRPV1 expression to exacerbate cochleotoxicity. Furthermore, loss-of-function polymorphisms in Trpv1 can protect against immunogenic exacerbation of aminoglycoside-induced cochleotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Anastasiya Johnson
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yuan Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - William B. Meier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
41
|
Intracochlear drug delivery: Fluorescent tracer evaluation for quantification of distribution in the cochlear partition. Eur J Pharm Sci 2019; 126:49-58. [PMID: 30195649 DOI: 10.1016/j.ejps.2018.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022]
Abstract
Measurement of drug distribution in the inner ear has important roles in the design of local delivery methods, such as direct, intracochlear delivery, and in assessment of emerging drug candidates in preclinical animal models. Sampling methods have been used in the past to measure drug concentrations in the cochlear fluids, but these methods provide no direct information about drug distribution in the cochlear tissues. In this work, we evaluated four fluorescent markers that simulate drug distribution in the organ of Corti after intracochlear delivery to the cochlea's scala tympani compartment. Our hypothesis is that ultimately, a cocktail comprising several fluorescent drug surrogates or fluorescently-tagged drugs, each with differing distribution, spreading, and clearance behavior, can be used to evaluate both transient and cumulative drug distributions associated with different delivery techniques. In this study, FITC-dextran, Qtracker™ 655, gentamicin Texas-Red, and FM 1-43 FX were each evaluated as candidate markers by direct intracochlear infusion into guinea-pig cochleae. Distribution of the markers was measured using fluorescence confocal microscopy imaging of cochlear whole mount dissections from animals sacrificed 3 h after the tracer-infusion. For all four tracers, strong fluorescence was observed in the tissue sections near the base, but only Qtracker™-655, gentamicin Texas-Red (GTTR) and FM 1-43 FX exhibited any specificity in labelling of the sensory hair cells. Therefore, these substances represent leading candidates for the quantification drug distribution achieved by different delivery approaches to the scala tympani.
Collapse
|
42
|
Marques P, Duan M, Perez-Fernandez N, Spratley J. Gentamicin delivery to the inner ear: Does endolymphatic hydrops matter? PLoS One 2018; 13:e0207467. [PMID: 30440019 PMCID: PMC6237362 DOI: 10.1371/journal.pone.0207467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction Middle ear application of gentamicin is a common medical treatment for uncontrolled Ménière’s disease. The objective of the study was to evaluate the impact of endolymphatic hydrops on inner ear delivery. Methods Perilymph gentamicin concentrations and correlation with endolymphatic hydrops in an animal model were assessed. A group of 24 guinea pigs was submitted to surgical obstruction of the endolymphatic sac and duct of the right ear. Gentamicin was applied either to the right ear’s round window niche or through a transtympanic injection. Perilymph specimens were collected at different times. Histologic morphometry was used to evaluate both turn-specific and overall hydrops degree. Results In animals with endolymphatic hydrops, lower concentrations of gentamicin were observed after 20 or 120 minutes of exposure and in both types of administration, when compared to controls. This difference reached statistical significance in the round window niche application group (Mann-Whitney, p = 0,007). A negative correlation between perilymphatic gentamicin concentration and hydrops degree could be observed in both groups, after 120 minutes of exposure (Spearman correlation, round window niche p<0,001; TT p = 0,005). Conclusions The study indicates that the endolymphatic hydrops degree has a negative interference on the delivery of gentamicin into the inner ear following middle ear application.
