1
|
Bothe V, Müller H, Shubin N, Fröbisch N. Effects of life history strategies and habitats on limb regeneration in plethodontid salamanders. Dev Dyn 2025; 254:396-419. [PMID: 39301774 PMCID: PMC12047434 DOI: 10.1002/dvdy.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Salamanders are the only tetrapods that exhibit the ability to fully regenerate limbs. The axolotl, a neotenic salamander, has become the model organism for regeneration research. Great advances have been made providing a detailed understanding of the morphological and molecular processes involved in limb regeneration. However, it remains largely unknown how limb regeneration varies across salamanders and how factors like variable life histories, ecologies, and limb functions have influenced and shaped regenerative capacities throughout evolution. RESULTS This study focuses on six species of plethodontid salamanders representing distinct life histories and habitats. Specimens were examined for regeneration ability after bite injuries as well as after controlled amputations. Morphological investigations revealed great regenerative abilities in all investigated species and frequent anatomical limb anomalies. Correlations were observed with respect to speed of regeneration and habitat. CONCLUSIONS Investigating regeneration in non-model salamander taxa is essential for disentangling shared features of the regeneration process versus those that may be more taxon-specific. Gaining insights into variable aspects of regeneration under natural conditions and after conspecific biting rather than controlled amputations adds important new datapoints for understanding the evolutionary framework of regeneration and provides a broader context for interpreting findings made in the model organism axolotl.
Collapse
Affiliation(s)
- Vivien Bothe
- Museum für Naturkunde BerlinLeibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of BiologyHumboldt University BerlinBerlinGermany
| | - Hendrik Müller
- Zentralmagazin Naturwissenschaftlicher SammlungenMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
| | - Neil Shubin
- Department of Organismal Biology & AnatomyThe University of ChicagoChicagoIllinoisUSA
| | - Nadia Fröbisch
- Museum für Naturkunde BerlinLeibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
- Department of BiologyHumboldt University BerlinBerlinGermany
| |
Collapse
|
2
|
Schraps N, Port JC, Menz A, Viehweger F, Büyücek S, Dum D, Schlichter R, Hinsch A, Fraune C, Bernreuther C, Kluth M, Hube‐Magg C, Möller K, Reiswich V, Luebke AM, Lebok P, Weidemann S, Sauter G, Lennartz M, Jacobsen F, Clauditz TS, Marx AH, Simon R, Steurer S, Mercanoglu B, Melling N, Hackert T, Burandt E, Gorbokon N, Minner S, Krech T, Lutz F. Prevalence and Significance of AGR2 Expression in Human Cancer. Cancer Med 2024; 13:e70407. [PMID: 39533806 PMCID: PMC11557986 DOI: 10.1002/cam4.70407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKROUND Anterior gradient 2 (AGR2) is a resident endoplasmic reticulum (ER) protein with a vital role in embryonal development, mucus maturation, tissue regeneration, and wound healing. METHODS To determine the prevalence and clinical significance of AGR2 expression in cancer, a tissue microarray containing 14,966 tumors from 134 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry (IHC). RESULTS AGR2 positivity was found in 103 of 134 tumor categories, and 83 tumor categories contained at least one strongly positive case. AGR2 expression was most frequently seen in tumors of the female genital tract, particularly adenocarcinomas (up to 100%), various breast cancer subtypes (57.1%-100%), urothelial carcinoma (74.6%-100%), adenocarcinomas of the upper and lower gastrointestinal tract (93.6%-99.6%), and pancreaticobiliary cancers (65.2%-98.2%). AGR2 positivity was slightly less common in squamous cell carcinomas (46.4%-77.3%) and mainly absent in mesenchymal and lymphoid tumors. While AGR2 expression was only weak or absent in the normal thyroid, it was moderate to strong in 46.0% of adenomas, 52.8% of follicular carcinomas, and 81.8% of papillary carcinomas of the thyroid. High AGR2 expression was strongly linked to poor ISUP (p < 0.0001), Fuhrman (p < 0.0001), and Thoenes (p < 0.0001) grades as well as advanced pT stage (p = 0.0035) in clear cell renal cell carcinoma (ccRCC). Low AGR2 expression was associated with high BRE grade in breast cancer (p = 0.0049), nodal metastasis (p = 0.0275) and RAS mutation (p = 0.0136) in colorectal cancer, nodal metastasis (p = 0.0482) in endometrioid endometrial carcinoma, high grade in noninvasive urothelial carcinoma (p = 0.0003), and invasive tumor growth in urothelial carcinoma (p < 0.0001). CONCLUSIONS It is concluded that AGR2 expression occurs in a broad range of different tumor entities and that AGR2 assessment may serve as a diagnostic aid for the distinction of thyroidal neoplasms and as a prognostic marker in various cancer types.
Collapse
Affiliation(s)
- Nina Schraps
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Seyma Büyücek
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Clinical Center OsnabrueckOsnabrueckGermany
| | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Claudia Hube‐Magg
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Viktor Reiswich
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas M. Luebke
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Clinical Center OsnabrueckOsnabrueckGermany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till S. Clauditz
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Andreas H. Marx
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
- Department of PathologyAcademic Hospital FuerthFuerthGermany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Stefan Steurer
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Baris Mercanoglu
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thilo Hackert
- Institute of Pathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Eike Burandt
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Natalia Gorbokon
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sarah Minner
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Krech
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Institute of Pathology, Clinical Center OsnabrueckOsnabrueckGermany
| | - Florian Lutz
- General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
3
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
4
|
Lyubetsky VA, Rubanov LI, Tereshina MB, Ivanova AS, Araslanova KR, Uroshlev LA, Goremykina GI, Yang JR, Kanovei VG, Zverkov OA, Shitikov AD, Korotkova DD, Zaraisky AG. Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations. Biol Direct 2023; 18:45. [PMID: 37568147 PMCID: PMC10416458 DOI: 10.1186/s13062-023-00405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. RESULTS To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. CONCLUSIONS We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution.
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
- Department of Mechanics and Mathematics, Lomonosov Moscow State University, Kolmogorova Str., 1, Moscow, Russia, 119234
| | - Lev I Rubanov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasiya S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, USA
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
| | - Leonid A Uroshlev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32, Vavilova Str., Moscow, Russia, 119991
| | - Galina I Goremykina
- Plekhanov Russian University of Economics, Stremyanny Lane 36, Moscow, Russia
| | - Jian-Rong Yang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Vladimir G Kanovei
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Oleg A Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), 19 Build. 1, Bolshoy Karetny per., Moscow, Russia, 127051
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya Str., Moscow, Russia, 117997.
- Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
5
|
Wang Z, Li Y, Zhao W, Jiang S, Huang Y, Hou J, Zhang X, Zhai Z, Yang C, Wang J, Zhu J, Pan J, Jiang W, Li Z, Ye M, Tan M, Jiang H, Dang Y. Integrative multi-omics and drug-response characterization of patient-derived prostate cancer primary cells. Signal Transduct Target Ther 2023; 8:175. [PMID: 37121942 PMCID: PMC10149505 DOI: 10.1038/s41392-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy in males across the world. A greater knowledge of the relationship between protein abundance and drug responses would benefit precision treatment for PCa. Herein, we establish 35 Chinese PCa primary cell models to capture specific characteristics among PCa patients, including gene mutations, mRNA/protein/surface protein distributions, and pharmaceutical responses. The multi-omics analyses identify Anterior Gradient 2 (AGR2) as a pre-operative prognostic biomarker in PCa. Through the drug library screening, we describe crizotinib as a selective compound for malignant PCa primary cells. We further perform the pharmacoproteome analysis and identify 14,372 significant protein-drug correlations. Surprisingly, the diminished AGR2 enhances the inhibition activity of crizotinib via ALK/c-MET-AKT axis activation which is validated by PC3 and xenograft model. Our integrated multi-omics approach yields a comprehensive understanding of PCa biomarkers and pharmacological responses, allowing for more precise diagnosis and therapies.
Collapse
Affiliation(s)
- Ziruoyu Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Yanan Li
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Wensi Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
- Department of Urology, Zhongshan Hospital Wusong Branch, Fudan University, 200032, Shanghai, China
| | - Yuqi Huang
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Hou
- Department of Urology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuelu Zhang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Zhaoyu Zhai
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Jiaqi Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jiying Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Jianbo Pan
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
6
|
Kosykh AV, Tereshina MB, Gurskaya NG. Potential Role of AGR2 for Mammalian Skin Wound Healing. Int J Mol Sci 2023; 24:ijms24097895. [PMID: 37175601 PMCID: PMC10178616 DOI: 10.3390/ijms24097895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The limited ability of mammals to regenerate has garnered significant attention, particularly in regard to skin wound healing (WH), which is a critical step for regeneration. In human adults, skin WH results in the formation of scars following injury or trauma, regardless of severity. This differs significantly from the scarless WH observed in the fetal skin of mammals or anamniotes. This review investigates the role of molecular players involved in scarless WH, which are lost or repressed in adult mammalian WH systems. Specifically, we analyze the physiological role of Anterior Gradient (AGR) family proteins at different stages of the WH regulatory network. AGR is activated in the regeneration of lower vertebrates at the stage of wound closure and, accordingly, is important for WH. Mammalian AGR2 is expressed during scarless WH in embryonic skin, while in adults, the activity of this gene is normally inhibited and is observed only in the mucous epithelium of the digestive tract, which is capable of full regeneration. The combination of AGR2 unique potencies in postnatal mammals makes it possible to consider it as a promising candidate for enhancing WH processes.
Collapse
Affiliation(s)
- Anastasiya V Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Maria B Tereshina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Nadya G Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| |
Collapse
|
7
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
8
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
9
|
Johnston APW, Miller FD. The Contribution of Innervation to Tissue Repair and Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041233. [PMID: 35667791 PMCID: PMC9438784 DOI: 10.1101/cshperspect.a041233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animals such as amphibians have an incredible capacity for regeneration with some being able to regrow their tail or appendages. Although some mammalian tissues like the skin and bones can repair following injury, there are only a few examples of true multilineage regeneration, including the distal portion of the digit tip. In both amphibians and mammals, however, to achieve successful repair or regeneration, it is now appreciated that intact nerve innervation is a necessity. Here, we review the current state of literature and discuss recent advances that identify axon-derived signals, Schwann cells, and nerve-derived mesenchymal cells as direct and indirect supporters of adult tissue homeostasis and repair. We posit that understanding how nerves positively influence repair and regeneration could lead to targeted regenerative medicine strategies to enhance tissue repair in humans.
Collapse
Affiliation(s)
- Adam P W Johnston
- Department of Applied Human Sciences; Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Freda D Miller
- Michael Smith Laboratories; Department of Medical Genetics; School of Biomedical Engineering, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
10
|
Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci 2022; 23:ijms23031464. [PMID: 35163418 PMCID: PMC8835994 DOI: 10.3390/ijms23031464] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Damage to organs by trauma, infection, diseases, congenital defects, aging, and other injuries causes organ malfunction and is life-threatening under serious conditions. Some of the lower order vertebrates such as zebrafish, salamanders, and chicks possess superior organ regenerative capacity over mammals. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), as key members of the mitogen-activated protein kinase (MAPK) family, are serine/threonine protein kinases that are phylogenetically conserved among vertebrate taxa. MAPK/ERK signaling is an irreplaceable player participating in diverse biological activities through phosphorylating a broad variety of substrates in the cytoplasm as well as inside the nucleus. Current evidence supports a central role of the MAPK/ERK pathway during organ regeneration processes. MAPK/ERK signaling is rapidly excited in response to injury stimuli and coordinates essential pro-regenerative cellular events including cell survival, cell fate turnover, migration, proliferation, growth, and transcriptional and translational activities. In this literature review, we recapitulated the multifaceted MAPK/ERK signaling regulations, its dynamic spatio-temporal activities, and the profound roles during multiple organ regeneration, including appendages, heart, liver, eye, and peripheral/central nervous system, illuminating the possibility of MAPK/ERK signaling as a critical mechanism underlying the vastly differential regenerative capacities among vertebrate species, as well as its potential applications in tissue engineering and regenerative medicine.
Collapse
|
11
|
Orlov EE, Nesterenko AM, Korotkova DD, Parshina EA, Martynova NY, Zaraisky AG. Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos. Dev Cell 2021; 57:95-111.e12. [PMID: 34919801 DOI: 10.1016/j.devcel.2021.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/01/2021] [Accepted: 11/19/2021] [Indexed: 01/13/2023]
Abstract
How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.
Collapse
Affiliation(s)
- Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Federal Center of Brain Research and Neurotechnology, Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Elena A Parshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Jach D, Cheng Y, Prica F, Dumartin L, Crnogorac-Jurcevic T. From development to cancer - an ever-increasing role of AGR2. Am J Cancer Res 2021; 11:5249-5262. [PMID: 34873459 PMCID: PMC8640830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023] Open
Abstract
Anterior gradient 2, AGR2, is a small, 20 kDa protein that plays a vital role in oxidative protein folding in the endoplasmic reticulum. AGR2 is involved in several signal transduction pathways that are essential for cell survival. It was initially discovered in the African clawed frog, Xenopus laevis, where it plays an important function in embryonic development. Akin to several other developmental genes, it is also frequently deregulated in cancer, where it plays a decisive role in tumor initiation, progression and metastasis. In this review, we have summarized currently known AGR2 functions, its expression and function in embryonic and cancer development, as well as its potential as a candidate tumor biomarker and promising new target for cancer immunotherapy.
