1
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2025; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
2
|
Hyun K, Ahn J, Kim H, Kim J, Kim YI, Park HS, Roeder RG, Lee JE, Kim J. The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain. Nat Commun 2024; 15:9614. [PMID: 39511190 PMCID: PMC11544104 DOI: 10.1038/s41467-024-53981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Histone post-translational modifications play pivotal roles in eukaryotic gene expression. To date, most studies have focused on modifications in unstructured histone N-terminal tail domains and their binding proteins. However, transcriptional regulation by chromatin-effector proteins that directly recognize modifications in histone globular domains has yet to be clearly demonstrated, despite the richness of their multiple modifications. Here, we show that the ATP-dependent chromatin-remodeling BAF complex stimulates p53-dependent transcription through direct interaction with H3K56ac located on the lateral surface of the histone globular domain. Mechanistically, the BAF complex recognizes nucleosomal H3K56ac via the DPF domain in the DPF2 subunit and exhibits enhanced nucleosome-remodeling activity in the presence of H3K56ac. We further demonstrate that a defect in H3K56ac-BAF complex interaction leads to impaired p53-dependent gene expression and DNA damage responses. Our study provides direct evidence that histone globular domain modifications participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - J Eugene Lee
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
3
|
Gillen AD, Hunter I, Ullner E, McEwan IJ. Mechanistic insights into steroid hormone-mediated regulation of the androgen receptor gene. PLoS One 2024; 19:e0304183. [PMID: 39088439 PMCID: PMC11293711 DOI: 10.1371/journal.pone.0304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/08/2024] [Indexed: 08/03/2024] Open
Abstract
Expression of the androgen receptor is key to the response of cells and tissues to androgenic steroids, such as testosterone or dihydrotestosterone, as well as impacting the benefit of hormone-dependent therapies for endocrine diseases and hormone-dependent cancers. However, the mechanisms controlling androgen receptor expression are not fully understood, limiting our ability to effectively promote or inhibit androgenic signalling therapeutically. An autoregulatory loop has been described in which androgen receptor may repress its own expression in the presence of hormone, although the molecular mechanisms are not fully understood. In this work, we elucidate the mechanisms of autoregulation and demonstrate, for the first time, that a similar repression of the AR gene is facilitated by the progesterone receptor. We show that the progesterone receptor, like the androgen receptor binds to response elements within the AR gene to effect transcriptional repression in response to hormone treatment. Mechanistically, this repression involves hormone-dependent histone deacetylation within the AR 5'UTR region and looping between sequences in intron 2 and the transcription start site (TSS). This novel pathway controlling AR expression in response to hormone stimulation may have important implications for understanding cell or tissue selective receptor signalling.
Collapse
Affiliation(s)
- Andrew D. Gillen
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Irene Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Ekkehard Ullner
- Department of Physics, Institute of Complex Sciences and Mathematical Biology University of Aberdeen, Scotland, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
4
|
Mao W, Wang B, Huang R, Sun Z, Yan M, Dong P. Histone modifications in head and neck squamous cell carcinoma. Front Oncol 2024; 14:1427725. [PMID: 38983924 PMCID: PMC11231198 DOI: 10.3389/fonc.2024.1427725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Head and neck cancer is the main cause of cancer death worldwide, with squamous cell carcinoma (HNSCC) being the second most frequent subtype. HNSCC poses significant health threats due to its high incidence and poor prognosis, underscoring the urgent need for advanced research. Histone modifications play a crucial role in the regulation of gene expression and influencing various biological processes. In the context of HNSCC, aberrant histone modifications are increasingly recognized as critical contributors to its development and pathologic progression. This review demonstrates the molecular mechanisms, by which histone modifications such as acetylation, methylation, phosphorylation, and ubiquitination, impact the pathogenesis of HNSCC. The dysregulation of histone-modifying enzymes, including histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone methyltransferases (HMTs), is discussed for its role in altering chromatin structure and gene expression in HNSCC. Moreover, we will explore the potential of targeting histone modifications as a therapeutic strategy, highlighting current preclinical and clinical studies that investigate histone deacetylase inhibitors (HDIs) and other epigenetic drugs, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Wei Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baoxin Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruofei Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenfeng Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minzhu Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pin Dong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Dong S, Dimopoulos G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat Commun 2023; 14:5773. [PMID: 37723154 PMCID: PMC10507101 DOI: 10.1038/s41467-023-41370-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Ae. aegypti mosquitoes transmit some of the most important human viral diseases that are responsible for a significant public health burden worldwide. The small interfering RNA (siRNA) pathway is considered the major antiviral defense system in insects. Here we show that siRNA pathway disruption by CRISPR/Cas9-based Ago2 knockout impaired the mosquitoes' ability to degrade arbovirus RNA leading to hyper-infection accompanied by cell lysis and tissue damage. Ago2 disruption impaired DNA repair mechanisms and the autophagy pathway by altering histone abundance. This compromised DNA repair and removal of damaged cellular organelles and dysfunctional aggregates promoted mosquito death. We also report that hyper-infection of Ago2 knockout mosquitoes stimulated a broad-spectrum antiviral immunity, including apoptosis, which may counteract infection. Taken together, our studies reveal novel roles for Ago2 in protecting mosquitoes from arbovirus infection and associated death.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
6
|
Parisis N, Dans PD, Jbara M, Singh B, Schausi-Tiffoche D, Molina-Serrano D, Brun-Heath I, Hendrychová D, Maity SK, Buitrago D, Lema R, Nait Achour T, Giunta S, Girardot M, Talarek N, Rofidal V, Danezi K, Coudreuse D, Prioleau MN, Feil R, Orozco M, Brik A, Wu PYJ, Krasinska L, Fisher D. Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair. Nat Commun 2023; 14:5104. [PMID: 37607906 PMCID: PMC10444856 DOI: 10.1038/s41467-023-40843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/12/2023] [Indexed: 08/24/2023] Open
Abstract
Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.
Collapse
Affiliation(s)
- Nikolaos Parisis
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Jacques Monod, CNRS, University Paris Diderot, Paris, France
| | - Pablo D Dans
- IRB Barcelona, BIST, Barcelona, Spain
- Bioinformatics Unit, Institute Pasteur of Montevideo, Montevideo, Uruguay
- Department of Biological Sciences, CENUR North Riverside, University of the Republic (UdelaR), Salto, Uruguay
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Denisa Hendrychová
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
- Department of Experimental Biology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Suman Kumar Maity
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | | | | | - Thiziri Nait Achour
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Simona Giunta
- The Rockefeller University, New York, NY, USA
- Laboratory of Genome Evolution, Department of Biology and Biotechnology "Charles Darwin", University of Rome Sapienza, Rome, Italy
| | - Michael Girardot
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Nicolas Talarek
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Katerina Danezi
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
- Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Damien Coudreuse
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | | | - Robert Feil
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa, Israel
| | - Pei-Yun Jenny Wu
- IGDR, CNRS, University of Rennes, Rennes, France
- IBGC, CNRS, University of Bordeaux, Bordeaux, France
| | - Liliana Krasinska
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Daniel Fisher
- IGMM, CNRS, INSERM, University of Montpellier, Montpellier, France.
- Equipe labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
7
|
Leung CS, Rosenzweig SJ, Yoon B, Marinelli NA, Hollingsworth EW, Maguire AM, Cowen MH, Schmidt M, Imitola J, Gamsiz Uzun ED, Lizarraga SB. Dysregulation of the chromatin environment leads to differential alternative splicing as a mechanism of disease in a human model of autism spectrum disorder. Hum Mol Genet 2023; 32:1634-1646. [PMID: 36621967 PMCID: PMC10162432 DOI: 10.1093/hmg/ddad002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Autism spectrum disorder (ASD) affects 1 in 44 children. Chromatin regulatory proteins are overrepresented among genes that contain high risk variants in ASD. Disruption of the chromatin environment leads to widespread dysregulation of gene expression, which is traditionally thought of as a mechanism of disease pathogenesis associated with ASD. Alternatively, alterations in chromatin dynamics could also lead to dysregulation of alternative splicing, which is understudied as a mechanism of ASD pathogenesis. The anticonvulsant valproic acid (VPA) is a well-known environmental risk factor for ASD that acts as a class I histone deacetylase inhibitor. However, the precise molecular mechanisms underlying defects in human neuronal development associated with exposure to VPA are understudied. To dissect how VPA exposure and subsequent chromatin hyperacetylation influence molecular signatures involved in ASD pathogenesis, we conducted RNA sequencing (RNA-seq) in human cortical neurons that were treated with VPA. We observed that differentially expressed genes (DEGs) were enriched for mRNA splicing, mRNA processing, histone modification and metabolism related gene sets. Furthermore, we observed widespread increases in the number and the type of alternative splicing events. Analysis of differential transcript usage (DTU) showed that exposure to VPA induces extensive alterations in transcript isoform usage across neurodevelopmentally important genes. Finally, we find that DEGs and genes that display DTU overlap with known ASD-risk genes. Altogether, these findings suggest that, in addition to differential gene expression, changes in alternative splicing correlated with alterations in the chromatin environment could act as an additional mechanism of disease in ASD.
