1
|
Jiang Y, Zong S, Wang X, Zhu-Salzman K, Zhao J, Xiao L, Xu D, Xu G, Tan Y. pH-responsive nanoparticles for oral delivery of RNAi for sustained protection against Spodoptera exigua. Int J Biol Macromol 2025; 306:141763. [PMID: 40049501 DOI: 10.1016/j.ijbiomac.2025.141763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
To enhance the RNAi efficiency of dsRNA against the Spodoptera exigua through a feeding method, we developed a pH-responsive nanoparticle, chitosan-polyethylene glycol-carboxyl (CS-PEG-COOH). This nanoparticle enhances RNAi efficiency by improving dsRNA stability in the midgut of S. exigua and can intelligently release dsRNA under alkaline conditions. Firstly, the CS-PEG-COOH carrier was prepared via cross-linking reactions, and the mass ratio of dsRNA to CS-PEG-COOH was obtained using electrophoretic mobility. The carrier composite materials were then characterized using isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and Zeta potential analysis. The stability and delivery efficiency of the dsRNA/CS-PEG-COOH complex were then verified using electrophoretic mobility and fluorescence labeling methods. Finally, the RNAi efficiency and synergistic mechanism of the complex were analyzed using feeding methods and RNA-seq. The results show that CS-PEG-COOH (40.16 nm size, + 6.44 mV charge) forms a clustered complex with dsRNA through hydrogen bonding and hydrophobic interactions. CS-PEG-COOH significantly enhancing the stability and delivery efficiency of dsRNA in the midgut of S. exigua. Additionally, at pH > 8, dsRNA could be released from dsRNA/CS-PEG-COOH. The RNAi results showed that, dsRNA/CS-PEG-COOH could effectively inhibit the expression of the Acetylcholinesterase (Ace1 + Ace2) gene (65 %), and led to significantly increase mortality (51.82 %), a prolonged developmental period (25 %) and reduced egg production (22.02 %). The physiological and molecular synergistic mechanisms were revealed by RNA-seq analysis. The CS-PEG-COOH-loaded dsACE1 + dsACE2 led to down-regulation of genes related to drug metabolism, hormone synthesis, and stratum corneum biosynthesis, which inhibited insect growth and development. Overall, We developed an appropriate delivery method for dsRNA application in Lepidoptera, providing a basis for developing RNA pesticides with high efficiency and environmental safety.
Collapse
Affiliation(s)
- Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Suman Zong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Xiaofeng Wang
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 210037, Jiangsu Province, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Dejin Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Guangchun Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu Province, China.
| |
Collapse
|
2
|
Luo J, Li Y, Zhang Y, Peng K, Du Z, Ding W. Discovery of 7-hydroxy-3-(1'-methylbenzimidazol-2'-yl) coumarin as novel mitochondrial complex Ι inhibitor against Tetranychus cinnabarinus (Acari: Tetranychidae) via structure-based virtual screening. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106265. [PMID: 40015857 DOI: 10.1016/j.pestbp.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 03/01/2025]
Abstract
Mitochondrial complex Ι is not only an important enzyme for ATP synthesis but also a promising target for acaricide discovery. However, in recent years, the complex Ι inhibitors with new scaffolds have been fewer reported. In this study, the full-length cDNA of subuits 49 kDa and PSST genes of complex Ι from Tetranychus cinnabarinus were cloned and characterized. Then, we integrated structure-based virtual screening, synthesis and acaricidal activity evaluation to discover complex Ι inhibitors with novel chemotypes. The results showed that the 49 kDa and PSST cDNA sequence of T. cinnabarinus consisted of 1443 bp and 687 bp with an open reading frame (ORF) encoding 480, 228 amino acids residues (GenBank accession number MZ172703 and MZ172704), and the highest relative expression of these two genes were nymphs and adults, respectively. The compound ZINC00042996 [7-hydroxy-3-(1'-methylbenzimidazol-2'-yl) coumarin] with highest acaricidal activity was obtained through virtual screening, its LC50 value was 84.85 mg/L, which was in the same order of magnitude as the LC50 value of pyridaben, and its control effect also could be comparable to that of the commercial acaricide pyridaben at 120 mg/L. The compound ZINC00042996 also exhibited excellent complex Ι inhibitory activity, the maximum inhibition rate was 47.03% for LC70 concentration after 48 h treatment. Knocking down the 49 kDa and PSST genes increased the sensitivity of T. cinnabarinus to compound ZINC00042996. Mortality of compound ZINC00042996 significantly increased to 29.49% and 16.47% in the mites fed with 49 kDa and PSST dsRNA compared with mites treated with DEPC-water. This study laid the foundation for the development of novel acaricides targeting mitochondrial complex Ι.
Collapse
Affiliation(s)
- Jinxiang Luo
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunzhe Li
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yimeng Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kejie Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Zirong Du
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Liang J, Xiao F, Ojo J, Chao WH, Ahmad B, Alam A, Abbas S, Abdelhafez MM, Rahman N, Khan KA, Ghramh HA, Ali J, Chen R. Insect Resistance to Insecticides: Causes, Mechanisms, and Exploring Potential Solutions. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70045. [PMID: 40001298 DOI: 10.1002/arch.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
Insecticides play a crucial role as the primary means of controlling agricultural pests, preventing significant damage to crops. However, the misuse of these insecticides has led to the development of resistance in insect pests against major classes of these chemicals. The emergence of resistance poses a serious threat, especially when alternative options for crop protection are limited for farmers. Addressing this challenge and developing new, effective, and sustainable pest management approaches is not merely essential but also critically important. In the absence of alternative solutions, understanding the root causes behind the development of resistance in insects becomes a critical necessity. Without this understanding, the formulation of effective approaches to combat resistance remains elusive. With insecticides playing a vital role in global food security and public health, understanding and mitigating resistance are paramount. Given the growing concern over insect resistance to insecticides, this review addresses a crucial research gap by thoroughly examining the causes, mechanisms, and potential solutions. The review examines factors driving resistance, such as evolutionary pressure and excessive pesticide use, and provides a detailed analysis of mechanisms, including detoxifying enzyme overproduction and target site mutations. Providing an analysis of potential solutions, it discusses integrated pest management, strategic insecticide rotation, and the use of new pest control technologies and biological agents. Emphasizing the urgency of a multifaceted approach, the review provides a concise roadmap for sustainable pest management, guiding future research and applications.
Collapse
Affiliation(s)
- Jiyun Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Feng Xiao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - James Ojo
- Department of Crop Production, Kawara State University, Malete, Nigeria
| | - Wu Hai Chao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Bilal Ahmad
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Aleena Alam
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Mogeda M Abdelhafez
- Plant Protection Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Nadeemur Rahman
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Khalid Ali Khan
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Hamed A Ghramh
- Center of Bee Research and its Products and Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Lin X, Yang B, Yuan X, Liu Z. Overexpression of ace2 compensating for the acetylcholinesterase activity loss from ace1 mutations accelerated the development of eggs and early nymphs in Nilaparvata lugens. Int J Biol Macromol 2025; 287:138532. [PMID: 39647749 DOI: 10.1016/j.ijbiomac.2024.138532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Acetylcholinesterase (AChE) guarantees the acetylcholine signal in insect central nervous system, and is the target of organophosphorus and carbamate insecticides, towards which resistance was often reported due to AChE mutations. In Nilaparvata lugens, a major pest on rice, two mutations (G119S and F331C) were detected in AChE1 in a chlorpyrifos-resistant (CHL) strain. The double mutations in AChE1 reduced total AChE activity in metabolizing acetylcholine, such as low protein stability, substrate affinity and catalytic efficiency, which needed compensation in a special way. In CHL strain, the transcriptional level of ace2 encoding AChE2 was systematically elevated, such as over 30-fold overexpression in brain. The ace2 overexpression not only compensated for AChE activity loss in brain due to AChE1 mutations, but also accelerated the development of eggs and early nymphs in CHL strain. When performing ace2 RNAi in CHL eggs, the egg and early nymph duration were recovered. In CHL eggs, the transcriptional levels of three basic helix-loop-helix transcription factors (Ase2, Ato1 and SCL), which were closely related to neural development, were significantly upregulated. Their respective RNAi in CHL strain also significantly recovered the egg duration, as RNAi towards ace2, which partially explained the reason for the accelerated development of eggs and early nymphs. The results revealed AChE2 non-canonical function in insect embryonic development, and uncovered a physiological effect caused by ace2 overexpression as a compensation action for resistance mechanism due to AChE1 mutations, providing a base for insecticide resistance management in insects.
