1
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2025; 58:e13794. [PMID: 39710429 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Lei Wang
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, P. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| |
Collapse
|
2
|
Saito A, Nagayama K, Okada H, Onodera S, Aida N, Nakamura T, Sawada T, Hojo H, Kato S, Azuma T. Downregulation of Nesprin1 by Runx2 deficiency is critical for the development of skeletal laminopathy-like pathology. Proc Natl Acad Sci U S A 2025; 122:e2320138122. [PMID: 40208950 PMCID: PMC12012476 DOI: 10.1073/pnas.2320138122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2025] [Indexed: 04/12/2025] Open
Abstract
Runx2 is a master regulator of bone formation, and its dysfunction causes cleidocranial dysplasia (CCD) in humans. When iPS cells were generated from patients with CCD and Runx2-deficient iPS cells were generated using gene-editing techniques, abnormal laminopathy-like nuclei were observed. Runx2-deficient cells showed reduced Lamin A/C expression, but not protein levels. However, in Runx2-deficient cells, both the gene expression and protein levels of Nesprin1 were reduced, perinuclear actin fibers were sparser, and nuclear stiffness was reduced. Forced expression of Lamin A/C increased nuclear stiffness but did not improve nuclear morphology. In contrast, the induction of Nesprin1 expression alone normalized nuclear stiffness and restored nuclear morphology and perinuclear actin distribution. In Runx2-null cells, mechanical stress-induced phosphorylation of emerin was not observed. In contrast, forced expression of Nesprin1 in Runx2-null cells resulted in phosphorylation of emerin, indicating the restoration of intracellular tension. These observations were confirmed by atomic force microscopy. Therefore, the intracellular tension was inferred to pull the nuclear membrane into its normal shape. CUT&RUN assay and single RNA-seq analysis showed that an aberrant nuclear membrane caused loss of nuclear lamina gene regulation machinery, making the progression of normal osteogenic differentiation impossible; however, supplementation with Nesprin1 restored gene regulation mechanisms and promoted preosteoblast formation with normal nuclear morphology. Nesprin1 expression induced by Runx2 is essential for epigenetic regulation of the nuclear lamina. We propose CCD as a type of laminopathy involving defective expression of Nesprin1 regulated by Runx2.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Kazuaki Nagayama
- Department of Mechanical Systems Engineering, Ibaraki University, Ibaraki316-8511, Japan
| | - Hiroyuki Okada
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Natsuko Aida
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
| | - Takashi Sawada
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo101-0061, Japan
| | - Hironori Hojo
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| | - Shigeaki Kato
- Department of Pharmacology, Iryo Sosei University, Fukushima970-8551, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Fukushima973-8403, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo101-0061, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo101-0061, Japan
- Obitsusankei Hospital, Saitama350-0021, Japan
| |
Collapse
|
3
|
Bril M, Boesveld JN, Coelho-Rato LS, Sahlgren CM, Bouten CVC, Kurniawan NA. Dynamic substrate topographies drive actin- and vimentin-mediated nuclear mechanoprotection events in human fibroblasts. BMC Biol 2025; 23:94. [PMID: 40189524 PMCID: PMC11974106 DOI: 10.1186/s12915-025-02199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Dynamic physical changes in the extracellular environment of living tissues present a mechanical challenge for resident cells that can lead to damage to the nucleus, genome, and DNA. Recent studies have started to uncover nuclear mechanoprotection mechanisms that prevent excessive mechanical deformations of the nucleus. Here, we hypothesized that dynamic topographical changes in the cellular environment can be mechanically transmitted to the nucleus and trigger nuclear mechanoprotection events. We tested this using a photoresponsive hydrogel whose surface topography can be reversibly changed on demand upon light illumination, allowing us to subject cells to recurring microscale topographical changes. RESULTS With each recurring topographical change, fibroblasts were found to increasingly compact and relocate their nuclei away from the dynamic regions of the hydrogel. These cell-scale reorganization events were accompanied by an increase of global histone acetylation and decreased methylation in cells on the dynamic topographies, resulting in a minimization of DNA strand breakage. We further found that these nuclear mechanoprotection events were mediated by both vimentin intermediate filaments and the actin cytoskeleton. CONCLUSIONS Together, these data reveal that fibroblasts actively protect their nuclei in the presence of dynamic topographical changes through cytoskeleton-mediated mechanisms. Broadly, these results stress the importance of gaining a deeper fundamental understanding of the cellular mechanoresponse under dynamically changing conditions.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Jules N Boesveld
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Forjaz A, Kramer D, Shen Y, Bea H, Tsapatsis M, Ping J, Queiroga V, San KH, Joshi S, Grubel C, Beery ML, Kusmartseva I, Atkinson M, Kiemen AL, Wirtz D. Integration of nuclear morphology and 3D imaging to profile cellular neighborhoods. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646356. [PMID: 40236208 PMCID: PMC11996441 DOI: 10.1101/2025.03.31.646356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nuclear morphology is an indicator of cellular function and disease states, as changes in nuclear size, shape, and texture often reflect underlying disease-related genetic, epigenetic, and microenvironmental alterations. For disease diagnosis, nuclear segmentation performed in 2D hematoxylin and eosin (H&E)-stained tissue sections has long represented the gold standard. However, recent advances in three-dimensional (3D) histology, which provide a more biologically accurate representation of the spatial heterogeneity of human microanatomy, has led to improved understandings of disease pathology. Yet challenges remain in the development of scalable and computationally efficient pipelines for extracting and interpreting nuclear features in 3D space. 2D histology neglects crucial spatial information, such as 3D connectivity, morphology, and rare events missed by sparser sampling. Here, through extension of the CODA platform, we integrate 3D imaging with nuclear segmentation to analyze nuclear morphological features in human tissue. Analysis of 3D tissue microenvironments uncovered critical changes in 3D morphometric heterogeneity. Additionally, it enables the spatial characterization of immune cell distribution in relation to tissue structures, such as variations in leukocyte density near pancreatic ducts and blood vessels of different sizes. This approach provides a more comprehensive understanding of tissue and nuclear structures, revealing spatial patterns and interactions that are critical for disease progression.
Collapse
|
5
|
Morival J, Hazelwood A, Lammerding J. Feeling the force from within - new tools and insights into nuclear mechanotransduction. J Cell Sci 2025; 138:JCS263615. [PMID: 40059756 PMCID: PMC11959624 DOI: 10.1242/jcs.263615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
The ability of cells to sense and respond to mechanical signals is essential for many biological processes that form the basis of cell identity, tissue development and maintenance. This process, known as mechanotransduction, involves crucial feedback between mechanical force and biochemical signals, including epigenomic modifications that establish transcriptional programs. These programs, in turn, reinforce the mechanical properties of the cell and its ability to withstand mechanical perturbation. The nucleus has long been hypothesized to play a key role in mechanotransduction due to its direct exposure to forces transmitted through the cytoskeleton, its role in receiving cytoplasmic signals and its central function in gene regulation. However, parsing out the specific contributions of the nucleus from those of the cell surface and cytoplasm in mechanotransduction remains a substantial challenge. In this Review, we examine the latest evidence on how the nucleus regulates mechanotransduction, both via the nuclear envelope (NE) and through epigenetic and transcriptional machinery elements within the nuclear interior. We also explore the role of nuclear mechanotransduction in establishing a mechanical memory, characterized by a mechanical, epigenetic and transcriptomic cell state that persists after mechanical stimuli cease. Finally, we discuss current challenges in the field of nuclear mechanotransduction and present technological advances that are poised to overcome them.
