1
|
Hovikoski J, Virtasalo JJ, Wetzel A, Muthre M, Strasser M, Proust JN, Ikehara K. Bioturbation in the hadal zone. Nat Commun 2025; 16:1401. [PMID: 39966393 PMCID: PMC11836284 DOI: 10.1038/s41467-025-56627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
The hadal zone, >6 km deep, remains one of the least understood ecosystems on Earth. We address bioturbational structures in sediment cores from depths exceeding 7.5 km, collected during the IODP Expedition 386 in the Japan Trench. Micro-CT imaging on 20 core sections allowed to identify biogenic sedimentary structures (incipient trace fossils) and their colonization successions within gravity flow deposits. Their frequency, and consequent changes in substrate consistency, oxygenation and organic matter delivery and remineralization controlled the endobenthic colonization. The gravity-flow beds show recurring bioturbation successions: The initial colonization is characterized by deposit-feeding structures such as Phycosiphon, Nereites and Artichnus generating typically 20 cm thick intensively bioturbated fabrics. The final colonization stage comprises slender spiral, lobate and deeply penetrating straight and ramifying burrow systems such as Gyrolithes, Pilichnus and Trichichnus, interpreted to include burrows of microbe farming and chemosymbiotic invertebrates. The main factor precluding colonization is soupy substrate. Organic matter degradation and post-event upward expansion of the anoxic zone drive the change from deposit feeding to microbe-dependent feeding strategies.
Collapse
Affiliation(s)
- Jussi Hovikoski
- Information Solutions, Geological Survey of Finland (GTK), Espoo, Finland.
| | | | - Andreas Wetzel
- Departement Umweltwissenschaften - Geologie, Universität Basel, Basel, Switzerland
| | - Mishelle Muthre
- Department of Geology, University of Innsbruck, Innsbruck, Austria
| | - Michael Strasser
- Department of Geology, University of Innsbruck, Innsbruck, Austria
| | | | - Ken Ikehara
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Glud RN, Schauberger C. Element cycling and microbial life in the hadal realm. Trends Microbiol 2024; 32:1045-1048. [PMID: 39084910 DOI: 10.1016/j.tim.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Hadal trenches represent the deepest oceanic realm and were once considered to be deprived of life. However, trenches act as important depocenters for organic matter with highly elevated microbial activity. In this forum, we discuss the biogeochemistry of the hadal realm and its microbial communities thriving at extreme hydrostatic pressure.
Collapse
Affiliation(s)
- Ronnie N Glud
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark; Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| | - Clemens Schauberger
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Rivera Rosas DE, Geraldi NR, Glud RN, Oguri K, Haond SA, Duarte CM. A sedimentary DNA record of the Atacama Trench reveals biodiversity changes in the most productive marine ecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17412. [PMID: 39044634 DOI: 10.1111/gcb.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
The hadopelagic environment remains highly understudied due to the inherent difficulties in sampling at these depths. The use of sediment environmental DNA (eDNA) can overcome some of these restrictions as settled and preserved DNA represent an archive of the biological communities. We use sediment eDNA to assess changes in the community within one of the world's most productive open-ocean ecosystems: the Atacama Trench. The ecosystems around the Atacama Trench have been intensively fished and are affected by climate oscillations, but the understanding of potential impacts on the marine community is limited. We sampled five sites using sediment cores at water depths from 2400 to ~8000 m. The chronologies of the sedimentary record were determined using 210Pbex. Environmental DNA was extracted from core slices and metabarcoding was used to identify the eukaryote community using two separate primer pairs for different sections of the 18S rRNA gene (V9 and V7) effectively targeting pelagic taxa. The reconstructed communities were similar among markers and mainly composed of chordates and members of the Chromista kingdom. Alpha diversity was estimated for all sites in intervals of 15 years (from 1842 to 2018), showing a severe drop in biodiversity from 1970 to 1985 that aligns with one of the strongest known El Niño events and extensive fishing efforts during the time. We find a direct impact of sea surface temperature on the community composition over time. Fish and cnidarian read abundance was examined separately to determine whether fishing had a direct impact, but no direct relation was found. These results demonstrate that sediment eDNA can be a valuable emerging tool providing insight in historical perspectives on ecosystem developments. This study constitutes an important step toward an improved understanding of the importance of environmental and anthropogenic drivers in affecting open and deep ocean communities.