Collapse
Affiliation(s)
- Xumin Lin
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Xiaowei Yuan
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
5
|
Praveen Joshi SS, Sumathi E, Murugan M, Haran R, Priya SS, Shandeep G, Mohankumar S, Uma D, Nelson A. Exploration of bioactive molecules from Sesbania grandiflora (L.): identification of squalene as an effective compound against the two-spotted spider mite, Tetranychus urticae Koch, through molecular docking. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 94:22. [PMID: 39739148 DOI: 10.1007/s10493-024-00991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
Two-spotted spider mite (TSSM), Tetranychus urticae Koch is a devastating polyphagous mite causing considerable economic loss. Acaricides are showered in crops to manage this pest. The pest is known for developing resistance to several classical acaricides. The study was aimed at the exploration of botanical acaricide for the management of TSSM, T. urticae. Adulticidal action of ethyl acetate, ethanol and water extracts of leaves of Sesbania grandiflora (Fabaceae) were tested on T. urticae. The results showed that ethyl acetate extract showed the maximum mite mortality of 94.44 per cent, followed by ethanol extract at 87.78 per cent at 5 per cent concentration. LC50 of ethyl acetate and ethanol extracts were 1.00 and 4.19 per cent, respectively. The aqueous extract gave 94.44 per cent mortality at a very high concentration of 15% with LC50 of 8.57%. Molecules from the GC-MS analysis of S. grandiflora ethyl acetate leaf extract were subjected to molecular docking using acetylcholine esterase as the target molecule. The major phytomolecules identified in the ethyl acetate leaf extract of S. grandiflora were stigmasterol (15.45%), phytol (13.60%), beta-amyrone (8.72%), and squalene (7.51%). Squalene, a biomolecule with the lowest binding energy was selected from the docking result. The toxicity of squalene was evident from the fact that it caused 81.11, 85.55 and 87.78 per cent mortality at 1800, 2000 and 2200 ppm, respectively at 48 h after treatment. After, 72 h, 100 per cent mortality was recorded at 1800 ppm. This study reveals that squalene can be formulated and used as the best alternative to tackle T. urticae.
Collapse
Affiliation(s)
- S S Praveen Joshi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Ettiappan Sumathi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Ramkumar Haran
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Sundaravadivel Sathiya Priya
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Ganeshan Shandeep
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Subbarayalu Mohankumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Doraiswamy Uma
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Ashitha Nelson
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| |
Collapse
|
6
|
Julian-Chávez B, Siqueiros-Cendón TS, Torres-Castillo JA, Sinagawa-García SR, Abraham-Juárez MJ, González-Barriga CD, Rascón-Cruz Q, Siañez-Estrada LI, Arévalo-Gallegos S, Espinoza-Sánchez EA. Silencing ACE1 Gene with dsRNA of Different Lengths Impairs Larval Development in Leptinotarsa decemlineata. INSECTS 2024; 15:1000. [PMID: 39769602 PMCID: PMC11678036 DOI: 10.3390/insects15121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
In the search for effective strategies to control the Colorado Potato Beetle, RNA interference technology has emerged as a promising method due to its capacity to suppress genes selectively. Factors such as the target gene and double-stranded RNA (dsRNA) length are critical for optimizing gene silencing efficiency. In this study, we designed and synthesized in vitro dsRNAs of varying lengths targeting the ACE1 gene, which encodes the AChE1 isoform of acetylcholinesterase in the beetle. All tested dsRNA lengths (222 bp, 543 bp, 670 bp, and 870 bp) promoted transcript reduction. The 670 bp dsRNA was the most effective, reducing transcript levels by approximately 40% by day seven, followed by the 543 bp dsRNA. No significant differences were observed between the 222 bp and 870 bp dsRNAs. Furthermore, all of the dsRNA lengths resulted in reduced weight gain and increased mortality in larvae, with the 670 bp dsRNA showing the highest mortality rate, leaving only 63% larval survival, a trend that persisted through day nine. These findings emphasize that dsRNA length is a key factor in the silencing response, underscoring the importance of selecting the optimal length while considering the gene's target, stability, and delivery methods. This study contributes to establishing design criteria for dsRNA, aiding in the development of more effective and sustainable pest management strategies.
Collapse
Affiliation(s)
- Brenda Julian-Chávez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Tania S. Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Jorge Ariel Torres-Castillo
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ave. División del Golfo 356, Col. Libertad, Ciudad Victoria 87019, Tamaulipas, Mexico;
| | - Sugey Ramona Sinagawa-García
- Laboratorio de Biotecnología, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N Col. Ex hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - María Jazmín Abraham-Juárez
- Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norte León Km 9.6, Irapuato 36821, Guanajuato, Mexico;
| | - Carmen Daniela González-Barriga
- Laboratorio de Cultivo de Tejidos, División de Ingeniería y Ciencias, Tecnológico de Monterrey, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31100, Chihuahua, Mexico;
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Luis Ignacio Siañez-Estrada
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Nuevo Campus Universitario, Chihuahua 31125, Chihuahua, Mexico; (B.J.-C.); (T.S.S.-C.); (Q.R.-C.); (L.I.S.-E.); (S.A.-G.)
| |
Collapse
|
7
|
Xiong W, Liao B, Yang Y, Zhong S, Zhang J, Sun W, Zou Y, Ai H, Xin T, Xia B, Zou Z. The deficiency of acetylcholinesterase gene in Aleuroglyphus ovatus increases its susceptibility to phoxim and natural pyrethrins and inhibits its reproduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136116. [PMID: 39405704 DOI: 10.1016/j.jhazmat.2024.136116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 12/01/2024]
Abstract
Acetylcholinesterase (AChE), an essential neurotransmitter hydrolase, is targeted by organophosphorus and carbamate pesticides, and its number varies among species. In Aleuroglyphus ovatus, a pest mite that endangers health and economy, Aoace1 and Aoace2 have been identified encoding 590 and 460 amino acids, respectively, with characteristic structures, including catalytic triads, oxyanion holes, acyl pockets, peripheral anion, and catalytic anion sites. Phylogenetic analysis reveals distinct clusters for each gene. Expression patterns indicate that Aoace1 predominates in eggs, while Aoace2 is substantially expressed in adults. Experiments on the response of the Aoace genes to phoxim and natural pyrethrins showed that except for the Aoace2 gene responded to natural pyrethrins, all the experimental groups showed a significant increase at LC30 agent concentration. RNA interference with Aoace1 and Aoace2 significantly reduced AChE activity, and increased mortality with LC30 concentrations of phoxim by 15.8 % and 31.5 %, while increased mortality with LC30 concentrations of natural pyrethrins by 43.4 % and 40.4 %, respectively. Knockdown of ace gene significantly decreased fecundity and vitellogenin gene expression. These findings suggest that Aoace1 and Aoace2 are involved in cholinergic and non-cholinergic functions, with Aoace2 being more influential, offering new insights for A. ovatus control strategies.
Collapse
Affiliation(s)
- Wenhui Xiong
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Binbin Liao
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yuanfa Yang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shanglin Zhong
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jinnan Zhang
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Wenxuan Sun
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Yang Zou
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Hui Ai
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Tianrong Xin
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Bin Xia
- School of Life Science, Nanchang University, Nanchang 330031, China
| | - Zhiwen Zou
- School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
8
|
Ou Z, Zhang Y, Wu Q, Wang K, Zhang G, Qiao X, Yan Y, Qian W, Wan F, Liu B. Silencing of the MP Gene via dsRNA Affects Root Development and Growth in the Invasive Weed Mikania micrantha. Int J Mol Sci 2024; 25:12678. [PMID: 39684389 DOI: 10.3390/ijms252312678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Mikania micrantha ("mile-a-minute" weed) is a global invasive alien weed that can cause severe damage to agroforestry ecosystems and significant agricultural losses worldwide. Although chemical, manual, or mechanical control methods are widely used to control M. micrantha, RNA interference (RNAi)-based biocontrol methods have rarely been reported for this species. The MONOPTEROS (MP) gene, encoding an auxin response factor, plays an essential role in embryonic root initiation in Arabidopsis thaliana. In this study, we identified the MP gene from M. micrantha via orthologous gene analysis. A total of 37 MP orthologous genes was identified in 4 plants, including 9 MP candidate genes in M. micrantha, 13 in Helianthus annuus, 6 in Chrysanthemum nankingense, and 9 in Lactuca sativa. Phylogenetic analysis revealed that an MP candidate gene in M. micrantha (Mm01G000655, named MmMP) was clustered into one clade with the MP gene in A. thaliana (AtMP). In addition, both MmMP and AtMP contain a B3-DNA binding domain that is shared by transcription factors that regulate plant embryogenesis. To study gene function, dsRNA against MmMP (dsMmMP) was applied to the roots of M. micrantha. Compared with those of the controls, the expression of MmMP was reduced by 43.3%, 22.1%, and 26.2% on the first, third, and fifth days after dsMmMP treatment, respectively. The dsMmMP-treated plants presented several morphological defects, mostly in the roots. Compared with water-treated plants, the dsMmMP-treated plants presented reduced developmental parameters, including root length, number of adventitious roots, root fresh and dry weights, plant height, and aboveground biomass. Additionally, safety assessment suggested that this dsMmMP treatment did not silence MP genes from non-target plants, including rice and tomato; nor did it inhibit root growth in those species. Collectively, these results suggest that MmMP plays an important role in root development in M. micrantha and provides a potential target for the development of species-specific RNAi-based herbicides.
