1
|
Milewski D, James PF. Alpha4 Na,K-ATPase Localization and Expression Are Dynamic Aspects of Spermatogenesis and in Sperm Incubated Under Capacitating Conditions. Int J Mol Sci 2025; 26:1817. [PMID: 40076443 PMCID: PMC11898761 DOI: 10.3390/ijms26051817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Utilizing high-resolution microscopy in conjunction with a new antibody highly specific for rat alpha4 Na,K-ATPase, we describe changes in alpha4 expression during spermatogenesis and in sperm incubated under capacitating and noncapacitating conditions. Immunohistochemical analyses showed alpha4 expression at low levels in spermatogonia and in pachytene spermatocytes. Alpha4 then becomes highly expressed on round spermatids and the midpiece of elongated spermatozoa within the seminiferous tubules. In noncapacitating conditions, alpha4 was confined mainly to the flagellum of mature sperm; however, under capacitating conditions, sperm acquired intense alpha4 staining along the acrosomal region of the sperm head. To visualize the precise localization of alpha4 in the sperm head, we performed an ultrastructural analysis using immuno-scanning electron microscopy. Under capacitating conditions, sperm exhibited alpha4 staining along the dorsal surface of the sperm head associated with the acrosome. In addition, after 4 h of incubation in motility buffer, we observed an increase in alpha4 protein in sperm that could be blocked with chloramphenicol, a mitochondrial-type ribosome inhibitor. These findings demonstrate that both the localization and expression level of alpha4 Na,K-ATPase are dynamic aspects of sperm maturation and suggest that sperm motility and capacitation may be supported by these changes to the location and amount of this protein.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
2
|
Colopi A, Guida E, Cacciotti S, Fuda S, Lampitto M, Onorato A, Zucchi A, Balistreri CR, Grimaldi P, Barchi M. Dietary Exposure to Pesticide and Veterinary Drug Residues and Their Effects on Human Fertility and Embryo Development: A Global Overview. Int J Mol Sci 2024; 25:9116. [PMID: 39201802 PMCID: PMC11355024 DOI: 10.3390/ijms25169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Drug residues that contaminate food and water represent a serious concern for human health. The major concerns regard the possible irrational use of these contaminants, since this might increase the amplitude of exposure. Multiple sources contribute to the overall exposure to contaminants, including agriculture, domestic use, personal, public and veterinary healthcare, increasing the possible origin of contamination. In this review, we focus on crop pesticides and veterinary drug residues because of their extensive use in modern agriculture and farming, which ensures food production and security for the ever-growing population around the world. We discuss crop pesticides and veterinary drug residues with respect to their worldwide distribution and impacts, with special attention on their harmful effects on human reproduction and embryo development, as well as their link to epigenetic alterations, leading to intergenerational and transgenerational diseases. Among the contaminants, the most commonly implicated in causing such disorders are organophosphates, glyphosate and antibiotics, with tetracyclines being the most frequently reported. This review highlights the importance of finding new management strategies for pesticides and veterinary drugs. Moreover, due to the still limited knowledge on inter- and transgenerational effects of these contaminants, we underlie the need to strengthen research in this field, so as to better clarify the specific effects of each contaminant and their long-term impact.
Collapse
Affiliation(s)
- Ambra Colopi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Eugenia Guida
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Silvia Cacciotti
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Serena Fuda
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Matteo Lampitto
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Angelo Onorato
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Alice Zucchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy;
| | - Paola Grimaldi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| | - Marco Barchi
- Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (E.G.); (S.C.); (S.F.); (M.L.); (A.O.); (A.Z.); (P.G.)
| |
Collapse
|
3
|
Hou L, Fu Y, Zhao C, Fan L, Hu H, Yin S. The research progress on the impact of antibiotics on the male reproductive system. ENVIRONMENT INTERNATIONAL 2024; 187:108670. [PMID: 38669720 DOI: 10.1016/j.envint.2024.108670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Antibiotics are extensively utilized in the livestock and poultry industry and can accumulate in animals and the environment, leading to potential health risks for humans via food and water consumption. Research on antibiotic toxicity, particularly their impact as endocrine disruptors on the male reproductive system, is still in its nascent stages. This review highlights the toxic effect of antibiotics on the male reproductive system, detailing the common routes of exposure and the detrimental impact and mechanisms of various antibiotic classes. Additionally, it discusses the protective role of food-derived active substances against the reproductive toxicity induced by antibiotics. This review aims to raise awareness about the reproductive toxicity of antibiotics in males and to outline the challenges that must be addressed in future research.