Collapse
Affiliation(s)
- Diego Elihú Rivera Rosas
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | | | - Ronnie N Glud
- Danish Center for Hadal Research (HADAL) and Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
- Tokyo University of Marine Science and Technology, Tokyo, Japan
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense M, Denmark
| | - Kazumasa Oguri
- Danish Center for Hadal Research (HADAL) and Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sophie A Haond
- UMR MARBEC, University of Montpellier, IRD, Ifremer, CNRS, Sète, France
| | - Carlos M Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Liu X, Lan C, Zhu L, Yan C, Wang N, Chen H, Zheng G, Che Y, Yang Z, Bao R. Sediment resuspension as a driving force for organic carbon transference and rebalance in marginal seas. WATER RESEARCH 2024; 257:121672. [PMID: 38705064 DOI: 10.1016/j.watres.2024.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
The transfer of particulate organic carbon (POC) to dissolved organic carbon (DOC; OC transferP-D) is crucial for the marine carbon cycle. Sediment resuspension driven by hydrodynamic forcing can affect the burial of sedimentary POC and benthic biological processes in marginal sea. However, the role of sediment grain size fraction on OC transferP-D and the subsequent impact on OC cycling remain unknown. Here, we conduct sediment resuspension simulations by resuspending grain-size fractionated sediments (< 20, 20-63, and > 63 μm) into filtered seawater, combined with analyses of OC content, optical characteristics, 13C and 14C isotope compositions, and molecular dynamics simulations to investigate OC transferP-D and its regulations on OC bioavailability under sediment resuspension. Our results show that the relative intensities of terrestrial humic-like OC (refractory DOC) increase in resuspension experiments of < 20, 20-63, and > 63 μm sediments by 0.14, 0.01, and 0.03, respectively, likely suggesting that sediment resuspension drives refractory DOC transfer into seawater. The variations in the relative intensities of microbial protein-like DOC are linked to the change of terrestrial humic-like OC, accompanied by higher DOC content and reactivity in seawater, particularly in finer sediments resuspension experiments. This implies that transferred DOC likely fuels microbial growth, contributing to the subsequent enhancement of DOC bioavailability in seawater. Our results also show that the POC contents increase by 0.35 %, 0.66 %, and 0.93 % in < 20, 20-63, and > 63 μm resuspension experiments at the end of incubation, respectively. This suggests that the re-absorption of OC on particles may be a significant process, but previously unrecognized during sediment resuspension. Overall, our findings suggest that sediment resuspension promotes the OC transferP-D, and the magnitudes of OC transferP-D further influence the DOC and POC properties by inducing microbial production and respiration. These processes significantly affect the dynamics and recycling of biological carbon pump in shallow marginal seas.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chunyuan Lan
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Longhai Zhu
- College of Marine Geo-Science, Ocean University of China, Qingdao 266100, China; Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Nan Wang
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haibiao Chen
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Guangjin Zheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yangli Che
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zuosheng Yang
- College of Marine Geo-Science, Ocean University of China, Qingdao 266100, China; Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
5
|
Xie J, Chen C, Luo M, Peng X, Lin T, Chen D. Hidden dangers: High levels of organic pollutants in hadal trenches. WATER RESEARCH 2024; 251:121126. [PMID: 38237461 DOI: 10.1016/j.watres.2024.121126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The "V"-shaped structure of hadal trenches acts as a natural collector of organic pollutants, drawing attention to the need for extensive research in these areas. Our review identifies significant concentrations of organic pollutants, including persistent organic pollutants, black carbon, antibiotic-resistant genes, and plastics, which often match those in industrialized regions. They may trace back to both human activities and natural sources, underscoring the trenches' critical role in ocean biogeochemical cycles. We highlight the complex lateral and vertical transport mechanisms within these zones. Advanced methodologies, including stable isotope analysis, biomarker identification, and chiral analysis within isotope-based mixing models, are crucial for discerning the origins and pathways of these pollutants. In forthcoming studies, we aim to explore advanced methods for precise pollutant tracing, develop predictive models to forecast the future distribution and impacts of pollutants in hadal zones and on the Earth's larger ecological systems.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Chuchu Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Min Luo
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
6
|
Chu M, Bao R, Strasser M, Ikehara K, Everest J, Maeda L, Hochmuth K, Xu L, McNichol A, Bellanova P, Rasbury T, Kölling M, Riedinger N, Johnson J, Luo M, März C, Straub S, Jitsuno K, Brunet M, Cai Z, Cattaneo A, Hsiung K, Ishizawa T, Itaki T, Kanamatsu T, Keep M, Kioka A, McHugh C, Micallef A, Pandey D, Proust JN, Satoguchi Y, Sawyer D, Seibert C, Silver M, Virtasalo J, Wang Y, Wu TW, Zellers S. Earthquake-enhanced dissolved carbon cycles in ultra-deep ocean sediments. Nat Commun 2023; 14:5427. [PMID: 37696798 PMCID: PMC10495447 DOI: 10.1038/s41467-023-41116-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.