Collapse
Affiliation(s)
- Julien Morival
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Anna Hazelwood
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
7
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
8
|
Keith WC, Hemmati F, Vaghasiya RS, Amiri F, Mistriotis P. Differential Effects of Confinement-Induced ROS Accumulation on Highly Motile Cancerous and Non-Cancerous Cells. AIChE J 2024; 70:e18598. [PMID: 40099227 PMCID: PMC11913314 DOI: 10.1002/aic.18598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 03/19/2025]
Abstract
In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant N-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.
Collapse
Affiliation(s)
| | - Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | | - Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | |
Collapse
|
9
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
10
|
Birks S, Howard S, Wright CS, O’Rourke C, Day EA, Lamb AJ, Walsdorf JR, Lau A, Thompson WR, Uzer G. Prrx1-driven LINC complex disruption in vivo reduces osteoid deposition but not bone quality after voluntary wheel running. PLoS One 2024; 19:e0307816. [PMID: 39565744 PMCID: PMC11578491 DOI: 10.1371/journal.pone.0307816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/11/2024] [Indexed: 11/22/2024] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter (Prrx1), a pivotal regulator of skeletal development. Prx-Cre animals have been widely used in the bone field to target bone progenitor cells. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. While PDLD animals displayed increased voluntary running activity andPrrx1(+) cell-specific LINC disruption abolished the exercise-induced increases in osteoid volume and surface after a 6-week exercise intervention, no other changes in bone microarchitecture or mechanical properties were found.
Collapse
Affiliation(s)
- Scott Birks
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, United States of America
| | - Sean Howard
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| | - Christian S. Wright
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Caroline O’Rourke
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - Elicza A. Day
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Alexander J. Lamb
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - James R. Walsdorf
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Anthony Lau
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - William R. Thompson
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| |
Collapse
|
11
|
Ulferts S, Grosse R. SUN2 mediates calcium-triggered nuclear actin polymerization to cluster active RNA polymerase II. EMBO Rep 2024; 25:4728-4748. [PMID: 39317734 PMCID: PMC11549082 DOI: 10.1038/s44319-024-00274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024] Open
Abstract
The nucleoskeleton is essential for nuclear architecture as well as genome integrity and gene expression. In addition to lamins, titin or spectrins, dynamic actin filament polymerization has emerged as a potential intranuclear structural element but its functions are less well explored. Here we found that calcium elevations trigger rapid nuclear actin assembly requiring the nuclear membrane protein SUN2 independently of its function as a component of the LINC complex. Instead, SUN2 colocalized and associated with the formin and actin nucleator INF2 in the nuclear envelope in a calcium-regulated manner. Moreover, SUN2 is required for active RNA polymerase II (RNA Pol II) clustering in response to calcium elevations. Thus, our data uncover a SUN2-formin module linking the nuclear envelope to intranuclear actin assembly to promote signal-dependent spatial reorganization of active RNA Pol II.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Whitworth CP, Aw WY, Doherty EL, Handler C, Ambekar Y, Sawhney A, Scarcelli G, Polacheck WJ. P300 Modulates Endothelial Mechanotransduction of Fluid Shear Stress. Cell Mol Bioeng 2024; 17:507-523. [PMID: 39513009 PMCID: PMC11538229 DOI: 10.1007/s12195-024-00805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/28/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose P300 is a lysine acetyltransferase that plays a significant role in regulating transcription and the nuclear acetylome. While P300 has been shown to be required for the transcription of certain early flow responsive genes, relatively little is known about its role in the endothelial response to hemodynamic fluid stress. Here we sought to define the role of P300 in mechanotransduction of fluid shear stress in the vascular endothelium. Methods To characterize cellular mechanotransduction and physical properties after perturbation of P300, we performed bulk RNA sequencing, confocal and Brillouin microscopy, and functional assays on HUVEC. Results Inhibition of P300 in HUVEC triggers a hyper-alignment phenotype, with cells aligning to flow sooner and more uniformly in the presence of the P300 inhibitor A-485 compared to load controls. Bulk transcriptomics revealed differential expression of genes related to the actin cytoskeleton and migration in cells exposed to A-485. Scratch wound and bead sprouting assays demonstrated that treatment with A-485 increased 2D and 3D migration of HUVEC. Closer examination of filamentous actin revealed the presence of a perinuclear actin cap in both P300 knockdown HUVEC and HUVEC treated with A-485. Interrogation of cell mechanical properties via Brillouin microscopy demonstrated that HUVEC treated with A-485 had lower Brillouin shifts in both the cell body and the nucleus, suggesting that P300 inhibition triggers an increase in cellular and nuclear compliance. Conclusions Together, these results point to a novel role of P300 in modulating endothelial cell mechanics and mechanotransduction of hemodynamic shear stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00805-2.
Collapse
Affiliation(s)
- Chloe P. Whitworth
- Curriculum in Genetics and Molecular Biology, University of North Carolina in Chapel Hill, Chapel Hill, NC USA
| | - Wen Y. Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Chenchen Handler
- Department of Mechanical Engineering, University of Maryland, College Park, MD USA
| | - Yogeshwari Ambekar
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- North Carolina State University, Raleigh, NC USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
13
|
Tan M, Song B, Zhao X, Du J. The role and mechanism of compressive stress in tumor. Front Oncol 2024; 14:1459313. [PMID: 39351360 PMCID: PMC11439826 DOI: 10.3389/fonc.2024.1459313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Recent research has revealed the important role of mechanical forces in the initiation and progression of tumors. The interplay between mechanical and biochemical cues affects the function and behavior of tumor cells during the development of solid tumors, especially their metastatic potential. The compression force generated by excessive cell proliferation and the tumor microenvironment widely regulates the progression of solid tumor disease. Tumor cells can sense alterations in compressive stress through diverse mechanosensitive components and adapt their mechanical characteristics accordingly to adapt to environmental changes. Here, we summarize the current role of compressive stress in regulating tumor behavior and its biophysical mechanism from the mechanobiological direction.
Collapse
Affiliation(s)
- Min Tan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Bingqi Song
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinbin Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Ma T, Liu X, Su H, Shi Q, He Y, Wu F, Gao C, Li K, Liang Z, Zhang D, Zhang X, Hu K, Li S, Wang L, Wang M, Yue S, Hong W, Chen X, Zhang J, Zheng L, Deng X, Wang P, Fan Y. Coupling of Perinuclear Actin Cap and Nuclear Mechanics in Regulating Flow-Induced Yap Spatiotemporal Nucleocytoplasmic Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305867. [PMID: 38161226 PMCID: PMC10953556 DOI: 10.1002/advs.202305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/10/2023] [Indexed: 01/03/2024]
Abstract
Mechanical forces, including flow shear stress, govern fundamental cellular processes by modulating nucleocytoplasmic transport of transcription factors like Yes-associated Protein (YAP). However, the underlying mechanical mechanism remains elusive. In this study, it is reported that unidirectional flow induces biphasic YAP transport with initial nuclear import, followed by nuclear export as actin cap formation and nuclear stiffening. Conversely, pathological oscillatory flow induces slight actin cap formation, nuclear softening, and sustained YAP nuclear localization. To elucidate the disparately YAP spatiotemporal distribution, a 3D mechanochemical model is developed, which integrates flow sensing, cytoskeleton organization, nucleus mechanotransduction, and YAP transport. The results unveiled that despite the significant localized nuclear stress imposed by the actin cap, its inherent stiffness counteracts the dispersed contractile stress exerted by conventional fibers on the nuclear membrane. Moreover, alterations in nuclear stiffness synergistically regulate nuclear deformation, thereby governing YAP transport. Furthermore, by expanding the single-cell model to a collective vertex framework, it is revealed that the irregularities in actin cap formation within individual cells have the potential to induce topological defects and spatially heterogeneous YAP distribution in the cellular monolayer. This work unveils a unified mechanism of flow-induced nucleocytoplasmic transport, providing a linkage between transcription factor localization and mechanical stimulation.