Collapse
Affiliation(s)
- Lirui Hou
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuhan Fu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Zhao
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Rodrigues LR, Zélé F, Santos I, Magalhães S. No evidence for the evolution of mating behaviour in spider mites due to
Wolbachia
‐induced cytoplasmic incompatibility. Evolution 2022; 76:623-635. [DOI: 10.1111/evo.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Leonor R. Rodrigues
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
- Institute of Evolution Sciences (ISEM), University of Montpellier CNRS, IRD, EPHE Montpellier France
| | - Inês Santos
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), Faculty of Sciences University of Lisbon Edifício C2, 3° piso Lisboa 1749‐016 Portugal
| |
Collapse
|
5
|
Simmons LW, Ng SH, Lovegrove M. Condition‐dependent seminal fluid gene expression and intergenerational paternal effects on ejaculate quality. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
6
|
Abstract
Releases of sterile males are the gold standard for many insect population control programs, and precise sex sorting to remove females prior to male releases is essential to the success of these operations. To advance traditional methods for scaling the generation of sterile males, we previously described a CRISPR-mediated precision-guided sterile insect technique (pgSIT), in which Cas9 and gRNA strains are genetically crossed to generate sterile males for mass release. While effective at generating F1 sterile males, pgSIT requires a genetic cross between the two parental strains, which requires maintenance and sexing of two strains in a factory. Therefore, to advance pgSIT further by removing this crossing step, here we describe a next-generation temperature-inducible pgSIT (TI-pgSIT) technology and demonstrate its proof-of-concept in Drosophila melanogaster. Importantly, we were able to develop a true breeding strain for TI-pgSIT that eliminates the requirement for sex sorting-a feature that may help further automate production at scale.
Collapse
Affiliation(s)
- Nikolay P. Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Gamez S, Vesga LC, Mendez-Sanchez SC, Akbari OS. Spatial control of gene expression in flies using bacterially derived binary transactivation systems. INSECT MOLECULAR BIOLOGY 2021; 30:461-471. [PMID: 33963794 PMCID: PMC8459377 DOI: 10.1111/imb.12717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Controlling gene expression is an instrumental tool for biotechnology, as it enables the dissection of gene function, affording precise spatial-temporal resolution. To generate this control, binary transactivational systems have been used employing a modular activator consisting of a DNA binding domain(s) fused to activation domain(s). For fly genetics, many binary transactivational systems have been exploited in vivo; however, as the study of complex problems often requires multiple systems that can be used in parallel, there is a need to identify additional bipartite genetic systems. To expand this molecular genetic toolbox, we tested multiple bacterially derived binary transactivational systems in Drosophila melanogaster including the p-CymR operon from Pseudomonas putida, PipR operon from Streptomyces coelicolor, TtgR operon from Pseudomonas putida and the VanR operon from Caulobacter crescentus. Our work provides the first characterization of these systems in an animal model in vivo. For each system, we demonstrate robust tissue-specific spatial transactivation of reporter gene expression, enabling future studies to exploit these transactivational systems for molecular genetic studies.
Collapse
Affiliation(s)
- Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Luis C. Vesga
- Group for Research in Biochemistry and Microbiology (Grupo de Investigación en Bioquímica Y Microbiología-GIBIM), School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Stelia C. Mendez-Sanchez
- Group for Research in Biochemistry and Microbiology (Grupo de Investigación en Bioquímica Y Microbiología-GIBIM), School of Chemistry, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Yücel UM, Koşal V, Kara M, Taşpınar F, Uslu BA. Adverse effects of oxytetracycline and enrofloxacin on the fertility of Saanen bucks. Trop Anim Health Prod 2021; 53:466. [PMID: 34546445 DOI: 10.1007/s11250-021-02898-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
This study aimed to determine the adverse effects of oxytetracycline and enrofloxacin application on the fertility of Saanen bucks. For this purpose, twenty-four bucks were divided into three groups. Group I (control group) received only 5 ml of 0.9% NaCl for 7 days, group II was given a single dose of 20 mg/kg oxytetracycline and group III was given at a dose of 2.5 mg/kg per day for 7 days intramuscularly. Serum and semen samples were collected from the bucks at post-treatment 1, 3, 5, 7, and 9 days and examined spermatological parameters (quantity, motility, density, abnormal sperm ratio, and live-dead sperm ratio), serum testosterone levels (with ELISA) and sperm DNA parameters (with Comet assay). The results showed no change in sperm volume, abnormal sperm rate, and dead-live sperm ratio in group II and III following oxytetracycline and enrofloxacin administration. However, a decrease in sperm density, sperm motility, mass activity, and testosterone levels, and an increase in sperm DNA damage were detected. These spermatological parameters (density, motility, mass activity) and testosterone levels were less decreased and sperm DNA damage was less increased in group II than group III. The greater damage in group III may be attributed to the longer duration of enrofloxacin administration compared to oxytetracycline and the effect of enrofloxacin on DNA. The results obtained from this study suggest that usage of oxytetracycline and especially enrofloxacin should be restricted and antibiotics with fewer side effects on sperm should be preferred in Saanen bucks during the reproduction period.