Collapse
Affiliation(s)
- Zhenghui Ou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuantong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kangkang Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guangzhong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Yan
- Department of Insect Biotechnology in Plant Protection, Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Winchesterstraße 2, 35394 Giessen, Germany
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
9
|
Gao S, Cao Y, Miao W, Li D, Zhou C, Zhang K. Glutathione S-transferase TcGSTu1 contributes to defense against eucalyptol in Tribolium castaneum. Genetica 2024; 153:2. [PMID: 39579202 DOI: 10.1007/s10709-024-00220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/14/2024] [Indexed: 11/25/2024]
Abstract
Eucalyptol is one of the major insecticidal active ingredients in a variety of plant essential oils, and has good killing and avoidance effects on Tribolium castaneum. The presence of detoxifying enzymes glutathione S-transferase (GST) in T. castaneum makes it resistant to a variety of insecticides. However, whether GST is involved in regulating the sensitivity of eucalyptol by T. castaneum is not well understood. In our previous study, a glutathione S-transferase, TcGSTu1, was significantly up-regulated in RNA sequencing data when T. castaneum was exposed to eucalyptol. Therefore, in this study, the role of TcGSTu1 in the regulating the sensitivity of T. castaneum to eucalyptol was studied. The enzyme activities of GST and the transcription levels of TcGSTu1 were significantly increased following stimulation with eucalyptol. When using RNA interference technology knockdown TcGSTu1 heightens the sensitivity of T. castaneum to eucalyptol, demonstrating a link between TcGSTu1 and eucalyptol detoxification metabolism. Furthermore, TcGSTu1 is expressed in all developmental stages of T. castaneum, with higher expression levels observed particularly in the late egg stage. There was significant expression of TcGSTu1 in various tissues of different organisms, including larval head, fat body, and adult head. This observation indicated a possible connection between high TcGSTu1 expression and eucalyptol detoxification. The present findings suggest that TcGSTu1 may be involved in regulating the sensitivity and response of T. castaneum to treatment with eucalyptol, providing new research insight into pest control.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
- Taihang Mountain, Forest Pests Observation and Research Station of Henan Province, Linzhou, 456550, China
| | - Yizhuo Cao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Wenbo Miao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Dongyu Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Can Zhou
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, 455000, Henan, China.
| |
Collapse
|
10
|
Kuang C, Cao J, Zhou Y, Zhang H, Wang Y, Zhou J. Parthenogenetic Haemaphysalis longicornis acetylcholinesterases are triggered by the repellent effect of cinnamaldehyde, a primary compound found in cinnamon oil. Ticks Tick Borne Dis 2024; 15:102404. [PMID: 39405601 DOI: 10.1016/j.ttbdis.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 12/17/2024]
Abstract
The control and prevention of ticks and tick-borne diseases rely on chemical insecticides and repellents. Plant-derived compounds potentially represent new and safer repellents. Cinnamaldehyde, a component of cinnamon oil, exhibits antibacterial, anti-inflammatory, acaricidal, and repellent activity against ticks. Here we studied the molecular mechanism of the repellent effect of cinnamaldehyde on Haemaphysalis longicornis. A 2 % cinnamaldehyde treatment resulted in >90 % nymph repellency within 6 h. Nymphs were exposed to cinnamaldehyde for 30 min, and subsequent transcriptome and metabolome analyses revealed the involvement of H. longicornis Acetylcholinesterases (HL-AchEs) in the response process. HL-AchEs was transcribed in all tick developmental stages and tissues. Following cinnamaldehyde treatment, the transcript and specific activity of the enzyme of AchE were significantly altered. Following RNAi, electroantennography (EAG) tests demonstrated a significant decrease in response to various repellents as well as a significant decrease in repellency. Our findings have revealed that HL-AchEs mediates cinnamaldehyde-induced tick repellency, and the results provide insights into the mechanism of plant-derived tick repellents.
Collapse
Affiliation(s)
- Ceyan Kuang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
11
|
Sousa BP, Lourenço TC, Anchieta CG, Nepel TCM, Filho RM, Da Silva JLF, Doubek G. Direct Evidence of Reversible Changes in Electrolyte and its Interplay with LiO 2 Intermediate in Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306895. [PMID: 38607269 DOI: 10.1002/smll.202306895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Lithium-oxygen batteries show promising energy storage potential with high theoretical energy density; however, further investigation of chemical reactions is required. In this study, experimental Raman and theoretical analyzes are performed for a Li-O2 battery with LiClO4/dimethyl sulfoxide (DMSO) electrolyte and carbon cathode to understand the role of intermediate species in the reactional mechanism of the cell using a high donor number solvent. Operando Raman results reveal reversible changes in the DMSO bands, in addition to the formation and decomposition of Li2O2. On discharge, a decrease in DMSO polarizability is observed and bands of DMSO-Li+-anion interactions are evidenced and supported by ab initio density functional theory (DFT) calculations. Molecular dynamics (MD) force field simulations and operando Raman show that DMSO interacts with LiO2(sol), highlighting the stability of the electrolyte compared to the interaction with reactiveO 2 - ${\rm O}_2^{-}$ . On charging, the presence of Li+ indicates the formation of a lithium-deficient phase, followed by the release of Li+ and oxygen. Therefore, this study contributes to understanding the discharge/charge chemistry of a Li-O2 cell, employing a common carbon cathode and DMSO electrolyte. The combination of a simple characterization technique in operando mode and theoretical studies provides essential information on the mechanism of Li-O2 system.
Collapse
Affiliation(s)
- Bianca P Sousa
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Tuanan C Lourenço
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, São Paulo, 13560-970, Brazil
| | - Chayene G Anchieta
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, 5232, Switzerland
| | - Thayane C M Nepel
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Rubens M Filho
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, São Paulo, 13560-970, Brazil
| | - Gustavo Doubek
- Advanced Energy Storage Division Center for Innovation on New Energies (CINE)Laboratory of Advanced Batteries, School of Chemical Engineering, University of Campinas, Campinas, 13083-852, Brazil
| |
Collapse
|
12
|
Haouel-Hamdi S, Soltani A, Ben Hamedou M, Bachrouch O, Ben Abada M, Messaoud C, El Annabi MA, Sriti Eljazi J, Boushih E, Hammami M, Limam F, Mediouni Ben Jemâa J. Laurel essential oil: biological activities and application for semolina preservation against the red flour beetle Tribolium castaneum (Tenebrionidae). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1379-1389. [PMID: 35765827 DOI: 10.1080/09603123.2022.2093338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The phytochemical composition of Laurus nobilis essential oil and their anticholinesterase, antioxidant, and insecticidal potential were studied. Also, the oil volatile fraction was compared in semolina at the beginning and after storage periods. For that, a headspace solid-phase-microextraction analysis (HS-SPME) coupled with gas chromatography and mass spectrometry was undertaken. Significant quantitative and qualitative differences of the oil volatile fraction were detected according to storage periods and occupation space ratios. Additionally, anti-acetylcholinesterase activity of L. nobilis oil against T. castaneum adults was evaluated. Results revealed that insecticide activity varied according to storage duration and occupation space. Besides, the oil acts on acetylcholine hydrolysis by inhibiting the activity of acetylcholinesterase. These results highlighted that L. nobilis essential oil may be recommended as an eco-friendly alternative for preserving semolina during storage.
Collapse
Affiliation(s)
- Soumaya Haouel-Hamdi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Abir Soltani
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Mohamed Ben Hamedou
- Laboratory of Plant Biotechnology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Olfa Bachrouch
- Laboratory of Plant Protection, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Maha Ben Abada
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Chokri Messaoud
- Laboratory of Plant Biotechnology, National Institute of Applied Science and Technology (INSAT), University of Carthage, Carthage, Tunisia
| | - Mohamed Ali El Annabi
- National Agricultural Research Institute of Tunisia (INRAT), Agronomy Laboratory (LR16INRAT05), University of Carthage, Tunis, Tunisia
| | - Jazia Sriti Eljazi
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Emna Boushih
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Majdi Hammami
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Center of Biotechnology of Borj Cédria (CBBC), Hammam-Lif, Tunisia
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| |
Collapse
|
13
|
Mojarab-Mahboubkar M, Afrazeh Z, Azizi R, Sendi JJ. Efficiency of Artemisia annua L. essential oil and its chitosan/tripolyphosphate or zeolite encapsulated form in controlling Sitophilus oryzae L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105544. [PMID: 37666615 DOI: 10.1016/j.pestbp.2023.105544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023]
Abstract
The rice weevil, Sitophilus oryzae L., is one of the most widespread and destructive stored-product pests and resistant to a wide range of chemical insecticides. In this research, Artemisia annua L. essential oil (EO) and its encapsulated form by chitosan/TPP (tripolyphosphate) and zeolite were tested against S. oryzae adults. The order of toxicity was chitosan/TPP (LC30: 30.83, LC50: 39.52, and LC90: 72.50 μL/L air) > pure EO (LC30: 35.75, LC50: 46.25, and LC90: 86.76 μL/L air) > EO loaded in the zeolite (LC30: 43.35, LC50: 55.07, and LC90: 98.80 μL/L air). These encapsulated samples were characterized by dynamic light scattering (DLS) and field emission scanning electron microscope (FE-SEM) which revealed the size and morphology of the droplets measuring 255.2 to 272 nm and 245 to 271.8 nm for EO loaded in chitosan and zeolite respectively. The encapsulation efficiency and loading percentages of A. annua EO in chitosan/TPP and zeolite were 40.16% and 6.01%, and 88% and 85%, respectively. Fumigant persistence was increased from 6 days for pure EO then, 20 and 22 days for encapsulated oil in zeolite and chitosan/TPP, respectively. Our results showed that A. annua EO contains (±)-camphor (29.29%), 1,8-cineole (12.56%), β-caryophyllene (10.29%), α-pinene (8.68%), and artemisia ketone (8.48%) as its major composition. The activity level of glutathione S-transferase increased while general esterase and acetylcholinesterase activity were significantly inhibited in the treated group compared with the control. Antioxidant enzymes, including catalase, peroxidase, and superoxide dismutase were activated in treated adults compared to controls. The current results suggest that encapsulation of A. annua EO by chitosan/TPP and zeolite in addition to safety and environmentally friendly approach could increase its sustainability and therefore enhancing the efficiency in controlling S. oryzae in storage.