Collapse
Affiliation(s)
- Tianxiang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiao Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haoran Su
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yuan He
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Fan Wu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Chenxing Gao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Kexin Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zhuqing Liang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Dongrui Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Ke Hu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Shangyu Li
- Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijing100871China
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Li Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Min Wang
- Department of Gynecology and ObstetricsStrategic Support Force Medical CenterBeijing100101China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Weili Hong
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xun Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Pu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
- School of Engineering MedicineBeihang UniversityBeijing100083China
| |
Collapse
|
15
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
16
|
Song Y, Soto J, Wong SY, Wu Y, Hoffman T, Akhtar N, Norris S, Chu J, Park H, Kelkhoff DO, Ang CE, Wernig M, Kasko A, Downing TL, Poo MM, Li S. Biphasic regulation of epigenetic state by matrix stiffness during cell reprogramming. SCIENCE ADVANCES 2024; 10:eadk0639. [PMID: 38354231 PMCID: PMC10866547 DOI: 10.1126/sciadv.adk0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
We investigate how matrix stiffness regulates chromatin reorganization and cell reprogramming and find that matrix stiffness acts as a biphasic regulator of epigenetic state and fibroblast-to-neuron conversion efficiency, maximized at an intermediate stiffness of 20 kPa. ATAC sequencing analysis shows the same trend of chromatin accessibility to neuronal genes at these stiffness levels. Concurrently, we observe peak levels of histone acetylation and histone acetyltransferase (HAT) activity in the nucleus on 20 kPa matrices, and inhibiting HAT activity abolishes matrix stiffness effects. G-actin and cofilin, the cotransporters shuttling HAT into the nucleus, rises with decreasing matrix stiffness; however, reduced importin-9 on soft matrices limits nuclear transport. These two factors result in a biphasic regulation of HAT transport into nucleus, which is directly demonstrated on matrices with dynamically tunable stiffness. Our findings unravel a mechanism of the mechano-epigenetic regulation that is valuable for cell engineering in disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sze Yue Wong
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tyler Hoffman
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Sam Norris
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Julia Chu
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hyungju Park
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Structure and Function of Neural Network, Korea Brain Research Institute (KBRI), Daegu 41068, South Korea
| | - Douglas O. Kelkhoff
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cheen Euong Ang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Andrea Kasko
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Mu-ming Poo
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Yerima G, Domkam N, Ornowski J, Jahed Z, Mofrad MRK. Force transmission and SUN-KASH higher-order assembly in the LINC complex models. Biophys J 2023; 122:4582-4597. [PMID: 37924205 PMCID: PMC10719071 DOI: 10.1016/j.bpj.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
The linkers of the nucleoskeleton and cytoskeleton (LINC) complex comprises Sad-1 and UNC-84 (SUN) and Klarsicht, ANC-1, SYNE homology (KASH) domain proteins, whose conserved interactions provide a physical coupling between the cytoskeleton and the nucleoskeleton, thereby mediating the transfer of physical forces across the nuclear envelope. The LINC complex can perform distinct cellular functions by pairing various KASH domain proteins with the same SUN domain protein. Recent studies have suggested a higher-order assembly of SUN and KASH instead of a more widely accepted linear trimer model for the LINC complex. In the present study, we use molecular dynamics simulations to investigate the mechanism of force transfer across the two proposed models of LINC complex assembly, namely the 3:3 linear trimer model and the 6:6 higher-order model. Employing steered molecular dynamics simulations with various structures using forces at different rates and directions, we examine the structural stability of the two models under various biologically relevant conditions. Our results suggest that both models can withstand and transfer significant levels of force while retaining their structural integrity. However, the force response of various SUN/KASH assemblies depend on the force direction and pulling rates. Slower pulling rates result in higher mean square fluctuations of the 3:3 assembly compared to the fast pulling. Interestingly, the 6:6 assembly tends to provide an additional range of motion flexibility and might be more advantageous to the structural rigidity and pliability of the nuclear envelope. These findings offer insights into how the SUN and KASH proteins maintain the structural integrity of the nuclear membrane.
Collapse
Affiliation(s)
- Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Nya Domkam
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Jessica Ornowski
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California
| | - Zeinab Jahed
- Department of Nanoengineering, Jacobs School of Engineering, University of California, San Diego, California.
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
18
|
Sgarzi M, Mazzeschi M, Santi S, Montacci E, Panciera T, Ferlizza E, Girone C, Morselli A, Gelfo V, Kuhre RS, Cavallo C, Valente S, Pasquinelli G, Győrffy B, D'Uva G, Romaniello D, Lauriola M. Aberrant MET activation impairs perinuclear actin cap organization with YAP1 cytosolic relocation. Commun Biol 2023; 6:1044. [PMID: 37838732 PMCID: PMC10576810 DOI: 10.1038/s42003-023-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023] Open
Abstract
Little is known about the signaling network responsible for the organization of the perinuclear actin cap, a recently identified structure holding unique roles in the regulation of nuclear shape and cell directionality. In cancer cells expressing a constitutively active MET, we show a rearrangement of the actin cap filaments, which crash into perinuclear patches associated with spherical nuclei, meandering cell motility and inactivation of the mechano-transducer YAP1. MET ablation is sufficient to reactivate YAP1 and restore the cap, leading to enhanced directionality and flattened nuclei. Consistently, the introduction of a hyperactive MET in normal epithelial cells, enhances nuclear height and alters the cap organization, as also confirmed by TEM analysis. Finally, the constitutively active YAP1 mutant YAP5SA is able to overcome the effects of oncogenic MET. Overall, our work describes a signaling axis empowering MET-mediated YAP1 dampening and actin cap misalignment, with implications for nuclear shape and cell motility.
Collapse
Affiliation(s)
- Michela Sgarzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | | | - Spartaco Santi
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
- IRCCS-Institute Orthopaedic Rizzoli, Bologna, Italy
| | - Elisa Montacci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tito Panciera
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Enea Ferlizza
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Cinzia Girone
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Valerio Gelfo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Rikke Sofie Kuhre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Carola Cavallo
- Laboratory of Preclinical Studies for Regenerative Medicine of the Musculoskeletal System (RAMSES), (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Balazs Győrffy
- Semmelweis University Dept. of Bioinformatics and 2nd Dept. Of Pediatrics, Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Gabriele D'Uva
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| | - Mattia Lauriola
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- Centre for Applied Biomedical Research (CRBA), Bologna University Hospital Authority St. Orsola -Malpighi Polyclinic, Bologna, Italy.