Collapse
Affiliation(s)
- Ufuk Mercan Yücel
- Departments of Pharmacology and Toxicology, Veterinary Faculty, University of Van Yuzuncu Yil, Van, Turkey
| | - Volkan Koşal
- Departments of Reproduction and Artificial Insemination, Veterinary Faculty, University of Van Yuzuncu Yil, Van, Turkey
| | - Mikail Kara
- Departments of Histology and Embryology, Medicine Faculty, University of Mustafa Kemal, Hatay, Turkey
| | - Filiz Taşpınar
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Barış Atalay Uslu
- Departments of Reproduction and Artificial Insemination, Veterinary Faculty, University of Burdur Mehmet Akif Ersoy, 15100, Burdur, Turkey. .,Departments of Reproduction and Artificial Insemination, Veterinary Faculty, University of Cumhuriyet, Sivas, Turkey.
| |
Collapse
|
9
|
Cruz MA, Magalhães S, Sucena É, Zélé F. Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 2021; 75:2085-2101. [PMID: 34156702 DOI: 10.1111/evo.14286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Élio Sucena
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
10
|
Zhang W, Reeves GR, Tautz D. Testing Implications of the Omnigenic Model for the Genetic Analysis of Loci Identified through Genome-wide Association. Curr Biol 2021; 31:1092-1098.e6. [PMID: 33417882 DOI: 10.1016/j.cub.2020.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Organismal phenotypes usually have a quantitative distribution, and their genetic architecture can be studied by genome-wide association (GWA) mapping approaches. In most of such studies, it has become clear that many genes of moderate or small effects contribute to the phenotype.1-4 Hence, the attention has turned toward the loci falling below the GWA cut-off, which may contribute to the phenotype through modifier interactions with a set of core genes, as proposed in the omnigenic model.5 One can thus predict that both moderate effect GWA-derived candidate genes and randomly chosen genes should have a similar likelihood to affect a given phenotype when they are analyzed via gene disruption assays. We have tested this hypothesis by using an automated phenotyping system for Drosophila pupal phenotypes.6,7 We first identified candidate genes for pupal length in a GWA based on the Drosophila Genetic Reference Panel (DGRP)8,9 and showed that most of these candidate genes are indeed involved in the phenotype. We then randomly chose genes below a GWA significance threshold and found that three-quarters of them had also an effect on the trait with comparable effect sizes as the GWA candidate genes. We further tested the effects of these knockout lines on an independent behavioral pupal trait (pupation site choice) and found that a similar fraction had a significant effect as well. Our data thus confirm the implication that a large number of genes can influence independent quantitative traits.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Guy R Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
| |
Collapse
|
11
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Schairer CE, Triplett C, Buchman A, Akbari OS, Bloss CS. Interdisciplinary development of a standardized introduction to gene drives for lay audiences. BMC Med Res Methodol 2020; 20:273. [PMID: 33153449 PMCID: PMC7643426 DOI: 10.1186/s12874-020-01146-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While there is wide consensus that the public should be consulted about emerging technology early in development, it is difficult to elicit public opinion about innovations unfamiliar to lay audiences. We sought public input on a program of research on genetic engineering to control mosquito vectors of disease that is led by scientists at the University of California and funded by the U.S. Defense Advanced Research Projects Agency (DARPA). In preparation for this effort, we developed a series of narrated slideshows to prompt responses to the development of gene drive mosquito control strategies among lay people. We describe the development and content of these slideshows and evaluate their ability to elicit discussions among focus group participants. METHODS In developing these materials, we used an iterative process involving input from experts in molecular genetics and vector control. Topics were chosen for their relevance to the goals of the scientists leading the program of research. Significant time was devoted to crafting explanations that would be accessible to uninitiated members of the public but still represent the science accurately. Through qualitative analysis of focus group discussions prompted by the slideshows, we evaluated the success of these slideshows in imparting clear technical information sufficient to inform lay discussion. RESULTS The collaboration resulted in a series of four narrated slideshows that were used to anchor discussions in online focus groups. Many participants described the slideshows as interesting and informative, while also raising concerns and possible risks that were not directly addressed in the material presented. Open-ended comments from participants suggest that the slideshows inspired critical questions, reflection, and conversation about genetically engineered and gene drive mosquitoes. After the final and most technically complex slideshow, however, some respondents made comments suggestive of overwhelm or confusion. CONCLUSION Our narrated slideshows prompted engaged conversations about genetically engineered mosquitoes among members of the public who were generally naïve to this technology. Narrated slideshows may serve as viable and useful tools for future public engagement on other controversial emerging medical and public health technologies.
Collapse
Affiliation(s)
- Cynthia E Schairer
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, MC 0811, La Jolla, California, 92093-0811, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Cynthia Triplett
- Center for Wireless and Population Health Systems, The Qualcomm Institute of Calit2, University of California, San Diego, La Jolla, CA, USA
| | - Anna Buchman
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA, USA
| | - Omar S Akbari
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - Cinnamon S Bloss
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, MC 0811, La Jolla, California, 92093-0811, USA.
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA.