Collapse
Affiliation(s)
- Calvin S Leung
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - Shoshana J Rosenzweig
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Academic Medical Center, Providence, RI 02903, USA
| | - Brian Yoon
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Nicholas A Marinelli
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ethan W Hollingsworth
- UCONN Health Comprehensive Multiple Sclerosis Center, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Division of Multiple Sclerosis and Translational Neuroimmunology, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Abbie M Maguire
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| | - Jaime Imitola
- UCONN Health Comprehensive Multiple Sclerosis Center, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Division of Multiple Sclerosis and Translational Neuroimmunology, Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Ece D Gamsiz Uzun
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Lifespan Academic Medical Center, Providence, RI 02903, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science (BITS), Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Robusti G, Vai A, Bonaldi T, Noberini R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin Epigenetics 2022; 14:145. [PMID: 36371348 PMCID: PMC9652867 DOI: 10.1186/s13148-022-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy. Mass spectrometry (MS) has emerged as the most powerful and versatile tool for the comprehensive, unbiased and quantitative analysis of histone proteoforms. In recent years, these approaches-which we refer to as "epi-proteomics"-have demonstrated their usefulness for the investigation of epigenetic mechanisms in pathological conditions, offering a number of advantages compared with the antibody-based methods traditionally used to profile clinical samples. In this review article, we will provide a critical overview of the MS-based approaches that can be employed to study histone PTMs and variants in clinical samples, with a strong focus on the latest advances in this area, such as the analysis of uncommon modifications and the integration of epi-proteomics data into multi-OMICs approaches, as well as the challenges to be addressed to fully exploit the potential of this novel field of research.
Collapse
Affiliation(s)
- Giulia Robusti
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Alessandro Vai
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Tiziana Bonaldi
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberta Noberini
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
9
|
Quaas CE, Lin B, Long DT. Transcription suppression is mediated by the HDAC1-Sin3 complex in Xenopus nucleoplasmic extract. J Biol Chem 2022; 298:102578. [PMID: 36220390 PMCID: PMC9650048 DOI: 10.1016/j.jbc.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Modification of histones provides a dynamic mechanism to regulate chromatin structure and access to DNA. Histone acetylation, in particular, plays a prominent role in controlling the interaction between DNA, histones, and other chromatin-associated proteins. Defects in histone acetylation patterns interfere with normal gene expression and underlie a wide range of human diseases. Here, we utilize Xenopus egg extracts to investigate how changes in histone acetylation influence transcription of a defined gene construct. We show that inhibition of histone deacetylase 1 and 2 (HDAC1/2) specifically counteracts transcription suppression by preventing chromatin compaction and deacetylation of histone residues H4K5 and H4K8. Acetylation of these sites supports binding of the chromatin reader and transcription regulator BRD4. We also identify HDAC1 as the primary driver of transcription suppression and show that this activity is mediated through the Sin3 histone deacetylase complex. These findings highlight functional differences between HDAC1 and HDAC2, which are often considered to be functionally redundant, and provide additional molecular context for their activity.
Collapse
|
10
|
Kulthinee S, Yano N, Zhuang S, Wang L, Zhao TC. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:471-485. [PMID: 35997393 PMCID: PMC9397025 DOI: 10.3390/pathophysiology29030038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Naohiro Yano
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Lijiang Wang
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ting C. Zhao
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Surgery, Boston University Medical School, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-401-456-8266; Fax: +1-401-456-2507
| |
Collapse
|
11
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
12
|
El-Awady R, Saleh E, Hamoudi R, Ramadan WS, Mazitschek R, Nael MA, Elokely KM, Abou-Gharbia M, Childers WE, Srinivasulu V, Aloum L, Menon V, Al-Tel TH. Discovery of novel class of histone deacetylase inhibitors as potential anticancer agents. Bioorg Med Chem 2021; 42:116251. [PMID: 34116381 DOI: 10.1016/j.bmc.2021.116251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Selective inhibition of histone deacetylases (HDACs) is an important strategy in the field of anticancer drug discovery. However, lack of inhibitors that possess high selectivity toward certain HDACs isozymes is associated with adverse side effects that limits their clinical applications. We have initiated a collaborative initiatives between multi-institutions aimed at the discovery of novel and selective HDACs inhibitors. To this end, a phenotypic screening of an in-house pilot library of about 70 small molecules against various HDAC isozymes led to the discovery of five compounds that displayed varying degrees of HDAC isozyme selectivity. The anticancer activities of these molecules were validated using various biological assays including transcriptomic studies. Compounds 15, 14, and 19 possessed selective inhibitory activity against HDAC5, while 28 displayed selective inhibition of HDAC1 and HDAC2. Compound 22 was found to be a selective inhibitor for HDAC3 and HDAC9. Importantly, we discovered a none-hydroxamate based HDAC inhibitor, compound 28, representing a distinct chemical probe of HDAC inhibitors. It contains a trifluoromethyloxadiazolyl moiety (TFMO) as a non-chelating metal-binding group. The new compounds showed potent anti-proliferative activity when tested against MCF7 breast cancer cell line, as well as increased acetylation of histones and induce cells apoptosis. The new compounds apoptotic effects were validated through the upregulation of proapoptotic proteins caspases3 and 7 and downregulation of the antiapoptotic biomarkers C-MYC, BCL2, BCL3 and NFĸB genes. Furthermore, the new compounds arrested cell cycle at different phases, which was confirmed through downregulation of the CDK1, 2, 4, 6, E2F1 and RB1 proteins. Taken together, our findings provide the foundation for the development of new chemical probes as potential lead drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Raafat El-Awady
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Ekram Saleh
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, United states
| | - Manal A Nael
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Khaled M Elokely
- Institute for Computational Molecular Science, and Department of Chemistry, Temple University, Philadelphia, PA 19122, United States
| | - Magid Abou-Gharbia
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Phialadelphia, PA 19122, United States
| | - Wayne E Childers
- Moulder Center for Drug Discovery Research, Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Phialadelphia, PA 19122, United States
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Varsha Menon
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
13
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
14
|
Pojani E, Barlocco D. Romidepsin (FK228), A Histone Deacetylase Inhibitor and its Analogues in Cancer Chemotherapy. Curr Med Chem 2021; 28:1290-1303. [PMID: 32013816 DOI: 10.2174/0929867327666200203113926] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human HDACs represent a group of enzymes able to modify histone and non-histone proteins, which interact with DNA to generate chromatin. The correlation between irregular covalent modification of histones and tumor development has been proved over the last decades. Therefore, HDAC inhibitors are considered as potential drugs in cancer treatment. Romidepsin (FK228), Belinostat (PXD-101), Vorinostat (SAHA), Panobinostat (LBH-589) and Chidamide were approved by FDA as novel antitumor agents. OBJECTIVE The aim of this review article is to highlight the structure-activity relationships of several FK228 analogues as HDAC inhibitors. In addition, the synergistic effects of a dual HDAC/PI3K inhibition by some derivatives have been investigated. MATERIALS AND METHODS PubMed, MEDLINE, CAPLUS, SciFinder Scholar database were considered by selecting articles which fulfilled the objectives of this review, dating from 2015 till present time. RESULTS HDAC inhibitors have a significant role in cancer pathogenesis and evolution. Class I HDAC isoforms are expressed in many tumor types, therefore, potent and selective Class I HDAC inhibitors are of great interest as candidate therapeutic agents with limited side effects. By structurebased optimization, several FK228 analogues [15 (FK-A5), 22, 23 and 26 (FK-A11)] were identified, provided with significant activity against Class I HDAC enzymes and dose dependent antitumor activity. Compound 26 was recognized as an interesting HDAC/PI3K dual inhibitor (IC50 against p110α of 6.7 μM while for HDAC1 inhibitory activity IC50 was 0.64 nM). CONCLUSION Romidepsin analogues HDAC inhibitors have been confirmed as useful anticancer agents. In addition, dual HDAC/PI3K inhibition showed by some of them exhibited synergistic effects in inducing apoptosis in human cancer cells. Further studies on FK228 analogues may positively contribute to the availability of potent agents in tumor treatment.
