1
|
Lim B, Lee YM, Yoo CS, Kim M, Kim SJ, Kim S, Yang JJ, Lee HS. High-Reliability and Self-Rectifying Alkali Ion Memristor through Bottom Electrode Design and Dopant Incorporation. ACS NANO 2024; 18:6373-6386. [PMID: 38349619 PMCID: PMC10906085 DOI: 10.1021/acsnano.3c11325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Ionic memristor devices are crucial for efficient artificial neural network computations in neuromorphic hardware. They excel in multi-bit implementation but face challenges like device reliability and sneak currents in crossbar array architecture (CAA). Interface-type ionic memristors offer low variation, self-rectification, and no forming process, making them suitable for CAA. However, they suffer from slow weight updates and poor retention and endurance. To address these issues, the study demonstrated an alkali ion self-rectifying memristor with an alkali metal reservoir formed by a bottom electrode design. By adopting Li metal as the adhesion layer of the bottom electrode, an alkali ion reservoir was formed at the bottom of the memristor layer by diffusion occurring during the atomic layer deposition process for the Na:TiO2 memristor layer. In addition, Al dopant was used to improve the retention characteristics by suppressing the diffusion of alkali cations. In the memristor device with optimized Al doping, retention characteristics of more than 20 h at 125 °C, endurance characteristics of more than 5.5 × 105, and high linearity/symmetry of weight update characteristics were achieved. In reliability tests on 100 randomly selected devices from a 32 × 32 CAA device, device-to-device and cycle-to-cycle variations showed low variation values within 81% and 8%, respectively.
Collapse
Affiliation(s)
- Byeong
Min Lim
- Department
of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated
Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yu Min Lee
- Department
of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated
Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Chan Sik Yoo
- Department
of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated
Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Minjae Kim
- Department
of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Seung Ju Kim
- Department
of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Sungkyu Kim
- HMC,
Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - J. Joshua Yang
- Department
of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Hong-Sub Lee
- Department
of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated
Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
2
|
Lee YJ, Kim Y, Gim H, Hong K, Jang HW. Nanoelectronics Using Metal-Insulator Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305353. [PMID: 37594405 DOI: 10.1002/adma.202305353] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Metal-insulator transition (MIT) coupled with an ultrafast, significant, and reversible resistive change in Mott insulators has attracted tremendous interest for investigation into next-generation electronic and optoelectronic devices, as well as a fundamental understanding of condensed matter systems. Although the mechanism of MIT in Mott insulators is still controversial, great efforts have been made to understand and modulate MIT behavior for various electronic and optoelectronic applications. In this review, recent progress in the field of nanoelectronics utilizing MIT is highlighted. A brief introduction to the physics of MIT and its underlying mechanisms is begun. After discussing the MIT behaviors of various Mott insulators, recent advances in the design and fabrication of nanoelectronics devices based on MIT, including memories, gas sensors, photodetectors, logic circuits, and artificial neural networks are described. Finally, an outlook on the development and future applications of nanoelectronics utilizing MIT is provided. This review can serve as an overview and a comprehensive understanding of the design of MIT-based nanoelectronics for future electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yoon Jung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngmin Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongyu Gim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
3
|
Rodriguez-Fano M, Haydoura M, Tranchant J, Janod E, Corraze B, Jouan PY, Cario L, Besland MP. Enhancing the Resistive Memory Window through Band Gap Tuning in Solid Solution (Cr 1-xV x) 2O 3. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54611-54621. [PMID: 37963282 DOI: 10.1021/acsami.3c09387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Memories based on the insulator-to-metal transition in correlated insulators are promising to overcome the limitations of alternative nonvolatile memory technologies. However, associated performances have been demonstrated so far only on narrow-gap compounds, such as (V0.95Cr0.05)2O3, exhibiting a tight memory window. In the present study, V-substituted Cr2O3 compounds (Cr1-xVx)2O3 have been synthesized and widely investigated in thin films, single crystals, and polycrystalline powders, for the whole range of chemical composition (0 < x < 1). Physicochemical, structural, and optical properties of the annealed magnetron-sputtered thin films are in very good agreement with those of polycrystalline powders. Indeed, all compounds exhibit the same crystalline structure with a cell parameter evolution consistent with a solid solution over the whole range of x values, as demonstrated by X-ray diffraction and Raman scattering. Moreover, the optical band gap of V-substituted Cr2O3 compounds decreases from 3 eV for Cr2O3 to 0 eV for V2O3. In the same way, resistivity is decreased by almost 5 orders of magnitude as the V content x is varying from 0 to 1, similarly in thin films and single crystals. Finally, a reversible resistive switching has been observed for thin films of three selected V contents (x = 0.30, 0.70, and 0.95). Resistive switching performed on MIM devices based on a 50 nm thick (Cr0.30V0.70)2O3 thin film shows a high endurance of 1000 resistive switching cycles and a memory window ROFF/RON higher by 3 orders of magnitude, as compared to (Cr0.05V0.95)2O3. This comprehensive study demonstrates that a large range of memory windows can be reached by tuning the band gap while varying the V content in the (Cr1-xVx)2O3 solid solution. It thus confirms the potential of correlated insulators for memory applications.