- Center for Wireless and Population Health Systems, The Qualcomm Institute of Calit2, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Mossman JA, Mabeza RMS, Blake E, Mehta N, Rand DM. Age of Both Parents Influences Reproduction and Egg Dumping Behavior in Drosophila melanogaster. J Hered 2020; 110:300-309. [PMID: 30753690 PMCID: PMC6503451 DOI: 10.1093/jhered/esz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Trans-generational maternal effects have been shown to influence a broad range of offspring phenotypes. However, very little is known about paternal trans-generational effects. Here, we tested the trans-generational effects of maternal and paternal age, and their interaction, on daughter and son reproductive fitness in Drosophila melanogaster. We found significant effects of parent ages on offspring reproductive fitness during a 10 day postfertilization period. In daughters, older (45 days old) mothers conferred lower reproductive fitness compared with younger mothers (3 days old). In sons, father’s age significantly affected reproductive fitness. The effects of 2 old parents were additive in both sexes and reproductive fitness was lowest when the focal individual had 2 old parents. Interestingly, daughter fertility was sensitive to father’s age but son fertility was insensitive to mother’s age, suggesting a sexual asymmetry in trans-generational effects. We found the egg-laying dynamics in daughters dramatically shaped this relationship. Daughters with 2 old parents demonstrated an extreme egg dumping behavior on day 1 and laid >2.35× the number of eggs than the other 3 age class treatments. Our study reveals significant trans-generational maternal and paternal age effects on fertility and an association with a novel egg laying behavioral phenotype in Drosophila.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Russyan Mark S Mabeza
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Emma Blake
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Neha Mehta
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
14
|
Kandul NP, Liu J, Hsu AD, Hay BA, Akbari OS. A drug-inducible sex-separation technique for insects. Nat Commun 2020; 11:2106. [PMID: 32355156 PMCID: PMC7193620 DOI: 10.1038/s41467-020-16020-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we describe a drug-inducible genetic system for insect sex-separation that demonstrates proof-of-principle for positive sex selection in D. melanogaster. The system exploits the toxicity of commonly used broad-spectrum antibiotics geneticin and puromycin to kill the non-rescued sex. Sex-specific rescue is achieved by inserting sex-specific introns into the coding sequences of antibiotic-resistance genes. When raised on geneticin-supplemented food, the sex-sorter line establishes 100% positive selection for female progeny, while the food supplemented with puromycin positively selects 100% male progeny. Since the described system exploits conserved sex-specific splicing mechanisms and reagents, it has the potential to be adaptable to other insect species of medical and agricultural importance.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA
| | - Alexander D Hsu
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA.
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
15
|
Zélé F, Santos I, Matos M, Weill M, Vavre F, Magalhães S. Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions. Heredity (Edinb) 2020; 124:603-617. [PMID: 32047292 PMCID: PMC7080723 DOI: 10.1038/s41437-020-0297-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/30/2023] Open
Abstract
Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal.
| | - Inês Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| | - Margarida Matos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| | - Mylène Weill
- Institut des Sciences de l'Evolution (CNRS-Université de Montpellier-IRD-EPHE), 34095, CEDEX 5, Montpellier, France
| | - Fabrice Vavre
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université Lyon 1, Université de Lyon, F-69622, Villeurbanne, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| |
Collapse
|
16
|
Zhang J, Liu X, Zhu Y, Yang L, Sun L, Wei R, Chen G, Wang Q, Sheng J, Liu A, Tao F, Liu K. Antibiotic exposure across three generations from Chinese families and cumulative health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110237. [PMID: 31986454 DOI: 10.1016/j.ecoenv.2020.110237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Extensive antibiotic exposure in the general population has been documented by bio-monitoring, but data regarding antibiotic burden across three generations in families living in the same household are lacking. We investigated the distribution of antibiotics and the potential health risk among the three generations by selecting 691 participants from 256 households in Fuyang city, China. A total of 45 antibiotics and two metabolites were screened in urine samples through liquid chromatography electrospray tandem mass spectrometry. In total, 34 antibiotics were found in the samples with an overall detection frequency of 92.0%, and the detection frequencies of individual antibiotic ranged from 0.3% to 28.7%. Specifically, the concentrations of seven antibiotics (azithromycin, amoxicillin, oxytetracycline, levofloxacin, norfloxacin, trimethoprim and sulfamethoxazole) were extremely high (i.e., above 10, 000 ng/mL). The detection rates of tetracyclines were significantly different among the three generations, with parents having the highest detection rate. Penicillin V, chlortetracycline, doxycycline, enrofloxacin, and ciprofloxacin showed a higher detection frequency in parents, whereas tetracycline, danofloxacin, and ofloxacin were more likely to be found in grandparents. The proportions of the sum of the daily exposure dose of VAs and PVAs more than 1 μg/kg/d in children, parents, and grandparents were 31.6%, 39.5%, and 26.5%, respectively. A hazard index (HI) greater than 1 was observed in 14.7% children, which was less than the 23.6% in parents and slightly higher than the 11.8% in grandparents. Ciprofloxacin was the biggest contributor to HI among the three generations. Collectively, these findings indicate that households are widely exposed to various antibiotics in Fuyang city, where parents had the highest health risk associated with the disturbance of gut microbiota.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinji Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yitian Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Liang Sun
- Fuyang Center of Disease Control and Prevention, Fuyang, Anhui, 236000, China
| | - Rong Wei
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Annuo Liu
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Zhang W, Reeves GR, Tautz D. Identification of a genetic network for an ecologically relevant behavioural phenotype in Drosophila melanogaster. Mol Ecol 2019; 29:502-518. [PMID: 31867742 DOI: 10.1111/mec.15341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Pupation site choice of Drosophila third-instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3-4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high-throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome-wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high-throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.