Collapse
Affiliation(s)
- Eftiola Pojani
- Department of the Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Tirana, Albania
| | - Daniela Barlocco
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Milan, L. Mangiagalli 25, Milan 20133, Italy
| |
Collapse
|
15
|
Blaszczak W, Liu G, Zhu H, Barczak W, Shrestha A, Albayrak G, Zheng S, Kerr D, Samsonova A, La Thangue NB. Immune modulation underpins the anti-cancer activity of HDAC inhibitors. Mol Oncol 2021; 15:3280-3298. [PMID: 33773029 PMCID: PMC8637571 DOI: 10.1002/1878-0261.12953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Aberrant protein acetylation is strongly linked to tumorigenesis, and modulating acetylation through targeting histone deacetylase (HDAC) with small‐molecule inhibitors has been the focus of clinical trials. However, clinical success on solid tumours, such as colorectal cancer (CRC), has been limited, in part because the cancer‐relevant mechanisms through which HDAC inhibitors act remain largely unknown. Here, we have explored, at the genome‐wide expression level, the effects of a novel HDAC inhibitor CXD101. In human CRC cell lines, a diverse set of differentially expressed genes were up‐ and downregulated upon CXD101 treatment. Functional profiling of the expression data highlighted immune‐relevant concepts related to antigen processing and natural killer cell‐mediated cytotoxicity. Similar profiles were apparent when gene expression was investigated in murine colon26 CRC cells treated with CXD101. Significantly, these changes were also apparent in syngeneic colon26 tumours growing in vivo. The ability of CXD101 to affect immune‐relevant gene expression coincided with changes in the tumour microenvironment (TME), especially in the subgroups of CD4 and CD8 tumour‐infiltrating T lymphocytes. The altered TME reflected enhanced antitumour activity when CXD101 was combined with immune checkpoint inhibitors (ICIs), such as anti‐PD‐1 and anti‐CTLA4. The ability of CXD101 to reinstate immune‐relevant gene expression in the TME and act together with ICIs provides a powerful rationale for exploring the combination therapy in human cancers.
Collapse
Affiliation(s)
| | - Geng Liu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Hong Zhu
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK.,Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | - Gulsah Albayrak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| | | | - David Kerr
- Celleron Therapeutics Ltd, Oxford, UK.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, UK
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, Russia.,Centre for Genome Bioinformatics, St. Petersburg State University, Russia
| | - Nicholas B La Thangue
- Celleron Therapeutics Ltd, Oxford, UK.,Laboratory of Cancer Biology, Department of Oncology, University of Oxford, UK
| |
Collapse
|
16
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
17
|
Hsu KF, Wilkins SE, Hopkinson RJ, Sekirnik R, Flashman E, Kawamura A, McCullagh JS, Walport LJ, Schofield CJ. Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics 2021; 16:14-27. [PMID: 32609604 PMCID: PMC7889154 DOI: 10.1080/15592294.2020.1786305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.
Collapse
Affiliation(s)
- Kuo-Feng Hsu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sarah E. Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard J. Hopkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, UK
| | - Rok Sekirnik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Emily Flashman
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Louise J. Walport
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | |
Collapse
|
18
|
HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep 2021; 34:108638. [PMID: 33472068 DOI: 10.1016/j.celrep.2020.108638] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation. We apply quantitative genomic and proteomic approaches to demonstrate that HDACi robustly increases a low-abundance histone 4 polyacetylation state, which serves as a preferred binding substrate for several bromodomain-containing proteins, including BRD4. Increased H4 polyacetylation occurs in transcribed genes and correlates with the targeting of BRD4. Collectively, these results suggest that HDAC inhibition functions, at least in part, through expansion of a rare histone acetylation state, which then retargets lysine-acetyl readers associated with changes in gene expression, partially mimicking the effect of bromodomain inhibition.
Collapse
|
19
|
Understanding Failure and Improving Treatment Using HDAC Inhibitors for Prostate Cancer. Biomedicines 2020; 8:biomedicines8020022. [PMID: 32019149 PMCID: PMC7168248 DOI: 10.3390/biomedicines8020022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Novel treatment regimens are required for castration-resistant prostate cancers (CRPCs) that become unresponsive to standard treatments, such as docetaxel and enzalutamide. Histone deacetylase (HDAC) inhibitors showed promising results in hematological malignancies, but they failed in solid tumors such as prostate cancer, despite the overexpression of HDACs in CRPC. Four HDAC inhibitors, vorinostat, pracinostat, panobinostat and romidepsin, underwent phase II clinical trials for prostate cancers; however, phase III trials were not recommended due to a majority of patients exhibiting either toxicity or disease progression. In this review, the pharmacodynamic reasons for the failure of HDAC inhibitors were assessed and placed in the context of the advancements in the understanding of CRPCs, HDACs and resistance mechanisms. The review focuses on three themes: evolution of androgen receptor-negative prostate cancers, development of resistance mechanisms and differential effects of HDACs. In conclusion, advancements can be made in this field by characterizing HDACs in prostate tumors more extensively, as this will allow more specific drugs catering to the specific HDAC subtypes to be designed.
Collapse
|
20
|
El‐Naggar AM, Somasekharan SP, Wang Y, Cheng H, Negri GL, Pan M, Wang XQ, Delaidelli A, Rafn B, Cran J, Zhang F, Zhang H, Colborne S, Gleave M, Mandinova A, Kedersha N, Hughes CS, Surdez D, Delattre O, Wang Y, Huntsman DG, Morin GB, Sorensen PH. Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 2019; 20:e48375. [PMID: 31668005 PMCID: PMC6893361 DOI: 10.15252/embr.201948375] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/29/2019] [Accepted: 10/06/2019] [Indexed: 12/13/2022] Open
Abstract
Outcomes for metastatic Ewing sarcoma and osteosarcoma are dismal and have not changed for decades. Oxidative stress attenuates melanoma metastasis, and melanoma cells must reduce oxidative stress to metastasize. We explored this in sarcomas by screening for oxidative stress sensitizers, which identified the class I HDAC inhibitor MS-275 as enhancing vulnerability to reactive oxygen species (ROS) in sarcoma cells. Mechanistically, MS-275 inhibits YB-1 deacetylation, decreasing its binding to 5'-UTRs of NFE2L2 encoding the antioxidant factor NRF2, thereby reducing NFE2L2 translation and synthesis of NRF2 to increase cellular ROS. By global acetylomics, MS-275 promotes rapid acetylation of the YB-1 RNA-binding protein at lysine-81, blocking binding and translational activation of NFE2L2, as well as known YB-1 mRNA targets, HIF1A, and the stress granule nucleator, G3BP1. MS-275 dramatically reduces sarcoma metastasis in vivo, but an MS-275-resistant YB-1K81-to-alanine mutant restores metastatic capacity and NRF2, HIF1α, and G3BP1 synthesis in MS-275-treated mice. These studies describe a novel function for MS-275 through enhanced YB-1 acetylation, thus inhibiting YB-1 translational control of key cytoprotective factors and its pro-metastatic activity.