Collapse
Affiliation(s)
- Mengfan Chu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Michael Strasser
- University of Innsbruck, Institute of Geology, Innsbruck, Austria
| | - Ken Ikehara
- National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan, Institute of Geology and Geoinformation, Ibaraki, 305-8567, Japan
| | - Jez Everest
- British Geological Survey, Lyell Centre, Edinburgh, EH14 4AP, UK
| | - Lena Maeda
- Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and Technology, Kanagawa, 236-0001, Japan
| | - Katharina Hochmuth
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
- Australian Centre for Excellence in Antarctic Sciences, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point TAS, Churchill Ave, 7004, Australia
| | - Li Xu
- NOSAMS Laboratory, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Ann McNichol
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Piero Bellanova
- RWTH Aachen University, Institute of Neotectonics and Natural Hazards & Institute of Geology and Geochemistry of Petroleum and Coal, 52056, Aachen, Germany
| | - Troy Rasbury
- Stony Brook University, Department of Geosciences, New York, 11794, USA
| | - Martin Kölling
- MARUM - Center for Marine Environmental Science, University of Bremen, Bremen, 28359, Germany
| | - Natascha Riedinger
- Boone Pickens School of Geology, Oklahoma State University, Oklahoma, 74078, USA
| | - Joel Johnson
- University of New Hampshire, Department of Earth Sciences, New Hampshire, 03824, USA
| | - Min Luo
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Christian März
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- Institute for Geosciences, University of Bonn, Nussallee 8, 53115, Bonn, Germany
| | - Susanne Straub
- Lamont Doherty Earth Observatory, Geochemistry Division, New York, 10964, USA
| | - Kana Jitsuno
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-0041, Japan
| | - Morgane Brunet
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000, Rennes, France
| | - Zhirong Cai
- Kyoto University, Department of Geology and Mineralogy, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto, 606-8502, Japan
| | - Antonio Cattaneo
- Geo-Ocean, UMR 6538, Univ Brest, CNRS, Ifremer, Plouzané, F-29280, France
| | - Kanhsi Hsiung
- Research Institute for Marine Geodynamics, JAMSTEC, Marine Geology and Geophysics Research Group, Subduction Dynamics Research Center, Kanagawa, 237-0061, Japan
| | - Takashi Ishizawa
- International Research Institute of Disaster Science, Tohoku University, Sendai, 980-0845, Japan
| | - Takuya Itaki
- National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan, Institute of Geology and Geoinformation, Ibaraki, 305-8567, Japan
| | - Toshiya Kanamatsu
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Research Institute of Marine Geodynamics (IMG), Yokosuka, 237-0061, Japan
| | - Myra Keep
- The University of Western Australia, Department School of Earth Sciences, Perth, Australia
| | - Arata Kioka
- Kyushu University, Department of Earth Resources Engineering, Fukuoka, 819-0395, Japan
| | - Cecilia McHugh
- Queens College, City University of New York, School of Earth and Environmental Sciences, New York, 11367, USA
| | - Aaron Micallef
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, D-24148, Germany
| | - Dhananjai Pandey
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Goa, 403 804, India
| | - Jean Noël Proust
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000, Rennes, France
| | | | - Derek Sawyer
- The Ohio State University, School of Earth Sciences, Ohio, 43210, USA
| | - Chloé Seibert
- Lamont Doherty Earth Observatory, Marine geology and geophysics division, New York, 10964, USA
| | - Maxwell Silver
- Colorado School of Mines, Hydrologic Science and Engineering, Colorado, 80227, USA
| | | | - Yonghong Wang
- Ocean University of China, Department of Marine Geosciences, Qingdao, 266100, China
| | - Ting-Wei Wu
- MARUM - Center for Marine Environmental Science, University of Bremen, Bremen, 28359, Germany
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Sarah Zellers
- University of Central Missouri, Department of Physical Sciences, Missouri, 64093, USA
| |
Collapse
|
7
|
Xie J, Zhang G, Wu Q, Luo M, Chen D, Zhang Y, He L, Li Y, Zhang Q, Lin T, Jiang G. First evidence and potential sources of novel brominated flame retardants and BDE 209 in the deepest ocean. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130974. [PMID: 36860051 DOI: 10.1016/j.jhazmat.2023.130974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Organic anthropogenic pollutants reach even the deepest parts of the oceans, i.e., the hadal trenches. We here presented the concentrations, influencing factors, and potential sources of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in hadal sediments and amphipods from the Mariana, Mussau and New Britain trenches. Results showed that BDE 209 was the dominant PBDEs congener and DBDPE was the dominant NBFRs. No significant correlation was found between TOC contents and PBDEs or NBFRs levels in sediment. Lipid content and body length were the potential important factors affecting variation in pollutant concentrations in the carapace & muscle of amphipods, while the pollution levels of viscera were mainly affected by the sex and lipid content. PBDEs and NBFRs might reach trench surface seawater through long-range atmospheric transport and oceans currents but with little contribution from the Great Pacific Garbage Patch. Determination of carbon and nitrogen isotopes indicated that the pollutants were transported and accumulated in amphipods and sediment via different pathways. PBDEs and NBFRs in the hadal sediments were generally transported via the settling of sediment particles of either marine or terrigenous origin whereas in amphipods they accumulated via feeding on animal carrion through the food web. This is the first study reporting on BDE 209 and NBFR contaminations in hadal settings and provide new insight on influencing factors and sources of PBDEs and NBFRs in the deepest oceans.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Min Luo
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Sobek A, Abel S, Sanei H, Bonaglia S, Li Z, Horlitz G, Rudra A, Oguri K, Glud RN. Organic matter degradation causes enrichment of organic pollutants in hadal sediments. Nat Commun 2023; 14:2012. [PMID: 37037817 PMCID: PMC10086072 DOI: 10.1038/s41467-023-37718-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
Burial of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) in deep-sea sediments contributes to 60% of their historical emissions. Yet, empirical data on their occurrence in the deep-ocean is scarce. Estimates of the deep-ocean POP sink are therefore uncertain. Hadal trenches, representing the deepest part of the ocean, are hotspots for organic carbon burial and decomposition. POPs favorably partition to organic carbon, making trenches likely significant sinks for contaminants. Here we show that PCBs occur in both hadal (7720-8085 m) and non-hadal (2560-4050 m) sediment in the Atacama Trench. PCB concentrations normalized to sediment dry weight were similar across sites while those normalized to sediment organic carbon increased exponentially as the inert organic carbon fraction of the sediment increased in degraded hadal sediments. We suggest that the unique deposition dynamics and elevated turnover of organic carbon in hadal trenches increase POP concentrations in the deepest places on Earth.
