1
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
2
|
Hey G, Willman M, Patel A, Goutnik M, Willman J, Lucke-Wold B. Stem Cell Scaffolds for the Treatment of Spinal Cord Injury—A Review. BIOMECHANICS 2023; 3:322-342. [PMID: 37664542 PMCID: PMC10469078 DOI: 10.3390/biomechanics3030028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Goutnik
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
4
|
Functional tissue-engineered microtissue formed by self-aggregation of cells for peripheral nerve regeneration. Stem Cell Res Ther 2022; 13:3. [PMID: 35012663 PMCID: PMC8744299 DOI: 10.1186/s13287-021-02676-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Peripheral nerve injury (PNI) is one of the essential causes of physical disability with a high incidence rate. The traditional tissue engineering strategy, Top-Down strategy, has some limitations. A new tissue-engineered strategy, Bottom-Up strategy (tissue-engineered microtissue strategy), has emerged and made significant research progress in recent years. However, to the best of our knowledge, microtissues are rarely used in neural tissue engineering; thus, we intended to use microtissues to repair PNI.
Methods We used a low-adhesion cell culture plate to construct adipose-derived mesenchymal stem cells (ASCs) into microtissues in vitro, explored the physicochemical properties and microtissues components, compared the expression of cytokines related to nerve regeneration between microtissues and the same amount of two-dimension (2D)-cultured cells, co-cultured directly microtissues with dorsal root ganglion (DRG) or Schwann cells (SCs) to observe the interaction between them using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA). We used grafts constructed by microtissues and polycaprolactone (PCL) nerve conduit to repair sciatic nerve defects in rats. Results The present study results indicated that compared with the same number of 2D-cultured cells, microtissue could secrete more nerve regeneration related cytokines to promote SCs proliferation and axons growth. Moreover, in the direct co-culture system of microtissue and DRG or SCs, axons of DRG grown in the direction of microtissue, and there seems to be a cytoplasmic exchange between SCs and ASCs around microtissue. Furthermore, microtissues could repair sciatic nerve defects in rat models more effectively than traditional 2D-cultured ASCs. Conclusion Tissue-engineered microtissue is an effective strategy for stem cell culture and therapy in nerve tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02676-0.
Collapse
|
5
|
Guo H, D'Andrea D, Zhao J, Xu Y, Qiao Z, Janes LE, Murthy NK, Li R, Xie Z, Song Z, Meda R, Koo J, Bai W, Choi YS, Jordan SW, Huang Y, Franz CK, Rogers JA. Advanced Materials in Wireless, Implantable Electrical Stimulators That Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2102724. [PMID: 36189172 PMCID: PMC9521812 DOI: 10.1002/adfm.202102724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 06/01/2023]
Abstract
Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period. Afterward, rapid, complete and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re-anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.