Collapse
Affiliation(s)
- Amal M El‐Naggar
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
- Department of PathologyFaculty of MedicineMenoufia UniversityShibin El KomEgypt
| | | | - Yemin Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Melvin Pan
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Xue Qi Wang
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Alberto Delaidelli
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Bo Rafn
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Jordan Cran
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Fan Zhang
- Vancouver Prostate CentreVancouverBCCanada
| | - Haifeng Zhang
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | - Anna Mandinova
- Brigham and Women's HospitalHarvard UniversityBostonMAUSA
| | - Nancy Kedersha
- Massachusetts General HospitalHarvard UniversityBostonMAUSA
| | - Christopher S Hughes
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | | | | | | | - David G Huntsman
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| | - Gregg B Morin
- Michael Smith Genome Sciences CentreVancouverBCCanada
| | - Poul H Sorensen
- Department of Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Molecular Oncology, BC Cancerpart of the Provincial Health Services AuthorityVancouverBCCanada
| |
Collapse
|
21
|
Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends Biochem Sci 2019; 44:943-960. [DOI: 10.1016/j.tibs.2019.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
22
|
Sah A, Sotnikov S, Kharitonova M, Schmuckermair C, Diepold RP, Landgraf R, Whittle N, Singewald N. Epigenetic Mechanisms Within the Cingulate Cortex Regulate Innate Anxiety-Like Behavior. Int J Neuropsychopharmacol 2019; 22:317-328. [PMID: 30668714 PMCID: PMC6441131 DOI: 10.1093/ijnp/pyz004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pathological anxiety originates from a complex interplay of genetic predisposition and environmental factors, acting via epigenetic mechanisms. Epigenetic processes that can counteract detrimental genetic risk towards innate high anxiety are not well characterized. METHODS We used female mouse lines of selectively bred high (HAB)- vs low (LAB)-innate anxiety-related behavior and performed select environmental and pharmacological manipulations to alter anxiety levels as well as brain-specific manipulations and immunohistochemistry to investigate neuronal mechanisms associated with alterations in anxiety-related behavior. RESULTS Inborn hyperanxiety of high anxiety-like phenotypes was effectively reduced by environmental enrichment exposure. c-Fos mapping revealed that hyperanxiety in high anxiety-like phenotypes was associated with blunted challenge-induced neuronal activation in the cingulate-cortex, which was normalized by environmental enrichment. Relating this finding with epigenetic modifications, we found that high anxiety-like phenotypes (compared with low-innate anxiety phenotypes) showed reduced acetylation in the hypoactivated cingulate-cortex neurons following a mild emotional challenge, which again was normalized by environmental enrichment. Paralleling the findings using environmental enrichment, systemic administration of histone-deacetylase-inhibitor MS-275 elicited an anxiolytic-like effect, which was correlated with increased acetylated-histone-3 levels within cingulate-cortex. Finally, as a proof-of-principle, local MS-275 injection into cingulate-cortex rescued enhanced innate anxiety and increased acetylated-histone-3 within the cingulate-cortex, suggesting this epigenetic mark as a biomarker for treatment success. CONCLUSIONS Taken together, the present findings provide the first causal evidence that the attenuation of high innate anxiety-like behavior via environmental/pharmacological manipulations is epigenetically mediated via acetylation changes within the cingulate-cortex. Finally, histone-3 specific histone-deacetylase-inhibitor could be of therapeutic importance in anxiety disorders.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | | | - Nigel Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria,Correspondence: Nicolas Singewald, PhD, Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80–82/III, A-6020 Innsbruck, Austria ()
| |
Collapse
|
23
|
Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, Bourgoin-Voillard S. Current trends in protein acetylation analysis. Expert Rev Proteomics 2018; 16:139-159. [PMID: 30580641 DOI: 10.1080/14789450.2019.1559061] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acetylation is a widely occurring post-translational modification (PTM) of proteins that plays a crucial role in many cellular physiological and pathological processes. Over the last decade, acetylation analyses required the development of multiple methods to target individual acetylated proteins, as well as to cover a broader description of acetylated proteins that comprise the acetylome. Areas covered: This review discusses the different types of acetylation (N-ter/K-/O-acetylation) and then describes some major strategies that have been reported in the literature to detect, enrich, identify and quantify protein acetylation. The review highlights the advantages and limitations of these strategies, to guide researchers in designing their experimental investigations and analysis of protein acetylation. Finally, this review highlights the main applications of acetylomics (proteomics based on mass spectrometry) for understanding physiological and pathological conditions. Expert opinion: Recent advances in acetylomics have enhanced knowledge of the biological and pathological roles of protein acetylation and the acetylome. Besides, radiolabeling and western blotting remain also techniques-of-choice for targeted protein acetylation. Future challenges in acetylomics to analyze the N-ter and K-acetylome will most likely require enrichment/fractionation, MS instrumentation and bioinformatics. Challenges also remain to identify the potential biological roles of O-acetylation and cross-talk with other PTMs.
Collapse
Affiliation(s)
- Issa Diallo
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Michel Seve
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Valérie Cunin
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | | | | | - Sylvie Michelland
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Sandrine Bourgoin-Voillard
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| |
Collapse
|
24
|
Alkylating histone deacetylase inhibitors may have therapeutic value in experimental myeloperoxidase-ANCA vasculitis. Kidney Int 2018; 94:926-936. [PMID: 30158055 DOI: 10.1016/j.kint.2018.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
Current therapies for treating antineutrophil cytoplasm autoantibody (ANCA)-associated vasculitis include cyclophosphamide and corticosteroids. Unfortunately, these agents are associated with severe adverse effects, despite inducing remission in most patients. Histone deacetylase inhibitors are effective in rodent models of inflammation and act synergistically with many pharmacological agents, including alkylating agents like cyclophosphamide. EDO-S101 is an alkylating fusion histone deacetylase inhibitor molecule combining the DNA alkylating effect of Bendamustine with a pan-histone deacetylase inhibitor, Vorinostat. Here we studied the effects of EDO-S101 in two established rodent models of ANCA-associated vasculitis: a passive mouse model of anti-myeloperoxidase IgG-induced glomerulonephritis and an active rat model of myeloperoxidase-ANCA microscopic polyangiitis. Although pretreatment with EDO-S101 reduced circulating leukocytes, it did not prevent the development of passive IgG-induced glomerulonephritis in mice. On the other hand, treatment in rats significantly reduced glomerulonephritis and lung hemorrhage. EDO-S101 also significantly depleted rat B and T cells, and induced DNA damage and apoptosis in proliferating human B cells, suggesting a selective effect on the adaptive immune response. Thus, EDO-S101 may have a role in treatment of ANCA-associated vasculitis, operating primarily through its effects on the adaptive immune response to the autoantigen myeloperoxidase.
Collapse
|
25
|
Shi Y, Jia Y, Zhao W, Zhou L, Xie X, Tong Z. Histone deacetylase inhibitors alter the expression of molecular markers in breast cancer cells via microRNAs. Int J Mol Med 2018; 42:435-442. [PMID: 29620153 DOI: 10.3892/ijmm.2018.3616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/25/2018] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are able to suppress breast cancer cells in vitro and in vivo by altering the expression of estrogen receptor (ER), progesterone receptor (PR) or human epidermal growth factor receptor 2 (Her2/neu). Since HDACis can alter the expression of various microRNAs (miRNAs/miRs), the present study aimed to examine the role of miRNAs in the effects of HDACis on breast cancer cells. We first examined the mRNA expression of ER, PR, and Her2/neu using RT-PCR and the protein levels of ER, PR, and Her2/neu using western blot analysis in MDA-MB-231 and BT474 cells, after trichostatin A (TSA) or vorinostat (SAHA) treatment. We then conducted miRNA expression profiling using microarrays after BT474 cells were treated with TSA or SAHA. Finally, we examined the effects of synthetic miR-762 and miR-642a-3p inhibitors on SAHA-induced downregulation of Her2/neu and SAHA-induced apoptosis and PARP cleavage in BT474 cells. The results indicated that TSA and SAHA dose‑dependently enhanced the mRNA and protein expression levels of ER and PR in MDA‑MB‑231 and BT474 cells. In addition, the mRNA expression levels of Her2/neu were reduced in MDA‑MB‑231 cells, and the mRNA and protein expression levels of Her2/neu were reduced in BT474 cells in response to SAHA and TSA. Furthermore, treatment with TSA (0.2 µM) or SAHA (5.0 µM) induced a marked alteration in the expression of various miRNAs in BT474 cells. Notably, when cells were cotransfected with miR‑762 and miR‑642a‑3p inhibitors, SAHA‑induced downregulation of Her2/neu was inhibited, and SAHA‑induced apoptosis and poly (ADP‑ribose) polymerase cleavage were significantly reduced in BT474 cells. These results indicated that numerous HDACi‑induced miRNAs are required to downregulate Her2/neu levels and promote apoptosis of Her2‑overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yehui Shi
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Weipeng Zhao
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Liyan Zhou
- National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Xiaojuan Xie
- National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, P.R. China
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University, Tianjin 300060, P.R. China
| |
Collapse
|
26
|
Liu Y, Lucas-Hahn A, Petersen B, Li R, Hermann D, Hassel P, Ziegler M, Larsen K, Niemann H, Callesen H. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods. Cell Reprogram 2018; 19:171-179. [PMID: 28557623 DOI: 10.1089/cell.2016.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
Collapse
Affiliation(s)
- Ying Liu
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Andrea Lucas-Hahn
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Bjoern Petersen
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Rong Li
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Doris Hermann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Petra Hassel
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Maren Ziegler
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Knud Larsen
- 3 Department of Molecular Biology and Genetics, Aarhus University (Foulum) , Tjele, Denmark
| | - Heiner Niemann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Henrik Callesen
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| |
Collapse
|
27
|
More than a powerplant: the influence of mitochondrial transfer on the epigenome. CURRENT OPINION IN PHYSIOLOGY 2017; 3:16-24. [PMID: 29750205 DOI: 10.1016/j.cophys.2017.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Each cell in the human body, with the exception of red blood cells, contains multiple copies of mitochondria that house their own genetic material, the maternally inherited mitochondrial DNA. Mitochondria are the cell's powerplant due to their massive ATP generation. However, the mitochondrion is also a hub for metabolite production from the TCA cycle, fatty acid beta-oxidation, and ketogenesis. In addition to producing macromolecules for biosynthetic reactions and cell replication, several mitochondrial intermediate metabolites serve as cofactors or substrates for epigenome modifying enzymes that regulate chromatin structure and impact gene expression. Here, we discuss connections between mitochondrial metabolites and enzymatic writers and erasers of chromatin modifications. We do this from the unique perspective of cell-to-cell mitochondrial transfer and its potential impact on mitochondrial replacement therapies.