| |
Collapse
|
19
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
20
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Nishino M, Imaizumi H, Yokoyama Y, Katahira J, Kimura H, Matsuura N, Matsumura M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023; 18:e0283490. [PMID: 37437070 DOI: 10.1371/journal.pone.0283490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Cell motility is related to the higher-order structure of chromatin. Stimuli that induce cell migration change chromatin organization; such stimuli include elevated histone H3 lysine 9 trimethylation (H3K9me3). We previously showed that depletion of histone H3 lysine 9 methyltransferase, SUV39H1, suppresses directional cell migration. However, the molecular mechanism underlying this association between chromatin and cell migration remains elusive. The Golgi apparatus is a cell organelle essential for cell motility. In this study, we show that loss of H3K9 methyltransferase SUV39H1 but not SETDB1 or SETDB2 causes dispersion of the Golgi apparatus throughout the cytoplasm. The Golgi dispersion triggered by SUV39H1 depletion is independent of transcription, centrosomes, and microtubule organization, but is suppressed by depletion of any of the following three proteins: LINC complex components SUN2, nesprin-2, or microtubule plus-end-directed kinesin-like protein KIF20A. In addition, SUN2 is closely localized to H3K9me3, and SUV39H1 affects the mobility of SUN2 in the nuclear envelope. Further, inhibition of cell motility caused by SUV39H1 depletion is restored by suppression of SUN2, nesprin-2, or KIF20A. In summary, these results show the functional association between chromatin organization and cell motility via the Golgi organization regulated by the LINC complex.
Collapse
Affiliation(s)
- Miyu Nishino
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Hiromasa Imaizumi
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Yuhki Yokoyama
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| | - Jun Katahira
- Laboratories of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Nariaki Matsuura
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
- Osaka International Cancer Institute, Osaka, Japan
| | - Miki Matsumura
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
- Graduate School of Medicine and Health Science, Osaka University, Osaka, Japan
| |
Collapse
|
22
|
Imaizumi H, Minami K, Hieda M, Narihiro N, Koizumi M. The linker of nucleoskeleton and cytoskeleton complex is required for X-ray-induced epithelial-mesenchymal transition. JOURNAL OF RADIATION RESEARCH 2023; 64:358-368. [PMID: 36694940 PMCID: PMC10036107 DOI: 10.1093/jrr/rrac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex has been implicated in various functions of the nuclear envelope, including nuclear migration, mechanotransduction and DNA repair. We previously revealed that the LINC complex component Sad1 and UNC84 domain containing 1 (SUN1) is required for sublethal-dose X-ray-enhanced cell migration and invasion. This study focused on epithelial-mesenchymal transition (EMT), which contributes to cell migration. Hence, the present study aimed to examine whether sublethal-dose X-irradiation induces EMT and whether LINC complex component SUN1 is involved in low-dose X-ray-induced EMT. This study showed that low-dose (0.5 Gy or 2 Gy) X-irradiation induced EMT in human breast cancer MDA-MB-231 cells. Additionally, X-irradiation increased the expression of SUN1. Therefore, SUN1 was depleted using siRNA. In SUN1-depleted cells, low-dose X-irradiation did not induce EMT. In addition, although the SUN1 splicing variant SUN1_916-depleted cells (containing 916 amino acids [AA] of SUN1) were induced EMT by low-dose X-irradiation like as non-transfected control cells, SUN1_888-depleted cells (which encodes 888 AA) were not induced EMT by low-dose X-irradiation. Moreover, since the Wnt/β-catenin signaling pathway regulates E-cadherin expression via the expression of the E-cadherin repressor Snail, the expression of β-catenin after X-irradiation was examined. After 24 hours of irradiation, β-catenin expression increased in non-transfected cells or SUN1_916-depleted cells, whereas β-catenin expression remained unchanged and did not increase in SUN1- or SUN1_888-depleted cells. Therefore, in this study, we found that low-dose X-irradiation induces EMT, and LINC complex component SUN1, especially SUN1_888, is required for X-ray-induced EMT via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hiromasa Imaizumi
- Corresponding author. Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan. E-mail: ; Tel: +81-86-462-1111; Fax: +81-86-464-1109
| | - Kazumasa Minami
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, 543 Takoda, Tobe-cho, Iyo-gun, Ehime 791-2101, Japan
| | - Naomasa Narihiro
- Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine and Health Science, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Tellides G, Humphrey JD. Smooth Muscle Cell Death Drives an Osteochondrogenic Phenotype and Severe Proximal Vascular Disease in Progeria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523266. [PMID: 36711514 PMCID: PMC9882088 DOI: 10.1101/2023.01.10.523266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end of life. We associate progressive deterioration of arterial structure and function with single cell transcriptional changes, which reveals a rapid disease process in proximal elastic arteries that largely spares distal muscular arteries. These data suggest a novel sequence of progressive vascular disease in progeria: initial extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death in proximal arteries, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotypic modulation that results in an accumulation of proteoglycans that thickens the wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased pulse wave velocity drives left ventricular diastolic dysfunction, the primary diagnosis in progeria children. Mitigating smooth muscle cell loss / phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Florczyk SJ, Hotaling NA, Simon M, Chalfoun J, Horenberg AL, Schaub NJ, Wang D, Szczypiński PM, DeFelice VL, Bajcsy P, Simon CG. Measuring dimensionality of cell-scaffold contacts of primary human bone marrow stromal cells cultured on electrospun fiber scaffolds. J Biomed Mater Res A 2023; 111:106-117. [PMID: 36194510 DOI: 10.1002/jbm.a.37449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
The properties and structure of the cellular microenvironment can influence cell behavior. Sites of cell adhesion to the extracellular matrix (ECM) initiate intracellular signaling that directs cell functions such as proliferation, differentiation, and apoptosis. Electrospun fibers mimic the fibrous nature of native ECM proteins and cell culture in fibers affects cell shape and dimensionality, which can drive specific functions, such as the osteogenic differentiation of primary human bone marrow stromal cells (hBMSCs), by. In order to probe how scaffolds affect cell shape and behavior, cell-fiber contacts were imaged to assess their shape and dimensionality through a novel approach. Fluorescent polymeric fiber scaffolds were made so that they could be imaged by confocal fluorescence microscopy. Fluorescent polymer films were made as a planar control. hBSMCs were cultured on the fluorescent substrates and the cells and substrates were imaged. Two different image analysis approaches, one having geometrical assumptions and the other having statistical assumptions, were used to analyze the 3D structure of cell-scaffold contacts. The cells cultured in scaffolds contacted the fibers in multiple planes over the surface of the cell, while the cells cultured on films had contacts confined to the bottom surface of the cell. Shape metric analysis indicated that cell-fiber contacts had greater dimensionality and greater 3D character than the cell-film contacts. These results suggest that cell adhesion site-initiated signaling could emanate from multiple planes over the cell surface during culture in fibers, as opposed to emanating only from the cell's basal surface during culture on planar surfaces.
Collapse
Affiliation(s)
- Stephanie J Florczyk
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nathan A Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Mylene Simon
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Joe Chalfoun
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Allison L Horenberg
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nicholas J Schaub
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA.,Axle Informatics, Rockville, Maryland, USA
| | - Dongbo Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | | | - Veronica L DeFelice
- Biochemistry and Molecular Biology Program, Georgetown University, Washington, District of Columbia, USA
| | - Peter Bajcsy
- Software and Systems Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
25
|
Hodge JG, Zamierowski DS, Robinson JL, Mellott AJ. Evaluating polymeric biomaterials to improve next generation wound dressing design. Biomater Res 2022; 26:50. [PMID: 36183134 PMCID: PMC9526981 DOI: 10.1186/s40824-022-00291-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Wound healing is a dynamic series of interconnected events with the ultimate goal of promoting neotissue formation and restoration of anatomical function. Yet, the complexity of wound healing can often result in development of complex, chronic wounds, which currently results in a significant strain and burden to our healthcare system. The advancement of new and effective wound care therapies remains a critical issue, with the current therapeutic modalities often remaining inadequate. Notably, the field of tissue engineering has grown significantly in the last several years, in part, due to the diverse properties and applications of polymeric biomaterials. The interdisciplinary cohesion of the chemical, biological, physical, and material sciences is pertinent to advancing our current understanding of biomaterials and generating new wound care modalities. However, there is still room for closing the gap between the clinical and material science realms in order to more effectively develop novel wound care therapies that aid in the treatment of complex wounds. Thus, in this review, we discuss key material science principles in the context of polymeric biomaterials, provide a clinical breadth to discuss how these properties affect wound dressing design, and the role of polymeric biomaterials in the innovation and design of the next generation of wound dressings.