Collapse
Affiliation(s)
- Daria Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| | - Yuzhu Cheng
- Institute of Human Genetics, International Centre for Life, Newcastle UniversityNewcastle Upon Tyne, UK
| | - Filip Prica
- Medical Clinic and Polyclinic I, Basic and Translational Research, Department of Cardiology Basic and Translational ResearchMunich, Germany
| | - Laurent Dumartin
- Advanced Accelerator Applications, Novartis CompanyBoulogne-Billancourt, France
| | - Tatjana Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of LondonLondon, UK
| |
Collapse
|
13
|
Ivanova AS, Tereshina MB, Araslanova KR, Martynova NY, Zaraisky AG. The Secreted Protein Disulfide Isomerase Ag1 Lost by Ancestors of Poorly Regenerating Vertebrates Is Required for Xenopus laevis Tail Regeneration. Front Cell Dev Biol 2021; 9:738940. [PMID: 34676214 PMCID: PMC8523854 DOI: 10.3389/fcell.2021.738940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Warm-blooded vertebrates regenerate lost limbs and their parts in general much worse than fishes and amphibians. We previously hypothesized that this reduction in regenerative capability could be explained in part by the loss of some genes important for the regeneration in ancestors of warm-blooded vertebrates. One of such genes could be ag1, which encodes secreted protein disulfide isomerase of the Agr family. Ag1 is activated during limb and tail regeneration in the frog Xenopus laevis tadpoles and is absent in warm-blooded animals. The essential role of another agr family gene, agr2, in limb regeneration was demonstrated previously in newts. However, agr2, as well as the third member of agr family, agr3, are present in all vertebrates. Therefore, it is important to verify if the activity of ag1 lost by warm-blooded vertebrates is also essential for regeneration in amphibians, which could be a further argument in favor of our hypothesis. Here, we show that in the Xenopus laevis tadpoles in which the expression of ag1 or agr2 was artificially suppressed, regeneration of amputated tail tips was also significantly reduced. Importantly, overexpression of any of these agrs or treatment of tadpoles with any of their recombinant proteins resulted in the restoration of tail regeneration in the refractory period when these processes are severely inhibited in normal development. These findings demonstrate the critical roles of ag1 and agr2 in regeneration in frogs and present indirect evidence that the loss of ag1 in evolution could be one of the prerequisites for the reduction of regenerative ability in warm-blooded vertebrates.
Collapse
Affiliation(s)
- Anastasiya S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Y Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Ye R, Wang C, Sun P, Bai S, Zhao L. AGR3 Regulates Airway Epithelial Junctions in Patients with Frequent Exacerbations of COPD. Front Pharmacol 2021; 12:669403. [PMID: 34177583 PMCID: PMC8232749 DOI: 10.3389/fphar.2021.669403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Background: The mechanisms underlying differences in the susceptibility to chronic obstructive pulmonary disease (COPD) exacerbations between patients are not well understood. Recent studies have shown that the patients with frequent COPD exacerbations is related to specific protein expression in lung tissue. Anterior gradient 3 (AGR3) is expressed in airway epithelial cells in the lung and proteomic analysis revealed that its expression is decreased in patients with frequent COPD exacerbations. Moreover, the loss of epithelial integrity might facilitate trans-epithelial permeability of pathogens in such patients. This study was performed to determine that AGR3 protein play a role in COPD frequency exacerbators. Methods: Human lung tissues were collected from current-smoking patients (Control; n = 15) as well as patients with infrequent COPD exacerbations (IFCOPD; n = 18) and frequent COPD exacerbations (FCOPD; n = 8). While AGR3 protein expression was measured by immunohistochemistry and western blotting, AGR mRNA expression was determined by real time quantitative polymerase chain reaction (RT-qPCR). Furthermore, adherent junctions (AJs) and tight junctions (TJs) protein expression in human lung tissues were measured by immunohistochemistry. The effects of cigarette smoke extract (CSE) on AJ and TJ protein and mRNA expression in BEAS-2B cells were assessed by western blotting and RT-qPCR. In addition, the effect of AGR3 overexpression and knockdown on AJ and TJ protein expression was determined. Results: AGR3 was mainly expressed in the airway epithelium and AGR3-positive products were localized in the cytoplasm. Western blotting and RT-qPCR results showed that AGR3 protein (p = 0.009) and mRNA (p = 0.04) expression in the FCOPD group was significantly lower than that in the IFCOPD group. Moreover, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression was lower in the FCOPD group than in the IFCOPD group. The protein and mRNA expression of E-cadherin, occludin, and ZO-1 was decreased within 24 h post-CSE exposure. AGR3 overexpression rescued CSE-induced downregulation of E-cadherin, occludin, and ZO-1. Conclusion: Difference in AGR3 expression in the lung tissue might be correlated with increased susceptibility to COPD exacerbation. AGR3 can prevent CSE-induced downregulation of E-cadherin, occludin, and ZO-1 in airway epithelial cells. Loss of AGR3 might promote viral and bacterial infection and induce immune inflammation to increase COPD exacerbation.
Collapse
Affiliation(s)
- Rui Ye
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuihong Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengbo Sun
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Bai
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization. Bioelectrochemistry 2021; 140:107808. [PMID: 33848875 DOI: 10.1016/j.bioelechem.2021.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023]
Abstract
In this paper we compare electrochemical behavior of two homolog proteins, namely anterior gradient 2 (AGR2) and anterior gradient 3 (AGR3), playing an important role in cancer cell biology. The slight variation in their protein structures has an impact on protein adsorption and orientation at charged surface and also enables AGR2 and AGR3 to form heterocomplexes. We confirm interaction between AGR2 and AGR3 (i) in vitro by immunochemical and constant current chronopotentiometric stripping (CPS) analysis and (ii) in vivo by bioluminescence resonance energy transfer (BRET) assay. Mutation of AGR2 in dimerization domain (E60A) prevents development of wild type AGR2 dimers and also negatively affects interaction with wild type AGR3 as shown by CPS analysis. Beside new information about AGR2 and AGR3 protein including their joint interaction, our work introduces possible applications of CPS in bioanalysis of protein complexes, including those relatively unstable, but important in the cancer research.
Collapse
|
16
|
Grigoryan EN. Study of Natural Longlife Juvenility and Tissue Regeneration in Caudate Amphibians and Potential Application of Resulting Data in Biomedicine. J Dev Biol 2021; 9:2. [PMID: 33477527 PMCID: PMC7838874 DOI: 10.3390/jdb9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The review considers the molecular, cellular, organismal, and ontogenetic properties of Urodela that exhibit the highest regenerative abilities among tetrapods. The genome specifics and the expression of genes associated with cell plasticity are analyzed. The simplification of tissue structure is shown using the examples of the sensory retina and brain in mature Urodela. Cells of these and some other tissues are ready to initiate proliferation and manifest the plasticity of their phenotype as well as the correct integration into the pre-existing or de novo forming tissue structure. Without excluding other factors that determine regeneration, the pedomorphosis and juvenile properties, identified on different levels of Urodele amphibians, are assumed to be the main explanation for their high regenerative abilities. These properties, being fundamental for tissue regeneration, have been lost by amniotes. Experiments aimed at mammalian cell rejuvenation currently use various approaches. They include, in particular, methods that use secretomes from regenerating tissues of caudate amphibians and fish for inducing regenerative responses of cells. Such an approach, along with those developed on the basis of knowledge about the molecular and genetic nature and age dependence of regeneration, may become one more step in the development of regenerative medicine.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
17
|
Parshina EA, Zaraisky AG, Martynova NY. The Role of Maternal pou5f3.3/oct60 Gene in the Regulation of Initial Stages of Tissue Differentiation during Xenopus laevis Embryogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Korotkova DD, Lyubetsky VA, Ivanova AS, Rubanov LI, Seliverstov AV, Zverkov OA, Martynova NY, Nesterenko AM, Tereshina MB, Peshkin L, Zaraisky AG. Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration. Cell Rep 2020; 29:1027-1040.e6. [PMID: 31644900 PMCID: PMC6871517 DOI: 10.1016/j.celrep.2019.09.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 09/13/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular basis of higher regenerative capacity of cold-blooded animals comparing to warm-blooded ones is poorly understood. Although this difference in regenerative capacities is commonly thought to be a result of restructuring of the same regulatory gene network, we hypothesized that it may be due to loss of some genes essential for regeneration. We describe here a bioinformatic method that allowed us to identify such genes. For investigation in depth we selected one of them encoding transmembrane protein, named “c-Answer.” Using the Xenopus laevis frog as a model cold-blooded animal, we established that c-Answer regulates regeneration of body appendages and telencephalic development through binding to fibroblast growth factor receptors (FGFRs) and P2ry1 receptors and promoting MAPK/ERK and purinergic signaling. This suggests that elimination of c-answer in warm-blooded animals could lead to decreased activity of at least two signaling pathways, which in turn might contribute to changes in mechanisms regulating regeneration and telencephalic development.