Collapse
Affiliation(s)
- Michael Rodriguez-Fano
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Mohamad Haydoura
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Julien Tranchant
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Etienne Janod
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Benoît Corraze
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Pierre-Yves Jouan
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Laurent Cario
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| | - Marie-Paule Besland
- Institut des Matériaux Jean Rouxel, IMN, Université de Nantes, CNRS, F-44000 Nantes, France
| |
Collapse
|
4
|
Wang Y, Kim M, Rehman MA, Chabungbam AS, Kim DE, Lee HS, Kymissis I, Park HH. Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17682-17690. [PMID: 35394742 DOI: 10.1021/acsami.2c03451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study pioneered an oxygen migration-driven metal to insulator transition Mott memory, a new type of nonvolatile memory using lanthanum titanium oxide (LTO). We first show the reset first bipolar property without an initial electroforming process in LTO. We used oxygen-deficient ZnO as an interlayer between LTO and a W electrode to clarify whether oxygen migration activates LTO as the Mott transition. ZnO oxygen deficiency provides oxygen ion migration paths as well as a reservoir, facilitating oxygen migration from LTO to the W electrode. Thus, including the ZnO interlayer improved oxygen migration between LTO and the W electrode, achieving a 10-fold increased on/off current ratio. The current research contributes to a better understanding of valence change Mott memory by exploring the LTO resistive switching mechanism and ZnO interlayer influences on the oxygen migration process.
Collapse
Affiliation(s)
- Yue Wang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Minjae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Malik Abdul Rehman
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Akendra Singh Chabungbam
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dong-Eun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong Sub Lee
- Department of Materials Science and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ioannis Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027, United States
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
5
|
Kim SM, Kim S, Ling L, Liu SE, Jin S, Jung YM, Kim M, Park HH, Sangwan VK, Hersam MC, Lee HS. Linear and Symmetric Li-Based Composite Memristors for Efficient Supervised Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5673-5681. [PMID: 35043617 DOI: 10.1021/acsami.1c24562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Emerging energy-efficient neuromorphic circuits are based on hardware implementation of artificial neural networks (ANNs) that employ the biomimetic functions of memristors. Specifically, crossbar array memristive architectures are able to perform ANN vector-matrix multiplication more efficiently than conventional CMOS hardware. Memristors with specific characteristics, such as ohmic behavior in all resistance states in addition to symmetric and linear long-term potentiation/depression (LTP/LTD), are required in order to fully realize these benefits. Here, we demonstrate a Li-based composite memristor (LCM) that achieves these objectives. The LCM consists of three phases: Li-doped TiO2 as a Li reservoir, Li4Ti5O12 as the insulating phase, and Li7Ti5O12 as the metallic phase, where resistive switching correlates with the change in the relative fraction of the metallic and insulating phases. The LCM exhibits a symmetric and gradual resistive switching behavior for both set and reset operations during a full bias sweep cycle. This symmetric and linear weight update is uniquely enabled by the symmetric bidirectional migration of Li ions, which leads to gradual changes in the relative fraction of the metallic phase in the film. The optimized LCM in ANN simulation showed that exceptionally high accuracy in image classification is realized in fewer training steps compared to the nonlinear behavior of conventional memristors.