Collapse
|
28
|
No JG, Hur TY, Zhao M, Lee S, Choi MK, Nam YS, Yeom DH, Im GS, Kim DH. Scriptaid improves the reprogramming of donor cells and enhances canine-porcine interspecies embryo development. Reprod Biol 2017; 18:18-26. [PMID: 29162325 DOI: 10.1016/j.repbio.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
Histone methylation, histone acetylation, and DNA methylation are the important factors for somatic cell nuclear transfer (SCNT). Histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have been used to improve cloning efficiency. In particular, scriptaid, an HDACi, has been shown to improve SCNT efficiency. However, no studies have been performed on canines. Here, we evaluated the effects of scriptaid on histone modification in canine ear fibroblasts (cEFs) and cloned canine embryos derived from cEFs. The early development of cloned canine-porcine interspecies SCNT (iSCNT) embryos was also examined. cEFs were treated with scriptaid (0, 100, 250, 500, 750, and 1000nM) in a medium for 24h. Scriptaid treatment (all concentrations) did not significantly affect cell apoptosis. Treatment with 500nM scriptaid caused a significant increase in the acetylation of H3K9, H3K14, and H4K5. cEFs treated with 500nM scriptaid showed significantly decreased Gcn5, Hat1, Hdac6, and Bcl2 and increased Oct4 and Sox2 expression levels. After SCNT with canine oocytes, H3K14 acetylation was significantly increased in the one- and two-cell cloned embryos from scriptaid-treated cEFs. In iSCNT, the percentage of embryos in the 16-cell stage was significantly higher in the scriptaid-treated group (21.6±2.44%) than in the control (7.5±2.09%). The expression levels of Oct4, Sox2, and Bcl2 were significantly increased in 16-cell iSCNT embryos, whereas that of Hdac6 was decreased. These results demonstrated that scriptaid affected the reprogramming of canine donor and cloned embryos, as well as early embryo development in canine-porcine iSCNT, by regulating reprogramming and apoptotic genes.
Collapse
Affiliation(s)
- Jin-Gu No
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea; Department of Biological Science, University of Sungkyunkwan, Suwon 16419, Republic of Korea
| | - Tai-Young Hur
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Minghui Zhao
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Seunghoon Lee
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Mi-Kyung Choi
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Yoon-Seok Nam
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hyun Yeom
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Gi-Sun Im
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Dong-Hoon Kim
- Department of Animal Biotechnology, National Institute of Animal Science, Wanju 55365, Republic of Korea.
| |
Collapse
|
29
|
Abstract
Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention.
Collapse
|
30
|
Zhu Q, Wei S, Sharma N, Wani G, He J, Wani AA. Human CRL4 DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. Oncotarget 2017; 8:104525-104542. [PMID: 29262658 PMCID: PMC5732824 DOI: 10.18632/oncotarget.21869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022] Open
Abstract
Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Shengcai Wei
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Jinshan He
- Department of Radiology, The Ohio State University, Columbus, 43210, OH
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, 43210, OH.,Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, 43210, OH.,James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, 43210, OH
| |
Collapse
|
31
|
van den Bosch T, Leus NGJ, Wapenaar H, Boichenko A, Hermans J, Bischoff R, Haisma HJ, Dekker FJ. A 6-alkylsalicylate histone acetyltransferase inhibitor inhibits histone acetylation and pro-inflammatory gene expression in murine precision-cut lung slices. Pulm Pharmacol Ther 2017; 44:88-95. [PMID: 28323055 PMCID: PMC5447808 DOI: 10.1016/j.pupt.2017.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
Lysine acetylations are post-translational modifications of cellular proteins, that are crucial in the regulation of many cellular processes. Lysine acetylations on histone proteins are part of the epigenetic code regulating gene expression and are installed by histone acetyltransferases. Observations that inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease, are characterized by increased histone acetyltransferase activity indicate that development of small molecule inhibitors for these enzymes might be a valuable approach towards new therapies for these diseases. The 6-alkylsalicylate MG149 is a candidate to explore this hypothesis because it has been demonstrated to inhibit the MYST type histone acetyltransferases. In this study, we determined the Ki value for inhibition of the MYST type histone acetyltransferase KAT8 by MG149 to be 39 ± 7.7 μM. Upon investigating whether the inhibition of histone acetyltransferases by MG149 correlates with inhibition of histone acetylation in murine precision-cut lung slices, inhibition of acetylation was observed using an LC-MS/MS based assay on histone H4 res 4-17, which contains the target lysine of KAT8. Following up on this, upon treatment with MG149, reduced pro-inflammatory gene expression was observed in lipopolysaccharide and interferon gamma stimulated murine precision-cut lung slices. Based on this, we propose that 6-alkylsalicylates such as MG149 have potential for development towards applications in the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Thea van den Bosch
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Niek G J Leus
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hannah Wapenaar
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Alexander Boichenko
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Jos Hermans
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Frank J Dekker
- Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
32
|
Sudhamalla B, Dey D, Breski M, Nguyen T, Islam K. Site-specific azide-acetyllysine photochemistry on epigenetic readers for interactome profiling. Chem Sci 2017. [PMID: 28626565 PMCID: PMC5468995 DOI: 10.1039/c7sc00284j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hydrophobic pocket of the epigenetic reader protein BRD4 has been engineered to carry a photosensitive amino acid to identify novel interacting partners, providing mechanistic insights into BRD4’s function in transcription and beyond.
Chemical modifications on DNA, RNA and histones are recognized by an array of ‘reader’ modules to regulate transcriptional programming and cell fate. However, identification of reader-specific interacting partners in a dynamic cellular environment remains a significant challenge. Herein, we report a chemoproteomic approach termed ‘interaction-based protein profiling’ (IBPP) to characterize novel interacting partners of potentially any reader protein. IBPP harnesses a photosensitive amino acid introduced into the hydrophobic pocket of a reader module to crosslink and enrich transient interacting partners that are inaccessible to traditional methods. Using bromodomain-containing protein 4 (BRD4) as a paradigm, we engineer an ‘aromatic cage’ of the bromodomain to introduce 4-azido-l-phenylalanine (pAzF) without compromising its ability to recognize acetylated lysine residues in histone proteins. We establish the binding efficiency, substrate specificity and crosslinking ability of the engineered ‘reader’ module in biochemical assays. Applying IBPP, we uncovered novel acetylated interacting partners of BRD4, such as transcription factors, expanding on its previously unappreciated role in diverse biological processes. By setting up an azide-acetyllysine photoreaction deep inside the bromodomain aromatic cage as a means to detect protein acetylation, our approach provides a potentially general platform for rapid and unbiased profiling of interacting partners of diverse epigenetic readers whose functions in eukaryotic gene regulation remain convoluted.