Collapse
Affiliation(s)
- Wenyu Zhang
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guy Richard Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
18
|
Duracka M, Lukac N, Kacaniova M, Kantor A, Hleba L, Ondruska L, Tvrda E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules 2019; 24:molecules24234329. [PMID: 31783504 PMCID: PMC6930653 DOI: 10.3390/molecules24234329] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Male subfertility is a global issue in human reproduction as well as in animal reproduction. Bacterial infection and semen contamination are still widely overlooked. As the collection of ejaculates is not a sterile process, it is necessary to add antimicrobial agents to avoid a possible depreciation of semen samples. As traditionally used antibiotics have been questioned because of an ever-increasing bacterial resistance, natural bioactive molecules could offer an alternative because of their antibacterial and antioxidant properties. As such, we decided to compare the effects of selected natural biomolecules (resveratrol-RES, quercetin-QUE and curcumin-CUR) with routinely used antibiotics in animal biotechnologies (penicillin-PEN, gentamicin-GEN and kanamycin-KAN) on the rabbit sperm vitality in the presence of Enterococcus faecalis. Changes in the sperm structural integrity and functional activity were monitored at 0, 2, 4 and 6 h. Computer-assisted sperm analysis (CASA) was used for the assessment of spermatozoa motility. Production of reactive oxygen species (ROS) was evaluated using chemiluminiscence, while the mitochondrial membrane potential (ΔΨm) was examined using the JC-1 dye. Finally, the sperm chromatin dispersion (SCD) test was used to assess DNA fragmentation, and changes to the membrane integrity were evaluated with the help of annexin V/propidium iodide. The motility assessment revealed a significant sperm motility preservation following treatment with GEN (p < 0.001), followed by PEN and CUR (p < 0.01). QUE was the most capable substance to scavenge excessive ROS (p < 0.001) and to maintain ΔΨm (p < 0.01). The SCD assay revealed that the presence of bacteria and antibiotics significantly (p < 0.05) increased the DNA fragmentation. On the other hand, all bioactive compounds readily preserved the DNA integrity (p < 0.05). In contrast to the antibiotics, the natural biomolecules significantly maintained the sperm membrane integrity (p < 0.05). The microbiological analysis showed that GEN (p < 0.001), KAN (p < 0.001), PEN (p < 0.01) and CUR (p < 0.01) exhibited the strongest antibacterial activity against E. faecalis. In conclusion, all selected biomolecules provided protection to rabbit spermatozoa against deleterious changes to their structure and function as a result of Enterococcus faecalis contamination. Therefore, administration of RES, QUE and/or CUR to rabbit semen extenders in combination with a carefully selected antibacterial substance may be desirable.
Collapse
Affiliation(s)
- Michal Duracka
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.D.); (N.L.)
| | - Norbert Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.D.); (N.L.)
| | - Miroslava Kacaniova
- Department of Fruit Growing, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
- Department of Bioenergy and Food Technology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35601 Rzeszow, Poland
| | - Attila Kantor
- Department of Technology and Quality of Plant Products, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Lukas Hleba
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Lubomir Ondruska
- Institute of Small Farm Animals, Research Institute for Animal Production, Hlohovecká 2, 951 41 Lužianky, Nitra, Slovakia;
| | - Eva Tvrda
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (M.D.); (N.L.)
- Correspondence: ; Tel.: +421-37-641-4918
| |
Collapse
|
19
|
Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat Commun 2018; 9:4771. [PMID: 30425248 PMCID: PMC6233181 DOI: 10.1038/s41467-018-07273-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022] Open
Abstract
Climate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
Collapse
|
20
|
Heys C, Lizé A, Blow F, White L, Darby A, Lewis ZJ. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host-microbiota studies. Ecol Evol 2018; 8:4150-4161. [PMID: 29721287 PMCID: PMC5916298 DOI: 10.1002/ece3.3991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, there has been a surge in interest in the effects of the microbiota on the host. Increasingly, we are coming to understand the importance of the gut microbiota in modulating host physiology, ecology, behavior, and evolution. One method utilized to evaluate the effect of the microbiota is to suppress or eliminate it, and compare the effect on the host with that of untreated individuals. In this study, we evaluate some of these commonly used methods in the model organism, Drosophila melanogaster. We test the efficacy of a low‐dose streptomycin diet, egg dechorionation, and an axenic or sterile diet, in the removal of gut bacteria within this species in a fully factorial design. We further determine potential side effects of these methods on host physiology by performing a series of standard physiological assays. Our results showed that individuals from all treatments took significantly longer to develop, and weighed less, compared to normal flies. Males and females that had undergone egg dechorionation weighed significantly less than streptomycin reared individuals. Similarly, axenic female flies, but not males, were much less active when analyzed in a locomotion assay. All methods decreased the egg to adult survival, with egg dechorionation inducing significantly higher mortality. We conclude that low‐dose streptomycin added to the dietary media is more effective at removing the gut bacteria than egg dechorionation and has somewhat less detrimental effects to host physiology. More importantly, this method is the most practical and reliable for use in behavioral research. Our study raises the important issue that the efficacy of and impacts on the host of these methods require investigation in a case‐by‐case manner, rather than assuming homogeneity across species and laboratories.