Collapse
Affiliation(s)
- Su-Min Kim
- Department of Materials Science & Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon24341, Korea
| | - Sungkyu Kim
- HMC, Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul05006, Republic of Korea
| | - Leo Ling
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Stephanie E Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon24341, Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon24341, Korea
- Institute of Quantum Convergence Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341, Korea
| | - Minjae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03772, Republic of Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03772, Republic of Korea
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Mark C Hersam
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
- Department of ChemistryNorthwestern University, Evanston, Illinois60208, United States
| | - Hong-Sub Lee
- Department of Materials Science & Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon24341, Korea
- Institute of Quantum Convergence Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 24341, Korea
| |
Collapse
|
6
|
Kim SE, Lee JG, Ling L, Liu SE, Lim HK, Sangwan VK, Hersam MC, Lee HS. Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106913. [PMID: 34773720 DOI: 10.1002/adma.202106913] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Memristors integrated into a crossbar-array architecture (CAA) are promising candidates for nonvolatile memory elements in artificial neural networks. However, the relatively low reliability of memristors coupled with crosstalk and sneak currents in CAAs have limited the realization of the full potential of this technology. Here, high-reliability Na-doped TiO2 memristors grown in situ by atomic layer deposition (ALD) are demonstrated, where reversible Na migration underlies the resistive-switching mechanism. By employing ALD growth with an aqueous NaOH reactant in deionized water, uniform implantation of Na dopants is achieved in the crystallized TiO2 thin films at 250 °C without post-annealing. The resulting Na-doped TiO2 memristors show electroforming-free and self-rectifying resistive-switching behavior, and they are ideally suited for selectorless CAAs. Effective addressing of selectorless nodes is demonstrated via electrical measurement of individual memristors in a 6 × 6 crossbar using a read current of less than 1 µA with negligible sneak current at or below the noise level of ≈100 pA. Finally, the long-term potentiation and depression synaptic behavior from these Na-doped TiO2 memristors achieves greater than 99.1% accuracy for image-recognition tasks using a convolutional neural network based on the selectorless of crossbar arrays.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Materials Science and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Korea
| | - Jin-Gyu Lee
- Department of Materials Science and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Korea
| | - Leo Ling
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Stephanie E Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hyung-Kyu Lim
- Department of Chemical Engineering, Interdisciplinary Program in Advanced Functional Materials and Devices Development, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Korea
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Hong-Sub Lee
- Department of Materials Science and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
7
|
Gonzalez-Rosillo JC, Catalano S, Maggio-Aprile I, Gibert M, Obradors X, Palau A, Puig T. Nanoscale Correlations between Metal-Insulator Transition and Resistive Switching Effect in Metallic Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001307. [PMID: 32390240 DOI: 10.1002/smll.202001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Strongly correlated perovskite oxides are a class of materials with fascinating intrinsic physical functionalities due to the interplay of charge, spin, orbital ordering, and lattice degrees of freedom. Among the exotic phenomena arising from such an interplay, metal-insulator transitions (MITs) are fundamentally still not fully understood and are of large interest for novel nanoelectronics applications, such as resistive switching-based memories and neuromorphic computing devices. In particular, rare-earth nickelates and lanthanum strontium manganites are archetypical examples of bandwidth-controlled and band-filling-controlled MIT, respectively, which are used in this work as a playground to correlate the switching characteristics of the oxides and their MIT properties by means of local probe techniques in a systematic manner. These findings suggest that an electric-field-induced MIT can be triggered in these strongly correlated systems upon generation of oxygen vacancies and establish that lower operational voltages and larger resistance ratios are obtained in those films where the MIT lies closer to room temperature. This work demonstrates the potential of using MITs in the next generation of nanoelectronics devices.
Collapse
Affiliation(s)
- Juan Carlos Gonzalez-Rosillo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, Bellaterra, Barcelona, 08193, Spain
| | - Sara Catalano
- DQMP, Université de Genève, 24 Quai Ernest-Ansermet, Geneva, 1211, Switzerland
| | - Ivan Maggio-Aprile
- DQMP, Université de Genève, 24 Quai Ernest-Ansermet, Geneva, 1211, Switzerland
| | - Marta Gibert
- DQMP, Université de Genève, 24 Quai Ernest-Ansermet, Geneva, 1211, Switzerland
| | - Xavier Obradors
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, Bellaterra, Barcelona, 08193, Spain
| | - Anna Palau
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, Bellaterra, Barcelona, 08193, Spain
| | - Teresa Puig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
8
|
Kutnyakhov D, Xian RP, Dendzik M, Heber M, Pressacco F, Agustsson SY, Wenthaus L, Meyer H, Gieschen S, Mercurio G, Benz A, Bühlman K, Däster S, Gort R, Curcio D, Volckaert K, Bianchi M, Sanders C, Miwa JA, Ulstrup S, Oelsner A, Tusche C, Chen YJ, Vasilyev D, Medjanik K, Brenner G, Dziarzhytski S, Redlin H, Manschwetus B, Dong S, Hauer J, Rettig L, Diekmann F, Rossnagel K, Demsar J, Elmers HJ, Hofmann P, Ernstorfer R, Schönhense G, Acremann Y, Wurth W. Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:013109. [PMID: 32012554 DOI: 10.1063/1.5118777] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å-1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å-1, and a system response function of 150 fs.