Collapse
Affiliation(s)
- Hexia Guo
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Dom D'Andrea
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Jie Zhao
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yue Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zheng Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lindsay E Janes
- Department of Physical Medicine and Rehabilitation, Neurological Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Nikhil K Murthy
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Zhen Song
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Rohan Meda
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Jahyun Koo
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Biomedical Engineering, Interdisciplinary Program in precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Wubin Bai
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yeon Sik Choi
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Sumanas W Jordan
- Biologics, Shirley Ryan AbilityLab, Division of Plastic and Reconstructive Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Colin K Franz
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical and Computer Engineering, Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Schaeffer J, Delpech C, Albert F, Belin S, Nawabi H. Adult Mouse Retina Explants: From ex vivo to in vivo Model of Central Nervous System Injuries. Front Mol Neurosci 2020; 13:599948. [PMID: 33324161 PMCID: PMC7723849 DOI: 10.3389/fnmol.2020.599948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
In mammals, adult neurons fail to regenerate following any insult to adult central nervous system (CNS), which leads to a permanent and irreversible loss of motor and cognitive functions. For a long time, much effort has been deployed to uncover mechanisms of axon regeneration in the CNS. Even if some cases of functional recovery have been reported, there is still a discrepancy regarding the functionality of a neuronal circuit upon lesion. Today, there is a need not only to identify new molecules implicated in adult CNS axon regeneration, but also to decipher the fine molecular mechanisms associated with regeneration failure. Here, we propose to use cultures of adult retina explants to study all molecular and cellular mechanisms that occur during CNS regeneration. We show that adult retinal explant cultures have the advantages to (i) recapitulate all the features observed in vivo, including axon regeneration induced by intrinsic factors, and (ii) be an ex vivo set-up with high accessibility and many downstream applications. Thanks to several examples, we demonstrate that adult explants can be used to address many questions, such as axon guidance, growth cone formation and cytoskeleton dynamics. Using laser guided ablation of a single axon, axonal injury can be performed at a single axon level, which allows to record early and late molecular events that occur after the lesion. Our model is the ideal tool to study all molecular and cellular events that occur during CNS regeneration at a single-axon level, which is currently not doable in vivo. It is extremely valuable to address unanswered questions of neuroprotection and neuroregeneration in the context of CNS lesion and neurodegenerative diseases.
Collapse
|
8
|
Lin MZ. An Axonal Blueprint: Generating Neuronal Polarity with Light-Inducible Proteins. Cell Chem Biol 2020; 26:1634-1636. [PMID: 31951578 DOI: 10.1016/j.chembiol.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Cell Chemical Biology, Woo et al. (2019) show that activation of a photoinducible form of the TrkB protein in a single neurite induces multiple aspects of axonal differentiation. This study exemplifies the ability of optical methods to relate protein functions to complex phenotypes in living cells.
Collapse
Affiliation(s)
- Michael Z Lin
- Stanford University Department of Neurobiology, Stanford, CA 94305, USA; Stanford University Department of Bioengineering, Stanford, CA 94305, USA; Stanford University Department of Chemical and Systems Biology, Stanford, CA 94305, USA; Stanford University Department of Pediatrics, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Smith TP, Sahoo PK, Kar AN, Twiss JL. Intra-axonal mechanisms driving axon regeneration. Brain Res 2020; 1740:146864. [PMID: 32360100 DOI: 10.1016/j.brainres.2020.146864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
10
|
Locally Activating TrkB Receptor Generates Actin Waves and Specifies Axonal Fate. Cell Chem Biol 2019; 26:1652-1663.e4. [PMID: 31678045 DOI: 10.1016/j.chembiol.2019.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.
Collapse
|
11
|
Shao X, You R, Hui TH, Fang C, Gong Z, Yan Z, Chang RCC, Shenoy VB, Lin Y. Tension- and Adhesion-Regulated Retraction of Injured Axons. Biophys J 2019; 117:193-202. [PMID: 31278003 DOI: 10.1016/j.bpj.2019.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Damage-induced retraction of axons during traumatic brain injury is believed to play a key role in the disintegration of the neural network and to eventually lead to severe symptoms such as permanent memory loss and emotional disturbances. However, fundamental questions such as how axon retraction progresses and what physical factors govern this process still remain unclear. Here, we report a combined experimental and modeling study to address these questions. Specifically, a sharp atomic force microscope probe was used to transect axons and trigger their retraction in a precisely controlled manner. Interestingly, we showed that the retracting motion of a well-developed axon can be arrested by strong cell-substrate attachment. However, axon retraction was found to be retriggered if a second transection was conducted, albeit with a lower shrinking amplitude. Furthermore, disruption of the actin cytoskeleton or cell-substrate adhesion significantly altered the retracting dynamics of injured axons. Finally, a mathematical model was developed to explain the observed injury response of neural cells in which the retracting motion was assumed to be driven by the pre-tension in the axon and progress against neuron-substrate adhesion as well as the viscous resistance of the cell. Using realistic parameters, model predictions were found to be in good agreement with our observations under a variety of experimental conditions. By revealing the essential physics behind traumatic axon retraction, findings here could provide insights on the development of treatment strategies for axonal injury as well as its possible interplay with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Hin Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ze Gong
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zishen Yan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Ferreira RS, Dos Santos NAG, Bernardes CP, Sisti FM, Amaral L, Fontana ACK, Dos Santos AC. Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells Against Cisplatin-Induced Neurotoxicity by Activating the AMPK/SIRT1, MAPK/Erk, and PI3k/Akt Signaling Pathways. Neurotox Res 2019; 36:175-192. [PMID: 31016689 DOI: 10.1007/s12640-019-00042-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023]
Abstract
Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and β-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.