Collapse
Affiliation(s)
- Chloe Heys
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Anne Lizé
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK.,UMR 6553 ECOBIO University of Rennes Rennes France
| | - Frances Blow
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Lewis White
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Alistair Darby
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Zenobia J Lewis
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
21
|
Zélé F, Weill M, Magalhães S. Identification of spider-mite species and their endosymbionts using multiplex PCR. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:123-138. [PMID: 29435771 DOI: 10.1007/s10493-018-0224-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal.
| | - Mylène Weill
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier-IRD-EPHE, 34095, Montpellier, Cedex 5, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| |
Collapse
|
22
|
Kostoff RN. Under-reporting of Adverse Events in the Biomedical Literature. JOURNAL OF DATA AND INFORMATION SCIENCE 2017. [DOI: 10.20309/jdis.201623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Purpose
To address the under-reporting of research results, with emphasis on the under-reporting/distorted reporting of adverse events in the biomedical research literature.
Design/methodology/approach
A four-step approach is used: (1) To identify the characteristics of literature that make it adequate to support policy; (2) to show how each of these characteristics becomes degraded to make inadequate literature; (3) to identify incentives to prevent inadequate literature; and (4) to show policy implications of inadequate literature.
Findings
This review has provided reasons for, and examples of, adverse health effects of myriad substances (1) being under-reported in the premiere biomedical literature, or (2) entering this literature in distorted form. Since there is no way to gauge the extent of this under/distorted-reporting, the quality and credibility of the ‘premiere’ biomedical literature is unknown. Therefore, any types of meta-analyses or scientometric analyses of this literature will have unknown quality and credibility. The most sophisticated scientometric analysis cannot compensate for a highly flawed database.
Research limitations
The main limitation is in identifying examples of under-reporting. There are many incentives for under-reporting and few dis-incentives.
Practical implications
Almost all research publications, addressing causes of disease, treatments for disease, diagnoses for disease, scientometrics of disease and health issues, and other aspects of healthcare, build upon previous healthcare-related research published. Many researchers will not have laboratories or other capabilities to replicate or validate the published research, and depend almost completely on the integrity of this literature. If the literature is distorted, then future research can be misguided, and health policy recommendations can be ineffective or worse.
Originality/value
This review has examined a much wider range of technical and non-technical causes for under-reporting of adverse events in the biomedical literature than previous studies.
Collapse
Affiliation(s)
- Ronald N. Kostoff
- School of Public Policy , Georgia Institute of Technology , Gainesville , VA 20155 , USA
| |
Collapse
|
23
|
Microbiome-Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. J Pediatr Gastroenterol Nutr 2016; 62:208-19. [PMID: 26308318 PMCID: PMC4724338 DOI: 10.1097/mpg.0000000000000950] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The incidence of pediatric inflammatory bowel disease (IBD), which includes Crohn disease and ulcerative colitis, has risen alarmingly in the Western and developing world in recent decades. Epidemiologic (including monozygotic twin and migrant) studies highlight the substantial role of environment and nutrition in IBD etiology. Here we review the literature supporting the developmental and environmental origins hypothesis of IBD. We also provide a detailed exploration of how the human microbiome and epigenome (primarily through DNA methylation) may be important elements in the developmental origins of IBD in both children and adults.
Collapse
|
24
|
O'Shea KL, Singh ND. Tetracycline-exposed Drosophila melanogaster males produce fewer offspring but a relative excess of sons. Ecol Evol 2015; 5:3130-9. [PMID: 26357541 PMCID: PMC4559055 DOI: 10.1002/ece3.1535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/12/2015] [Indexed: 11/09/2022] Open
Abstract
A large diversity of species possesses endosymbionts; these endosymbionts can exhibit mutualistic, parasitic, and commensal relationships with their hosts. Previous work has consistently revealed that depleting endosymbiont titer with antibiotic treatment can significantly alter host fitness and function, particularly with respect to reproductive phenotypes. Although these findings are often interpreted as resulting from the breakdown of highly coevolved symbioses, it is possible that antibiotic treatment itself rather than endosymbiont removal contributes to the observed perturbations in reproductive phenotypes. Here, we investigate the effect of tetracycline treatment on sex ratio and male reproductive fitness using Drosophila melanogaster as a model system. Our results indicate that tetracycline-treated males produce a relative excess of sons. We also find that tetracycline treatment reduces the number of progeny produced by treated males but not treated females. These findings are independent of the effects of tetracycline on Wolbachia titer and implicate the antibiotic itself as mediating these changes. It is yet unclear whether the sex ratio shift and reduction in male reproductive fitness are direct or indirect consequences of tetracycline exposure, and more work is needed to determine the molecular mechanisms by which these disturbances in reproductive phenotypes arise. Our data highlight the importance of considering the potentially confounding effects of antibiotic treatment when investigating the effects of endosymbiont depletion on host phenotypes.