Collapse
Affiliation(s)
- Daria D Korotkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Vassily A Lyubetsky
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Anastasia S Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Lev I Rubanov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Alexander V Seliverstov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Oleg A Zverkov
- The Institute for Information Transmission Problems, Russian Academy of Sciences (IITP RAS), 19 Bolshoy Karetny str., Moscow 127051, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow 119991, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.
| |
Collapse
|
19
|
Alibardi L. Appendage regeneration in anamniotes utilizes genes active during larval-metamorphic stages that have been lost or altered in amniotes: The case for studying lizard tail regeneration. J Morphol 2020; 281:1358-1381. [PMID: 32865265 DOI: 10.1002/jmor.21251] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This review elaborates the idea that organ regeneration derives from specific evolutionary histories of vertebrates. Regenerative ability depends on genomic regulation of genes specific to the life-cycles that have differentially evolved in anamniotes and amniotes. In aquatic environments, where fish and amphibians live, one or multiple metamorphic transitions occur before the adult stage is reached. Each transition involves the destruction and remodeling of larval organs that are replaced with adult organs. After organ injury or loss in adult anamniotes, regeneration uses similar genes and developmental process than those operating during larval growth and metamorphosis. Therefore, the broad presence of regenerative capability across anamniotes is possible because generating new organs is included in their life history at metamorphic stages. Soft hyaluronate-rich regenerative blastemas grow in submersed or in hydrated environments, that is, essential conditions for regeneration, like during development. In adult anamniotes, the ability to regenerate different organs decreases in comparison to larval stages and becomes limited during aging. Comparisons of genes activated during metamorphosis and regeneration in anamniotes identify key genes unique to these processes, and include thyroid, wnt and non-coding RNAs developmental pathways. In the terrestrial environment, some genes or developmental pathways for metamorphic transitions were lost during amniote evolution, determining loss of regeneration. Among amniotes, the formation of soft and hydrated blastemas only occurs in lizards, a morphogenetic process that evolved favoring their survival through tail autotomy, leading to a massive although imperfect regeneration of the tail. Deciphering genes activity during lizard tail regeneration would address future attempts to recreate in other amniotes regenerative blastemas that grow into variably completed organs.
Collapse
|
20
|
Jian L, Xie J, Guo S, Yu H, Chen R, Tao K, Yang C, Li K, Liu S. AGR3 promotes estrogen receptor-positive breast cancer cell proliferation in an estrogen-dependent manner. Oncol Lett 2020; 20:1441-1451. [PMID: 32724387 PMCID: PMC7377037 DOI: 10.3892/ol.2020.11683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common malignancies and the leading cause of cancer-associated death among women. Anterior gradient 3 (AGR3) is a cancer-associated gene and is similar to its homologous oncogene AGR2. However, whether AGR3 participates in breast cancer progression remains unclear. The present study aimed to investigate the function of AGR3 in ER-positive breast cancer. In the present study, reverse transcription-quantitative PCR was used to detect AGR3 mRNA expression in breast cancer tissues and cell lines; linear correlation analysis was used to investigate the correlation between AGR3 and estrogen receptor 1 (ESR1) expression in breast cancer via GEO dataset analysis; western blotting was used to assess the levels of AGR3, ER and GAPDH; small interfering (si)RNA transfection was used to knock down AGR3 and ESR1 expression; and finally the Cell Counting Kit-8 assay was used to evaluate cell viability. In the present study, AGR3 expression was markedly increased in estrogen receptor (ER)-positive breast cancer tissues and cell lines compared with that in ER-negative breast cancer. AGR3 expression was upregulated in estrogen-treated T47D cells, whereas 4-hydroxytamoxifen, an inhibitor of estrogen-ER activity in breast cancer cells, downregulated AGR3 expression in T47D cells. Functional assays demonstrated that knockdown of AGR3 using siRNAs inhibited T47D cell proliferation compared with that of the negative control group. Additionally, AGR3 expression was decreased after knocking down ESR1. The present results suggested that AGR3 may serve an important role in estrogen-mediated cell proliferation in breast cancer and that AGR3 knockdown may be a potential therapeutic strategy for ER-positive breast cancer.