Collapse
Affiliation(s)
- Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina P Bernardes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Amaral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
13
|
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2019; 12:522. [PMID: 30687012 PMCID: PMC6336700 DOI: 10.3389/fncel.2018.00522] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery is generally very poor. The neurotrophins have emerged as an important modulator of axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation and signaling, as well as its role in activity-dependent treatments including electrical stimulation, exercise, and optogenetic stimulation are discussed here. The importance of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present in 30% of the human population and may hinder the efficacy of these treatments in enhancing regeneration after injury is considered. Preliminary data are presented on the effectiveness of one such activity-dependent treatment, electrical stimulation, in enhancing axon regeneration in mice expressing the met allele of the Val66Met polymorphism.
Collapse
Affiliation(s)
- Claire Emma McGregor
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Papandréou MJ, Leterrier C. The functional architecture of axonal actin. Mol Cell Neurosci 2018; 91:151-159. [PMID: 29758267 DOI: 10.1016/j.mcn.2018.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton builds and supports the complex architecture of neurons. It orchestrates the specification, growth, and compartmentation of the axon: axon initial segment, axonal shaft, presynapses. The cytoskeleton must then maintain this intricate architecture for the whole life of its host, but also drive its adaptation to new network demands and changing physiological conditions. Microtubules are readily visible inside axon shafts by electron microscopy, whereas axonal actin study has long been focused on dynamic structures of the axon such as growth cones. Super-resolution microscopy and live-cell imaging have recently revealed new actin-based structures in mature axons: rings, hotspots and trails. This has caused renewed interest for axonal actin, with efforts underway to understand the precise organization and cellular functions of these assemblies. Actin is also present in presynapses, where its arrangement is still poorly defined, and its functions vigorously debated. Here we review the organization of axonal actin, focusing on recent advances and current questions in this rejuvenated field.
Collapse
|
15
|
Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, Jiang WL, Guo WM, Meng HY, Lu SB, Wang Y, Peng J. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther 2018; 9:133. [PMID: 29751848 PMCID: PMC5948899 DOI: 10.1186/s13287-018-0884-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a worldwide issue associated with severe social and economic burden. Autologous nerve grafting, the gold standard treatment for peripheral nerve defects, still has a number of technical limitations. Tissue engineering technology is a novel therapeutic strategy, and mesenchymal stromal cells (MSCs) are promising seed cells for nerve tissue engineering. However, the efficiency of traditional methods for inducing the differentiation of MSCs to Schwann cell-like cells (SCLCs) remains unsatisfactory. Methods Here, we propose an intermittent induction method with alternate use of complete and incomplete induction medium to induce differentiation of adipose-derived stem cells (ASCs) to SCLCs. The time dependence of traditional induction methods and the efficiency of the intermittent induction method and traditional induction methods were evaluated and compared using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and co-culture with the dorsal root ganglion (DRG) in vitro. Cell transplantation was used to compare the effects of the traditional induction method and the intermittent induction method in repairing sciatic nerve defects in vivo. Results The results of the present study indicated that the intermittent induction method is more efficient than traditional methods for inducing ASCs to differentiate into SCLCs. In addition, SCLCs induced by this method were closer to mature myelinating Schwann cells and were capable of secreting neurotrophins and promoting DRG axon regeneration in vitro. Furthermore, SCLCs induced by the intermittent induction method could repair sciatic nerve defects in rats by cell transplantation in vivo more effectively than those produced by traditional methods. Conclusion Intermittent induction represents a novel strategy for obtaining seed cells for use in nerve tissue engineering. Electronic supplementary material The online version of this article (10.1186/s13287-018-0884-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Medicine, Nankai University, No.94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yun Zhu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, No.21 Sassoon Road, Pokfulam, 999077, Hong Kong