Collapse
Affiliation(s)
- Malahat Mojarab-Mahboubkar
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Zahra Afrazeh
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Roya Azizi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 416351314, Iran.
| |
Collapse
|
14
|
Li BJ, Wang KK, Yu Y, Wei JQ, Zhu J, Wang JL, Lin F, Xu HH. PxRdl2 dsRNA increased the insecticidal activities of GABAR-targeting compounds against Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105548. [PMID: 37666591 DOI: 10.1016/j.pestbp.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
The utilization of RNA interference (RNAi) for pest management has garnered global interest. The bioassay results suggested the knockout of the PxRdl2 gene significantly increased the insecticidal activities of the γ-aminobutyric acid receptor (GABAR)-targeting compounds (fipronil, two pyrazoloquinazolines, and two isoxazolines), thereby presenting a viable target gene for RNAi-mediated pest control. Consequently, we suggest enhancing the insecticidal activities of GABAR-targeting compounds by knockdown the transcript level of PxRdl2. Furthermore, PxRdl2 dsRNA was expressed in HT115 Escherichia coli to reduce costs and protect dsRNA against degradation. In comparison to in vitro synthesized dsRNA, the recombinant bacteria (ds-B) exhibited superior interference efficiency and greater stability when exposed to UV irradiation. Collectively, our results provide a strategy for insecticide spray that combines synergistically with insecticidal activities by suppressing PxRdl2 using ds-B and may be beneficial for reducing the usage of insecticide and slowing pest resistance.
Collapse
Affiliation(s)
- Ben-Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Kun-Kun Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ye Yu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jia-Qi Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jian Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Jia-Li Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China.
| | - Han-Hong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Li B, Yan Y, Yao G, Zhang L, Lin F, Xu H. Mode of Action of Novel Pyrazoloquinazoline on Diamondback Moth ( Plutella xylostella) Ligand-Gated Chloride Channels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7250-7257. [PMID: 37134096 DOI: 10.1021/acs.jafc.3c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In our previous study, a series of novel pyrazoloquinazolines were synthesized. Pyrazoloquinazoline 5a showed high insecticidal activity against the diamondback moth (Plutella xylostella) and no cross-resistance to fipronil. Patch clamp electrophysiology performed on P. xylostella pupae brains and two-electrode voltage clamp electrophysiology performed on Xenopus Laevis oocytes indicated that 5a might act on the ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) and glutamate-gated chloride channel (GluCl). Moreover, 5a's potency on PxGluCl was about 15-fold higher than on fipronil, which may explain why there was no cross-resistance between 5a and fipronil. Downregulation of the PxGluCl transcription level significantly enhanced the insecticidal activity of 5a on P. xylostella. These findings shed light on the mode of action of 5a and provide important insights into the development of new insecticides for agricultural applications.
Collapse
Affiliation(s)
- Benjie Li
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ying Yan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China
| | - Guangkai Yao
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Lin
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Rainio MJ, Margus A, Tikka S, Helander M, Lindström L. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104503. [PMID: 36935035 DOI: 10.1016/j.jinsphys.2023.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Santtu Tikka
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
17
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
18
|
Gao S, Guo X, Liu S, Li S, Zhang J, Xue S, Tang Q, Zhang K, Li R. Cytochrome P450 gene CYP6BQ8 mediates terpinen-4-ol susceptibility in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:271-281. [PMID: 36636814 DOI: 10.1017/s0007485322000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cytochrome P450 proteins (CYPs) in insects can encode various detoxification enzymes and catabolize heterologous substances, conferring tolerance to insecticides. This study describes the identification of a P450 gene (CYP6BQ8) from Tribolium castaneum (Herbst) and investigation of its spatiotemporal expression profile and potential role in the detoxification of terpinen-4-ol, a component of plant essential oils. The developmental expression profile showed that TcCYP6BQ8 expression was relatively higher in early- and late-larval stages of T. castaneum compared with other developmental stages. Tissue expression profiles showed that TcCYP6BQ8 was mainly expressed in the head and integument of both larvae and adults. The expression profiling of TcCYP6BQ8 in developmental stages and tissues is closely related to the detoxification of heterologous substances. TcCYP6BQ8 expression was significantly induced after exposure to terpinen-4-ol, and RNA interference against TcCYP6BQ8 increased terpinen-4-ol-induced larval mortality from 47.78 to 66.67%. This indicates that TcCYP6BQ8 may be involved in T. castaneum's metabolism of terpinen-4-ol. Correlation investigation between the CYP6BQ8 gene and terpinen-4-ol resistance in T. castaneum revealed that the TcCYP6BQ8 gene was one of the factors behind T. castaneum's resistance to terpinen-4-ol. This discovery may provide a new theoretical foundation for future regulation of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shumei Liu
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Shuang Xue
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Qingbo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, Henan 455000, China
| |
Collapse
|
19
|
Two P450 genes, CYP6SN3 and CYP306A1, involved in the growth and development of Chilo suppressalis and the lethal effect caused by vetiver grass. Int J Biol Macromol 2022; 223:860-869. [PMID: 36372110 DOI: 10.1016/j.ijbiomac.2022.11.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chilo suppressalis is a widely distributed pest occurring in nearly all paddy fields, which has developed high level resistance to different classes of insecticides. Vetiver grass has been identified as a dead-end trap plant for the alternative control of C. suppressalis. In this study, two cytochrome P450 monooxygenase (P450) genes, CsCYP6SN3 and CsCYP306A1, were identified and characterized, which are expressed at all developmental stages, with the highest expression in the midguts and fat bodies of 3rd instar larvae. Vetiver significantly inhibited the expression levels of CsCYP6SN3 and CsCYP306A1 in 3rd larvae after feeding. RNA interference showed that silencing CsCYP6SN3 and CsCYP306A1 genes dramatically reduced the pupation rate and pupa weight. Feeding on vetiver after silencing CsCYP6SN3 and CsCYP306A1 led to higher mortality compared with feeding on rice. In conclusion, these findings indicated that the expression levels of CsCYP6SN3 and CsCYP306A1 were associated with the lethal effect of vetiver against C. suppressalis larvae and functional knowledge about these two detoxification genes could provide new targets for agricultural pest control.
Collapse
|
20
|
Lin X, Zhang Y, Yang B, Zhang L, Chen Y, Liu Z. Multiple acetylcholinesterases in Pardosa pseudoannulata brain worked collaboratively to provide protection from organophosphorus insecticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114301. [PMID: 36410143 DOI: 10.1016/j.ecoenv.2022.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Acetylcholinesterase (AChE) is an essential neurotransmitter hydrolase in nervous systems of animals and its number varies among species. So far, five AChEs have been identified in the natural enemy Pardosa pseudoannulata. Here we found that Ppace1, Ppace2 and Ppace5 were highly expressed in the spider brain, among which the mRNA level of Ppace5, but not Ppace1 and Ppace2, could be up-regulated by organophosphorus insecticides at their sublethal concentrations. In spider brain, the treatment by organophosphorus insecticides at the sublethal concentrations could increase total AChE activity, although high concentrations inhibited the activity. The activity that increased from the sublethal concentration pretreatment could compensate for the activity inhibition due to subsequent application of organophosphorus insecticides at lethal concentrations, and consequently reduce the mortality of spiders. PpAChE1 and PpAChE2 were highly sensitive to organophosphorus insecticides, and their activities would be strongly inhibited by the insecticides. In contrast, PpAChE5 displayed relative insensitivity towards organophosphorus insecticides, but with the highest catalytic efficiency for ACh. That meant the up-regulation of Ppace5 under insecticide exposure was important for maintaining AChE activity in spider brain, when PpAChE1 and PpAChE2 were inhibited by organophosphorus insecticides. The study demonstrated that multiple AChEs in the spider brain worked collaboratively, with part members for maintaining AChE activity and other members responding to organophosphorus inhibition, to provide protection from organophosphorus insecticides. In fields, high concentration insecticides are often applied when ineffective controls of insect pests occur due to relative-low concentration of insecticides in last round application. This application pattern of organophosphorus insecticides provides more chances for P. pseudoannulata to survive and controlling insect pests as a natural enemy.