Collapse
Affiliation(s)
- Jacob G Hodge
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS, USA.,Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - David S Zamierowski
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Mail Stop: 3051, 3901 Rainbow Blvd, Lawrence, KS, 66160, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Li N, Jin K, Chen T, Li X. A static force model to analyze the nuclear deformation on cell adhesion to vertical nanostructures. SOFT MATTER 2022; 18:6638-6644. [PMID: 36004571 DOI: 10.1039/d2sm00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vertical nanostructures have been found to induce the deformation of the nuclear envelope during cell adhesion. However, there has been a lack of quantitative analysis of the influence of nanostructures morphology on the degree of nuclear deformation. Here, a theoretical model was proposed to investigate the mechanism of nuclear deformation by analyzing the mechanical force balance. Based on the established model, we analyzed the effects of the morphology of the nanopillar array on nuclear deformation and gave the quantitative relationship of the deformation depth of the nucleus with the pitch and radius of nanopillars. Our theoretical results seem to show broad agreements with experimental observations, which implies that the work can provide useful guidance to the design of nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Nanxin Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Kun Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan 511500, China
| | - Xinlei Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Salvador J, Iruela-Arispe ML. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front Cell Dev Biol 2022; 10:905927. [PMID: 35784481 PMCID: PMC9247619 DOI: 10.3389/fcell.2022.905927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Vascular cells are constantly subjected to physical forces associated with the rhythmic activities of the heart, which combined with the individual geometry of vessels further imposes oscillatory, turbulent, or laminar shear stresses on vascular cells. These hemodynamic forces play an important role in regulating the transcriptional program and phenotype of endothelial and smooth muscle cells in different regions of the vascular tree. Within the aorta, the lesser curvature of the arch is characterized by disturbed, oscillatory flow. There, endothelial cells become activated, adopting pro-inflammatory and athero-prone phenotypes. This contrasts the descending aorta where flow is laminar and endothelial cells maintain a quiescent and atheroprotective phenotype. While still unclear, the specific mechanisms involved in mechanosensing flow patterns and their molecular mechanotransduction directly impact the nucleus with consequences to transcriptional and epigenetic states. The linker of nucleoskeleton and cytoskeleton (LINC) protein complex transmits both internal and external forces, including shear stress, through the cytoskeleton to the nucleus. These forces can ultimately lead to changes in nuclear integrity, chromatin organization, and gene expression that significantly impact emergence of pathology such as the high incidence of atherosclerosis in progeria. Therefore, there is strong motivation to understand how endothelial nuclei can sense and respond to physical signals and how abnormal responses to mechanical cues can lead to disease. Here, we review the evidence for a critical role of the nucleus as a mechanosensor and the importance of maintaining nuclear integrity in response to continuous biophysical forces, specifically shear stress, for proper vascular function and stability.
Collapse
Affiliation(s)
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
28
|
Chowdhury F, Huang B, Wang N. Forces in stem cells and cancer stem cells. Cells Dev 2022; 170:203776. [DOI: 10.1016/j.cdev.2022.203776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
29
|
Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022; 42:374-400. [PMID: 35470988 PMCID: PMC9118059 DOI: 10.1002/cac2.12294] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic and heterogeneous interaction between tumor cells and the surrounding microenvironment fuels the occurrence, progression, invasion, and metastasis of solid tumors. In this process, the tumor microenvironment (TME) fractures cellular and matrix architecture normality through biochemical and mechanical means, abetting tumorigenesis and treatment resistance. Tumor cells sense and respond to the strength, direction, and duration of mechanical cues in the TME by various mechanotransduction pathways. However, far less understood is the comprehensive perspective of the functions and mechanisms of mechanotransduction. Due to the great therapeutic difficulties brought by the mechanical changes in the TME, emerging studies have focused on targeting the adverse mechanical factors in the TME to attenuate disease rather than conventionally targeting tumor cells themselves, which has been proven to be a potential therapeutic approach. In this review, we discussed the origins and roles of mechanical factors in the TME, cell sensing, mechano‐biological coupling and signal transduction, in vitro construction of the tumor mechanical microenvironment, applications and clinical significance in the TME.
Collapse
Affiliation(s)
- Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Meng Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhengxin Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ran Yan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fengming You
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
30
|
Echarri A. A Multisensory Network Drives Nuclear Mechanoadaptation. Biomolecules 2022; 12:biom12030404. [PMID: 35327596 PMCID: PMC8945967 DOI: 10.3390/biom12030404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Cells have adapted to mechanical forces early in evolution and have developed multiple mechanisms ensuring sensing of, and adaptation to, the diversity of forces operating outside and within organisms. The nucleus must necessarily adapt to all types of mechanical signals, as its functions are essential for virtually all cell processes, many of which are tuned by mechanical cues. To sense forces, the nucleus is physically connected with the cytoskeleton, which senses and transmits forces generated outside and inside the cell. The nuclear LINC complex bridges the cytoskeleton and the nuclear lamina to transmit mechanical information up to the chromatin. This system creates a force-sensing macromolecular complex that, however, is not sufficient to regulate all nuclear mechanoadaptation processes. Within the nucleus, additional mechanosensitive structures, including the nuclear envelope and the nuclear pore complex, function to regulate nuclear mechanoadaptation. Similarly, extra nuclear mechanosensitive systems based on plasma membrane dynamics, mechanotransduce information to the nucleus. Thus, the nucleus has the intrinsic structural components needed to receive and interpret mechanical inputs, but also rely on extra nuclear mechano-sensors that activate nuclear regulators in response to force. Thus, a network of mechanosensitive cell structures ensures that the nucleus has a tunable response to mechanical cues.
Collapse
Affiliation(s)
- Asier Echarri
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Mechanoadaptation and Caveolae Biology Laboratory, Areas of Cell & Developmental Biology, Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
31
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
32
|
Goelzer M, Goelzer J, Ferguson ML, Neu CP, Uzer G. Nuclear envelope mechanobiology: linking the nuclear structure and function. Nucleus 2021; 12:90-114. [PMID: 34455929 PMCID: PMC8432354 DOI: 10.1080/19491034.2021.1962610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
The nucleus, central to cellular activity, relies on both direct mechanical input as well as its molecular transducers to sense external stimuli and respond by regulating intra-nuclear chromatin organization that determines cell function and fate. In mesenchymal stem cells of musculoskeletal tissues, changes in nuclear structures are emerging as a key modulator of their differentiation and proliferation programs. In this review we will first introduce the structural elements of the nucleoskeleton and discuss the current literature on how nuclear structure and signaling are altered in relation to environmental and tissue level mechanical cues. We will focus on state-of-the-art techniques to apply mechanical force and methods to measure nuclear mechanics in conjunction with DNA, RNA, and protein visualization in living cells. Ultimately, combining real-time nuclear deformations and chromatin dynamics can be a powerful tool to study mechanisms of how forces affect the dynamics of genome function.