| | - He-Yong Yin
- Department of Surgery, Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336, Munich, Germany
| | - Zhi-Yuan Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Xu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Wen-Li Jiang
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Beijing, 100730, People's Republic of China
| | - Wei-Min Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Hao-Ye Meng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Shi-Bi Lu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| |
Collapse
|
16
|
Baljeet S, Yogesh S, Ritika B. Physicochemical and rheological properties of Indian wheat varieties of Triticum aestivum. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2017. [DOI: 10.3920/qas2015.0745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- S.Y. Baljeet
- Department of Food Technology, Maharshi Dayanand University, 124001 Rohtak, Haryana, India
| | - S. Yogesh
- Department of Food Technology, Maharshi Dayanand University, 124001 Rohtak, Haryana, India
| | - B.Y. Ritika
- Department of Food Technology, Maharshi Dayanand University, 124001 Rohtak, Haryana, India
| |
Collapse
|
17
|
Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ, Almeida RD. Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 2017. [PMID: 28646200 PMCID: PMC5482809 DOI: 10.1038/s41598-017-03592-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used for cell-based therapies in regenerative medicine, with increasing importance in central and peripheral nervous system repair. However, MSCs grafting present disadvantages, such as, a high number of cells required for transplantation and low survival rate when transplanted into the central nervous system (CNS). In line with this, MSCs secretome which present on its composition a wide range of molecules (neurotrophins, cytokines) and microvesicles, can be a solution to surpass these problems. However, the effect of MSCs secretome in axonal elongation is poorly understood. In this study, we demonstrate that application of MSCs secretome to both rat cortical and hippocampal neurons induces an increase in axonal length. In addition, we show that this growth effect is axonal intrinsic with no contribution from the cell body. To further understand which are the molecules required for secretome-induced axonal outgrowth effect, we depleted brain-derived neurotrophic factor (BDNF) from the secretome. Our results show that in the absence of BDNF, secretome-induced axonal elongation effect is lost and that axons present a reduced axonal growth rate. Altogether, our results demonstrate that MSCs secretome is able to promote axonal outgrowth in CNS neurons and this effect is mediated by BDNF.
Collapse
Affiliation(s)
- Luís F Martins
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Joana R Pedro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Aguiar
- INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fabio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,School of Health, Polytechnic of Porto (ESS-IPP), Porto, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017; 1665:1-21. [PMID: 28396009 DOI: 10.1016/j.brainres.2017.03.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Neuronal cell injury, as a consequence of acute or chronic neurological trauma, is a significant cause of mortality around the world. On a molecular level, the condition is characterized by widespread cell death and poor regeneration, which can result in severe morbidity in survivors. Potential therapeutics are of major interest, with a promising candidate being brain-derived neurotrophic factor (BDNF), a ubiquitous agent in the brain which has been associated with neural development and may facilitate protective and regenerative effects following injury. This review summarizes the available information on the potential benefits of BDNF and the molecular mechanisms involved in several pathological conditions, including hypoxic brain injury, stroke, Alzheimer's disease and Parkinson's disease. It further explores the methods in which BDNF can be applied in clinical and therapeutic settings, and the potential challenges to overcome.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chun-Yin San
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingquan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