Collapse
Affiliation(s)
- Xumin Lin
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Baojun Yang
- Rice Technology Research and Development Center, China National Rice Research Institute, Stadium 359, Hangzhou 310006, China
| | - Lingchun Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yunru Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
21
|
Tian X, Guo J, Su X, Zhan B, Liang X, Ma A, Zhang Y, Lü S. Comparative transcriptome analysis reveals the non-neuronal cholinergic system in the ovary of the oriental armyworm, Mythimna separata Walker (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2022; 78:5220-5233. [PMID: 36053883 DOI: 10.1002/ps.7141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acetylcholine (ACh), as a classical neurotransmitter, plays great roles in the nervous system. There is increasing evidence of its non-neuronal roles in regulating basic cell functions in vertebrates. However, knowledge about the non-neuronal cholinergic system in insects is scarce. RESULTS A comparative transcriptome analysis was performed to investigate differences in the key molecular components of the cholinergic system between the head and ovary. The results showed that expression levels of most cholinergic system-related genes were higher in the head than in the ovary, and some cholinergic components were absent in the ovary. ACh contents ranged from 0.1 to 1.3 μg mg-1 of wet weight during the development of the ovary, and weak acetylcholinesterase activity was also detected. Moreover, the ovary has a capacity for ACh synthesis. Bromoacetylcarnitine (BrACar), a specific carnitine acetyltransferase (CarAT) inhibitor, greatly inhibits ACh synthesis by 83.83% in ovary homogenates, but bromoacetylcholine (BrACh), a specific choline acetyltransferase (ChAT) inhibitor, has no effect on ACh synthesis in the ovary. These findings indicate that non-neuronal ACh in the ovary is only catalyzed by CarAT. CONCLUSION This study reveals the existence of the non-neuronal cholinergic system in the ovary of M. separata, whose synthesis and release mechanisms are different from those of the head. These results provide novel insights into the non-neuronal cholinergic system in insects, and will be valuable in the discovery of new target genes and the future development of green pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Jiamin Guo
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinxin Su
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Baolei Zhan
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Liang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Anqi Ma
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Shumin Lü
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
22
|
Protection of insect neurons by erythropoietin/CRLF3-mediated regulation of pro-apoptotic acetylcholinesterase. Sci Rep 2022; 12:18565. [PMID: 36329181 PMCID: PMC9633726 DOI: 10.1038/s41598-022-22035-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokine receptor-like factor 3 (CRLF3) is a conserved but largely uncharacterized orphan cytokine receptor of eumetazoan animals. CRLF3-mediated neuroprotection in insects can be stimulated with human erythropoietin. To identify mechanisms of CRLF3-mediated neuroprotection we studied the expression and proapoptotic function of acetylcholinesterase in insect neurons. We exposed primary brain neurons from Tribolium castaneum to apoptogenic stimuli and dsRNA to interfere with acetylcholinesterase gene expression and compared survival and acetylcholinesterase expression in the presence or absence of the CRLF3 ligand erythropoietin. Hypoxia increased apoptotic cell death and expression of both acetylcholinesterase-coding genes ace-1 and ace-2. Both ace genes give rise to single transcripts in normal and apoptogenic conditions. Pharmacological inhibition of acetylcholinesterases and RNAi-mediated knockdown of either ace-1 or ace-2 expression prevented hypoxia-induced apoptosis. Activation of CRLF3 with protective concentrations of erythropoietin prevented the increased expression of acetylcholinesterase with larger impact on ace-1 than on ace-2. In contrast, high concentrations of erythropoietin that cause neuronal death induced ace-1 expression and hence promoted apoptosis. Our study confirms the general proapoptotic function of AChE, assigns a role of both ace-1 and ace-2 in the regulation of apoptotic death and identifies the erythropoietin/CRLF3-mediated prevention of enhanced acetylcholinesterase expression under apoptogenic conditions as neuroprotective mechanism.
Collapse
|
23
|
Yang YL, Li X, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of carboxylesterase genes in Tenebrio molitor and other four tenebrionids. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21967. [PMID: 36111353 DOI: 10.1002/arch.21967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (COEs) have various functions in wide taxons of organisms. In insects, COEs are important enzymes involved in the hydrolysis of a variety of ester-containing xenobiotics, neural signal transmission, pheromone degradation, and reproductive development. Understanding the diversity of COEs is basic to illustrate their functions. In this study, we identified 53, 105, 37, and 39 COEs from the genomes of Tenebrio molitor, Asbolus verucosus, Hycleus cichorii, and H. phaleratus in the superfamily of Tenebrionidea, respectively. Phylogenetic analysis showed that 234 COEs from these four species and those reported in Tribolium castaneum (63) could be divided into 12 clades and three major classes. The α-esterases significantly expanded in T. molitor, A. verucosus, and T. castaneum compared to dipteran and hymenopteran insects. In T. molitor, most COEs showed tissue and stage-specific but not a sex-biased expression. Our results provide insights into the diversity and evolutionary characteristics of COEs in tenebrionids, and lay a foundation for the functional characterization of COEs in the yellow mealworm.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Science, Lijiang, China
| | - Xun Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
24
|
Zhang Y, Yu R, Tang J, Du L, Wang Y, Wang J, Liu L, Gao S, Li B. Three cytochrome P450 CYP4 family genes regulated by the CncC signaling pathway mediate phytochemical susceptibility in the red flour beetle, Tribolium castaneum. PEST MANAGEMENT SCIENCE 2022; 78:3508-3518. [PMID: 35576327 DOI: 10.1002/ps.6991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insect cytochrome P450 monooxygenases (P450s) play a crucial role in phytochemical metabolism and tolerance. Three P450 genes (TcCYP4Q3, TcCYP4Q5, and TcCYP4Q7) are associated with the response of eugenol in Tribolium castaneum. However, the responding mechanisms of these P450 genes to eugenol remain unknown. RESULTS Here, spatiotemporal expression profiling revealed that TcCYP4Q3 and TcCYP4Q5 were most highly expressed in late adult, while TcCYP4Q7 was predominantly expressed in late larva; and all of these three P450 genes were mainly expressed in the fat body of larvae. Furthermore, the expressions of these three P450 genes were significantly up-regulated after exposure to eugenol, and depletion of them enhanced the susceptibility of beetles to eugenol. Interestingly, RNA interference (RNAi) against the CncC gene, a transcription factor of CncC signaling pathway associated with regulation of insect P450s in response to phytochemicals, reduced the transcripts of these three P450 genes following exposure to eugenol. Investigation of CncC signaling pathway showed that this pathway could be activated by eugenol. CONCLUSION Altogether, the results indicate that these three P450 genes are regulated by CncC signaling pathway to participate in the susceptibility of Tribolium castaneum to phytochemicals. These findings will aid implications for the development of novel therapeutics to control pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Liheng Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yihan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiatao Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Linsu Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
25
|
Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154085. [PMID: 35218848 DOI: 10.1016/j.scitotenv.2022.154085] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The biphasic hormetic response to stress, defined by low-dose stimulation and high-dose inhibition is frequently observed in insects. Various molecular and biochemical responses associated with hormesis in insects have been reported in many studies, but no synthesis of all these findings has been undertaken. We conducted a systematic literature review, analyzing papers demonstrating phenotypic stimulatory effect(s) following exposure to stress where molecular or biochemical response(s) were also examined. Responses observed included stimulation of reproduction, survival and longevity, growth and development, and tolerance to temperature, chemical, or starvation and desiccation, in response to stressors including pesticides, oxidative stress, temperature, crowding and starvation, and radiation. Phenotypic stimulation ranged from <25% increased above controls to >100%. Reproductive stimulation was frequently <25% increased above controls, while stimulated temperature tolerance was frequently >100% increased. Molecular and biochemical responses had obvious direct connections to phenotypic responses in many cases, although not in all instances. Increased expression of heat shock proteins occurred in association with stimulated temperature tolerance, and increased expression of detoxification genes with stimulated pesticide or chemical tolerance, but also stimulated reproduction. Changes in the expression or activity of antioxidants were frequently associated with stimulation of longevity and reproduction. Stress induced changes in vitellogenin and juvenile hormone and genes in the IIS/TOR signalling pathway - which are directly responsible for regulating growth, development, and reproduction - were also reported. Our analysis showed that coordination of expression of genes or proteins associated with protection from oxidative stress and DNA and protein damage is important in the hormetic responses of insects.
Collapse
Affiliation(s)
- Rachel R Rix
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - G Christopher Cutler
- Department of Plant, Food, and Environmental Science, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
26
|
Zhao Z, Lin S, Wu W, Zhang Z, Wu P, Shen M, Qian H, Guo X. A cypovirus encoded microRNA negatively regulates the NF-κB pathway to enhance viral multiplication in Silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104382. [PMID: 35245604 DOI: 10.1016/j.dci.2022.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as novel gene expression regulators at the post-transcriptional level. Not with standing that the biogenesis and function of miRNAs are well-understood in eukaryotes, little is known about RNA virus-encoded miRNAs. Bombyx mori cypovirus (BmCPV) is a double-stranded RNA virus with a segmented genome that causes cytoplasmic polyhedrosis disease in silkworm larvae. To date, the interaction between BmCPV and silkworm remains largely unclear. 22 candidate BmCPV-encoded miRNAs were identified in this study through small RNA sequencing, stem-loop RT-PCR and qRT-PCR. Then, generation and function analyses were conducted on one of the candidate miRNAs, BmCPV-miR-1, in the BmN cells and the silkworm larvae by RNA interference, quantitative PCR, dual-luciferase assay. Our results revealed that BmCPV-miR-1 was encoded by BmCPV genome RNA rather than the degraded fragments of the viral genome. Its generation depended on Dicer-1 and might also be correlated with Dicer-2, Argonaute-1 and Argonaute-2. Moreover, BmCPV-miR-1 could suppress the expression of the target gene, B. mori inhibitor of nuclear factor kappa-B kinase subunit beta (BmIKKβ), via binding to the target mRNA 3'-untranslated region, which fine-tuned the host NF-κB signaling pathway and consequently enhanced viral replication. Our results provide new evidence supporting the hypothesis that RNA viruses could generate miRNAs to modulate antiviral host defense.
Collapse
Affiliation(s)
- Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Manman Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Heying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212000, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212000, China.
| |
Collapse
|
27
|
Zhang Y, Gao S, Zhang P, Sun H, Lu R, Yu R, Li Y, Zhang K, Li B. Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Mol Genet Genomics 2022; 297:801-815. [PMID: 35419714 DOI: 10.1007/s00438-022-01890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022]
Abstract
Eugenol, a plant-derived component possessing small side effects, has an insecticidal activity to Tribolium castaneum; however, the underlying molecular mechanisms of eugenol acting on T. castaneum are currently unclear. Here, a nerve conduction carboxylesterase and a detoxifying glutathione S-transferase were significantly inhibited after eugenol exposure, resulting in the paralysis or death of beetles. Then, RNA-sequencing of eugenol-exposed and control samples identified 362 differentially expressed genes (DEGs), containing 206 up-regulated and 156 down-regulated genes. RNA-seq data were validated further by qRT-PCR. GO analysis revealed that DEGs were associated with 1308 GO terms of which the most enriched GO terms were catalytic activity, and integral component of membrane; KEGG pathway analysis showed that these DEGs were distributed in 151 different pathways, of which some pathways associated with metabolism of xenobiotics or drug were significantly enriched, which indicated that eugenol most likely disturbed the processes of metabolism, and detoxication. Moreover, several DEGs including Hexokinase type 2, Isocitrate dehydrogenase, and Cytochrome b-related protein, might participate in the respiratory metabolism of eugenol-exposed beetles. Some DEGs encoding CYP, UGT, GST, OBP, CSP, and ABC transporter were involved in the xenobiotic or drug metabolism pathway, which suggested that these genes of T. castaneum participated in the response to eugenol exposure. Additionally, TcOBPC11/ TcGSTs7, detected by qRT-PCR and RNA-interference against these genes, significantly increased the mortality of eugenol-treated T. castaneum, providing further evidence for the involvement of OBP/GST in eugenol metabolic detoxification in T. castaneum. These results aid eugenol insecticidal mechanisms and provide the basis of insect control.