Collapse
Affiliation(s)
- Lei Jian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jian Xie
- Department of General Surgery, Yong Chuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Shipeng Guo
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Haochen Yu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rui Chen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kai Tao
- The Second Department of Gynecologic Oncology, Shaanxi Provincial Tumor Hospital, The Affiliated Hospital of Medical College of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Yang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kang Li
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
21
|
Suzuki N, Ochi H. Regeneration enhancers: A clue to reactivation of developmental genes. Dev Growth Differ 2020; 62:343-354. [PMID: 32096563 PMCID: PMC7383998 DOI: 10.1111/dgd.12654] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
During tissue and organ regeneration, cells initially detect damage and then alter nuclear transcription in favor of tissue/organ reconstruction. Until recently, studies of tissue regeneration have focused on the identification of relevant genes. These studies show that many developmental genes are reused during regeneration. Concurrently, comparative genomics studies have shown that the total number of genes does not vastly differ among vertebrate taxa. Moreover, functional analyses of developmental genes using various knockout/knockdown techniques demonstrated that the functions of these genes are conserved among vertebrates. Despite these data, the ability to regenerate damaged body parts varies widely between animals. Thus, it is important to determine how regenerative transcriptional programs are triggered and why animals with low regenerative potential fail to express developmental genes after injury. Recently, we discovered relevant enhancers and named them regeneration signal-response enhancers (RSREs) after identifying their activation mechanisms in a Xenopus laevis transgenic system. In this review, we summarize recent studies of injury/regeneration-associated enhancers and then discuss their mechanisms of activation.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science ResearchFaculty of MedicineYamagata UniversityYamagataJapan
| |
Collapse
|
22
|
Alibardi L. Tail regeneration in Lepidosauria as an exception to the generalized lack of organ regeneration in amniotes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 336:145-164. [PMID: 31532061 DOI: 10.1002/jez.b.22901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/14/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
The present review hypothesizes that during the transition from water to land, amniotes lost part of the genetic program for metamorphosis utilized in larvae of their amphibian ancestors, a program that in extant fish and amphibians allows organ regeneration. The direct development of amniotes, with their growth from embryos to adults, occurred with the elimination of larval stages, increases the efficiency of immune responses and the complexity of nervous circuits. In amniotes, T-cells and macrophages likely eliminate embryonic-larval antigens that are replaced with the definitive antigens of adult organs. Among lepidosaurians numerous lizard families during the Permian and Triassic evolved the process of tail autotomy to escape predation, followed by tail regeneration. Autotomy limits inflammation allowing the formation of a regenerative blastema rich in the immunosuppressant and hygroscopic hyaluronic acid. Expression loss of developmental genes for metamorphosis and segmentation in addition to an effective immune system, determined an imperfect regeneration of the tail. Genes involved in somitogenesis were likely lost or are inactivated and the axial skeleton and muscles of the original tail are replaced with a nonsegmented cartilaginous tube and segmental myotomes. Lack of neural genes, negative influence of immune system, and isolation of the regenerating spinal cord within the cartilaginous tube impede the production of nerve and glial cells, and a stratified spinal cord with ganglia. Tissue and organ regeneration in other body regions of lizards and other reptiles is relatively limited, like in the other amniotes, although the cartilage shows a higher regenerative capability than in mammals.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Xu Q, Shao Y, Zhang J, Zhang H, Zhao Y, Liu X, Guo Z, Chong W, Gu F, Ma Y. Anterior Gradient 3 Promotes Breast Cancer Development and Chemotherapy Response. Cancer Res Treat 2019; 52:218-245. [PMID: 31291711 PMCID: PMC6962492 DOI: 10.4143/crt.2019.217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Anterior gradient 3 (AGR3) belongs to human anterior gradient (AGR) family. The function of AGR3 on cancer remains unknown. This research aimed to investigate if AGR3 had prognostic values in invasive ductal carcinoma (IDC) of breast cancer and could promote tumor progression. Materials and Methods AGR3 expression was detected in breast benign lesions, ductal carcinoma in situ and IDC by immunohistochemistry analysis. AGR3's correlations with clinicopathological features and prognosis of IDC patients were analyzed. By cell function experiments, collagen gel droplet-embedded culture drug sensitivity test and cytotoxic analysis, AGR3's impacts on proliferation, invasion ability, and chemotherapeutic drug sensitivity of breast cancer cells were also detected. RESULTS AGR3 was up-regulated in luminal subtype of histological grade I-II of IDC patients and positively correlated with high risks of recurrence and distant metastasis. AGR3 high expression could lead to bone or liver metastasis and predict poor prognosis of luminal B. In cell lines, AGR3 could promote proliferation and invasion ability of breast cancer cells which were consistent with clinical analysis. Besides, AGR3 could indicate poor prognosis of breast cancer patients treated with taxane but a favorable prognosis with 5-fluoropyrimidines. And breast cancer cells with AGR3 high expression were resistant to taxane but sensitive to 5-fluoropyrimidines. CONCLUSION AGR3 might be a potential prognostic indicator in luminal B subtype of IDC patients of histological grade I-II. And patients with AGR3 high expression should be treated with chemotherapy regimens consisting of 5-fluoropyrimidines but no taxane.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Ying Shao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinman Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huikun Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yawen Zhao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoli Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhifang Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wei Chong
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Chin.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
24
|
Chromatin dynamics underlying the precise regeneration of a vertebrate limb - Epigenetic regulation and cellular memory. Semin Cell Dev Biol 2019; 97:16-25. [PMID: 30991117 DOI: 10.1016/j.semcdb.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Wound healing, tissue regeneration, and organ regrowth are all regeneration phenomena observed in vertebrates after an injury. However, the ability to regenerate differs greatly among species. Mammals can undergo wound healing and tissue regeneration, but cannot regenerate an organ; for example, they cannot regrow an amputated limb. In contrast, amphibians and fish have much higher capabilities for organ-level regeneration. In addition to medical studies and those in conventional mammalian models such as mice, studies in amphibians and fish have revealed essential factors for and mechanisms of regeneration, including the regrowth of a limb, tail, or fin. However, the molecular nature of the cellular memory needed to precisely generate a new appendage from an amputation site is not fully understood. Recent reports have indicated that organ regeneration is closely related to epigenetic regulation. For example, the methylation status of genomic DNA is related to the expression of regeneration-related genes, and histone-modification enzymes are required to control the chromatin dynamics for regeneration. A proposed mechanism of cellular memory involving an inheritable system of epigenetic modification led us to hypothesize that epigenetic regulation forms the basis for cellular memory in organ regeneration. Here we summarize the current understanding of the role of epigenetic regulation in organ regeneration and discuss the relationship between organ regeneration and epigenetic memory.
Collapse
|
25
|
Tereshina MB, Ivanova AS, Eroshkin FM, Korotkova DD, Nesterenko AM, Bayramov AV, Solovieva EA, Parshina EA, Orlov EE, Martynova NY, Zaraisky AG. Agr2‐interacting Prod1‐like protein Tfp4 from
Xenopus laevis
is necessary for early forebrain and eye development as well as for the tadpole appendage regeneration. Genesis 2019; 57:e23293. [DOI: 10.1002/dvg.23293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Maria B. Tereshina
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Anastasiya S. Ivanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Fedor M. Eroshkin
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Daria D. Korotkova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Alexey M. Nesterenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Andrey V. Bayramov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Elena A. Solovieva
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Elena A. Parshina
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Eugeny E. Orlov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Natalia Y. Martynova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| | - Andrey G. Zaraisky
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of Sciences Moscow Russia
| |
Collapse
|
26
|
Alibardi L. Organ regeneration evolved in fish and amphibians in relation to metamorphosis: Speculations on a post-embryonic developmental process lost in amniotes after the water to land transition. Ann Anat 2019; 222:114-119. [DOI: 10.1016/j.aanat.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
|
27
|
Ivanova AS, Martynova NY, Komarov PA, Orlov EE, Ermakova GV, Zaraisky AG, Tereshina MB. Obtaining of Agr2 Specific Antibodies and Determination of the Agr2 Protein Distribution Pattern during Early Embryonic Development and Tadpole Regeneration in Xenopus laevis. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Alibardi L. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:396-405. [DOI: 10.1002/jez.b.22835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Lorenzo Alibardi
- Comparative HistolabPadova Italy
- Department of BiologyUniversity of BolognaBologna Italy
| |
Collapse
|
29
|
Ras-dva small GTPases lost during evolution of amniotes regulate regeneration in anamniotes. Sci Rep 2018; 8:13035. [PMID: 30158598 PMCID: PMC6115384 DOI: 10.1038/s41598-018-30811-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/02/2018] [Indexed: 11/08/2022] Open
Abstract
In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.