19
|
Chen T, Yu Y, Tang LJ, Kong L, Zhang CH, Chu HY, Yin LW, Ma HY. Neural stem cells over-expressing brain-derived neurotrophic factor promote neuronal survival and cytoskeletal protein expression in traumatic brain injury sites. Neural Regen Res 2017; 12:433-439. [PMID: 28469658 PMCID: PMC5399721 DOI: 10.4103/1673-5374.202947] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytoskeletal proteins are involved in neuronal survival. Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury. However, the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear. To examine this, we established a rat model of traumatic brain injury by controlled cortical impact. At 72 hours after injury, 2 × 107 cells/mL neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells (3 mL) were injected into the injured cortex. At 1–3 weeks after transplantation, expression of neurofilament 200, microtubule-associated protein 2, actin, calmodulin, and beta-catenin were remarkably increased in the injury sites. These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival, growth, and differentiation in the injury sites. The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yan Yu
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liu-Jiu Tang
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Cheng-Hong Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Hai-Ying Chu
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang-Wei Yin
- Department of Oncology, Dalian Central Hospital, Dalian, Liaoning Province, China
| | - Hai-Ying Ma
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
20
|
Wang Y, Jia H, Li WY, Guan LX, Deng L, Liu YC, Liu GB. Molecular examination of bone marrow stromal cells and chondroitinase ABC-assisted acellular nerve allograft for peripheral nerve regeneration. Exp Ther Med 2016; 12:1980-1992. [PMID: 27698684 PMCID: PMC5038205 DOI: 10.3892/etm.2016.3585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2016] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to evaluate the molecular mechanisms underlying combinatorial bone marrow stromal cell (BMSC) transplantation and chondroitinase ABC (Ch-ABC) therapy in a model of acellular nerve allograft (ANA) repair of the sciatic nerve gap in rats. Sprague Dawley rats (n=24) were used as nerve donors and Wistar rats (n=48) were randomly divided into the following groups: Group I, Dulbecco's modified Eagle's medium (DMEM) control group (ANA treated with DMEM only); Group II, Ch-ABC group (ANA treated with Ch-ABC only); Group III, BMSC group (ANA seeded with BMSCs only); Group IV, Ch-ABC + BMSCs group (Ch-ABC treated ANA then seeded with BMSCs). After 8 weeks, the expression of nerve growth factor, brain-derived neurotrophic factor and vascular endothelial growth factor in the regenerated tissues were detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Axonal regeneration, motor neuron protection and functional recovery were examined by immunohistochemistry, horseradish peroxidase retrograde neural tracing and electrophysiological and tibialis anterior muscle recovery analyses. It was observed that combination therapy enhances the growth response of the donor nerve locally as well as distally, at the level of the spinal cord motoneuron and the target muscle organ. This phenomenon is likely due to the propagation of retrograde and anterograde transport of growth signals sourced from the graft site. Collectively, growth improvement on the donor nerve, target muscle and motoneuron ultimately contribute to efficacious axonal regeneration and functional recovery. Thorough investigation of molecular peripheral nerve injury combinatorial strategies are required for the optimization of efficacious therapy and full functional recovery following ANA.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hua Jia
- Department of Anatomy, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui 750004, P.R. China
| | - Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li-Xin Guan
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingxiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gui-Bo Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
21
|
Soloperto A, Bisio M, Palazzolo G, Chiappalone M, Bonifazi P, Difato F. Modulation of Neural Network Activity through Single Cell Ablation: An in Vitro Model of Minimally Invasive Neurosurgery. Molecules 2016; 21:E1018. [PMID: 27527143 PMCID: PMC6274492 DOI: 10.3390/molecules21081018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Marta Bisio
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Michela Chiappalone
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain.