Collapse
Affiliation(s)
- Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ping Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
28
|
Lazarević J, Jevremović S, Kostić I, Vuleta A, Manitašević Jovanović S, Kostić M, Šešlija Jovanović D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front Physiol 2022; 13:842314. [PMID: 35250641 PMCID: PMC8892178 DOI: 10.3389/fphys.2022.842314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.
Collapse
|
29
|
Campbell JF, Athanassiou CG, Hagstrum DW, Zhu KY. Tribolium castaneum: A Model Insect for Fundamental and Applied Research. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:347-365. [PMID: 34614365 DOI: 10.1146/annurev-ento-080921-075157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum has a long history as a model species in many distinct subject areas, but improved connections among the genetics, genomics, behavioral, ecological, and pest management fields are needed to fully realize this species' potential as a model. Tribolium castaneum was the first beetle whose genome was sequenced, and a new genome assembly and enhanced annotation, combined with readily available genomic research tools, have facilitated its increased use in a wide range of functional genomics research. Research into T. castaneum's sensory systems, response to pheromones and kairomones, and patterns of movement and landscape utilization has improved our understanding of behavioral and ecological processes. Tribolium castaneum has also been a model in the development of pest monitoring and management tactics, including evaluation of insecticide resistance mechanisms. Application of functional genomics approaches to behavioral, ecological, and pest management research is in its infancy but offers a powerful tool that can link mechanism with function and facilitate exploitation of these relationships to better manage this important food pest.
Collapse
Affiliation(s)
- James F Campbell
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, Kansas 66502, USA;
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos 382 21, Greece;
| | - David W Hagstrum
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA; ,
| |
Collapse
|
30
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
31
|
Gao S, Lu R, Zhang Y, Sun H, Li S, Zhang K, Li R. Odorant binding protein C12 is involved in the defense against eugenol in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104968. [PMID: 34802518 DOI: 10.1016/j.pestbp.2021.104968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Tribolium castaneum (T. castaneum) is a worldwide pest of stored grain that mainly harms flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. However, the mechanism of OBPs in insect defense against exogenous toxic substances is still unclear. In this study, biochemical analysis showed that eugenol, the active component of A. vulgaris essential oil, significantly induced the expression of the OBP gene OBPC12 from T. castaneum (TcOBPC12). The mortality of late larvae treated with eugenol was higher than that of the control group after RNA interference (RNAi) against TcOBPC12, which indicates that the OBP gene is involved in the eugenol defense mechanism and leads to a decrease in sensitivity to eugenol. Tissue expression profiling showed that the expression of TcOBPC12 in the epidermis, hemolymph, and intestine was higher than in other larval tissues, and TcOBPC12 was expressed mainly in the epidermis, head, and fat body of adults. The developmental expression profile showed that the expression of TcOBPC12 in late eggs, early and late larval stages, and late adult stages was higher than in other developmental stages. These data suggest that TcOBPC12 may be involved in the absorption of exogenous toxic substances by the larvae from T. castaneum. Our results provide a theoretical basis for the metabolism and degradation mechanism of exogenous toxic substances and help explore more potential target genes of insect pests.
Collapse
Affiliation(s)
- Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Siying Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Kunpeng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Ruimin Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| |
Collapse
|
32
|
Muema JM, Bargul JL, Mutunga JM, Obonyo MA, Asudi GO, Njeru SN. Neurotoxic Zanthoxylum chalybeum root constituents invoke mosquito larval growth retardation through ecdysteroidogenic CYP450s transcriptional perturbations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104912. [PMID: 34446188 DOI: 10.1016/j.pestbp.2021.104912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Intracellular effects exerted by phytochemicals eliciting insect growth-retarding responses during vector control intervention remain largely underexplored. We studied the effects of Zanthoxylum chalybeum Engl. (Rutaceae) (ZCE) root derivatives against malaria (Anopheles gambiae) and arbovirus vector (Aedes aegypti) larvae to decipher possible molecular targets. We report dose-dependent biphasic effects on larval response, with transient exposure to ZCE and its bioactive fraction (ZCFr.5) inhibiting acetylcholinesterase (AChE) activity, inducing larval lethality and growth retardation at sublethal doses. Half-maximal lethal concentrations (LC50) for ZCE against An. gambiae and Ae. aegypti larvae after 24-h exposure were 9.00 ppm and 12.26 ppm, respectively. The active fraction ZCFr.5 exerted LC50 of 1.58 ppm and 3.21 ppm for An. gambiae and Ae. aegypti larvae, respectively. Inhibition of AChE was potentially linked to larval toxicity afforded by 2-tridecanone, palmitic acid (hexadecanoic acid), linoleic acid ((Z,Z)-9,12-octadecadienoic acid), sesamin, β-caryophyllene among other compounds identified in the bioactive fraction. In addition, the phenotypic larval retardation induced by ZCE root constituents was exerted through transcriptional modulation of ecdysteroidogenic CYP450 genes. Collectively, these findings provide an explorative avenue for developing potential mosquito control agents from Z. chalybeum root constituents.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya; Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture & Technology (JKUAT), Nairobi, Kenya; Molecular Biology and Bioinformatics Unit, International Centre of Insect Physiology & Ecology (icipe), Nairobi, Kenya
| | - James M Mutunga
- Department of Entomology, U.S Army Medical Research Directorate-Africa, Kenya (USAMRD-A/K), Kisumu, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry & Molecular Biology, Egerton University, Egerton, Kenya
| | - George O Asudi
- Department of Biochemistry, Microbiology & Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
| |
Collapse
|
33
|
Abstract
Apoptosis plays a major role in development, tissue renewal and the progression of degenerative diseases. Studies on various types of mammalian cells reported a pro-apoptotic function of acetylcholinesterase (AChE), particularly in the formation of the apoptosome and the degradation of nuclear DNA. While three AChE splice variants are present in mammals, invertebrates typically express two ache genes that code for a synaptically located protein and a protein with non-synaptic functions respectively. In order to investigate a potential contribution of AChE to apoptosis in insects, we selected the migratory locust Locusta migratoria. We established primary neuronal cultures of locust brains and characterized apoptosis progression in vitro. Dying neurons displayed typical characteristics of apoptosis, including caspase-activation, nuclear condensation and DNA fragmentation visualized by TUNEL staining. Addition of the AChE inhibitors neostigmine and territrem B reduced apoptotic cell death under normal culture conditions. Moreover, both inhibitors completely suppressed hypoxia-induced neuronal cell death. Exposure of live animals to severe hypoxia moderately increased the expression of ace-1 in locust brains in vivo. Our results indicate a previously unreported role of AChE in insect apoptosis that parallels the pro-apoptotic role in mammalian cells. This similarity adds to the list of apoptotic mechanisms shared by mammals and insects, supporting the hypothesized existence of an ancient, complex apoptosis regulatory network present in common ancestors of vertebrates and insects.
Collapse
|
34
|
Zhang M, Zhang D, Ren J, Pu S, Wu H, Ma Z. Target verification of allyl isothiocyanate on the core subunits of cytochrome c oxidase in Sitophilus zeamais by RNAi. PEST MANAGEMENT SCIENCE 2021; 77:1292-1302. [PMID: 33063911 DOI: 10.1002/ps.6142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Allyl isothiocyanate (AITC) is a volatile organic compound with a potent insecticidal activity to the stored-grain pest Sitophilus zeamais Motschulsky, which severely damages grain storage and container transport worldwide. Our previous study showed that mitochondrial complex IV was the primary target of AITC in adult Sitophilus zeamais. To further verify the targets of AITC, we employed RNA interference (RNAi) by using double-stranded RNA (dsRNA) to knockdown three core subunits of cytochrome c oxidase (COX)-I, -II and -III in 18-day-old larvae prior to their exposure to AITC to detect susceptibility changes. RESULTS The susceptibility of dsRNACOX-I and -II injection treatments to AITC significantly increased at 72 h while the mortality reached up to 85.56% and 67.78%, respectively, and dsRNACOX-I and dsRNACOX-II injection showed the same subcellular structural characteristics showing vacuolization and vague mitochondrial cristae and decrease of COX activity during AITC fumigation treatment, suggesting the potential of COX-I and COX-II as the targets of AITC. High mortality reached up to 75.55%, 71.88% and 82.22%, respectively, and the phenotype of larvae turning from milky white to dark brown in the thorax and death eventually was confirmed after dsRNACOX-I, -II and -III injection. CONCLUSION COX-I and -II were elucidated as the potential targets of AITC and dsRNACOX-I, -II and -III have the potential to be developed into nucleic acid pesticides for their robust lethal effects and are worth pursuing for improving AITC fumigation activity in Sitophilus zeamais control. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Ren
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shi Pu
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hua Wu
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Zhang YC, Gao SS, Xue S, Zhang KP, Wang JS, Li B. Odorant-Binding Proteins Contribute to the Defense of the Red Flour Beetle, Tribolium castaneum, Against Essential Oil of Artemisia vulgaris. Front Physiol 2020; 11:819. [PMID: 32982763 PMCID: PMC7488584 DOI: 10.3389/fphys.2020.00819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The function of odorant-binding proteins (OBPs) in insect chemodetection has been extensively studied. However, the role of OBPs in the defense of insects against exogenous toxic substances remains elusive. The red flour beetle, Tribolium castaneum, a major pest of stored grains, causes serious economic losses for the agricultural grain and food processing industries. Here, biochemical analysis showed that essential oil (EO) from Artemisia vulgaris, a traditional Chinese medicine, has a strong contact killing effect against larvae of the red flour beetle. Furthermore, one OBP gene, TcOBPC11, was significantly induced after exposure to EO. RNA interference (RNAi) against TcOBPC11 led to higher mortality compared with the controls after EO treatment, suggesting that this OBP gene is associated with defense of the beetle against EO and leads to a decrease in sensitivity to the EO. Tissue expression profiling showed that expression of TcOBPC11 was higher in the fat body, Malpighian tubule, and hemolymph than in other larval tissues, and was mainly expressed in epidermis, fat body, and antennae from the early adult. The developmental expression profile revealed that expression of TcOBPC11 was higher in late larval stages and adult stages than in other developmental stages. These data indicate that TcOBPC11 may be involved in sequestration of exogenous toxicants in the larvae of T. castaneum. Our results provide a theoretical basis for the degradation mechanism of exogenous toxicants and identify potential novel targets for controlling the beetle.