Collapse
Affiliation(s)
- Matthew Goelzer
- Materials Science and Engineering, Boise State University, Boise, ID, US
| | | | - Matthew L. Ferguson
- Biomolecular Science, Boise State University, Boise, ID, US
- Physics, Boise State University, Boise, ID, US
| | - Corey P. Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO, US
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, ID, US
| |
Collapse
|
33
|
Abstract
The nuclear envelope and nucleoskeleton are emerging as signaling centers that regulate how physical information from the extracellular matrix is biochemically transduced into the nucleus, affecting chromatin and controlling cell function. Bone is a mechanically driven tissue that relies on physical information to maintain its physiological function and structure. Disorder that present with musculoskeletal and cardiac symptoms, such as Emery-Dreifuss muscular dystrophies and progeria, correlate with mutations in nuclear envelope proteins including Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, Lamin A/C, and emerin. However, the role of nuclear envelope mechanobiology on bone function remains underexplored. The mesenchymal stem cell (MSC) model is perhaps the most studied relationship between bone regulation and nuclear envelope function. MSCs maintain the musculoskeletal system by differentiating into multiple cell types including osteocytes and adipocytes, thus supporting the bone's ability to respond to mechanical challenge. In this review, we will focus on how MSC function is regulated by mechanical challenges both in vitro and in vivo within the context of bone function specifically focusing on integrin, β-catenin and YAP/TAZ signaling. The importance of the nuclear envelope will be explored within the context of musculoskeletal diseases related to nuclear envelope protein mutations and nuclear envelope regulation of signaling pathways relevant to bone mechanobiology in vitro and in vivo.
Collapse
Affiliation(s)
- Scott Birks
- Boise State University, Micron School of Materials Science and Engineering, United States of America
| | - Gunes Uzer
- Boise State University, Mechanical and Biomedical Engineering, United States of America.
| |
Collapse
|
34
|
Biallelic SYNE2 Missense Mutations Leading to Nesprin-2 Giant Hypo-Expression Are Associated with Intellectual Disability and Autism. Genes (Basel) 2021; 12:genes12091294. [PMID: 34573277 PMCID: PMC8470961 DOI: 10.3390/genes12091294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurological and developmental disabilities characterised by clinical and genetic heterogeneity. The current study aimed to expand ASD genotyping by investigating potential associations with SYNE2 mutations. Specifically, the disease-causing variants of SYNE2 in 410 trios manifesting neurodevelopmental disorders using whole-exome sequencing were explored. The consequences of the identified variants were studied at the transcript level using quantitative polymerase chain reaction (qPCR). For validation, immunofluorescence and immunoblotting were performed to analyse mutational effects at the protein level. The compound heterozygous variants of SYNE2 (NM_182914.3:c.2483T>G; p.(Val828Gly) and NM_182914.3:c.2362G>A; p.(Glu788Lys)) were identified in a 4.5-year-old male, clinically diagnosed with autism spectrum disorder, developmental delay and intellectual disability. Both variants reside within the nesprin-2 giant spectrin repeat (SR5) domain and are predicted to be highly damaging using in silico tools. Specifically, a significant reduction of nesprin-2 giant protein levels is revealed in patient cells. SYNE2 transcription and the nuclear envelope localisation of the mutant proteins was however unaffected as compared to parental control cells. Collectively, these data provide novel insights into the cardinal role of the nesprin-2 giant in neurodevelopment and suggest that the biallelic hypomorphic SYNE2 mutations may be a new cause of intellectual disability and ASD.
Collapse
|
35
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
36
|
Culturing Keratinocytes on Biomimetic Substrates Facilitates Improved Epidermal Assembly In Vitro. Cells 2021; 10:cells10051177. [PMID: 34066027 PMCID: PMC8151809 DOI: 10.3390/cells10051177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Mechanotransduction is defined as the ability of cells to sense mechanical stimuli from their surroundings and translate them into biochemical signals. Epidermal keratinocytes respond to mechanical cues by altering their proliferation, migration, and differentiation. In vitro cell culture, however, utilises tissue culture plastic, which is significantly stiffer than the in vivo environment. Current epidermal models fail to consider the effects of culturing keratinocytes on plastic prior to setting up three-dimensional cultures, so the impact of this non-physiological exposure on epidermal assembly is largely overlooked. In this study, primary keratinocytes cultured on plastic were compared with those grown on 4, 8, and 50 kPa stiff biomimetic hydrogels that have similar mechanical properties to skin. Our data show that keratinocytes cultured on biomimetic hydrogels exhibited major changes in cellular architecture, cell density, nuclear biomechanics, and mechanoprotein expression, such as specific Linker of Nucleoskeleton and Cytoskeleton (LINC) complex constituents. Mechanical conditioning of keratinocytes on 50 kPa biomimetic hydrogels improved the thickness and organisation of 3D epidermal models. In summary, the current study demonstrates that the effects of extracellular mechanics on keratinocyte cell biology are significant and therefore should be harnessed in skin research to ensure the successful production of physiologically relevant skin models.
Collapse
|
37
|
Manfrevola F, Guillou F, Fasano S, Pierantoni R, Chianese R. LINCking the Nuclear Envelope to Sperm Architecture. Genes (Basel) 2021; 12:genes12050658. [PMID: 33925685 PMCID: PMC8145172 DOI: 10.3390/genes12050658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.
Collapse
Affiliation(s)
- Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Florian Guillou
- PRC, CNRS, IFCE, INRAE, University of Tours, 37380 Nouzilly, France;
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Via Costantinopoli 16, 80138 Napoli, Italy; (F.M.); (S.F.); (R.P.)
- Correspondence:
| |
Collapse
|
38
|
Déjardin T, Carollo PS, Sipieter F, Davidson PM, Seiler C, Cuvelier D, Cadot B, Sykes C, Gomes ER, Borghi N. Nesprins are mechanotransducers that discriminate epithelial-mesenchymal transition programs. J Cell Biol 2021; 219:152020. [PMID: 32790861 PMCID: PMC7659719 DOI: 10.1083/jcb.201908036] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Abstract
LINC complexes are transmembrane protein assemblies that physically connect the nucleoskeleton and cytoskeleton through the nuclear envelope. Dysfunctions of LINC complexes are associated with pathologies such as cancer and muscular disorders. The mechanical roles of LINC complexes are poorly understood. To address this, we used genetically encoded FRET biosensors of molecular tension in a nesprin protein of the LINC complex of fibroblastic and epithelial cells in culture. We exposed cells to mechanical, genetic, and pharmacological perturbations, mimicking a range of physiological and pathological situations. We show that nesprin experiences tension generated by the cytoskeleton and acts as a mechanical sensor of cell packing. Moreover, nesprin discriminates between inductions of partial and complete epithelial–mesenchymal transitions. We identify the implicated mechanisms, which involve α-catenin capture at the nuclear envelope by nesprin upon its relaxation, thereby regulating β-catenin transcription. Our data thus implicate LINC complex proteins as mechanotransducers that fine-tune β-catenin signaling in a manner dependent on the epithelial–mesenchymal transition program.