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
22
|
Soloperto A, Palazzolo G, Tsushima H, Chieregatti E, Vassalli M, Difato F. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool. Front Neurosci 2016; 10:101. [PMID: 27013962 PMCID: PMC4786546 DOI: 10.3389/fnins.2016.00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Hanako Tsushima
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Evelina Chieregatti
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy Genoa, Italy
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia Genoa, Italy
| |
Collapse
|
23
|
Habibey R, Golabchi A, Latifi S, Difato F, Blau A. A microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration. LAB ON A CHIP 2015; 15:4578-4590. [PMID: 26507288 DOI: 10.1039/c5lc01027f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We designed a miniaturized and thin polydimethylsiloxane (PDMS) microchannel device compatible with commercial microelectrode array (MEA) chips. It was optimized for selective axonal ablation by laser microdissection (LMD) to investigate the electrophysiological and morphological responses to a focal injury in distinct network compartments over 45 days in vitro (45 DIV). Low-density cortical or hippocampal networks (<3500 neurons per device) were cultured in quasi-closed somal chambers. Their axons were selectively filtered through neurite cavities and guided into the PDMS microchannels aligned over the recording electrodes. The device geometries amplified extracellularly recorded signals in the somal reservoir and the axonal microchannels to detectable levels. Locally extended areas along the microchannel, so-called working stations, forced axonal bundles to branch out and thereby allowed for their repeatable and controllable local, partial or complete dissections. Proximal and distal changes in the activity and morphology of the dissected axons were monitored and compared to those of their parent networks and of intact axons in the control microchannels. Microscopy images confirmed progressive anterograde degeneration of distal axonal segments over four weeks after surgery. Dissection on cortical and hippocampal axons revealed different cell type- and age-dependent network responses. At 17 DIV, network activity increased in both the somal and proximal microchannel compartments of the dissected hippocampal or cortical axons. At later days (24 DIV), the hippocampal networks were more susceptible to axonal injury. While their activity decreased, that in the cortical cultures actually increased. Subsequent partial dissections of the same axonal bundles led to a stepwise activity reduction in the distal hippocampal or cortical axonal fragments. We anticipate that the MEA-PDMS microchannel device for the combined morphological and electrophysiological study of axonal de- and regeneration can be easily merged with other experimental paradigms like molecular or pharmacological screening studies.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Neuroscience and Brain Technologies (NBT), Italian Institute of Technology (IIT), via Morego 30, 16163 Genoa, Italy.
| | | | | | | | | |
Collapse
|
24
|
Tilve S, Difato F, Chieregatti E. Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha-synuclein. Sci Rep 2015; 5:16524. [PMID: 26558842 PMCID: PMC4642265 DOI: 10.1038/srep16524] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Impaired adult neurogenesis and axon traumatic injury participate in the severity of neurodegenerative diseases. Alpha-synuclein, a cytosolic protein involved in Parkinson's disease, may be released from neurons, suggesting a role for excess secreted alpha-synuclein in the onset and spread of the pathology. Here we provide evidence that long term exposure of young neurons to extracellular alpha-synuclein hampers axon elongation and growth cone turning. We show that actin turnover and the rate of movement of actin waves along the axon are altered, due to alpha-synuclein-induced inactivation of cofilin. Upon laser disruption of microfilaments, healing of axons is favored by the increased phosphorylation of cofilin, however, at later time points; the defect in neurite extension prevails, being lost the regulation of cofilin activity. Importantly, overexpression of the active form of cofilin in neurons exposed to alpha-synuclein is able to restore the movement of actin waves, physiological axon elongation and growth cone turning. Our study reveals the molecular basis of alpha-synuclein-driven deficits in growth and migration of newborn neurons, and in elongation and regeneration of adult neurons.
Collapse
Affiliation(s)
- Sharada Tilve
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco Difato
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Evelina Chieregatti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
25
|
Abstract
By focusing a laser with short pulses to a diffraction-limited spot, single nerve axons can be precisely targeted and injured. Subsequent repair can be analyzed using various imaging and biochemical techniques to understand the repair process. In this chapter, we will describe a robotic laser microscope system used to injure nerve axons while simultaneously observing repair using phase and fluorescence microscopy. We provide procedures for controlled laser targeting and an experimental approach for studying axonal repair in embryonic rat hippocampus neurons.