Collapse
Affiliation(s)
- Yuan-chen Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shan-shan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Shuang Xue
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kun-peng Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jing-shun Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
37
|
Gao S, Zhang K, Wei L, Wei G, Xiong W, Lu Y, Zhang Y, Gao A, Li B. Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure. Front Genet 2020; 11:589. [PMID: 32670352 PMCID: PMC7330086 DOI: 10.3389/fgene.2020.00589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
Collapse
Affiliation(s)
- Shanshan Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Kunpeng Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guanyun Wei
- College of Life Sciences, Nantong University, Nantong, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yonglei Zhang
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Aoxiang Gao
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
38
|
Abstract
The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome-assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations.
Collapse
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA;
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, USA;
| |
Collapse
|
39
|
Tedla BA, Sotillo J, Pickering D, Eichenberger RM, Ryan S, Becker L, Loukas A, Pearson MS. Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signalling and drug detoxification and are essential for parasite survival. PLoS Pathog 2019; 15:e1008213. [PMID: 31809524 PMCID: PMC6919630 DOI: 10.1371/journal.ppat.1008213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/18/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023] Open
Abstract
Cholinesterase (ChE) function in schistosomes is essential for orchestration of parasite neurotransmission but has been poorly defined with respect to the molecules responsible. Interrogation of the S. mansoni genome has revealed the presence of three ChE domain-containing genes (Smche)s, which we have shown to encode two functional acetylcholinesterases (AChE)s (Smache1 –smp_154600 and Smache2 –smp_136690) and a butyrylcholinesterase (BChE) (Smbche1 –smp_125350). Antibodies to recombinant forms of each SmChE localized the proteins to the tegument of adults and schistosomula and developmental expression profiling differed among the three molecules, suggestive of functions extending beyond traditional cholinergic signaling. For the first time in schistosomes, we identified ChE enzymatic activity in fluke excretory/secretory (ES) products and, using proteomic approaches, attributed this activity to the presence of SmAChE1 and SmBChE1. Parasite survival in vitro and in vivo was significantly impaired by silencing of each smche, either individually or in combination, attesting to the essential roles of these molecules. Lastly, in the first characterization study of a BChE from helminths, evidence is provided that SmBChE1 may act as a bio-scavenger of AChE inhibitors as the addition of recombinant SmBChE1 to parasite cultures mitigated the effect of the anti-schistosome AChE inhibitor 2,2- dichlorovinyl dimethyl phosphate—dichlorvos (DDVP), whereas smbche1-silenced parasites displayed increased sensitivity to DDVP. Cholinesterases—aceytlcholinesterases (AChE)s and butyrylcholinesterases (BChE)s—are multi-functional enzymes that play a pivotal role in the nervous system of parasites by regulating neurotransmission through acetylcholine hydrolysis. Herein, we provide a detailed characterization of schistosome cholinesterases using molecular, enzymatic and gene-silencing approaches and show evidence for these molecules having roles in addition to their neuronal function. Further, we demonstrate the importance of these proteins to parasite development and survival through gene knockdown experiments in laboratory animals, providing evidence for the use of these proteins in the development of novel intervention strategies against schistosomiasis.
Collapse
Affiliation(s)
- Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Stephanie Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail:
| |
Collapse
|
40
|
Grünewald B, Siefert P. Acetylcholine and Its Receptors in Honeybees: Involvement in Development and Impairments by Neonicotinoids. INSECTS 2019; 10:E420. [PMID: 31771114 PMCID: PMC6955729 DOI: 10.3390/insects10120420] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
Acetylcholine (ACh) is the major excitatory neurotransmitter in the insect central nervous system (CNS). However, besides the neuronal expression of ACh receptors (AChR), the existence of non-neuronal AChR in honeybees is plausible. The cholinergic system is a popular target of insecticides because the pharmacology of insect nicotinic acetylcholine receptors (nAChRs) differs substantially from their vertebrate counterparts. Neonicotinoids are agonists of the nAChR and are largely used in crop protection. In contrast to their relatively high safety for humans and livestock, neonicotinoids pose a threat to pollinating insects such as bees. In addition to its effects on behavior, it becomes increasingly evident that neonicotinoids affect developmental processes in bees that appear to be independent of neuronal AChRs. Brood food (royal jelly, worker jelly, or drone jelly) produced in the hypopharyngeal glands of nurse bees contains millimolar concentrations of ACh, which is required for proper larval development. Neonicotinoids reduce the secreted ACh-content in brood food, reduce hypopharyngeal gland size, and lead to developmental impairments within the colony. We assume that potential hazards of neonicotinoids on pollinating bees occur neuronally causing behavioral impairments on adult individuals, and non-neuronally causing developmental disturbances as well as destroying gland functioning.
Collapse
Affiliation(s)
- Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft, FB Biowissenschaften, Goethe-Universität Frankfurt am Main, Karl-von-Frisch-Weg 2, D-61440 Oberursel, Germany;
| | | |
Collapse
|
41
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
42
|
Alshukri B, Astarita F, Al‐Esawy M, El Halim HMESA, Pennacchio F, Gatehouse AMR, Edwards MG. Targeting the potassium ion channel genes SK and SH as a novel approach for control of insect pests: efficacy and biosafety. PEST MANAGEMENT SCIENCE 2019; 75:2505-2516. [PMID: 31207012 PMCID: PMC6771844 DOI: 10.1002/ps.5516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Potassium ion channels play a critical role in the generation of electrical signals and thus provide potential targets for control of insect pests by RNA interference. RESULTS Genes encoding the small conductance calcium-activated potassium channel (SK) and the voltage-gated potassium channel (SH) were knocked down in Tribolium castaneum by injection and oral delivery of dsRNA (dsTcSK and dsTcSH, respectively). Irrespective of the delivery mechanism a dose-dependent effect was observed for knockdown (KD) of gene expression and insect mortality for both genes. Larvae fed a 400 ng dsRNA mg-1 diet showed significant gene (P < 0.05) knockdown (98% and 83%) for SK and SH, respectively, with corresponding mortalities of 100% and 98% after 7 days. When injected (248.4 ng larva-1 ), gene KD was 99% and 98% for SK and SH, causing 100% and 73.4% mortality, respectively. All developmental stages tested (larvae, early- and late-stage pupae and adults) showed an RNAi-sensitive response for both genes. LC50 values were lower for SK than SH, irrespective of delivery method, demonstrating that the knockdown of SK had a greater effect on larval mortality. Biosafety studies using adult honeybee Apis mellifera showed that there were no significant differences either in expression levels or mortality of honeybees orally dosed with dsTcSK and dsTcSH compared to control-fed bees. Similarly, there was no significant difference in the titre of deformed wing virus, used as a measure of immune suppression, between experimental and control bees. CONCLUSION This study demonstrates the potential of using RNAi targeting neural receptors as a technology for the control of T. castaneum. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Baida Alshukri
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Federica Astarita
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | - Mushtaq Al‐Esawy
- Institute of Neuroscience, Newcastle UniversityNewcastle‐upon‐TyneUK
- Department of Plant ProtectionUniversity of KufaIraq
| | - Hesham Mohamed El Sayed Abd El Halim
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
- Entomology Department, Faculty of ScienceBenha UniversityBenhaEgypt
| | - Francesco Pennacchio
- Department of Agricultural Sciences, Laboratory of Entomology “E. Tremblay”University of Napoli “Federico II”PorticiItaly
| | | | - Martin Gethin Edwards
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
43
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
44
|
Chen X, Xiao D, Du X, Guo X, Zhang F, Desneux N, Zang L, Wang S. The Role of the Dopamine Melanin Pathway in the Ontogeny of Elytral Melanization in Harmonia axyridis. Front Physiol 2019; 10:1066. [PMID: 31507439 PMCID: PMC6719567 DOI: 10.3389/fphys.2019.01066] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Polymorphic melanism in insects is a conspicuous phenotype which is derived from specific genotypes, and might be central to speciation processes via assortative sexual selection. At the molecular level, melanism in insects is attributed to the melanin pathway. DOPA decarboxylase (DDC) protein encoded by the DDC gene plays a central role in dopamine-melanin synthesis, the main component of melanin in insects. Although the mechanism of melanism has been elucidated in holometabolous insects, other physiological processes coupled with melanin synthesis are unknown. Herein, we identified DDC from the Asian multi-colored ladybird (Harmonia axyridis), an ideal holometabolous insect for studies of melanization due to highly variable color on their elytra. Analyses revealed that HaDDC (the DDC gene of H. axyridis) was constitutively expressed throughout all developmental stages. We performed RNAi technique to examine the melanin synthesis pathway of elytra in H. axyridis. The transcript levels of HaDDC were significantly suppressed after the injection of double-strand RNA of HaDDC (dsHaDDC) at 300 ng/individual in third instar larvae. Silencing HaDDC in third instar larvae did not result in mortality nor significantly affect pupation and eclosion. We further demonstrated that all adults of H. axyridis (forms succinea, spectabilis, and conspicua) with HaDDC silenced in third larvae showed abnormal phenotype which emerged as decreased elytra melanin. However, melanin was still observed in other parts of the adults such as head or pronotum. These results demonstrate for the first time that dopamine-derived melanin is the main contributor in elytra melanization in H. axyridis. Additionally, we provide evidence for DDC in regulating fecundity by showing that silencing of HaDDC in third instar larvae significantly reduced female egg-laying and egg hatching. As such, DDC is likely pleiotropic in respect of its role in melanin production and fecundity processes. These findings bring novel insights into melanin production in holometabolous insects, and contribute to the framework on which further studies may be conducted on the mechanism of pigment production and patterning in various types of insect coloration.