Collapse
Affiliation(s)
- Théophile Déjardin
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Pietro Salvatore Carollo
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - François Sipieter
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Patricia M Davidson
- Laboratoire Physico-Chimie Curie, Institut Curie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 168, Sorbonne Universités, Université Paris Sciences et Lettres, Paris, France
| | - Cynthia Seiler
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Damien Cuvelier
- Institut Curie and Institut Pierre Gilles de Gennes, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique Unité Mixte de Rercherche 144, Paris, France
| | - Bruno Cadot
- Center for Research in Myology, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 974, Sorbonne Universités, Paris, France
| | - Cecile Sykes
- Laboratoire Physico-Chimie Curie, Institut Curie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 168, Sorbonne Universités, Université Paris Sciences et Lettres, Paris, France
| | - Edgar R Gomes
- Center for Research in Myology, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 974, Sorbonne Universités, Paris, France.,Instituto de Medecina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nicolas Borghi
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
39
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
40
|
Owens DJ, Messéant J, Moog S, Viggars M, Ferry A, Mamchaoui K, Lacène E, Roméro N, Brull A, Bonne G, Butler-Browne G, Coirault C. Lamin-Related Congenital Muscular Dystrophy Alters Mechanical Signaling and Skeletal Muscle Growth. Int J Mol Sci 2020; 22:ijms22010306. [PMID: 33396724 PMCID: PMC7795708 DOI: 10.3390/ijms22010306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Laminopathies are a clinically heterogeneous group of disorders caused by mutations in the LMNA gene, which encodes the nuclear envelope proteins lamins A and C. The most frequent diseases associated with LMNA mutations are characterized by skeletal and cardiac involvement, and include autosomal dominant Emery–Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy type 1B, and LMNA-related congenital muscular dystrophy (LMNA-CMD). Although the exact pathophysiological mechanisms responsible for LMNA-CMD are not yet understood, severe contracture and muscle atrophy suggest that mutations may impair skeletal muscle growth. Using human muscle stem cells (MuSCs) carrying LMNA-CMD mutations, we observe impaired myogenic fusion with disorganized cadherin/β catenin adhesion complexes. We show that skeletal muscle from Lmna-CMD mice is unable to hypertrophy in response to functional overload, due to defective fusion of activated MuSCs, defective protein synthesis and defective remodeling of the neuromuscular junction. Moreover, stretched myotubes and overloaded muscle fibers with LMNA-CMD mutations display aberrant mechanical regulation of the yes-associated protein (YAP). We also observe defects in MuSC activation and YAP signaling in muscle biopsies from LMNA-CMD patients. These phenotypes are not recapitulated in closely related but less severe EDMD models. In conclusion, combining studies in vitro, in vivo, and patient samples, we find that LMNA-CMD mutations interfere with mechanosignaling pathways in skeletal muscle, implicating A-type lamins in the regulation of skeletal muscle growth.
Collapse
Affiliation(s)
- Daniel J. Owens
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Julien Messéant
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | | | - Mark Viggars
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Arnaud Ferry
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Université de Paris, 75006 Paris, France
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Emmanuelle Lacène
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
| | - Norma Roméro
- Neuromuscular Morphology Unit, Institute of Myology, Pitié-Salpêtrière Hospital, 75013 Paris, France; (E.L.); (N.R.)
- APHP, Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Institute of Myology, 75013 Paris, France
| | - Astrid Brull
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gisèle Bonne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
| | - Catherine Coirault
- Center for Research in Myology, Sorbonne Université, INSERM UMRS_974, 75013 Paris, France; (D.J.O.); (J.M.); (A.F.); (K.M.); (A.B.); (G.B.); (G.B.-B.)
- Correspondence: ; Tel.: +33-1-1-4216-5708
| |
Collapse
|
41
|
Using nuclear envelope mutations to explore age-related skeletal muscle weakness. Clin Sci (Lond) 2020; 134:2177-2187. [PMID: 32844998 PMCID: PMC7450176 DOI: 10.1042/cs20190066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle weakness is an important determinant of age-related declines in independence and quality of life but its causes remain unclear. Accelerated ageing syndromes such as Hutchinson-Gilford Progerin Syndrome, caused by mutations in genes encoding nuclear envelope proteins, have been extensively studied to aid our understanding of the normal biological ageing process. Like several other pathologies associated with genetic defects to nuclear envelope proteins including Emery-Dreifuss muscular dystrophy, Limb-Girdle muscular dystrophy and congenital muscular dystrophy, these disorders can lead to severe muscle dysfunction. Here, we first describe the structure and function of nuclear envelope proteins, and then review the mechanisms by which mutations in genes encoding nuclear envelope proteins induce premature ageing diseases and muscle pathologies. In doing so, we highlight the potential importance of such genes in processes leading to skeletal muscle weakness in old age.
Collapse
|
42
|
Unnikannan CP, Reuveny A, Grunberg D, Volk T. Recruitment of BAF to the nuclear envelope couples the LINC complex to endoreplication. Development 2020; 147:dev.191304. [PMID: 33168584 PMCID: PMC7758627 DOI: 10.1242/dev.191304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
DNA endoreplication has been implicated as a cell strategy for cell growth and in tissue injury. Here, we demonstrate that barrier-to-autointegration factor (BAF) represses endoreplication in Drosophila myofibers. We show that BAF localization at the nuclear envelope is eliminated in flies with mutations of the linker of nucleoskeleton and cytoskeleton (LINC) complex in which the LEM-domain protein Otefin is excluded, or after disruption of the nucleus-sarcomere connections. Furthermore, BAF localization at the nuclear envelope requires the activity of the BAF kinase VRK1/Ball, and, consistently, non-phosphorylatable BAF-GFP is excluded from the nuclear envelope. Importantly, removal of BAF from the nuclear envelope correlates with increased DNA content in the myonuclei. E2F1, a key regulator of endoreplication, overlaps BAF localization at the myonuclear envelope, and BAF removal from the nuclear envelope results in increased E2F1 levels in the nucleoplasm and subsequent elevated DNA content. We suggest that LINC-dependent and phosphosensitive attachment of BAF to the nuclear envelope, through its binding to Otefin, tethers E2F1 to the nuclear envelope thus inhibiting its accumulation in the nucleoplasm. Summary: Localization of BAF at the nuclear envelope of myonuclei depends on a functional LINC complex and on nucleus-sarcomere connections, and is shown to restrict E2F1 levels in the nucleoplasm.
Collapse
Affiliation(s)
- C P Unnikannan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dvorah Grunberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
43
|
Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. Int J Mol Sci 2020; 21:ijms21218361. [PMID: 33171812 PMCID: PMC7664694 DOI: 10.3390/ijms21218361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.
Collapse
|
44
|
Mechanoadaptive organization of stress fiber subtypes in epithelial cells under cyclic stretches and stretch release. Sci Rep 2020; 10:18684. [PMID: 33122754 PMCID: PMC7596055 DOI: 10.1038/s41598-020-75791-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cyclic stretch applied to cells induces the reorganization of stress fibers. However, the correlation between the reorganization of stress fiber subtypes and strain-dependent responses of the cytoplasm and nucleus has remained unclear. Here, we investigated the dynamic involvement of stress fiber subtypes in the orientation and elongation of cyclically stretched epithelial cells. We applied uniaxial cyclic stretches at 5%, 10%, and 15% strains to cells followed by the release of the mechanical stretch. Dorsal, transverse arcs, and peripheral stress fibers were mainly involved in the cytoplasm responses whereas perinuclear cap fibers were associated with the reorientation and elongation of the nucleus. Dorsal stress fibers and transverse arcs rapidly responded within 15 min regardless of the strain magnitude to facilitate the subsequent changes in the orientation and elongation of the cytoplasm. The cyclic stretches induced the additional formation of perinuclear cap fibers and their increased number was almost maintained with a slight decline after 2-h-long stretch release. The slow formation and high stability of perinuclear cap fibers were linked to the slow reorientation kinetics and partial morphology recovery of nucleus in the presence or absence of cyclic stretches. The reorganization of stress fiber subtypes occurred in accordance with the reversible distribution of myosin II. These findings allowed us to propose a model for stretch-induced responses of the cytoplasm and nucleus in epithelial cells based on different mechanoadaptive properties of stress fiber subtypes.