Collapse
|
26
|
Qiu T, Yin Y, Li B, Xie L, Yan Q, Dai H, Wang X, Li S. PDLLA/PRGD/β-TCP conduits build the neurotrophin-rich microenvironment suppressing the oxidative stress and promoting the sciatic nerve regeneration. J Biomed Mater Res A 2014; 102:3734-43. [PMID: 24408878 DOI: 10.1002/jbm.a.35078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/23/2013] [Accepted: 12/31/2013] [Indexed: 12/16/2022]
Abstract
A novel nerve guidance conduit comprising poly{(lactic acid)-co-[(glycolic acid)-alt-(l-lysine)]} (PRGD), poly (d,l-lactic acid) (PDLLA) and β-tricalcium phosphate (β-TCP) was constructed to facilitate the peripheral nerve regeneration. From the comparative study, PDLLA/PRGD/β-TCP conduit achieved the best recovery in regard of the ultrastructure observation and the SFI evaluation. At the first stage of the injury (7 days), the maximum expression augments in ZnSOD (6.4 folds) and GPX4 (6.8 folds) were observed in PDLLA/PRGD/β-TCP group; while striking rise in actin (6.8 folds), tubulin (5.6 folds), and ERM components expressions were observed later (35 days). Meanwhile, compared with PDLLA and PDLLA/PRGD conduits, PDLLA/PRGD/β-TCP conduits achieved the highest local nerve growth factor (NGF) content and an accumulating BDNF content. We speculated that addition of RGD and β-TCP in the composites were the main positive factors to build the microenvironment rich in NGF and BDNF, which help to counteract with the oxidative stress and to boost the cytoskeletal protein expressions. Therefore, PDLLA/PRGD/β-TCP could be promising composites used in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Tong Qiu
- Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sypecka J, Sarnowska A. The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. Mol Neurobiol 2013; 49:685-701. [PMID: 24085562 PMCID: PMC3950613 DOI: 10.1007/s12035-013-8549-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/27/2013] [Indexed: 01/13/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) are the focus of intense research for the purpose of cell replacement therapies in acquired or inherited neurodegenerative disorders, accompanied by ongoing hypo/demyelination. Recently, it has been postulated that these glia-committed cells exhibit certain properties of neural stem cells. Advances in stem cell biology have shown that their therapeutic effect could be attributed to their ability to secret numerous active compounds which modify the local microenvironment making it more susceptible to restorative processes. To verify this hypothesis, we set up an ex vivo co-culture system of OPCs isolated from neonatal rat brain with organotypic hippocampal slices (OHC) injured by oxygen-glucose deprivation (OGD). The presence of OPCs in such co-cultures resulted in a significant neuroprotective effect manifesting itself as a decrease in cell death rate and as an extension of newly formed cells in ischemically impaired hippocampal slices. A microarray analysis of broad spectrum of trophic factors and cytokines expressed by OPCs was performed for the purpose of finding the factor(s) contributing to the observed effect. Three of them—BDNF, IL-10 and SCF—were selected for the subsequent functional assays. Our data revealed that BDNF released by OPCs is the potent factor that stimulates cell proliferation and survival in OHC subjected to OGD injury. At the same time, it was observed that IL-10 attenuates inflammatory processes by promoting the formation of the cells associated with the immunological response. Those neuroprotective qualities of oligodendroglia-biased progenitors significantly contribute to anticipating a successful cell replacement therapy.