Collapse
Affiliation(s)
- Pedro Marques
- Department of Otorhinolaryngology, S.João Hospital Centre, Porto, Portugal
- Unit of Otorhinolaryngology, Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
- * E-mail:
| | - Maoli Duan
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otolaryngology, Head and Neck Surgery, Karolinska Universisty Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Jorge Spratley
- Department of Otorhinolaryngology, S.João Hospital Centre, Porto, Portugal
- Unit of Otorhinolaryngology, Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), University of Porto Medical School, Porto, Portugal
| |
Collapse
|
43
|
Kachelmeier A, Shola T, Meier WB, Johnson A, Jiang M, Steyger PS. Simplified, automated methods for assessing pixel intensities of fluorescently-tagged drugs in cells. PLoS One 2018; 13:e0206628. [PMID: 30383813 PMCID: PMC6211712 DOI: 10.1371/journal.pone.0206628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Assessing the cytoplasmic uptake of fluorescently-tagged drugs in heterogeneous cell types currently involves time-consuming manual segmentation of confocal microscopy images. We developed a set of methods that incorporate map algebra techniques to facilitate and expedite image segmentation, particularly of the parenchyma of intermediate cells in the stria vascularis of the inner ear. Map algebra is used to apply a convolution kernel to pixel neighborhoods to create a masking image to select pixels in the original image for further operations. Here, we describe the utility of integrated intensity-based, percentile-based, and local autocorrelation-based methods to automate segmentation of images into putative morphological regions for pixel intensity analysis. Integrated intensity-based methods are variants of watershed segmentation tools that determine morphological boundaries from rates of change in integrated pixel intensity. Percentile- and local autocorrelation-based methods evolved out of the process of developing map algebra- and integrated intensity-based tools. We identified several simplifications that are surprisingly effective for image segmentation and pixel intensity analysis. These methods were empirically validated on three levels: first, the algorithms were developed based on iterations of inspected results; second, algorithms were tested for various types of robustness; and third, developed algorithms were validated against results from manually-segmented images. We conclude the key to automated segmentation is supervision of output data.
Collapse
Affiliation(s)
- Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Tsering Shola
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - William B. Meier
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Anastasiya Johnson
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
44
|
Konrad-Martin D, Poling GL, Garinis AC, Ortiz CE, Hopper J, Bennett KO, Dille MF. Applying U.S. national guidelines for ototoxicity monitoring in adult patients: perspectives on patient populations, service gaps, barriers and solutions. Int J Audiol 2018; 57:S3-S18. [PMID: 29157038 PMCID: PMC6450095 DOI: 10.1080/14992027.2017.1398421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To promote establishment of effective ototoxicity monitoring programs (OMPs), this report reviews the U.S. national audiology guidelines in relation to "real world" OMP application. Background is provided on the mechanisms, risks and clinical presentation of hearing loss associated with major classes of ototoxic medications. DESIGN This is a non-systematic review using PubMed, national and international agency websites, personal communications between ototoxicity experts, and results of unpublished research. Examples are provided of OMPs in various healthcare settings within the U.S. civilian sector, Department of Defense (DoD), and Department of Veterans Affairs (VA). STUDY SAMPLE The five OMPs compared in this report represent a convenience sample of the programs with which the authors are affiliated. Their opinions were elicited via two semi-structured teleconferences on barriers and facilitators of OMP, followed by a self-administered questionnaire on OMP characteristics and practices, with responses synthesized herein. Preliminary results are provided from an ongoing VA clinical trial at one of these OMP sites. Participants were 40 VA patients who received cisplatin chemotherapy in 2014-2017. The study arms contrast access to care for OMP delivered on the treatment unit versus usual care as provided in the audiology clinic. RESULTS Protocols of the OMPs examined varied, reflecting their diverse settings. Service delivery concerns included baseline tests missed or completed after the initial treatment, and monitoring tests done infrequently or only after cessation of treatment. Perceived barriers involved logistics related to accessing and testing patients, such as a lack of processes to help patients enter programs, patients' time and scheduling constraints, and inconvenient audiology clinic locations. Use of abbreviated or screening methods facilitated monitoring. CONCLUSIONS The most effective OMPs integrated audiological management into care pathways of the clinical specialties that prescribe ototoxic medications. More OMP guidance is needed to inform evaluation schedules, outcome reporting, and determination of actionable ototoxic changes. Guidance is also lacking on the use of hearing conservation approaches suitable for the mass testing needed to support large-scale OMP efforts. Guideline adherence might improve with formal endorsement from organizations governing the medical specialty stakeholders in OMP such as oncologists, pulmonologists, infectious disease specialists, ototolaryngologists and pharmacists.