Collapse
Affiliation(s)
- D Kutnyakhov
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - R P Xian
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - M Dendzik
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - M Heber
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - F Pressacco
- Physics Department and Centre for Free-Electron Laser Science (CFEL), University of Hamburg, 22761 Hamburg, Germany
| | - S Y Agustsson
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - L Wenthaus
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - H Meyer
- Physics Department and Centre for Free-Electron Laser Science (CFEL), University of Hamburg, 22761 Hamburg, Germany
| | - S Gieschen
- Physics Department and Centre for Free-Electron Laser Science (CFEL), University of Hamburg, 22761 Hamburg, Germany
| | - G Mercurio
- Physics Department and Centre for Free-Electron Laser Science (CFEL), University of Hamburg, 22761 Hamburg, Germany
| | - A Benz
- Physics Department and Centre for Free-Electron Laser Science (CFEL), University of Hamburg, 22761 Hamburg, Germany
| | - K Bühlman
- Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland
| | - S Däster
- Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland
| | - R Gort
- Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland
| | - D Curcio
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - K Volckaert
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - M Bianchi
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Ch Sanders
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell OX11 0QX, United Kingdom
| | - J A Miwa
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - S Ulstrup
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - A Oelsner
- Surface Concept GmbH, 55124 Mainz, Germany
| | - C Tusche
- Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52428 Jülich, Germany
| | - Y-J Chen
- Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52428 Jülich, Germany
| | - D Vasilyev
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - K Medjanik
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - G Brenner
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - S Dziarzhytski
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - H Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - B Manschwetus
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - S Dong
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - J Hauer
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - L Rettig
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - F Diekmann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - K Rossnagel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - J Demsar
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - H-J Elmers
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Ph Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - R Ernstorfer
- Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - G Schönhense
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Y Acremann
- Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland
| | - W Wurth
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
9
|
Nallagatla VR, Heisig T, Baeumer C, Feyer V, Jugovac M, Zamborlini G, Schneider CM, Waser R, Kim M, Jung CU, Dittmann R. Topotactic Phase Transition Driving Memristive Behavior. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903391. [PMID: 31441160 DOI: 10.1002/adma.201903391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Redox-based memristive devices are one of the most attractive candidates for future nonvolatile memory applications and neuromorphic circuits, and their performance is determined by redox processes and the corresponding oxygen-ion dynamics. In this regard, brownmillerite SrFeO2.5 has been recently introduced as a novel material platform due to its exceptional oxygen-ion transport properties for resistive-switching memory devices. However, the underlying redox processes that give rise to resistive switching remain poorly understood. By using X-ray absorption spectromicroscopy, it is demonstrated that the reversible redox-based topotactic phase transition between the insulating brownmillerite phase, SrFeO2.5 , and the conductive perovskite phase, SrFeO3 , gives rise to the resistive-switching properties of SrFeOx memristive devices. Furthermore, it is found that the electric-field-induced phase transition spreads over a large area in (001) oriented SrFeO2.5 devices, where oxygen vacancy channels are ordered along the in-plane direction of the device. In contrast, (111)-grown SrFeO2.5 devices with out-of-plane oriented oxygen vacancy channels, reaching from the bottom to the top electrode, show a localized phase transition. These findings provide detailed insight into the resistive-switching mechanism in SrFeOx -based memristive devices within the framework of metal-insulator topotactic phase transitions.