Collapse
|
45
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
46
|
Satomi E, Ueda M, Katahira J, Hieda M. The SUN1 splicing variants SUN1_888 and SUN1_916 differentially regulate nucleolar structure. Genes Cells 2020; 25:730-740. [PMID: 32931086 DOI: 10.1111/gtc.12807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
The nucleolar structure is highly dynamic and strictly regulated in response to internal cues, such as metabolic rates, and to external cues, such as mechanical forces applied to cells. Although the multilayered nucleolar structure is largely determined by the liquid-like properties of RNA and proteins, the mechanisms regulating the morphology and number of nucleoli remain elusive. The linker of the nucleoskeleton and cytoskeleton (LINC) complex comprises inner nuclear membrane Sad1/UNC-84 (SUN) proteins and outer nuclear membrane-localized nesprins. We previously showed that the depletion of SUN1 proteins affects nucleolar morphologies. This study focuses on the function of SUN1 splicing variants in determining nucleolar morphology. An RNA interference strategy showed that the predominantly expressed variants, SUN1_888 and SUN1_916, were crucial for nucleolar morphology but functionally distinct. In addition, the depletion of either SUN1_888 or SUN1_916 altered the chromatin structure and affected the distribution of histone modifications. Based on these results, we propose a model in which the LINC complex plays a role in modulating nucleolar morphology and numbers via chromatin.
Collapse
Affiliation(s)
- Erina Satomi
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Masako Ueda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| | - Jun Katahira
- Department of Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Ehime, Japan
| |
Collapse
|
47
|
Goswami R, Asnacios A, Hamant O, Chabouté ME. Is the plant nucleus a mechanical rheostat? CURRENT OPINION IN PLANT BIOLOGY 2020; 57:155-163. [PMID: 33128898 DOI: 10.1016/j.pbi.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Beyond its biochemical nature, the nucleus is also a physical object. There is accumulating evidence that its mechanics plays a key role in gene expression, cytoskeleton organization, and more generally in cell and developmental biology. Building on data mainly obtained from the animal literature, we show how nuclear mechanics may orchestrate development and gene expression. In other words, the nucleus may play the additional role of a mechanical rheostat. Although data from plant systems are still scarce, we pinpoint recent advances and highlight some differences with animal systems. Building on this survey, we propose a list of prospects for future research in plant nuclear mechanotransduction and development.
Collapse
Affiliation(s)
- Rituparna Goswami
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France; Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 69364 Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université de Paris, CNRS, Université Paris-Diderot, 75013 Paris, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, UCB Lyon 1, ENS de Lyon, INRA, CNRS, 69364 Lyon, France.
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
48
|
Mangalam M, Carver NS, Kelty-Stephen DG. Multifractal signatures of perceptual processing on anatomical sleeves of the human body. J R Soc Interface 2020; 17:20200328. [PMID: 32674706 PMCID: PMC7423428 DOI: 10.1098/rsif.2020.0328] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Research into haptic perception typically concentrates on mechanoreceptors and their supporting neuronal processes. This focus risks ignoring crucial aspects of active perception. For instance, bodily movements influence the information available to mechanoreceptors, entailing that movement facilitates haptic perception. Effortful manual wielding of an object prompts feedback loops at multiple spatio-temporal scales, rippling outwards from the wielding hand to the feet, maintaining an upright posture and interweaving to produce a nonlinear web of fluctuations throughout the body. Here, we investigated whether and how this bodywide nonlinearity engenders a flow of multifractal fluctuations that could support perception of object properties via dynamic touch. Blindfolded participants manually wielded weighted dowels and reported judgements of heaviness and length. Mechanical fluctuations on the anatomical sleeves (i.e. peripheries of the body), from hand to the upper body, as well as to the postural centre of pressure, showed evidence of multifractality arising from nonlinear temporal correlations across scales. The modelling of impulse-response functions obtained from vector autoregressive analysis revealed that distinct sets of pairwise exchanges of multifractal fluctuations entailed accuracy in heaviness and length judgements. These results suggest that the accuracy of perception via dynamic touch hinges on specific flowing patterns of multifractal fluctuations that people wear on their anatomical sleeves.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nicole S. Carver
- Department of Psychology, University of Cincinnati, Cincinnati, OH 45219, USA
| | | |
Collapse
|
49
|
Maynard S, Keijzers G, Akbari M, Ezra MB, Hall A, Morevati M, Scheibye-Knudsen M, Gonzalo S, Bartek J, Bohr VA. Lamin A/C promotes DNA base excision repair. Nucleic Acids Res 2020; 47:11709-11728. [PMID: 31647095 DOI: 10.1093/nar/gkz912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLβ BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLβ). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chronic oxidative stress including GC>TA transversions (a fingerprint of 8-oxoG:A mismatches). Collectively, our results provide novel insights into the functional interplay between the nuclear lamina and cellular defenses against oxidative DNA damage, with implications for cancer and aging.
Collapse
Affiliation(s)
- Scott Maynard
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mansour Akbari
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ben Ezra
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Marya Morevati
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Susana Gonzalo
- Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, Saint Louis, MO 63104, USA
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
50
|
Mudumbi KC, Czapiewski R, Ruba A, Junod SL, Li Y, Luo W, Ngo C, Ospina V, Schirmer EC, Yang W. Nucleoplasmic signals promote directed transmembrane protein import simultaneously via multiple channels of nuclear pores. Nat Commun 2020; 11:2184. [PMID: 32366843 PMCID: PMC7198523 DOI: 10.1038/s41467-020-16033-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Roughly 10% of eukaryotic transmembrane proteins are found on the nuclear membrane, yet how such proteins target and translocate to the nucleus remains in dispute. Most models propose transport through the nuclear pore complexes, but a central outstanding question is whether transit occurs through their central or peripheral channels. Using live-cell high-speed super-resolution single-molecule microscopy we could distinguish protein translocation through the central and peripheral channels, finding that most inner nuclear membrane proteins use only the peripheral channels, but some apparently extend intrinsically disordered domains containing nuclear localization signals into the central channel for directed nuclear transport. These nucleoplasmic signals are critical for central channel transport as their mutation blocks use of the central channels; however, the mutated proteins can still complete their translocation using only the peripheral channels, albeit at a reduced rate. Such proteins can still translocate using only the peripheral channels when central channel is blocked, but blocking the peripheral channels blocks translocation through both channels. This suggests that peripheral channel transport is the default mechanism that was adapted in evolution to include aspects of receptor-mediated central channel transport for directed trafficking of certain membrane proteins.
Collapse
Affiliation(s)
- Krishna C Mudumbi
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| | - Rafal Czapiewski
- The Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Andrew Ruba
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Wangxi Luo
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Christina Ngo
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Valentina Ospina
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Eric C Schirmer
- The Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|