Collapse
Affiliation(s)
- Dawn Konrad-Martin
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Gayla L. Poling
- Mayo Clinic, Department of Otorhinolaryngology, Division of Audiology, Rochester, MN
| | - Angela C. Garinis
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Candice E. Ortiz
- Walter Reed National Military Medical Center, National Military Audiology and Speech Pathology Center, Bethesda, MD
| | - Jennifer Hopper
- Department of Otolaryngology, Yale University School of Medicine, New Haven, CT
| | - Keri O’Connell Bennett
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Marilyn F. Dille
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| |
Collapse
|
45
|
N-Methyl-D-Aspartate Receptors Involvement in the Gentamicin-Induced Hearing Loss and Pathological Changes of Ribbon Synapse in the Mouse Cochlear Inner Hair Cells. Neural Plast 2018; 2018:3989201. [PMID: 30123246 PMCID: PMC6079453 DOI: 10.1155/2018/3989201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Cochlear inner hair cell (IHC) ribbon synapses play an important role in sound encoding and neurotransmitter release. Previous reports show that both noise and aminoglycoside exposures lead to reduced numbers and morphologic changes of synaptic ribbons. In this work, we determined the distribution of N-methyl-D-aspartate receptors (NMDARs) and their role in the gentamicin-induced pathological changes of cochlear IHC ribbon synaptic elements. In normal mature mouse cochleae, the majority of NMDARs were distributed on the modiolar side of IHCs and close to the IHC nuclei region, while most of synaptic ribbons and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) were located on neural terminals closer to the IHC basal poles. After gentamicin exposure, the NMDARs increased and moved towards the IHC basal poles. At the same time, synaptic ribbons and AMPARs moved toward the IHC bundle poles on the afferent dendrites. The number of ribbon synapse decreased, and this was accompanied by increased auditory brainstem response thresholds and reduced wave I amplitudes. NMDAR antagonist MK801 treatment reduced the gentamicin-induced hearing loss and the pathological changes of IHC ribbon synapse, suggesting that NMDARs were involved in gentamicin-induced ototoxicity by regulating the number and distribution of IHC ribbon synapses.
Collapse
|
46
|
Rah YC, Han EJ, Park S, Rhee J, Koun S, Park HC, Choi J. In vivo assay of the potential gadolinium-induced toxicity for sensory hair cells using a zebrafish animal model. J Appl Toxicol 2018; 38:1398-1404. [DOI: 10.1002/jat.3656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Eun Jung Han
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Jihye Rhee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| | - Soonil Koun
- Biomedical Research Center Korea University Ansan Hospital; Seoul Republic of Korea
| | - Hae-Chul Park
- Korea University Graduate School of Medicine; Laboratory of Neurodevelopmental Genetics; Seoul Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University College of Medicine; Korea University Ansan Hospital; Seoul Republic of Korea
| |
Collapse
|
47
|
Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea. Histochem Cell Biol 2018; 150:281-289. [PMID: 29862415 DOI: 10.1007/s00418-018-1683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2018] [Indexed: 10/14/2022]
Abstract
Aminoglycoside ototoxicity results in permanent loss of the sensory hair cells in the mammalian cochlea. It usually begins at the basal turn causing high-frequency hearing loss. Here we describe previously unreported resistance of hair cells to neomycin ototoxicity in the extreme basal (hook) region of the developing cochlea of the C57BL/6 mouse. Organ of Corti explants from mice at postnatal day 3 were incubated (37 °C, 5% CO2) in normal culture medium for 19.5 h prior to and after exposure to neomycin (1 mM, 3 h). To study neomycin uptake in the hair cells, cochlear explants were incubated with Neomycin Texas-red (NTR) conjugate. As expected, exposure to neomycin significantly reduced the survival of inner (IHC) and outer hair cells (OHC). IHC survival rate was high in the apical segment and low in the basal segment. OHC were well preserved in the apical and hook regions, with substantial OHC loss in the basal segment. The NTR uptake study demonstrated that the high survival rate in the extreme basal turn OHC was associated with low NTR uptake. Treatment with a calcium chelator (BAPTA), which disrupts the opening of mechanoelectrical (MET) transduction channels, abolished or reduced NTR uptake in the hair cells throughout the cochlea. This confirmed the essential role of MET channels in neomycin uptake and implied that the transduction channels could be impaired in the hook region of the developing mouse cochlea, possibly as a result of the cadherin 23 mutation responsible for the progressive deafness in C57BL/6 mice.