Collapse
Affiliation(s)
- Babu Sudhamalla
- Department of Chemistry , University of Pittsburgh , Pennsylvania 15260 , USA .
| | - Debasis Dey
- Department of Chemistry , University of Pittsburgh , Pennsylvania 15260 , USA .
| | - Megan Breski
- Department of Chemistry , University of Pittsburgh , Pennsylvania 15260 , USA .
| | - Tiffany Nguyen
- Department of Chemistry , University of Pittsburgh , Pennsylvania 15260 , USA .
| | - Kabirul Islam
- Department of Chemistry , University of Pittsburgh , Pennsylvania 15260 , USA .
| |
Collapse
|
33
|
Huang CK, Chang PH, Kuo WH, Chen CL, Jeng YM, Chang KJ, Shew JY, Hu CM, Lee WH. Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via β-hydroxybutyrate. Nat Commun 2017; 8:14706. [PMID: 28281525 PMCID: PMC5353665 DOI: 10.1038/ncomms14706] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
Adipocytes are the most abundant stromal partners in breast tissue. However, the crosstalk between breast cancer cells and adipocytes has been given less attention compared to cancer-associated fibroblasts. Here we find, through systematic screening, that primary mammary gland-derived adipocytes (MGDAs) promote growth of breast cancer cells that express monocarboxylate transporter 2 (MCT2) both in vitro and in vivo. We show that β-hydroxybutyrate is secreted by MGDAs and is required to enhance breast cancer cells malignancy in vitro. Consistently, β-hydroxybutyrate is sufficient to promote tumorigenesis of a mouse xenograft model of MCT2-expressing breast cancer cells. Mechanistically we observe that upon co-culturing with MGDAs or treatment with β-hydroxybutyrate, breast cancer cells expressing MCT2 increase the global histone H3K9 acetylation and upregulate several tumour-promoting genes. These results suggest that adipocytes promote malignancy of MCT2-expressing breast cancer via β-hydroxybutyrate potentially by inducing the epigenetic upregulation of tumour-promoting genes. Invasion of the adipose tissue correlates with poor prognosis in breast cancer. Here, the authors show that mammary gland adipocytes promote malignancy via β-hydroxybutyrate, which acts on cancer cells through the monocarboxylate transporter MCT2 resulting in tumour-promoting epigenetic modifications.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Hao Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.,Cheng Chin General Hospital, Taichung 407, Taiwan
| | - Jin-Yuh Shew
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hwa Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.,Graduate Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
34
|
Nalawansha DA, Pflum MKH. LSD1 Substrate Binding and Gene Expression Are Affected by HDAC1-Mediated Deacetylation. ACS Chem Biol 2017; 12:254-264. [PMID: 27977115 DOI: 10.1021/acschembio.6b00776] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysine Specific Demethylase 1 (LSD1) catalyzes the demethylation of histone 3 to regulate gene expression. With a fundamental role in gene regulation, LSD1 is involved in multiple cellular processes, including embryonic development, cell proliferation, and metastasis. Significantly, LSD1 is overexpressed in multiple cancers and has emerged as a potential anticancer drug target. LSD1 is typically found in association with another epigenetic enzyme, histone deacetylase (HDAC). HDAC and LSD1 inhibitor compounds have been tested as combination anticancer agents. However, the functional link between LSD1 and HDAC has yet to be understood in detail. Here, we used a substrate trapping strategy to identify cellular substrates of HDAC1. Using inactive HDAC1 mutants, we identified LSD1 as an HDAC1 substrate. HDAC1 mediated deacetylation of LSD1 at K374 in the substrate binding lobe, which affected the histone 3 binding and gene expression activity of LSD1. The mechanistic link between HDAC1 and LSD1 established here suggests that HDAC inhibitors influence LSD1 activity, which will ultimately guide drug design targeting epigenetic enzymes.
Collapse
Affiliation(s)
- Dhanusha A. Nalawansha
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
35
|
Guillemette B, Hammond-Martel I, Wurtele H, Verreault A. Production and Purification of Antibodies Against Histone Modifications. Methods Mol Biol 2017; 1528:149-164. [PMID: 27854020 DOI: 10.1007/978-1-4939-6630-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antibodies that recognize specific histone modifications are invaluable tools to study chromatin structure and function. There are numerous commercially available antibodies that recognize a remarkable diversity of histone modifications. Unfortunately, many of them fail to work in certain applications or lack the high degree of specificity required of these reagents. The production of affinity-purified polyclonal antibodies against histone modifications demands a little effort but, in return, provides extremely valuable tools that overcome many of the concerns and limitations of commercial antibodies. We present a series of protocols and guidelines for the production and use of large amounts of polyclonal antibodies that recognize modifications of canonical histones. Our protocols can be applied to obtain antibodies that occur in histone variants and proteins other than histones. In addition, some of our protocols are compatible with the production of monoclonal or recombinant antibodies.
Collapse
Affiliation(s)
- Benoit Guillemette
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 2R1
| | - Ian Hammond-Martel
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada, H1T 2M4
| | - Hugo Wurtele
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada, H1T 2M4
- Département de Médecine, Université de Montréal, Montréal, QC, Canada, H3T 1J4
| | - Alain Verreault
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, Canada, H3C 3J7.
| |
Collapse
|
36
|
Zhang C, Liu Y. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry. Methods Enzymol 2016; 586:165-191. [PMID: 28137562 DOI: 10.1016/bs.mie.2016.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Posttranslational modifications (PTMs) of histones are one of the main research interests in the rapidly growing field of epigenetics. Accurate and precise quantification of these highly complex histone PTMs is critical for understanding the histone code and the biological significance behind it. It nonetheless remains a major analytical challenge. Mass spectrometry (MS) has been proven as a robust tool in retrieving quantitative information of histone PTMs, and a variety of MS-based quantitative strategies have been successfully developed and employed in basic research as well as clinical studies. In this chapter, we provide an overview for quantitative analysis of histone PTMs, often highly flexible and case dependent, as a primer for future experimental designs.
Collapse
Affiliation(s)
- C Zhang
- Baylor College of Medicine, Houston, TX, United States.
| | - Y Liu
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
37
|
Stejskal S, Stepka K, Tesarova L, Stejskal K, Matejkova M, Simara P, Zdrahal Z, Koutna I. Cell cycle-dependent changes in H3K56ac in human cells. Cell Cycle 2016; 14:3851-63. [PMID: 26645646 DOI: 10.1080/15384101.2015.1106760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.
Collapse
Affiliation(s)
- Stanislav Stejskal
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stepka
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Lenka Tesarova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stejskal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Martina Matejkova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Pavel Simara
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Zbynek Zdrahal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Irena Koutna
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| |
Collapse
|
38
|
Wei W, Yu Z, Xie M, Wang W, Luo X. Oxygen-Glucose Deprivation Induces G2/M Cell Cycle Arrest in Brain Pericytes Associated with ERK Inactivation. J Mol Neurosci 2016; 61:105-114. [PMID: 27665569 DOI: 10.1007/s12031-016-0844-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Growing evidence has revealed that brain pericytes are multifunctional and contribute to the pathogenesis of a number of neurological disorders. However, the role of pericytes in cerebral ischemia, and especially the pathophysiological alterations in pericytes, remains unclear. In the present study, our aim was to determine whether the proliferation of pericytes is affected by cerebral ischemia and, if so, to identify the underlying mechanism(s). Cultured brain pericytes subjected to oxygen-glucose deprivation (OGD) were used as our model of cerebral ischemia; the protein expression levels of cyclin D1, cyclin E, cdk4, and cyclin B1 were determined by Western blot analysis, and cell cycle analysis was assessed by flow cytometry. The OGD treatment reduced the brain pericyte proliferation by causing G2/M phase arrest and downregulating the protein levels of cyclin D1, cyclin E, cdk4, and cyclin B1. Further studies demonstrated a simultaneous decrease in the activity of extracellular regulated protein kinases (ERK), suggesting a critical role of the ERK signaling cascade in the inhibition of OGD-induced pericyte proliferation. We suggest that OGD inhibition of the proliferation of brain pericytes is associated with the inactivation of the ERK signaling pathway, which arrests them in the G2/M phase.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8797206. [PMID: 27556043 PMCID: PMC4983322 DOI: 10.1155/2016/8797206] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments.