Collapse
Affiliation(s)
- Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5, Pawinskiego str.,, 02-106, Warsaw, Poland,
| | | |
Collapse
|
28
|
Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Vassalli M, Basso M, Difato F. Measurement of tension release during laser induced axon lesion to evaluate axonal adhesion to the substrate at piconewton and millisecond resolution. J Vis Exp 2013:e50477. [PMID: 23748878 DOI: 10.3791/50477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The formation of functional connections in a developing neuronal network is influenced by extrinsic cues. The neurite growth of developing neurons is subject to chemical and mechanical signals, and the mechanisms by which it senses and responds to mechanical signals are poorly understood. Elucidating the role of forces in cell maturation will enable the design of scaffolds that can promote cell adhesion and cytoskeletal coupling to the substrate, and therefore improve the capacity of different neuronal types to regenerate after injury. Here, we describe a method to apply simultaneous force spectroscopy measurements during laser induced cell lesion. We measure tension release in the partially lesioned axon by simultaneous interferometric tracking of an optically trapped probe adhered to the membrane of the axon. Our experimental protocol detects the tension release with piconewton sensitivity, and the dynamic of the tension release at millisecond time resolution. Therefore, it offers a high-resolution method to study how the mechanical coupling between cells and substrates can be modulated by pharmacological treatment and/or by distinct mechanical properties of the substrate.
Collapse
|
30
|
Lee CY, Romanova EV, Sweedler JV. Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. J Neural Eng 2013; 10:036020. [PMID: 23656702 DOI: 10.1088/1741-2560/10/3/036020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The regeneration and repair of damaged neuronal networks is a difficult process to study in vivo, leading to the development of multiple in vitro models and techniques for studying nerve injury. Here we describe an approach for generating a well-defined subcellular neurite injury in a microfluidic device. APPROACH A defined laminar stream of sodium dodecyl sulfate (SDS) was used to damage selected portions of neurites of individual neurons. The somata and neurites unaffected by the SDS stream remained viable, thereby enabling the study of neuronal regeneration. MAIN RESULTS By using well-characterized neurons from Aplysia californica cultured in vitro, we demonstrate that our approach is useful in creating neurite damage, investigating neurotrophic factors, and monitoring somata migration during regeneration. Supplementing the culture medium with acetylcholinesterase (AChE) or Aplysia hemolymph facilitated the regeneration of the peptidergic Aplysia neurons within 72 h, with longer (p < 0.05) and more branched (p < 0.05) neurites than in the control medium. After the neurons were transected, their somata migrated; intriguingly, for the control cultures, the migration direction was always away from the injury site (7/7). In the supplemented cultures, the number decreased to 6/8 in AChE and 4/8 in hemolymph, with reduced migration distances in both cases. SIGNIFICANCE The SDS transection approach is simple and inexpensive, yet provides flexibility in studying neuroregeneration, particularly when it is important to make sure there are no retrograde signals from the distal segments affecting regeneration. Neurons are known to not only be under tension but also balanced in terms of force, and the balance is obviously disrupted by transection. Our experimental platform, verified with Aplysia, can be extended to mammalian systems, and help us gain insight into the role that neurotrophic factors and mechanical tension play during neuronal regeneration.
Collapse
Affiliation(s)
- Chang Young Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | | | | |
Collapse
|
31
|
Cell signaling experiments driven by optical manipulation. Int J Mol Sci 2013; 14:8963-84. [PMID: 23698758 PMCID: PMC3676767 DOI: 10.3390/ijms14058963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection.
Collapse
|
32
|
Li L, Ren L, Liu W, Wang JC, Wang Y, Tu Q, Xu J, Liu R, Zhang Y, Yuan MS, Li T, Wang J. Spatiotemporally Controlled and Multifactor Involved Assay of Neuronal Compartment Regeneration after Chemical Injury in an Integrated Microfluidics. Anal Chem 2012; 84:6444-53. [DOI: 10.1021/ac3013708] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Li Li
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Li Ren
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Wenming Liu
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jian-Chun Wang
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Yaolei Wang
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Qin Tu
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Juan Xu
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Rui Liu
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Yanrong Zhang
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Mao-Sen Yuan
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Tianbao Li
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| | - Jinyi Wang
- Colleges of Veterinary Medicine and Science, and ‡Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, People’s Republic of China
| |
Collapse
|