Collapse
|
48
|
Ghelfi E, Grondin Y, Millet EJ, Bartos A, Bortoni M, Oliveira Gomes Dos Santos C, Trevino-Villarreal HJ, Sepulveda R, Rogers R. In vitro gentamicin exposure alters caveolae protein profile in cochlear spiral ligament pericytes. Proteome Sci 2018; 16:7. [PMID: 29760588 PMCID: PMC5938607 DOI: 10.1186/s12953-018-0132-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/04/2018] [Indexed: 12/20/2022] Open
Abstract
Background The aminoglycoside antibiotic gentamicin is an ototoxic drug and has been used experimentally to investigate cochlear damage induced by noise.We have investigated the changes in the protein profile associated with caveolae in gentamicin treated and untreated spiral ligament (SL) pericytes, specialized cells in the blood labyrinth barrier of the inner ear microvasculature. Pericytes from various microvascular beds express caveolae, protein and cholesterol rich microdomains, which can undergo endocytosis and transcytosis to transport small molecules in and out the cells. A different protein profile in transport-specialized caveolae may induce pathological changes affecting the integrity of the blood labyrinth barrier and ultimately contributing to hearing loss. Method Caveolae isolation from treated and untreated cells is achieved through ultracentrifugation of the lysates in discontinuous gradients. Mass spectrometry (LC-MS/MS) analysis identifies the proteins in the two groups. Proteins segregating with caveolae isolated from untreated SL pericytes are then compared to caveolae isolated from SL pericytes treated with the gentamicin for 24 h. Data are analyzed using bioinformatic tools. Results The caveolae proteome in gentamicin treated cells shows that 40% of total proteins are uniquely associated with caveolae during the treatment, and 15% of the proteins normally associated with caveolae in untreated cell are suppressed. Bioinformatic analysis of the data shows a decreased expression of proteins involved in genetic information processing, and an increase in proteins involved in metabolism, vesicular transport and signal transduction in gentamicin treated cells. Several Rab GTPases proteins, ubiquitous transporters, uniquely segregate with caveolae and are significantly enriched in gentamicin treated cells. Conclusion We report that gentamicin exposure modifies protein profile of caveolae from SL pericytes. We identified a pool of proteins which are uniquely segregating with caveolae during the treatment, mainly participating in metabolic and biosynthetic pathways, in transport pathways and in genetic information processing. Finally, we show for the first time proteins associated with caveolae SL pericytes linked to nonsyndromic hearing loss.
Collapse
Affiliation(s)
- Elisa Ghelfi
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| | - Yohann Grondin
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| | - Emil J Millet
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| | - Adam Bartos
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| | - Magda Bortoni
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| | - Clara Oliveira Gomes Dos Santos
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA.,2Universidade de Sao Paulo, Faculdade de Medicina, Sao Paulo, Brazil
| | | | - Rosalinda Sepulveda
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA.,4Universidad Autónoma de Nuevo León, Facultad de Medicina, Monterrey, Mexico
| | - Rick Rogers
- 1Harvard T.H. Chan School of Public Health, Department of Environmental Health, MIPS Program, Boston, MA USA
| |
Collapse
|
49
|
Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 2018; 362:25-37. [PMID: 29277248 PMCID: PMC5911243 DOI: 10.1016/j.heares.2017.12.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
The environment of the inner ear is highly regulated in a manner that some solutes are permitted to enter while others are excluded or transported out. Drug therapies targeting the sensory and supporting cells of the auditory and vestibular systems require the agent to gain entry to the fluid spaces of the inner ear, perilymph or endolymph, which surround the sensory organs. Access to the inner ear fluids from the vasculature is limited by the blood-labyrinth barriers, which include the blood-perilymph and blood-strial barriers. Intratympanic applications provide an alternative approach in which drugs are applied locally. Drug from the applied solution enters perilymph through the round window membrane, through the stapes, and under some circumstances, through thin bone in the otic capsule. The amount of drug applied to the middle ear is always substantially more than the amount entering perilymph. As a result, significant amounts of the applied drug can pass to the digestive system, to the vasculature, and to the brain. Drugs in perilymph pass to the vasculature and to cerebrospinal fluid via the cochlear aqueduct. Conversely, drugs applied to cerebrospinal fluid, including those given intrathecally, can enter perilymph through the cochlear aqueduct. Other possible routes in or out of the ear include passage by neuronal pathways, passage via endolymph and the endolymphatic sac, and possibly via lymphatic pathways. A better understanding of the pathways for drug movements in and out of the ear will enable better intervention strategies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA.
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
50
|
|