Collapse
|
30
|
Ivanova AS, Korotkova DD, Martynova NY, Averyanova OV, Zaraisky AG, Tereshina MB. Methods of In Vivo Gene-Specific Knockdown Using Morpholino and Vivo-Morpholino Oligonucleotides. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s106816201803007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Li Y, Wang W, Liu Z, Jiang Y, Lu J, Xie H, Tang F. AGR2 diagnostic value in nasopharyngeal carcinoma prognosis. Clin Chim Acta 2017; 484:323-327. [PMID: 29269202 DOI: 10.1016/j.cca.2017.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anterior Gradient (AGR) 2 concentration increases in the serum of tumor patients, and their diagnostic and prognostic significances were evaluated in some tumors. The previous works showed that AGR2 high express in nasopharyngeal carcinoma (NPC) biopsy tissues. However, whether AGR2 serves as a diagnostic and prognostic marker for NPC remains unclear. METHODS 42 healthy volunteers, 34 breast cancer patients and 124 NPC patients were enrolled into this study, and the serum samples were collected from these healthy volunteers, breast cancer patients and NPC patients. Concomitantly, 79 frozen nasopharyngeal specimens consisted of 65 NPC tissues and 14 normal nasopharyngeal tissues were enrolled in the observation. The enzyme linked immunosorbent assay (ELISA) was used to estimate AGR2 concentration in the serum samples, and AGR2 mRNA expressions in the frozen tissue samples were detected by real time RT-PCR. RESULTS The real time RT-PCR results showed that AGR2 mRNA level was increased in NPC tissues compared with the normal nasopharyngeal tissues (p<0.05). The ELISA data showed that AGR2 concentration in NPC serum was significantly higher in NPC patient serums than that in the health population (p<0.05). And, AGR2 expression showed a correlation with tumor node metastasis (TNM) grade (p<0.05) and Recurrence (p<0.05). Moreover, the cumulative survival rate of patients with high concentration of AGR2 was significantly lower than that of patients with low concentration of AGR2 (p<0.05), and the cumulative hazard rate of patients with high concentration of AGR2 was significantly higher than that with low concentration of AGR2 (p<0.05). CONCLUSION Serum AGR2 can be used as a serum marker for clinical prognosis of nasopharyngeal carcinoma. However, serum AGR2 levels could not provide advantages in clinical practice for the differential diagnosis of cancer.
Collapse
Affiliation(s)
- Yuejin Li
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Weiwei Wang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Zheliang Liu
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Jiang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinping Lu
- Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China
| | - Haitao Xie
- Clinical Laboratory, First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Clinical Laboratory of Zhuhai People's Hospital, Zhuhai Hospital of Jinan University, Zhuhai, China.
| |
Collapse
|
32
|
Zhu Q, Mangukiya HB, Mashausi DS, Guo H, Negi H, Merugu SB, Wu Z, Li D. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain. FEBS J 2017; 284:2856-2869. [PMID: 28665039 DOI: 10.1111/febs.14155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds.
Collapse
Affiliation(s)
- Qi Zhu
- School of Pharmacy, Shanghai Jiao Tong University, China
| | | | | | - Hao Guo
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, China
| | | | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, China.,Engineering Research Center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, China
| |
Collapse
|
33
|
Li L, He J, Wang L, Chen W, Chang Z. Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu). Gene Expr Patterns 2017; 25-26:124-130. [PMID: 28710028 DOI: 10.1016/j.gep.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration.
Collapse
Affiliation(s)
- Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China; Department of Biology and CAREG, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jingya He
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China
| | - Linlin Wang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China
| | - Weihua Chen
- Swiss Institute of Bioinformatics, University Medical Center (CMU), Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang 453007, Henan, China.
| |
Collapse
|
34
|
Eroshkin FM, Martynova NY, Bayramov AV, Ermakova GV, Ivanova AS, Korotkova DD, Zaraisky AG. Interaction of secreted factor Agr2 with its potential receptors from the family of three-finger proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017030049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Wodziak D, Dong A, Basin MF, Lowe AW. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration. PLoS One 2016; 11:e0164968. [PMID: 27764193 PMCID: PMC5072742 DOI: 10.1371/journal.pone.0164968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/-null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/-null mouse. AG1478-treated and AGR2-/-null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis.
Collapse
Affiliation(s)
- Dariusz Wodziak
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Aiwen Dong
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael F. Basin
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Anson W. Lowe
- Department of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Johnston A, Yuzwa S, Carr M, Mahmud N, Storer M, Krause M, Jones K, Paul S, Kaplan D, Miller F. Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip. Cell Stem Cell 2016; 19:433-448. [DOI: 10.1016/j.stem.2016.06.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
|
37
|
Grassme KS, Garza-Garcia A, Delgado JP, Godwin JW, Kumar A, Gates PB, Driscoll PC, Brockes JP. Mechanism of Action of Secreted Newt Anterior Gradient Protein. PLoS One 2016; 11:e0154176. [PMID: 27100463 PMCID: PMC4839744 DOI: 10.1371/journal.pone.0154176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
Anterior gradient (AG) proteins have a thioredoxin fold and are targeted to the secretory pathway where they may act in the ER, as well as after secretion into the extracellular space. A newt member of the family (nAG) was previously identified as interacting with the GPI-anchored salamander-specific three-finger protein called Prod1. Expression of nAG has been implicated in the nerve dependence of limb regeneration in salamanders, and nAG acted as a growth factor for cultured newt limb blastemal (progenitor) cells, but the mechanism of action was not understood. Here we show that addition of a peptide antibody to Prod1 specifically inhibit the proliferation of blastema cells, suggesting that Prod1 acts as a cell surface receptor for secreted nAG, leading to S phase entry. Mutation of the single cysteine residue in the canonical active site of nAG to alanine or serine leads to protein degradation, but addition of residues at the C terminus stabilises the secreted protein. The mutation of the cysteine residue led to no detectable activity on S phase entry in cultured newt limb blastemal cells. In addition, our phylogenetic analyses have identified a new Caudata AG protein called AG4. A comparison of the AG proteins in a cell culture assay indicates that nAG secretion is significantly higher than AGR2 or AG4, suggesting that this property may vary in different members of the family.
Collapse
Affiliation(s)
- Kathrin S. Grassme
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Acely Garza-Garcia
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jean-Paul Delgado
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - James W. Godwin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Anoop Kumar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Phillip B. Gates
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Paul C. Driscoll
- The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Jeremy P. Brockes
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
38
|
Eroshkin FM, Nesterenko AM, Borodulin AV, Martynova NY, Ermakova GV, Gyoeva FK, Orlov EE, Belogurov AA, Lukyanov KA, Bayramov AV, Zaraisky AG. Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis. Sci Rep 2016; 6:23049. [PMID: 26973133 PMCID: PMC4789793 DOI: 10.1038/srep23049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/25/2016] [Indexed: 12/05/2022] Open
Abstract
Noggin4 is a Noggin family secreted protein whose molecular and physiological functions remain unknown. In this study, we demonstrate that in contrast to other Noggins, Xenopus laevis Noggin4 cannot antagonise BMP signalling; instead, it specifically binds to Wnt8 and inhibits the Wnt/β -catenin pathway. Live imaging demonstrated that Noggin4 diffusivity in embryonic tissues significantly exceeded that of other Noggins. Using the Fluorescence Recovery After Photobleaching (FRAP) assay and mathematical modelling, we directly estimated the affinity of Noggin4 for Wnt8 in living embryos and determined that Noggin4 fine-tune the Wnt8 posterior-to-anterior gradient. Our results suggest a role for Noggin4 as a unique, freely diffusing, long-range inhibitor of canonical Wnt signalling, thus explaining its ability to promote head development.