Collapse
Affiliation(s)
- Venkata R Nallagatla
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Department of Physics and Oxide Research Centre, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Thomas Heisig
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Christoph Baeumer
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Vitaliy Feyer
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitat Duisburg-Essen, 47048, Duisburg, Germany
| | - Matteo Jugovac
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
| | - Giovanni Zamborlini
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Technische Universitaet Dortmund, Experimentelle Physik VI, 44227, Dortmund, Germany
| | - Claus M Schneider
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitat Duisburg-Essen, 47048, Duisburg, Germany
- Department of Physics, University of California, Davis, CA, 95616, USA
| | - Rainer Waser
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
- Institute of Electronic Materials, IWE2, RWTH Aachen University, 52056, Aachen, Germany
| | - Miyoung Kim
- Department of Material Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, South Korea
| | - Chang Uk Jung
- Department of Physics and Oxide Research Centre, Hankuk University of Foreign Studies, Yongin, 17035, South Korea
| | - Regina Dittmann
- Peter Gruenberg Institute, Forschungszentrum Juelich GmbH and JARA-FIT, 52425, Juelich, Germany
| |
Collapse
|
10
|
Rout PC, Srinivasan V. Emergence of a Multiferroic Half-Metallic Phase in Bi_{2}FeCrO_{6} through Interplay of Hole Doping and Epitaxial Strain. PHYSICAL REVIEW LETTERS 2019; 123:107201. [PMID: 31573301 DOI: 10.1103/physrevlett.123.107201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Epitaxial strain has been shown to drive structural phase transitions along with novel functionalities in perovskite-based thin films. Aliovalent doping at the A site can drive an insulator-to-metal and magnetic transitions in perovskites along with a variety of interesting structural and electronic phenomena. Using first-principles calculations, we predict the formation of a multiferroic half-metallic phase with a large magnetic moment in the double perovskite, Bi_{2}FeCrO_{6}, by coupling epitaxial strain with A-site hole doping. We also demonstrate that epitaxial strain can be used to manipulate the hole states created by doping to induce half-metal to insulator, antipolar to polar, antiferromagnetic to ferromagnetic, orbital ordering and charge ordering transitions. Our work also suggests that hole doping under strain could lead to mitigation of issues related to antisite defects and lowered magnetization in thin films of the material.
Collapse
Affiliation(s)
- Paresh C Rout
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Varadharajan Srinivasan
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
11
|
Sarkar T, Muscas G, Barucca G, Locardi F, Varvaro G, Peddis D, Mathieu R. Tunable single-phase magnetic behavior in chemically synthesized AFeO 3-MFe 2O 4 (A = Bi or La, M = Co or Ni) nanocomposites. NANOSCALE 2018; 10:22990-23000. [PMID: 30500041 DOI: 10.1039/c8nr06922k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The properties of magnetic nanocomposites rely strongly on the interplay between those of the constituent components. When the individual components themselves are complex systems belonging to the family of correlated electron oxide systems which typically exhibit exotic physical properties, it becomes nontrivial to customize the properties of the nanocomposite. In this paper, we demonstrate an easy, but effective method to synthesize and tune the magnetic properties of nanocomposites consisting of correlated electron oxide systems as the individual components. Our method is based on a novel synthesis technique by which the two components of the nanocomposite can be directly integrated with each other, yielding homogeneous samples on the nanoscale with magnetic behavior reminiscent of a single phase. We illustrate our method using multiferroic BiFeO3 (BFO) and LaFeO3 (LFO) as the major phase (i.e., matrix), and MFe2O4 (M = Co2+ or Ni2+) as the embedded magnetic phase. Furthermore, we show that by a proper selection of the second phase in the nanocomposite, it is possible to customize the magnetic properties of the matrix. We illustrate this by choosing CoFe2O4 and NiFe2O4, two oxides with widely differing magnetic anisotropies, as the embedded phase, and demonstrate that the coercivity of BFO and LFO can be increased or decreased depending on the choice of the embedded phase in the nanocomposite.
Collapse
Affiliation(s)
- T Sarkar
- Department of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
12
|
Palau A, Fernandez-Rodriguez A, Gonzalez-Rosillo JC, Granados X, Coll M, Bozzo B, Ortega-Hernandez R, Suñé J, Mestres N, Obradors X, Puig T. Electrochemical Tuning of Metal Insulator Transition and Nonvolatile Resistive Switching in Superconducting Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30522-30531. [PMID: 30109805 PMCID: PMC6348441 DOI: 10.1021/acsami.8b08042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Modulation of carrier concentration in strongly correlated oxides offers the unique opportunity to induce different phases in the same material, which dramatically change their physical properties, providing novel concepts in oxide electronic devices with engineered functionalities. This work reports on the electric manipulation of the superconducting to insulator phase transition in YBa2Cu3O7-δ thin films by electrochemical oxygen doping. Both normal state resistance and the superconducting critical temperature can be reversibly manipulated in confined active volumes of the film by gate-tunable oxygen diffusion. Vertical and lateral oxygen mobility may be finely modulated, at the micro- and nano-scale, by tuning the applied bias voltage and operating temperature thus providing the basis for the design of homogeneous and flexible transistor-like devices with loss-less superconducting drain-source channels. We analyze the experimental results in light of a theoretical model, which incorporates thermally activated and electrically driven volume oxygen diffusion.