Collapse
Affiliation(s)
- Anna Sobek
- Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| | - Sebastian Abel
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Hamed Sanei
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Zhe Li
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Gisela Horlitz
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Arka Rudra
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, Aarhus, Denmark
| | - Kazumasa Oguri
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Ronnie N Glud
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Wang F, Zheng J, Aono T, Pan S, Men W. Source and distribution characteristics of 239, 240, 241Pu, 237Np and 134, 137Cs in sediments in the Northwest and Central Equatorial Pacific after the Fukushima nuclear accident. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119214. [PMID: 35358631 DOI: 10.1016/j.envpol.2022.119214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
To understand the possible influence of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on the deep sea, as well as the geochemical behavior and transport of radionuclides, 134Cs, 137Cs, 239, 240Pu, 241Pu, and 237Np were measured in the abyssal sediments of the Northwest Pacific (NWP) and Central Equatorial Pacific (CEP) Ocean. Data on the characteristics of these sediments obtained after the FDNPP accident are extremely rare, especially in the NWP subtropical gyre (NPSG) region. FDNPP-derived radio-Cs (134Cs, 137Cs) arrived at the open sea floor of the NWP before 2018 but was only found in the Kuroshio-Oyashio Extension (KOE) region. No FDNPP-derived Pu was detected in the abyssal sediments of the NWP or CEP. Pu in the NWP mainly originated from global fallout and the Pacific Proving Ground (PPG) close-in fallout, except for at station WP1 (39°N in the KOE region), where an abnormal but non-FDNPP-derived Pu signal was detected. Pu in the eastern CEP sediment was less affected by the PPG close-in fallout from the Marshall Islands and was mainly derived from global fallout, with some close-in fallout from the Johnston Atoll test. The KOE region was the area most affected by PPG close-in fallout Pu via Kuroshio transport, while the lowest inventories of 239+240Pu and 237Np were found in the NPSG region due to its oligotrophic environment. The 237Np originated from the same source as Pu, and the latitudinal pattern of 237Np was consistent with that of Pu. Station SS (in the marginal sea of the NWP) contained high 237Np/239Pu atom ratios in the deeper layers of sediment and had a 237Np depth profile opposite that of the 239+240Pu profile, compared to other stations; these differences are mainly attributed to differences in the behaviors of 237Np and 239Pu.
Collapse
Affiliation(s)
- Fenfen Wang
- The Key Laboratory of Coastal and Island Development of the Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China; Department of Radioecology and Fukushima Project, National Institutes for Quantum and Radiological Science and Technology, 491 Anagawa, Inage, Chiba, 263-8555, Japan; The Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, P.R.C, Xiamen, 361005, China
| | - Jian Zheng
- Department of Radioecology and Fukushima Project, National Institutes for Quantum and Radiological Science and Technology, 491 Anagawa, Inage, Chiba, 263-8555, Japan.