Collapse
Affiliation(s)
- Fedor M Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey M Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, 1/40, 119991 Moscow, Russia
| | - Alexander V Borodulin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Natalia Yu Martynova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Galina V Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Fatima K Gyoeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| | - Eugeny E Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey V Bayramov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
39
|
Bonser LR, Schroeder BW, Ostrin LA, Baumlin N, Olson JL, Salathe M, Erle DJ. The Endoplasmic Reticulum Resident Protein AGR3. Required for Regulation of Ciliary Beat Frequency in the Airway. Am J Respir Cell Mol Biol 2015; 53:536-43. [PMID: 25751668 DOI: 10.1165/rcmb.2014-0318oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein disulfide isomerase (PDI) family members regulate protein folding and calcium homeostasis in the endoplasmic reticulum (ER). The PDI family member anterior gradient (AGR) 3 is expressed in the airway, but the localization, regulation, and function of AGR3 are poorly understood. Here we report that AGR3, unlike its closest homolog AGR2, is restricted to ciliated cells in the airway epithelium and is not induced by ER stress. Mice lacking AGR3 are viable and develop ciliated cells with normal-appearing cilia. However, ciliary beat frequency was lower in airways from AGR3-deficient mice compared with control mice (20% lower in the absence of stimulation and 35% lower after ATP stimulation). AGR3 deficiency had no detectable effects on ciliary beat frequency (CBF) when airways were perfused with a calcium-free solution, suggesting that AGR3 is required for calcium-mediated regulation of ciliary function. Decreased CBF was associated with impaired mucociliary clearance in AGR3-deficient airways. We conclude that AGR3 is a specialized member of the PDI family that plays an unexpected role in the regulation of CBF and mucociliary clearance in the airway.
Collapse
Affiliation(s)
| | | | - Lisa A Ostrin
- 2 College of Optometry, University of Houston, Houston, Texas; and
| | - Nathalie Baumlin
- 3 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Jean L Olson
- 4 Department of Pathology, University of California San Francisco, San Francisco, California
| | - Matthias Salathe
- 3 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | | |
Collapse
|
40
|
Shandarin IN, Ivanova AS, Minin AA, Tereshina MB, Zaraisky AG. The ag1 gene is required for the fin regeneration in Danio rerio. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Obacz J, Brychtova V, Podhorec J, Fabian P, Dobes P, Vojtesek B, Hrstka R. Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients. Onco Targets Ther 2015; 8:1523-32. [PMID: 26170690 PMCID: PMC4485854 DOI: 10.2147/ott.s82235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anterior gradient protein (AGR) 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumorigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001) as well as low histological grade (P=0.003), and inversely correlated with the level of Ki-67 expression (P<0.0001). In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS), whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Joanna Obacz
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Veronika Brychtova
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Pavel Fabian
- Department of Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Dobes
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology (RECAMO), Brno, Czech Republic
| |
Collapse
|
42
|
Fröbisch NB, Bickelmann C, Witzmann F. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc Biol Sci 2015; 281:20141550. [PMID: 25253458 PMCID: PMC4211449 DOI: 10.1098/rspb.2014.1550] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Salamanders are the only tetrapods capable of fully regenerating their limbs throughout their entire lives. Much data on the underlying molecular mechanisms of limb regeneration have been gathered in recent years allowing for new comparative studies between salamanders and other tetrapods that lack this unique regenerative potential. By contrast, the evolution of animal regeneration just recently shifted back into focus, despite being highly relevant for research designs aiming to unravel the factors allowing for limb regeneration. We show that the 300-million-year-old temnospondyl amphibian Micromelerpeton, a distant relative of modern amphibians, was already capable of regenerating its limbs. A number of exceptionally well-preserved specimens from fossil deposits show a unique pattern and combination of abnormalities in their limbs that is distinctive of irregular regenerative activity in modern salamanders and does not occur as variants of normal limb development. This demonstrates that the capacity to regenerate limbs is not a derived feature of modern salamanders, but may be an ancient feature of non-amniote tetrapods and possibly even shared by all bony fish. The finding provides a new framework for understanding the evolution of regenerative capacity of paired appendages in vertebrates in the search for conserved versus derived molecular mechanisms of limb regeneration.
Collapse
Affiliation(s)
- Nadia B Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Florian Witzmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
43
|
Garczyk S, von Stillfried S, Antonopoulos W, Hartmann A, Schrauder MG, Fasching PA, Anzeneder T, Tannapfel A, Ergönenc Y, Knüchel R, Rose M, Dahl E. AGR3 in breast cancer: prognostic impact and suitable serum-based biomarker for early cancer detection. PLoS One 2015; 10:e0122106. [PMID: 25875093 PMCID: PMC4398490 DOI: 10.1371/journal.pone.0122106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Blood-based early detection of breast cancer has recently gained novel momentum, as liquid biopsy diagnostics is a fast emerging field. In this study, we aimed to identify secreted proteins which are up-regulated both in tumour tissue and serum samples of breast cancer patients compared to normal tissue and sera. Based on two independent tissue cohorts (n = 75 and n = 229) and one serum cohort (n = 80) of human breast cancer and healthy serum samples, we characterised AGR3 as a novel potential biomarker both for breast cancer prognosis and early breast cancer detection from blood. AGR3 expression in breast tumours is significantly associated with oestrogen receptor α (P<0.001) and lower tumour grade (P<0.01). Interestingly, AGR3 protein expression correlates with unfavourable outcome in low (G1) and intermediate (G2) grade breast tumours (multivariate hazard ratio: 2.186, 95% CI: 1.008-4.740, P<0.05) indicating an independent prognostic impact. In sera analysed by ELISA technique, AGR3 protein concentration was significantly (P<0.001) elevated in samples from breast cancer patients (n = 40, mainly low stage tumours) compared to healthy controls (n = 40). To develop a suitable biomarker panel for early breast cancer detection, we measured AGR2 protein in human serum samples in parallel. The combined AGR3/AGR2 biomarker panel achieved a sensitivity of 64.5% and a specificity of 89.5% as shown by receiver operating characteristic (ROC) curve statistics. Thus our data clearly show the potential usability of AGR3 and AGR2 as biomarkers for blood-based early detection of human breast cancer.