Collapse
Affiliation(s)
- Anna Palau
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | | | | | - Xavier Granados
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Mariona Coll
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Bernat Bozzo
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Rafael Ortega-Hernandez
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Suñé
- Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Narcís Mestres
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Xavier Obradors
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Teresa Puig
- Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Effects of A-site cation disordering on the transport properties of half-doping La0.5Ca0.5MnO3 manganites. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Elovaara T, Tikkanen J, Granroth S, Majumdar S, Félix R, Huhtinen H, Paturi P. Mechanisms of photoinduced magnetization in Pr 0.6Ca 0.4MnO 3 studied above and below charge-ordering transition temperature. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:425802. [PMID: 28782733 DOI: 10.1088/1361-648x/aa847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report the effect of photonic field on the electronic and magnetic structure of a low bandwidth manganite [Formula: see text] [Formula: see text]MnO3 (PCMO) thin film. In particular, the present study confirmed a mechanism that was recently proposed to explain how optical excitation can bias or directly activate the metamagnetic transition associated with the colossal magnetoresistance (CMR) effect of PCMO. The transition is characterized by a shift in the dynamic equilibrium between ferromagnetic (FM) and antiferromagnetic clusters, explaining how it can be suddenly triggered by a sufficient external magnetic field. The film was always found to support some population of FM-clusters, the proportional size of which could be adjusted by the magnetic field and, especially in the vicinity of a thermomagnetic irreversibility, by optical excitation. The double exchange mechanism couples the magnetic degrees of freedom of manganites to their electronic structure, which is further coupled to the ion lattice via the Jahn-Teller mechanism. In accordance, it was found that producing optical phonons into the lattice could lower the free energy of the FM phase enough to significantly bias the CMR effect.
Collapse
Affiliation(s)
- T Elovaara
- Department of Physics and Astronomy, Wihuri Physical Laboratory, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee HS, Park HH. Tunneling Electroresistance Effect with Diode Characteristic for Cross-Point Memory. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15476-15481. [PMID: 27237433 DOI: 10.1021/acsami.6b03780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cross-point memory architecture (CPMA) by using memristors has attracted considerable attention because of its high-density integration. However, a common and significant drawback of the CPMA is related to crosstalk issues between cells by sneak currents. This study demonstrated the sneak current free resistive switching characteristic of a ferroelectric tunnel diode (FTD) memristor for a CPMA by utilizing a novel concept of a ferroelectric quadrangle and triangle barrier switch. A FTD of Au/BaTiO3 (5 nm)/Nb-doped SrTiO3 (100) was used to obtain a desirable memristive effect for the CPMA. The FTD could reversibly change the shape of the ferroelectric potential from a quadrangle to a triangle. The effect included high nonlinearity and diode characteristics. It was derived from utilizing different sequences of carrier transport mechanisms such as the direct tunneling current, Fowler-Nordheim tunneling, and thermionic emission. The FTD memristor demonstrated the feasibility of sneak current-free high-density CPMA.
Collapse
Affiliation(s)
- Hong-Sub Lee
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
| |
Collapse
|
16
|
Li Y, Long S, Liu Y, Hu C, Teng J, Liu Q, Lv H, Suñé J, Liu M. Conductance Quantization in Resistive Random Access Memory. NANOSCALE RESEARCH LETTERS 2015; 10:420. [PMID: 26501832 PMCID: PMC4623080 DOI: 10.1186/s11671-015-1118-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/12/2015] [Indexed: 06/02/2023]
Abstract
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Shibing Long
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Yang Liu
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Chen Hu
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiao Teng
- Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qi Liu
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Hangbing Lv
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Jordi Suñé
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Ming Liu
- Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
- Lab of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
17
|
Lee HS, Han W, Chung HY, Rozenberg M, Kim K, Lee Z, Yeom GY, Park HH. Ferroelectric Tunnel Junction for Dense Cross-Point Arrays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22348-22354. [PMID: 26378472 DOI: 10.1021/acsami.5b06117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cross-point array (CPA) structure memories using a memristor are attracting a great deal of attention due to their high density integration with a 4F2 cell. However, a common significant drawback of the CPA configuration is crosstalk between cells. To date, the CPA structure using a redox-based memristor has restrictions to minimize the operating current level due to their resistive switching mechanism. This study demonstrates suitable characteristics of a ferroelectric tunnel junction (FTJ) for the memristor of the CPA structure using an electrostatic model. From the FTJ of the Au/p-type Pr0.98Ca0.02MnO3 (4 nm)/BaTiO3 (4.3 nm)/n-type Ca0.98Pr0.02MnO3 (3 nm)/Pt(111) structure, which has a higher and thicker potential barrier, a good memristive effect for the CPA structure with a high nonlinear current-voltage curve and low current operation, was obtained by Δ Fowler-Nordheim tunneling with effectively blocked direct tunneling and thermionic emission. The FTJ demonstrated reduced sneak current and the possible for high nonlinearity.