Collapse
Affiliation(s)
- Kaitlyn L O'Shea
- Department of Biological Sciences, North Carolina State University Raleigh, North Carolina
| | - Nadia D Singh
- Department of Biological Sciences, North Carolina State University Raleigh, North Carolina
| |
Collapse
|
25
|
LePage DP, Jernigan KK, Bordenstein SR. The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. PeerJ 2014; 2:e678. [PMID: 25538866 PMCID: PMC4266856 DOI: 10.7717/peerj.678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolbachia modify developing sperm in the testes by unknown means to cause a post-fertilization disruption of the sperm chromatin that incapacitates the first mitosis of the embryo. As these Wolbachia-induced changes are stable, reversible, and affect the host cell cycle machinery including DNA replication and chromosome segregation, we hypothesized that the host methylation pathway is targeted for modulation during cytoplasmic incompatibility because it accounts for all of these traits. Here we show that infection of the testes is associated with a 55% increase of host DNA methylation in Drosophila melanogaster, but methylation of the paternal genome does not correlate with penetrance of CI. Overexpression and knock out of the Drosophila DNA methyltransferase Dnmt2 neither induces nor increases CI. Instead, overexpression decreases Wolbachia titers in host testes by approximately 17%, leading to a similar reduction in CI levels. Finally, strength of CI induced by several different strains of Wolbachia does not correlate with levels of DNA methylation in the host testes. We conclude that DNA methylation mediated by Drosophila’s only known methyltransferase is not required for the transgenerational sperm modification that causes CI.
Collapse
Affiliation(s)
- Daniel P LePage
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Kristin K Jernigan
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|
26
|
Su B, Shang M, Li C, Perera DA, Pinkert CA, Irwin MH, Peatman E, Grewe P, Patil JG, Dunham RA. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry. Transgenic Res 2014; 24:333-52. [PMID: 25367204 DOI: 10.1007/s11248-014-9846-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P < 0.05). Cadmium chloride appeared to counteract the slow development caused by the TF constructs in two TF treatments (P < 0.05). The 4 ppt sodium chloride treatment for the RM system decreased % hatch (P < 0.05) and slowed development. In the case of nanos constructs, doxycycline greatly delayed hatch (P < 0.05). Adverse effects of the transgenes and repressors continued for several treatments for the first 6 days after hatch, but only in a few treatments during the next 10 days. Repressors and gene expression impacted the yield of putative transgenic channel catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.
Collapse
Affiliation(s)
- Baofeng Su
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Asgharian H, Chang PL, Mazzoglio PJ, Negri I. Wolbachia is not all about sex: male-feminizing Wolbachia alters the leafhopper Zyginidia pullula transcriptome in a mainly sex-independent manner. Front Microbiol 2014; 5:430. [PMID: 25225494 PMCID: PMC4150536 DOI: 10.3389/fmicb.2014.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022] Open
Abstract
Wolbachia causes the feminization of chromosomally male embryos in several species of crustaceans and insects, including the leafhopper Zyginidia pullula. In contrast to the relatively well-established ecological aspects of male feminization (e.g., sex ratio distortion and its consequences), the underlying molecular mechanisms remain understudied and unclear. We embarked on an exploratory study to investigate the extent and nature of Wolbachia's effect on gene expression pattern in Z. pullula. We sequenced whole transcriptomes from Wolbachia-infected and uninfected adults. 18147 loci were assembled de novo, including homologs of several Drosophila sex determination genes. A number of transcripts were flagged as candidate Wolbachia sequences. Despite the resemblance of Wolbachia-infected chromosomal males to uninfected and infected chromosomal females in terms of sexual morphology and behavior, principal component analysis revealed that gene expression patterns did not follow these sexual phenotype categories. The principal components generated by differentially expressed genes specified a strong sex-independent Wolbachia effect, followed by a weaker Wolbachia-sexual karyotype interaction effect. Approaches to further examine the molecular mechanism of Wolbachia-host interactions have been suggested based on the presented findings.