Collapse
Affiliation(s)
- Xu Chen
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China.,Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xiaoyan Du
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xiaojun Guo
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Nicolas Desneux
- French National Institute for Agricultural Research, University of Côte d'Azur, Sophia Antipolis, France
| | - Liansheng Zang
- Jilin Engineering Research Center of Resource Insects Industrialization, Institute of Biological Control, Jilin Agricultural University, Changchun, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| |
Collapse
|
45
|
Wei L, Gao S, Xiong W, Liu J, Mao J, Lu Y, Song X, Li B. Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:534-543. [PMID: 30789108 DOI: 10.1017/s0007485318000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Collapse
Affiliation(s)
- L Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - W Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - Y Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| |
Collapse
|
46
|
Zhao J, Hao D, Xiao L, Tan Y, Jiang Y, Bai L, Wang K. Molecular and functional properties of two Spodoptera exigua acetylcholinesterase genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21554. [PMID: 31033012 DOI: 10.1002/arch.21554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Acetylcholinesterase (AChE) is a vital enzyme that hydrolyzes acetylcholine. Here, full-length complementary DNAs (cDNAs) of two acetylcholinesterase genes (SeAce1 and SeAce2) were obtained from Spodoptera exigua, a widespread phytophagous pest in agriculture. The complete SeAce1 cDNA comprised 5447 nucleotides including an open reading frame (ORF) encoding 694 amino acids, while SeAce2 cDNA encompassed a 1917-bp ORF which would likely yield 638 amino acids. Both SeAce1 and SeAce2 contained specific characteristics of functional AChE. A phylogenetic tree of all lepidopteran insect Aces showed S. exigua clustered with S. litura, Helicoverpa assulta, and H. armigera, all of which are Noctuidae. In S. exigua, SeAce1 gene expression levels (reverse transcription polymerase chain reaction [RT-PCR] and quantitative RT-PCR) were markedly increased compared with SeAce2 in all developmental phases and tissue types. Both genes were down regulated by inserting the corresponding dsRNAs in 5th instar larvae, which resulted in 56.7% (SeAce1) and 24.6% (SeAce2) death. Downregulation of both SeAce1 and SeAce2 significantly reduced fecundity and vitellogenin gene expression in S. exigua. These results revealed the biological functions of the two Ace genes (SeAce1 and SeAce2), providing novel insights into the development of strategies for controlling insect pests.
Collapse
Affiliation(s)
- Jing Zhao
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dejun Hao
- College of Forestry, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Liubin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongan Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yiping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lixin Bai
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kai Wang
- College of Horticulture and Landscape Architecture, Jingling Institute of Technology, Nanjing, China
| |
Collapse
|
47
|
Acetylcholinesterases from Leaf-Cutting ant Atta sexdens: Purification, Characterization, and Capillary Reactors for On-Flow Assays. Enzyme Res 2019; 2019:6139863. [PMID: 31354985 PMCID: PMC6633970 DOI: 10.1155/2019/6139863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/12/2019] [Indexed: 02/08/2023] Open
Abstract
Acetylcholinesterase (AChE) is responsible for catalyzing the hydrolysis of the neurotransmitter acetylcholine (ACh) leading to acetate and choline (Ch) release. The inhibition of AChE produces a generalized synaptic collapse that can lead to insect death. Herein we report for the first time the isolation of two AChEs from Atta sexdens which were purified by sulphate ammonium precipitation followed by ion exchange chromatography. AsAChE-A and AsAChE-B enzymes have optimum pH of 9.5 and 9.0 and higher activities in 30/50°C and 20°C, respectively, using acetylthiocholine (ATCh) as substrate. Immobilized capillary enzyme reactors (ICERs) were obtained for both enzymes (AsAChE-A-ICER and AsAChE-B-ICER) and their activities were measured by LC-MS/MS through hydrolysis product quantification of the natural substrate ACh. The comparison of activities by LC-MS/MS of both AChEs using ACh as substrate showed that AsAChE-B (free or immobilized) had the highest affinity. The inverse result was observed when the colorimetric assay (Elman method) was used for ATCh as substrate. Moreover, by mass spectrometry and phylogenetic studies, AsAChE-A and AsAChE-B were classified as belonging to AChE-2 and AChE-1 classes, respectively.
Collapse
|
48
|
Sepčić K, Sabotič J, A. Ohm R, Drobne D, Jemec Kokalj A. First evidence of cholinesterase-like activity in Basidiomycota. PLoS One 2019; 14:e0216077. [PMID: 31039204 PMCID: PMC6490906 DOI: 10.1371/journal.pone.0216077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/13/2019] [Indexed: 11/28/2022] Open
Abstract
Cholinesterases (ChE), the enzymes whose primary function is the hydrolysis of choline esters, are widely expressed throughout the nature. Although they have already been found in plants and microorganisms, including ascomycete fungi, this study is the first report of ChE-like activity in fungi of the phylum Basidiomycota. This activity was detected in almost a quarter of the 45 tested aqueous fungal extracts. The ability of these extracts to hydrolyse acetylthiocholine was about ten times stronger than the hydrolytic activity towards butyrylthiocholine and propionylthiocholine. In-gel detection of ChE-like activity with acetylthiocholine indicated a great variability in the characteristics of these enzymes which are not characterized as vertebrate-like based on (i) differences in inhibition by excess substrate, (ii) susceptibility to different vertebrate acetylcholinesterase and butyrylcholinesterase inhibitors, and (iii) a lack of orthologs using phylogenetic analysis. Limited inhibition by single inhibitors and multiple activity bands using in-gel detection indicate the presence of several ChE-like enzymes in these aqueous extracts. We also observed inhibitory activity of the same aqueous mushroom extracts against insect acetylcholinesterase in 10 of the 45 samples tested; activity was independent of the presence of ChE-like activity in extracts. Both ChE-like activities with different substrates and the ability of extracts to inhibit insect acetylcholinesterase were not restricted to any fungal family but were rather present across all included Basidiomycota families. This study can serve as a platform for further research regarding ChE activity in mushrooms.
Collapse
Affiliation(s)
- Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Robin A. Ohm
- Department of Biology, Faculty of Science, Utrecht University, Padualaan, Utrecht, The Netherlands
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
49
|
Knockdown of acetylcholinesterase (AChE) gene in rice yellow stem borer, Scirpophaga incertulas (Walker) through RNA interference. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Meng X, Miao L, Ge H, Yang X, Dong F, Xu X, Wu Z, Qian K, Wang J. Molecular characterization of glutamate-gated chloride channel and its possible roles in development and abamectin susceptibility in the rice stem borer, Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 155:72-80. [PMID: 30857629 DOI: 10.1016/j.pestbp.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Glutamate-gated chloride channels (GluCls) mediate fast inhibitory neurotransmission in invertebrate nervous systems, and are of considerable interest in insecticide discovery. The full length cDNA encoding CsGluCl was cloned from the rice stem borer Chilo suppressalis (Walker). Multiple cDNA sequence alignment revealed three variants of CsGluCl generated by alternative splicing of exon 3 and exon 9. While all the transcripts were predominantly expressed in both nerve cord and brain, the expression patterns of these three variants differed among other tissues and developmental stages. Specifically, the expression level of CsGluCl C in cuticle was similar to that in nerve cord and brain, and was the predominant variant in late pupae and early adult stages. Both injection and oral delivery of dsGluCl significantly reduced the mRNA level of CsGluCl. Increased susceptibility to abamectin and reduced larvae growth and pupation rate were observed in dsGluCl-treated larvae. Thus, our results provide the evidence that in addition to act as the target of abamectin, GluCls also play important physiological roles in the development of insects.
Collapse
Affiliation(s)
- Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lijun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Huichen Ge
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xuemei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Fan Dong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|