| | - Tatsuo Aono
- Department of Radioecology and Fukushima Project, National Institutes for Quantum and Radiological Science and Technology, 491 Anagawa, Inage, Chiba, 263-8555, Japan
| | - Shaoming Pan
- The Key Laboratory of Coastal and Island Development of the Ministry of Education, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China
| | - Wu Men
- The Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, P.R.C, Xiamen, 361005, China
| |
Collapse
|
10
|
Intra- and inter-spatial variability of meiofauna in hadal trenches is linked to microbial activity and food availability. Sci Rep 2022; 12:4338. [PMID: 35288586 PMCID: PMC8921185 DOI: 10.1038/s41598-022-08088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Hadal trenches are depocenters for organic material, and host intensified benthic microbial activity. The enhanced deposition is presumed to be reflected in elevated meiofaunal standing-stock, but available studies are ambiguous. Here, we investigate the distribution of meiofauna along the Atacama Trench axis and adjacent abyssal and bathyal settings in order to relate the meiofauna densities to proxies for food availability. Meiofauna densities peaked at the sediment surface and attenuated steeply with increasing sediment depth. The distribution mirrored the vertical profile of the microbial-driven oxygen consumption rate demonstrating a close linkage between microbial activity and meiofauna density. Meiofaunal standing-stock along the trench axis varied by a factor of two, but were markedly higher than values from the abyssal site at the oceanic plate. Overall, meiofaunal densities poorly correlated with common proxies for food availability such as total organic carbon and phytopigments, but strongly correlated with the microbial benthic O2 consumption rate. We argue that microbial biomass likely represents an important meiofaunal food source for hadal meiofauna. Observations from three trench systems underlying surface water of highly different productivity confirmed elevated meiofaunal densities at the trench axis as compared to abyssal sites on oceanic plates. Food availability appear to drive elevated abundance and variations in meiofauna densities in hadal sediments.
Collapse
|
11
|
Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proc Natl Acad Sci U S A 2021; 118:2102629118. [PMID: 34903647 DOI: 10.1073/pnas.2102629118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
Anthropogenic activities have led to widespread contamination with mercury (Hg), a potent neurotoxin that bioaccumulates through food webs. Recent models estimated that, presently, 200 to 600 t of Hg is sequestered annually in deep-sea sediments, approximately doubling since industrialization. However, most studies did not extend to the hadal zone (6,000- to 11,000-m depth), the deepest ocean realm. Here, we report on measurements of Hg and related parameters in sediment cores from four trench regions (1,560 to 10,840 m), showing that the world's deepest ocean realm is accumulating Hg at remarkably high rates (depth-integrated minimum-maximum: 24 to 220 μg ⋅ m-2 ⋅ y-1) greater than the global deep-sea average by a factor of up to 400, with most Hg in these trenches being derived from the surface ocean. Furthermore, vertical profiles of Hg concentrations in trench cores show notable increasing trends from pre-1900 [average 51 ± 14 (1σ) ng ⋅ g-1] to post-1950 (81 ± 32 ng ⋅ g-1). This increase cannot be explained by changes in the delivery rate of organic carbon alone but also need increasing Hg delivery from anthropogenic sources. This evidence, along with recent findings on the high abundance of methylmercury in hadal biota [R. Sun et al, Nat. Commun. 11, 3389 (2020); J. D. Blum et al, Proc. Natl. Acad. Sci. U. S. A. 117, 29292-29298 (2020)], leads us to propose that hadal trenches are a large marine sink for Hg and may play an important role in the regulation of the global biogeochemical cycle of Hg.
Collapse
|
12
|
Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. THE ISME JOURNAL 2021; 15:3455-3467. [PMID: 34103697 PMCID: PMC8629969 DOI: 10.1038/s41396-021-01021-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.
Collapse
|
13
|
Joudan S, De Silva AO, Young CJ. Insufficient evidence for the existence of natural trifluoroacetic acid. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1641-1649. [PMID: 34693963 DOI: 10.1039/d1em00306b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Trifluoroacetic acid (TFA) is a persistent and mobile pollutant that is present ubiquitously in the environment. As a result of a few studies reporting its presence in pre-industrial samples and a purported unaccounted source, TFA is often claimed to exist naturally. Here, we examine the evidence for natural TFA by: (i) critically evaluating measurements of TFA in pre-industrial samples; (ii) examining the likelihood of TFA formation by hypothesized mechanisms; (iii) exploring other potential TFA sources to the deep ocean; and (iv) examining global budgets of TFA. We conclude that the presence of TFA in the deep ocean and lack of closed TFA budget is not sufficient evidence that TFA occurs naturally, especially without a reasonable mechanism of formation. We argue the paradigm of natural TFA should no longer be carried forward.