Collapse
Affiliation(s)
- Hong-Sub Lee
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
| | - Wooje Han
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
| | - Hee-Yoon Chung
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
| | - Marcelo Rozenberg
- Laboratoire de Physique des Solides, CNRS-UMR 8502 Université Paris-Sud , Orsay 91405, France
- IFIBA-Conicet and Departamento de Física, FCEN, Universidad de Buenos Aires, Ciudad Universitaria Pabellón I , (1428) Buenos Aires, Argentina
| | - Kangsik Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Zonghoon Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Geun Young Yeom
- Department of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University , Suwon, Kyunggi-do 440-746, Republic of Korea
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University , Seodaemun-Ku, Seoul 120-749, Korea
| |
Collapse
|
18
|
Abstract
We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca(2+) for Bi(3+) cation. We found that by increasing the substitution, the in-plane orbital bands of Fe(3+) cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.
Collapse
|
19
|
Lee HS, Park HH. Manganite based hetero-junction structure of La0.7Sr(0.7-x)CaxMnO3 and CaMnO(3-δ) for cross-point arrays. NANOTECHNOLOGY 2015; 26:275704. [PMID: 26086277 DOI: 10.1088/0957-4484/26/27/275704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Resistive random access memory and the corresponding cross-point array (CPA) structure have received a great deal of attention for high-density next generation non-volatile memory. However, the cross-talk issue of CPA structure by sneak current should be overcome to realize the highest density integration. To accomplish this, the sneak current can be minimized by high, nonlinear characteristic behaviors of resistive switching (RS). Therefore this study fabricated pnp bipolar hetero-junction structure using the perovskite manganite family, such as La0.7Sr(0.3-x)CaxMnO3 (LSCMO) and CaMnO(3-δ) (CMO), to obtain nonlinear RS behavior. The pnp structure not only shows nonlinear characteristics, but also a tunable characteristic with Ca substitution.
Collapse
Affiliation(s)
- Hong-Sub Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
| | | |
Collapse
|
20
|
Catalano MR, Cucinotta G, Schilirò E, Mannini M, Caneschi A, Lo Nigro R, Smecca E, Condorelli GG, Malandrino G. Metal-Organic Chemical Vapor Deposition (MOCVD) Synthesis of Heteroepitaxial Pr0.7Ca0.3MnO3 Films: Effects of Processing Conditions on Structural/Morphological and Functional Properties. ChemistryOpen 2015; 4:523-32. [PMID: 26478849 PMCID: PMC4603415 DOI: 10.1002/open.201500038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 11/15/2022] Open
Abstract
Calcium-doped praseodymium manganite films (Pr0.7Ca0.3MnO3, PCMO) were prepared by metal-organic chemical vapor deposition (MOCVD) on SrTiO3 (001) and SrTiO3 (110) single-crystal substrates. Structural characterization through X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) analyses confirmed the formation of epitaxial PCMO phase films. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) characterization was used to confirm lateral and vertical composition and the purity of the deposited films. Magnetic measurements, obtained in zero-field-cooling (ZFC) and field-cooling (FC) modes, provided evidence of the presence of a ferromagnetic (FM) transition temperature, which was correlated to the transport properties of the film. The functional properties of the deposited films, combined with the structural and chemical characterization collected data, indicate that the MOCVD approach represents a suitable route for the growth of pure, good quality PCMO for the fabrication of novel spintronic devices.