Collapse
Affiliation(s)
- Stefan Garczyk
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael G. Schrauder
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Tobias Anzeneder
- Patients' Tumor Bank of Hope (PATH) Foundation, München, Germany
| | - Andrea Tannapfel
- Institute of Pathology, Ruhr-University Bochum, Bochum, Germany, on behalf of the PATH Biobank group
| | - Yavuz Ergönenc
- Department for Senology, St Anna Hospital, Herne, Germany, on behalf of the PATH Biobank group
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Michael Rose
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| |
Collapse
|
44
|
Hayashi S, Yokoyama H, Tamura K. Roles of Hippo signaling pathway in size control of organ regeneration. Dev Growth Differ 2015; 57:341-51. [PMID: 25867864 DOI: 10.1111/dgd.12212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/21/2015] [Accepted: 03/07/2015] [Indexed: 01/10/2023]
Abstract
Animals have an intrinsic regeneration ability for injured tissues and organs. Species that have high regeneration ability such as newts can regenerate an organ with exactly the same size and shape as those of the original one. It has been unclear how a regenerating organ grows and ceases growth at an appropriate size. Organ size control in regeneration is seen in various organs of various species that have high regeneration ability. In animal species that do not have sufficient regeneration ability, a wound heals (the injury is closed, but lost parts are not regenerated), but an organ cannot be restored to its original size. On the other hand, perturbation of regeneration sometimes results in oversized or extra structures. In this sense, organ size control plays essential roles in proper regeneration. In this article, we introduce the concept of size control in organ regeneration regulated by the Hippo signaling pathway. We focused on the transcriptional regulator Yap, which shuttles between the nuclei and cytoplasm to exert a regulatory function in a context-dependent manner. The Yap-mediated Hippo pathway is thought to sense cell density, extracellular matrix (ECM) contact and cell position and to regulate gene expression for control of organ size. This mechanism can reasonably explain size control of organ regeneration.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
45
|
The secreted factor Ag1 missing in higher vertebrates regulates fins regeneration in Danio rerio. Sci Rep 2015; 5:8123. [PMID: 25630240 PMCID: PMC4309956 DOI: 10.1038/srep08123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 11/09/2022] Open
Abstract
Agr family includes three groups of genes, Ag1, Agr2 and Agr3, which encode the thioredoxin domain-containing secreted proteins and have been shown recently to participate in regeneration of the amputated body appendages in amphibians. By contrast, higher vertebrates have only Agr2 and Agr3, but lack Ag1, and have low ability to regenerate the body appendages. Thus, one may hypothesize that loss of Ag1 in evolution could be an important event that led to a decline of the regenerative capacity in higher vertebrates. To test this, we have studied now the expression and role of Ag1 in the regeneration of fins of a representative of another large group of lower vertebrates, the fish Danio rerio. As a result, we have demonstrated that amputation of the Danio fins, like amputation of the body appendages in amphibians, elicits an increase of Ag1 expression in cells of the stump. Furthermore, down-regulation of DAg1 by injections of Vivo-morpholino antisense oligonucleotides resulted in a retardation of the fin regeneration. These data are in a good agreement with the assumption that the loss of Ag1 in higher vertebrates ancestors could lead to the reduction of the regenerative capacity in their modern descendants.
Collapse
|
46
|
Obacz J, Takacova M, Brychtova V, Dobes P, Pastorekova S, Vojtesek B, Hrstka R. The role of AGR2 and AGR3 in cancer: similar but not identical. Eur J Cell Biol 2015; 94:139-47. [PMID: 25666661 DOI: 10.1016/j.ejcb.2015.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
In the past decades, highly related members of the protein disulphide isomerase family, anterior gradient protein AGR2 and AGR3, attracted researchers' attention due to their putative involvement in developmental processes and carcinogenesis. While AGR2 has been widely demonstrated as a metastasis-related protein whose elevated expression predicts worse patient outcome, little is known about AGR3's role in tumour biology. Thus, we aim to confront the issue of AGR3 function in physiology and pathology in the following review by comparing this protein with the better-described homologue AGR2. Relying on available data and in silico analyses, we show that AGR proteins are co-expressed or uncoupled in context-dependent manners in diverse carcinomas and healthy tissues. Further, we discuss plausible roles of both proteins in tumour-associated processes such as differentiation, proliferation, migration, invasion and metastasis. This work brings new hints and stimulates further thoughts on hitherto unresolved conundrum of anterior gradient protein function.
Collapse
Affiliation(s)
- Joanna Obacz
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Martina Takacova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Petr Dobes
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Silvia Pastorekova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
47
|
Simões MG, Bensimon-Brito A, Fonseca M, Farinho A, Valério F, Sousa S, Afonso N, Kumar A, Jacinto A. Denervation impairs regeneration of amputated zebrafish fins. BMC DEVELOPMENTAL BIOLOGY 2014; 14:49. [PMID: 25551555 PMCID: PMC4333893 DOI: 10.1186/s12861-014-0049-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/18/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Zebrafish are able to regenerate many of its tissues and organs after damage. In amphibians this process is regulated by nerve fibres present at the site of injury, which have been proposed to release factors into the amputated limbs/fins, promoting and sustaining the proliferation of blastemal cells. Although some candidate factors have been proposed to mediate the nerve dependency of regeneration, the molecular mechanisms involved in this process remain unclear. RESULTS We have used zebrafish as a model system to address the role of nerve fibres in fin regeneration. We have developed a protocol for pectoral fin denervation followed by amputation and analysed the regenerative process under this experimental conditions. Upon denervation fins were able to close the wound and form a wound epidermis, but could not establish a functional apical epithelial cap, with a posterior failure of blastema formation and outgrowth, and the accumulation of several defects. The expression patterns of genes known to be key players during fin regeneration were altered upon denervation, suggesting that nerves can contribute to the regulation of the Fgf, Wnt and Shh pathways during zebrafish fin regeneration. CONCLUSIONS Our results demonstrate that proper innervation of the zebrafish pectoral fin is essential for a successful regenerative process, and establish this organism as a useful model to understand the molecular and cellular mechanisms of nerve dependence, during vertebrate regeneration.
Collapse
Affiliation(s)
- Mariana G Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Anabela Bensimon-Brito
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| | - Mariana Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Ana Farinho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Fábio Valério
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| | - Sara Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Nuno Afonso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| | - Anoop Kumar
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| | - Antonio Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
48
|
Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 2014; 36:861-71. [DOI: 10.1002/bies.201300144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Godwin
- The Australian Regenerative Medicine Institute (ARMI); Monash University; Clayton Victoria Australia
| |
Collapse
|
49
|
Tereshina MB, Ermakova GV, Ivanova AS, Zaraisky AG. Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. Biol Open 2014; 3:192-203. [PMID: 24570397 PMCID: PMC4001240 DOI: 10.1242/bio.20147401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously found that the small GTPase Ras-dva1 is essential for the telencephalic development in Xenopus laevis because Ras-dva1 controls the Fgf8-mediated induction of FoxG1 expression, a key telencephalic regulator. In this report, we show, however, that Ras-dva1 and FoxG1 are expressed in different groups of cells; whereas Ras-dva1 is expressed in the outer layer of the anterior neural fold, FoxG1 and Fgf8 are activated in the inner layer from which the telencephalon is derived. We resolve this paradox by demonstrating that Ras-dva1 is involved in the transduction of Fgf8 signal received by cells in the outer layer, which in turn send a feedback signal that stimulates FoxG1 expression in the inner layer. We show that this feedback signal is transmitted by secreted Agr proteins, the expression of which is activated in the outer layer by mediation of Ras-dva1 and the homeodomain transcription factor Otx2. In turn, Agrs are essential for maintaining Fgf8 and FoxG1 expression in cells at the anterior neural plate border. Our finding reveals a novel feedback loop mechanism based on the exchange of Fgf8 and Agr signaling between neural and non-neural compartments at the anterior margin of the neural plate and demonstrates a key role of Ras-dva1 in this mechanism.
Collapse
Affiliation(s)
- Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | | | | | | |
Collapse
|