Collapse
Affiliation(s)
- Hosseinali Asgharian
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter J Mazzoglio
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| | - Ilaria Negri
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| |
Collapse
|
28
|
Zug R, Hammerstein P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc 2014; 90:89-111. [PMID: 24618033 DOI: 10.1111/brv.12098] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022]
Abstract
Wolbachia are the most abundant bacterial endosymbionts among arthropods. Although maternally inherited, they do not conform to the widespread view that vertical transmission inevitably selects for beneficial symbionts. Instead, Wolbachia are notorious for their reproductive parasitism which, although lowering host fitness, ensures their spread. However, even for reproductive parasites it can pay to enhance host fitness. Indeed, there is a recent upsurge of reports on Wolbachia-associated fitness benefits. Therefore, the question arises how such instances of mutualism are related to the phenotypes of reproductive parasitism. Here, we review the evidence of Wolbachia mutualisms in arthropods, including both facultative and obligate relationships, and critically assess their biological relevance. Although many studies report anti-pathogenic effects of Wolbachia, few actually prove these effects to be relevant to field conditions. We further show that Wolbachia frequently have beneficial and detrimental effects at the same time, and that reproductive manipulations and obligate mutualisms may share common mechanisms. These findings undermine the idea of a clear-cut distinction between Wolbachia mutualism and parasitism. In general, both facultative and obligate mutualisms can have a strong, and sometimes unforeseen, impact on the ecology and evolution of Wolbachia and their arthropod hosts. Acknowledging this mutualistic potential might be the key to a better understanding of some unresolved issues in the study of Wolbachia-host interactions.
Collapse
Affiliation(s)
- Roman Zug
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Invalidenstr. 43, 10115, Berlin, Germany
| | | |
Collapse
|
29
|
Forgotten fathers: paternal influences on mammalian sex allocation. Trends Ecol Evol 2014; 29:158-64. [DOI: 10.1016/j.tree.2013.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/25/2013] [Accepted: 12/07/2013] [Indexed: 11/24/2022]
|
30
|
Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion. Sci Rep 2014; 4:3706. [PMID: 24424082 PMCID: PMC3892181 DOI: 10.1038/srep03706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022] Open
Abstract
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Collapse
|
31
|
Ye YH, Woolfit M, Huttley GA, Rancès E, Caragata EP, Popovici J, O'Neill SL, McGraw EA. Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti. PLoS One 2013; 8:e66482. [PMID: 23840485 PMCID: PMC3686743 DOI: 10.1371/journal.pone.0066482] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022] Open
Abstract
Background Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2. Description Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns. Conclusion We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants.
Collapse
Affiliation(s)
- Yixin H. Ye
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Gavin A. Huttley
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Edwige Rancès
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Eric P. Caragata
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jean Popovici
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Scott L. O'Neill
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
32
|
Kapoor V, Wendell D. Engineering bacterial efflux pumps for solar-powered bioremediation of surface waters. NANO LETTERS 2013; 13:2189-2193. [PMID: 23581993 DOI: 10.1021/nl400691d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibiotics are difficult to selectively remove from surface waters by present treatment methods. Bacterial efflux pumps have evolved the ability to discriminately expel antibiotics and other noxious agents via proton and ATP driven pathways. Here, we describe light-dependent removal of antibiotics by engineering the bacterial efflux pump AcrB into a proteovesicle system. We have created a chimeric protein with the requisite proton motive force by coupling AcrB to the light-driven proton pump Delta-rhodopsin (dR) via a glycophorin A transmembrane domain. This creates a solar powered protein material capable of selectively capturing antibiotics from bulk solutions. Using environmental water and direct sunlight, our AcrB-dR vesicles removed almost twice as much antibiotic as the treatment standard, activated carbon. Altogether, the AcrB-dR system provides an effective means of extracting antibiotics from surface waters as well as potential antibiotic recovery through vesicle solubilization.
Collapse
Affiliation(s)
- Vikram Kapoor
- School of Energy, Environmental, Biological and Medical Engineering, University of Cincinnati, 2901 Woodside Drive, 705 Engineering Research Center, Cincinnati, Ohio 45221, USA
| | | |
Collapse
|
33
|
Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster. Appl Environ Microbiol 2013; 79:3209-14. [PMID: 23475620 DOI: 10.1128/aem.00206-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Comparisons of animals bearing and lacking microorganisms can offer valuable insight into the interactions between animal hosts and their resident microbiota. Most hosts are naturally infected, and therefore, these comparisons require specific procedures (e.g., antibiotic treatment or physical exclusion of microorganisms) to disrupt the microbiota, but the potential for confounding nonspecific effects of the procedure on the traits of the host exists. Microbe-dependent and nonspecific effects can be discriminated by using multiple procedures: microbe-dependent effects are evident in hosts made microbe free by different procedures, but nonspecific effects are unique to individual procedures. As a demonstration, two procedures, oral administration of chlortetracycline (50 μg ml(-1) diet) and microbiota removal by egg dechorionation, were applied to Drosophila melanogaster in a 2-by-2 factorial design. Microorganisms were undetectable in flies from dechorionated eggs and reduced by >99% in chlortetracycline-treated flies. Drosophila flies subjected to both protocols displayed an extended preadult development time, suggesting that the microbiota promotes the development rate. Female chlortetracycline-treated flies, whether from untreated or dechorionated eggs, displayed reduced protein content and egg fecundity, which could be attributed to the nonspecific effect of the antibiotic. We recommend that procedures used to disrupt the microbiota of animals should be selected, following systematic analysis of alternative mechanistically distinct procedures, on the basis of two criteria: those that achieve the greatest reduction (ideally, elimination) of the microbiota and those that achieve minimal nonspecific effects.
Collapse
|