Collapse
Affiliation(s)
- Shira Joudan
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Yang H, Liu R, Liu H, Wang C, Yin X, Zhang M, Fang J, Zhang T, Ma L. Evidence for Long-Term Anthropogenic Pollution: The Hadal Trench as a Depository and Indicator for Dissemination of Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15136-15148. [PMID: 34739205 DOI: 10.1021/acs.est.1c03444] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of the distribution and dissemination of antibiotic resistance genes (ARGs) is essential for understanding anthropogenic impacts on natural ecosystems. The transportation of ARGs via aquatic environments is significant and has received great attention, but whether there has been anthropogenic ARG pollution to the hadal ocean ecosystem has not been well explored. For investigating ecological health concerns, we profiled the ARG occurrence in sediments of the Mariana Trench (MT) (10 890 m), the deepest region of the ocean. Metagenomic-based ARG profiles showed a sudden increase of abundance and diversity in the surface layer of MT sediments reaching 2.73 × 10-2 copy/cell and 81 subtypes, and a high percentage of ∼63.6% anthropogenic pollution sources was predicted by the Bayesian-modeling classification method. These together suggested that ARG accumulation and anthropogenic impacts have already permeated into the bottom of the deepest corner on the earth. Moreover, six ARG-carrying draft genomes were retrieved using a metagenomic binning strategy, one of which assigned as Streptococcus was identified as a potential bacterial host to contribute to the ARG accumulation in MT, carrying ermF, tetM, tetQ, cfxA2, PBP-2X, and PBP-1A. We propose that the MT ecosystem needs further long-term monitoring for the assessment of human impacts, and our identified three biomarkers (cfxA2, ermF, and mefA) could be used for the rapid monitoring of anthropogenic pollution. Together our findings imply that anthropogenic pollution has penetrated into the deepest region of the ocean and urge for better pollution control to reduce the risk of ARG dissemination to prevent the consistent accumulation and potential threat to the natural environment.
Collapse
Affiliation(s)
- Huiying Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Huafeng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Chen Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ming Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liping Ma
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
15
|
Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc Natl Acad Sci U S A 2021; 118:2104529118. [PMID: 34764222 DOI: 10.1073/pnas.2104529118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.
Collapse
|
16
|
Sedimentary supply of humic-like fluorescent dissolved organic matter and its implication for chemoautotrophic microbial activity in the Izu-Ogasawara Trench. Sci Rep 2021; 11:19006. [PMID: 34561465 PMCID: PMC8463680 DOI: 10.1038/s41598-021-97774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022] Open
Abstract
Microbial community structure in the hadal water is reported to be different from that in the upper abyssal water. However, the mechanism governing the difference has not been fully understood. In this study, we investigate the vertical distributions of humic-like fluorescent dissolved organic matter (FDOMH), chemoautotrophic production, apparent oxygen utilization (AOU), and N* in the Izu-Ogasawara Trench. In the upper abyssal waters (< 6000 m), FDOMH has a significantly positive correlation with AOU; FDOMH deviates from the relationship and increases with depth without involving the increment of AOU in the hadal waters. This suggests that FDOMH is transferred from the sediments to the hadal waters through pore water, while the FDOMH is produced in situ in the upper abyssal waters. Chemoautotrophic production and N* increases and decreases with depth in the hadal waters, respectively. This corroborates the effluxes of dissolved substances, including dissolved organic matter and electron donors from sediments, which fuels the heterotrophic/chemoautotrophic microbial communities in the hadal waters. A simple box model analysis reveals that the funnel-like trench topography facilitates the increase in dissolved substances with depth in the hadal waters, which might contribute to the unique microbiological community structure in these waters.
Collapse
|
17
|
Li W, Li X, Mei X, Zhang F, Xu J, Liu C, Wei C, Liu Q. A review of current and emerging approaches for Quaternary marine sediment dating. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146522. [PMID: 33770600 DOI: 10.1016/j.scitotenv.2021.146522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Dating methodologies for Quaternary marine sediments play increasingly important roles in the reconstruction of paleoenvironments and paleoclimate in (paleo)oceanography. Previous reviews or studies have focused mainly on one or two methodologies, and their applications in one specific environment. With the continuing technological and methodological advances in different methods over the past few decades, an up-to-date comparison of the pros and cons of each dating methodology is needed to clearly understand their applications in marine geoscience research. In this review, we first briefly summarized the common methods of absolute dating and relative dating. These are (1) radioisotope dating with different half-lives using natural nuclides of 234Th, 210Pb, 230Th, and 226Ra, cosmogenic nuclides of 7Be, 14C, 10Be, 32Si, 26Al, 36Cl and 21Ne, and the artificial radionuclides of 137Cs, 239, 240Pu, 241Am and 129I that have been induced by atmospheric nuclear tests, accidents in nuclear plants, and discharges of radioactive wastes; (2) radiation exposure dating of luminescence and electron paramagnetic resonance (ESR) dating; and (3) stratigraphic dating of δ18O and paleomagnetic sequence. Applications and limitations from the marine terraces, estuaries, to hadal trenches have been summarized to each technique in the study of Quaternary marine geoscience extending from the Anthropocene through the Pleistocene. Finally, we introduced some emerging event dating methods, namely the arrivals of microplastics, mercury isotopes, and organic pollutant deposition that all appeared after the industrial resolution in our now changing ocean influenced by acidification, global warming, and anthropogenic activities. We ended by discussing future perspectives for reliable and high-resolution chronology by interdisciplinary methods including computer programming to better understand the natural geological evolution and predict the future changes in earth science.