Collapse
Affiliation(s)
- Maria R Catalano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR di Catania 95125, Catania, Italy
| | - Giuseppe Cucinotta
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, INSTM UdR di Firenze Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Emanuela Schilirò
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR di Catania 95125, Catania, Italy
| | - Matteo Mannini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, INSTM UdR di Firenze Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Andrea Caneschi
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, INSTM UdR di Firenze Via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy
| | - Raffaella Lo Nigro
- Istituto per la Microelettronica e Microsistemi, Institute for Microelectronics and Microsystems, National Research Council (IMM-CNR) Strada VIII n. 5, 95121, Catania, Italy
| | - Emanuele Smecca
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR di Catania 95125, Catania, Italy
| | - Guglielmo G Condorelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR di Catania 95125, Catania, Italy
| | - Graziella Malandrino
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, INSTM UdR di Catania 95125, Catania, Italy
| |
Collapse
|
21
|
Lee HS, Park HH, Rozenberg MJ. Manganite-based memristive heterojunction with tunable non-linear I-V characteristics. NANOSCALE 2015; 7:6444-6450. [PMID: 25794166 DOI: 10.1039/c5nr00861a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr(1-x)Ca(x)MnO3 (PCMO) and CaMnO(3-δ) (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO.
Collapse
Affiliation(s)
- Hong-Sub Lee
- Department of Materials Science and Engineering, Yonsei University, Seodaemun-Ku, Seoul 120-749, Korea.
| | | | | |
Collapse
|
22
|
Panwar N, Kumbhare P, Singh AK, Venkataramani N, Ganguly U. Effect of Morphological Change on Unipolar and Bipolar Switching Characteristics in Pr0.7Ca0.3MnO3 Based RRAM. ACTA ACUST UNITED AC 2015. [DOI: 10.1557/opl.2015.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTWe have demonstrated that pulsed laser deposition (PLD) conditions, i.e. O2 partial pressure (pO2) and temperature (T), enable control over the polarity of resistance switching in PCMO (Pr0.7C0.3MnO3) i.e. unipolar resistive switching (URS) vs. bipolar resistive switching (BRS). We observe by detailed physical characterization that BRS occurs in poly-crystalline thin films while URS is seen in amorphous films – indicating the materials origin of URS vis-a-vis BRS. BRS shows attractive lower voltage operation, no forming and lower variability than URS.
Collapse
|
23
|
Norpoth J, Mildner S, Scherff M, Hoffmann J, Jooss C. In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. NANOSCALE 2014; 6:9852-9862. [PMID: 25029190 DOI: 10.1039/c4nr02020k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The mechanism of the electric-pulse induced resistance change effect in Au/Pr0.65Ca0.35MnO3/SrTi0.99Nb0.01O3 thin-film samples is studied by means of in situ electrical stimulation inside a transmission electron microscope. A detailed equivalent-circuit model analysis of the measured current-voltage characteristics provides crucial information for the proper interpretation of the microscopy results. The electrical transport data of the electron-transparent samples used for the in situ investigations is verified by comparison to measurements of unpatterned thin-film samples. We find comprehensive evidence for electrochemical oxygen vacancy migration affecting the potential barrier of the pn junction between Pr0.65Ca0.35MnO3 and SrTi0.99Nb0.01O3 as well as the resistance of the manganite bulk. The high-resistance state formation in the Pr0.65Ca0.35MnO3 bulk is frequently accompanied by structural transformations, namely detwinning and superstructure formation, most likely as the result of the joint impact of dynamic charge inhomogenities by oxygen vacancy migration and injection of high carrier densities at the electrodes.
Collapse
Affiliation(s)
- Jonas Norpoth
- Institut für Materialphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Hatano T, Ogimoto Y, Ogawa N, Nakano M, Ono S, Tomioka Y, Miyano K, Iwasa Y, Tokura Y. Gate control of electronic phases in a quarter-filled manganite. Sci Rep 2013; 3:2904. [PMID: 24104858 PMCID: PMC3793216 DOI: 10.1038/srep02904] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022] Open
Abstract
Electron correlation often produces a variety of electrically insulating states caused by self-organization of electrons, which are particularly stable at commensurate fillings. Although collapsing such ordered states by minute external stimuli has been a key strategy toward device applications, it is difficult to access their true electronic phase boundaries due to the necessity of fine-tuning of material parameters. Here, we demonstrate the ambipolar resistance switching in Pr(1-x)Sr(x)MnO3 thin films (x = 0.5; an effectively 1/4-filled state) by quasi-continuous control of the doping level x and band-width W using gate-voltage and magnetic field, enabled by the extreme electric-field formed at the nanoscale interface generated in an electrolyte-gated transistor. An electroresistance peak with unprecedented steepness emerges on approaching a critical point in the x-W phase diagram. The technique opens a new route to Mott-insulator based transistors and to discovering singularities hitherto unnoticed in conventional bulk studies of strongly correlated electron systems.
Collapse
Affiliation(s)
- T Hatano
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|