Collapse
|
40
|
Önder Ö, Sidoli S, Carroll M, Garcia BA. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 2016; 12:499-517. [PMID: 26400466 DOI: 10.1586/14789450.2015.1084231] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chromatin biology and epigenetics are scientific fields that are rapid expanding due to their fundamental role in understanding cell development, heritable characters and progression of diseases. Histone post-translational modifications (PTMs) are major regulators of the epigenetic machinery due to their ability to modulate gene expression, DNA repair and chromosome condensation. Large-scale strategies based on mass spectrometry have been impressively improved in the last decade, so that global changes of histone PTM abundances are quantifiable with nearly routine proteomics analyses and it is now possible to determine combinatorial patterns of modifications. Presented here is an overview of the most utilized and newly developed proteomics strategies for histone PTM characterization and a number of case studies where epigenetic mechanisms have been comprehensively characterized. Moreover, a number of current epigenetic therapies are illustrated, with an emphasis on cancer.
Collapse
Affiliation(s)
- Özlem Önder
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA.,b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- a 1 Division of Hematology and Oncology, Philadelphia, 19104, USA
| | - Benjamin A Garcia
- b 2 Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
41
|
Bar-Ziv R, Voichek Y, Barkai N. Chromatin dynamics during DNA replication. Genome Res 2016; 26:1245-56. [PMID: 27225843 PMCID: PMC5052047 DOI: 10.1101/gr.201244.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/23/2016] [Indexed: 01/21/2023]
Abstract
Chromatin is composed of DNA and histones, which provide a unified platform for regulating DNA-related processes, mostly through their post-translational modification. During DNA replication, histone arrangement is perturbed, first to allow progression of DNA polymerase and then during repackaging of the replicated DNA. To study how DNA replication influences the pattern of histone modification, we followed the cell-cycle dynamics of 10 histone marks in budding yeast. We find that histones deposited on newly replicated DNA are modified at different rates: While some marks appear immediately upon replication (e.g., H4K16ac, H3K4me1), others increase with transcription-dependent delays (e.g., H3K4me3, H3K36me3). Notably, H3K9ac was deposited as a wave preceding the replication fork by ∼5–6 kb. This replication-guided H3K9ac was fully dependent on the acetyltransferase Rtt109, while expression-guided H3K9ac was deposited by Gcn5. Further, topoisomerase depletion intensified H3K9ac in front of the replication fork and in sites where RNA polymerase II was trapped, suggesting supercoiling stresses trigger H3K9 acetylation. Our results assign complementary roles for DNA replication and gene expression in defining the pattern of histone modification.
Collapse
Affiliation(s)
- Raz Bar-Ziv
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
42
|
The Commercial Antibodies Widely Used to Measure H3 K56 Acetylation Are Non-Specific in Human and Drosophila Cells. PLoS One 2016; 11:e0155409. [PMID: 27187594 PMCID: PMC4871326 DOI: 10.1371/journal.pone.0155409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/28/2016] [Indexed: 12/26/2022] Open
Abstract
Much of our understanding of the function of histone post-translational modifications in metazoans is inferred from their genomic localization and / or extrapolated from yeast studies. For example, acetylation of histone H3 lysine 56 (H3 K56Ac) is assumed to be important for transcriptional regulation in metazoan cells based on its occurrence at promoters and its function in yeast. Here we directly assess the function of H3 K56Ac during chromatin disassembly from gene regulatory regions during transcriptional induction in human cells by using mutations that either mimic or prevent H3 K56Ac. Although there is rapid histone H3 disassembly during induction of some estrogen receptor responsive genes, depletion of the histone chaperone ASF1A/B, which is required for H3 K56 acetylation, has no effect on chromatin disassembly at these regions. During the course of this work, we found that all the commercially available antibodies to H3 K56Ac are non-specific in human cells and in Drosophila. We used H3-YFP fusions to show that the H3 K56Q mutation can promote chromatin disassembly from regulatory regions of some estrogen responsive genes in the context of transcriptional induction. However, neither the H3 K56R nor K56Q mutation significantly altered chromatin disassembly dynamics by FRAP analysis. These results indicate that unlike the situation in yeast, human cells do not use H3 K56Ac to promote chromatin disassembly from regulatory regions or from the genome in general. Furthermore, our work highlights the need for rigorous characterization of the specificity of antibodies to histone post-translational modifications in vivo.
Collapse
|
43
|
Gutierrez DA, Valdes L, Serguera C, Llano M. Poly(ADP-ribose) polymerase-1 silences retroviruses independently of viral DNA integration or heterochromatin formation. J Gen Virol 2016; 97:1686-1692. [PMID: 27028089 DOI: 10.1099/jgv.0.000466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PARP-1 silences retrotransposons in Drosophila, through heterochromatin maintenance, and integrated retroviruses in chicken. Here, we determined the role of viral DNA integration and cellular heterochromatin in PARP-1-mediated retroviral silencing using HIV-1-derived lentiviral vectors and Rous-associated virus type 1 (RAV-1) as models. Analysis of the infection of PARP-1 knockout and control cells with HIV-1 harbouring WT integrase, in the presence or absence of an integrase inhibitor, or catalytic-dead mutant integrase indicated that silencing does not require viral DNA integration. The mechanism involves the catalytic activity of histone deacetylases but not that of PARP-1. In contrast to Drosophila, lack of PARP-1 in avian cells did not affect chromatin compaction globally or at the RAV-1 provirus, or the cellular levels of histone H3 N-terminal acetylated or Lys27 trimethylated, as indicated by micrococcal nuclease accessibility and immunoblot assays. Therefore, PARP-1 represses retroviruses prior to viral DNA integration by mechanisms involving histone deacetylases but not heterochromatin formation.
Collapse
Affiliation(s)
- Denisse A Gutierrez
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | - Luis Valdes
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| | | | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| |
Collapse
|
44
|
Leus NGJ, van der Wouden PE, van den Bosch T, Hooghiemstra WTR, Ourailidou ME, Kistemaker LEM, Bischoff R, Gosens R, Haisma HJ, Dekker FJ. HDAC 3-selective inhibitor RGFP966 demonstrates anti-inflammatory properties in RAW 264.7 macrophages and mouse precision-cut lung slices by attenuating NF-κB p65 transcriptional activity. Biochem Pharmacol 2016; 108:58-74. [PMID: 26993378 PMCID: PMC4844503 DOI: 10.1016/j.bcp.2016.03.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The increasing number of patients suffering from chronic obstructive pulmonary disease (COPD) represents a major and increasing health problem. Therefore, novel therapeutic approaches are needed. Class I HDACs 1, 2 and 3 play key roles in the regulation of inflammatory gene expression with a particular pro-inflammatory role for HDAC 3. HDAC 3 has been reported to be an important player in inflammation by deacetylating NF-κB p65, which has been implicated in the pathology of COPD. Here, we applied the pharmacological HDAC 3-selective inhibitor RGFP966, which attenuated pro-inflammatory gene expression in models for inflammatory lung diseases. Consistent with this, a robust decrease of the transcriptional activity of NF-κB p65 was observed. HDAC 3 inhibition affected neither the acetylation status of NF-κB p65 nor histone H3 or histone H4. This indicates that HDAC 3 inhibition does not inhibit NF-κB p65 transcriptional activity by affecting its deacetylation but rather by inhibiting enzymatic activity of HDAC 3. Taken together, our findings indicate that pharmacological HDAC 3-selective inhibition by inhibitors such as RGFP966 may provide a novel and effective approach toward development of therapeutics for inflammatory lung diseases.
Collapse
Affiliation(s)
- Niek G J Leus
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Petra E van der Wouden
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thea van den Bosch
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter T R Hooghiemstra
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maria E Ourailidou
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J Dekker
- Department of Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
45
|
D'Urzo A, Boichenko AP, van den Bosch T, Hermans J, Dekker F, Andrisano V, Bischoff R. Site-specific quantification of lysine acetylation in the N-terminal tail of histone H4 using a double-labelling, targeted UHPLC MS/MS approach. Anal Bioanal Chem 2016; 408:3547-53. [PMID: 26968571 PMCID: PMC4837199 DOI: 10.1007/s00216-016-9431-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
We developed a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the site-specific quantification of lysine acetylation in the N-terminal region of histone H4 by combining chemical derivatization at the protein and peptide levels with digestion using chymotrypsin and trypsin. Unmodified ε-amino groups were first modified with propionic acid anhydride and the derivatized protein digested with trypsin and chymotrypsin. The newly formed peptide N-termini were subjected to a second derivatization step with d6- (heavy) or d0- (light) acetic acid anhydride. Samples were mixed at different ratios and peptides monitored by multiple reaction monitoring (MRM) LC-MS/MS. The method was validated in terms of linearity (R2 ≥ 0.94), precision (RSD ≤ 10 %), and accuracy (≤27 %) and used to assess the effect of the histone deacetylase (HDAC) inhibitors SAHA and MS-275 in the murine macrophage-like cell line RAW 264.7. SAHA and MS-275 showed site-specific effects on the acetylation levels of K5 and K8 with the K5(Ac)–K8 and K5–K8(Ac) peptides increasing 2.5-fold and 5-fold upon treatment with SAHA and MS-275, respectively. Assessing lysine acetylation in a site-specific manner is important for gaining a better understanding of the effects of HDAC inhibitors and for clarifying disease mechanisms where lysine acetylation plays a role.