Collapse
Affiliation(s)
- Wenpeng Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinxin Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| | - Xi Mei
- Qingdao Institute of Marine Geology, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology/Evaluation and Detection Technology Laboratory of Marine Mineral Resources, Qingdao 266237, China
| | - Fan Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingping Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Chunru Liu
- State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
| | - Chuanyi Wei
- State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Schauberger C, Middelboe M, Larsen M, Peoples LM, Bartlett DH, Kirpekar F, Rowden AA, Wenzhöfer F, Thamdrup B, Glud RN. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:2095-2109. [PMID: 34239169 PMCID: PMC8248377 DOI: 10.1002/lno.11711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 05/31/2023]
Abstract
Hadal trenches represent the deepest part of the ocean and are dynamic depocenters with intensified prokaryotic activity. Here, we explored the distribution and drivers of prokaryotic and viral abundance from the ocean surface and 40 cm into sediments in two hadal trench regions with contrasting surface productivity. In the water column, prokaryotic and viral abundance decreased with water depth before reaching a rather stable level at ~ 4000 m depth at both trench systems, while virus to prokaryote ratios were increasing with depth, presumably reflecting the declining availability of organic material. Prokaryotic and viral abundances in sediments were lower at the adjacent abyssal sites than at the hadal sites and declined exponentially with sediment depth, closely tracking the attenuation of total organic carbon (TOC) content. In contrast, hadal sediment exhibited erratic depth profiles of prokaryotes and viruses with many subsurface peaks. The prokaryotic abundance correlated well to extensive fluctuations in TOC content at centimeter scale, which were likely caused by recurring mass wasting events. Yet while prokaryotic and viral abundances cross correlated well in the abyssal sediments, there was no clear correlation in the hadal sites. The results suggested that dynamic depositional conditions and higher substrate availability result in a high spatial heterogeneity in viral and prokaryotic abundances in hadal sediments in comparison to more stable abyssal settings. We argue that these conditions enhance the relatively importance of viruses for prokaryotic mortality and carbon recycling in hadal settings.
Collapse
Affiliation(s)
- Clemens Schauberger
- Department of Biology, Nordcee and HADALUniversity of Southern DenmarkOdenseDenmark
| | - Mathias Middelboe
- Department of Biology, Nordcee and HADALUniversity of Southern DenmarkOdenseDenmark
- Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark
| | - Morten Larsen
- Department of Biology, Nordcee and HADALUniversity of Southern DenmarkOdenseDenmark
| | - Logan M. Peoples
- Marine Biology Research Division, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Douglas H. Bartlett
- Marine Biology Research Division, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Finn Kirpekar
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Ashley A. Rowden
- National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Frank Wenzhöfer
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine ResearchBremerhavenGermany
- Max Planck Institute for Marine Microbiology and EcologyBremenGermany
| | - Bo Thamdrup
- Department of Biology, Nordcee and HADALUniversity of Southern DenmarkOdenseDenmark
| | - Ronnie N. Glud
- Department of Biology, Nordcee and HADALUniversity of Southern DenmarkOdenseDenmark
- Department of Ocean and Environmental SciencesTokyo University of Marine Science and TechnologyTokyoJapan
- Danish Institute for Advanced Study – DIAS, University of Southern DenmarkOdenseDenmark
| |
Collapse
|
19
|
Du M, Peng X, Zhang H, Ye C, Dasgupta S, Li J, Li J, Liu S, Xu H, Chen C, Jing H, Xu H, Liu J, He S, He L, Cai S, Chen S, Ta K. Geology, environment, and life in the deepest part of the world's oceans. ACTA ACUST UNITED AC 2021; 2:100109. [PMID: 34557759 PMCID: PMC8454626 DOI: 10.1016/j.xinn.2021.100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
The hadal zone, mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans, represents the least explored habitat but one of the last frontiers on our planet. The present scientific understanding of the hadal environment is still relatively rudimentary, particularly in comparison with that of shallower marine environments. In the last 30 years, continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench. However, the geological and environmental processes that potentially affect the sedimentary, geochemical and biological processes in hadal trenches have received less attention. Here, we review recent advances in the geology, biology, and environment of hadal trenches and offer a perspective of the hadal science involved therein. For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density, outcrops of mantle and basaltic rocks, and anthropogenic pollutants at the deepest point of the world’s ocean. We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench. Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem. Future research, combined with technological advances and international cooperation, should focus on establishing the intrinsic linkage of the geology, biology, and environment of the hadal trenches. This paper provides a comprehensive review on hadal geology, environment, and biology, as well as potential interactions among them For the first time, we release high-definition images taken by a new full-ocean-depth manned submersible Fendouzhe The hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary, geochemical, and biological processes in the hadal trench The development of deep-sea technology and international cooperation will greatly promote the progress of hadal science
Collapse
Affiliation(s)
- Mengran Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Xiaotong Peng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
- Corresponding author
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Cong Ye