Collapse
Affiliation(s)
- Annalisa D'Urzo
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso di Augusto, 237-47921, Rimini, Italy
| | - Alexander P Boichenko
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Thea van den Bosch
- Department of Pharmaceutical Gene Modulation, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jos Hermans
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank Dekker
- Department of Pharmaceutical Gene Modulation, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso di Augusto, 237-47921, Rimini, Italy
| | - Rainer Bischoff
- Department of Analytical Biochemistry, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
46
|
Graves HK, Wang P, Lagarde M, Chen Z, Tyler JK. Mutations that prevent or mimic persistent post-translational modifications of the histone H3 globular domain cause lethality and growth defects in Drosophila. Epigenetics Chromatin 2016; 9:9. [PMID: 26933451 PMCID: PMC4772521 DOI: 10.1186/s13072-016-0059-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 01/24/2023] Open
Abstract
Background
Understanding the function of histone post-translational modifications is the key to deciphering how genomic activities are regulated. Among the least well-understood histone modifications in vivo are those that occur on the surface of the globular domain of histones, despite their causing the most profound structural alterations of the nucleosome in vitro. We utilized a Drosophila system to replace the canonical histone genes with mutated histone transgenes. Results Mutations predicted to mimic or prevent acetylation on histone H3 lysine (K) 56, K115, K122, and both K115/K122, or to prevent or mimic phosphorylation on H3 threonine (T) 118 and T80, all caused lethality, with the exception of K122R mutants. T118 mutations caused profound growth defects within wing discs, while K115R, K115Q, K56Q, and the K115/K122 mutations caused more subtle growth defects. The H3 K56R and H3 K122R mutations caused no defects in growth, differentiation, or transcription within imaginal discs, indicating that H3 K56 acetylation and K122 acetylation are dispensable for these functions. In agreement, we found the antibody to H3 K122Ac, which was previously used to imply a role for H3 K122Ac in transcription in metazoans, to be non-specific in vivo. Conclusions Our data suggest that chromatin structural perturbations caused by acetylation of K56, K115, or K122 and phosphorylation of T80 or T118 are important for key developmental processes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0059-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hillary K Graves
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Pingping Wang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Matthew Lagarde
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhihong Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jessica K Tyler
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
47
|
Henry RA, Singh T, Kuo YM, Biester A, O'Keefe A, Lee S, Andrews AJ, O'Reilly AM. Quantitative Measurement of Histone Tail Acetylation Reveals Stage-Specific Regulation and Response to Environmental Changes during Drosophila Development. Biochemistry 2016; 55:1663-72. [PMID: 26836402 DOI: 10.1021/acs.biochem.5b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation.
Collapse
Affiliation(s)
- Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Tanu Singh
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States.,Department of Biochemistry and Molecular Biology, Drexel College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alison Biester
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Abigail O'Keefe
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Sandy Lee
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alana M O'Reilly
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| |
Collapse
|
48
|
Elsässer SJ, Ernst RJ, Walker OS, Chin JW. Genetic code expansion in stable cell lines enables encoded chromatin modification. Nat Methods 2016; 13:158-64. [PMID: 26727110 DOI: 10.1038/nmeth.3701] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
Abstract
Genetically encoded unnatural amino acids provide powerful strategies for modulating the molecular functions of proteins in mammalian cells. However, this approach has not been coupled to genome-wide measurements, because efficient incorporation of unnatural amino acids is limited to transient expression settings that lead to very heterogeneous expression. We demonstrate that stable integration of the Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)/tRNA(Pyl)CUA pair (and its derivatives) into the mammalian genome enables efficient, homogeneous incorporation of unnatural amino acids into target proteins in diverse mammalian cells, and we reveal the distinct transcriptional responses of embryonic stem cells and mouse embryonic fibroblasts to amber codon suppression. Genetically encoding N-ɛ-acetyl-lysine in place of six lysine residues in histone H3 enables deposition of pre-acetylated histones into cellular chromatin, via a pathway that is orthogonal to enzymatic modification. After synthetically encoding lysine-acetylation at natural modification sites, we determined the consequences of acetylation at specific amino acids in histones for gene expression.
Collapse
Affiliation(s)
- Simon J Elsässer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Department of Chemistry, Cambridge University, Cambridge, UK.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Russell J Ernst
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Olivia S Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Department of Chemistry, Cambridge University, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Department of Chemistry, Cambridge University, Cambridge, UK
| |
Collapse
|
49
|
van den Bosch T, Boichenko A, Leus NGJ, Ourailidou ME, Wapenaar H, Rotili D, Mai A, Imhof A, Bischoff R, Haisma HJ, Dekker FJ. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases. Biochem Pharmacol 2015; 102:130-140. [PMID: 26718586 DOI: 10.1016/j.bcp.2015.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, histone acetyltransferase inhibitors could reduce inflammatory responses. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4μM for histone acetyltransferase p300). C646 was described to affect the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. This pathway has been implicated in asthma and COPD. Therefore, we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, we demonstrate here that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account.
Collapse
Affiliation(s)
- Thea van den Bosch
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Alexander Boichenko
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Niek G J Leus
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Maria E Ourailidou
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hannah Wapenaar
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Axel Imhof
- Protein Analysis Unit Biomedical Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians University, Planegg-Martinsried, Germany
| | - Rainer Bischoff
- Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Frank J Dekker
- Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
50
|
Regna NL, Vieson MD, Gojmerac AM, Luo XM, Caudell DL, Reilly CM. HDAC expression and activity is upregulated in diseased lupus-prone mice. Int Immunopharmacol 2015; 29:494-503. [PMID: 26471208 DOI: 10.1016/j.intimp.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/04/2023]
Abstract
Prior studies have shown that pan-HDAC inhibition can decrease disease in lupus mice; however, the mechanisms(s) remain to be elucidated. MRL/MpJ-Fas(lpr) (MRL/lpr) mice develop a lupus-like disease characterized by anti-dsDNA production, lymphoproliferation, and immune complex-mediated glomerulonephritis. Early- and late-disease (12 and 20weeks-of-age respectively) female MRL/lpr mice were compared to age-matched, healthy C57BL/6 mice for HDAC expression and activity in bone marrow (BM) B cells, splenic B and T cells, and glomerular cells. We found that HDAC6 was significantly overexpressed in B cells, splenic T cells and glomerular cells, whereas HDAC9 expression was significantly increased in splenic T cells, BM B cells and glomerular cells. Due to the overexpression of HDAC6, we tested whether treatment with a selective HDAC6 inhibitor (ACY-738) or a pan-HDAC inhibitor (TsA) would decrease HDAC activity. ACY-738 significantly reduced cytoplasmic HDAC activity whereas TsA significantly decreased both nuclear and cytoplasmic HDAC activity. In vitro studies in mesangial cells showed that ACY-738 increased α-tubulin and Hsp90 acetylation resulting in decreased nuclear activation of NF-κB. Treatment of pre-B cells with ACY-738 decreased the Bcl-2:Bax ratio leading to a pro-apoptotic environment. These results suggest that increased HDAC6 expression and activity contribute to SLE pathogenesis, and isoform-selective HDAC inhibitors may prove beneficial in the treatment of SLE by acetylating key signaling and transcription factors in inflammation and cell activation.
Collapse
Affiliation(s)
- Nicole L Regna
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States
| | - Miranda D Vieson
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States
| | - Alexander M Gojmerac
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States
| | - Xin M Luo
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States
| | - David L Caudell
- Wake Forest University Primate Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States; Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Christopher M Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States; Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, United States.
| |
Collapse
|