- China Ship Scientific Research Center, Wuxi 214082, China
| | - Shamik Dasgupta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiwei Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jiangtao Li
- State Key Lab of Marine Geology, Tongji University, Shanghai 200092, China
| | - Shuangquan Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hengchao Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Chuanxu Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongmei Jing
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Hongzhou Xu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shunping He
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shun Chen
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kaiwen Ta
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
20
|
Sanei H, Outridge PM, Oguri K, Stern GA, Thamdrup B, Wenzhöfer F, Wang F, Glud RN. High mercury accumulation in deep-ocean hadal sediments. Sci Rep 2021; 11:10970. [PMID: 34040077 PMCID: PMC8155115 DOI: 10.1038/s41598-021-90459-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Ocean sediments are the largest sink for mercury (Hg) sequestration and hence an important part of the global Hg cycle1. Yet accepted global average Hg flux data for deep-ocean sediments (> 200 m depth) are not based on measurements on sediments but are inferred from sinking particulates2. Mercury fluxes have never been reported from the deepest zone, the hadal (> 6 km depth). Here we report the first measurements of Hg fluxes from two hadal trenches (Atacama and Kermadec) and adjacent abyssal areas (2–6 km). Mercury concentrations of up to 400 ng g−1 were the highest recorded in marine sediments remote from anthropogenic or hydrothermal sources. The two trench systems differed significantly in Hg concentrations and fluxes, but hadal and abyssal areas within each system did not. The relatively low recent mean flux at Kermadec was 6–15 times higher than the inferred deep-ocean average1,3, while the median flux across all cores was 22–56 times higher. Thus, some hadal and abyssal sediments are Hg accumulation hot-spots. The hadal zone comprises only ~ 1% of the deep-ocean area, yet a preliminary estimate based on sediment Hg and particulate organic carbon (POC) fluxes suggests total hadal Hg accumulation may be 12–30% of the estimate for the entire deep-ocean. The few abyssal data show equally high Hg fluxes near trench systems. These results highlight a need for further research into deep-ocean Hg fluxes to better constrain global Hg models.
Collapse
Affiliation(s)
- Hamed Sanei
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, 8000, Aarhus C, Denmark
| | - Peter M Outridge
- Lithospheric Organic Carbon (LOC) Group, Department of Geoscience, Aarhus University, 8000, Aarhus C, Denmark. .,Geological Survey of Canada, Natural Resources Canada, 601 Booth St, Ottawa, ON, K1A 0E8, Canada. .,Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Kazumasa Oguri
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.,Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark
| | - Gary A Stern
- Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Bo Thamdrup
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark.,HGF-MPG Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Center for Polar and Marine Research, 27570, Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Feiyue Wang
- Department of Environment and Geography, Center for Earth Observation Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ronnie N Glud
- Department of Biology, University of Southern Denmark, HADAL and Nordcee, 5230, Odense M, Denmark.,Department of Ocean and Environmental Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.,Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Fioniavej 34, 5230, Odense, Denmark
| |
Collapse
|
21
|
Schwestermann T, Huang J, Konzett J, Kioka A, Wefer G, Ikehara K, Moernaut J, Eglinton TI, Strasser M. Multivariate Statistical and Multiproxy Constraints on Earthquake-Triggered Sediment Remobilization Processes in the Central Japan Trench. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2020; 21:e2019GC008861. [PMID: 32714099 PMCID: PMC7379269 DOI: 10.1029/2019gc008861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 05/24/2023]
Abstract
Understanding the impact of earthquakes on subaqueous environments is key for submarine paleoseismological investigations seeking to provide long-term records of past earthquakes. For this purpose, event deposits (e.g., turbidites) are, among others, identified and stratigraphically correlated over broad areas to test for synchronous occurrence of gravity flows. Hence, detailed spatiotemporal petrographic and geochemical fingerprints of such deposits are required to advance the knowledge about sediment source and the underlying remobilization processes induced by past earthquakes. In this study, we develop for the first time in paleoseismology a multivariate statistical approach using X-ray fluorescence core scanning, magnetic susceptibility, and wet bulk density data that allow to test, confirm, and enhance the previous visual and lithostratigraphic correlation across two isolated basins in the central Japan Trench. The statistical correlation is further confirmed by petrographic heavy grain analysis of the turbidites and additionally combined with our novel erosion model based on previously reported bulk organic carbon 14C dates. We find surficial sediment remobilization, a process whereby strong seismic shaking remobilizes the uppermost few centimeters of surficial slope sediment, to be a predominant remobilization process, which partly initiates deeper sediment remobilization downslope during strong earthquakes at the Japan Trench. These findings shed new light on source-to-sink transport processes in hadal trenches during earthquakes and help to assess the completeness of the turbidite paleoseismic record. Our results further suggest that shallow-buried tephra on the slope might significantly influence sediment remobilization and the geochemical and petrographic fingerprints of the resulting event deposits.
Collapse
Affiliation(s)
| | - J. Huang
- Institute of GeologyUniversity of InnsbruckInnsbruckAustria
| | - J. Konzett
- Institute of Mineralogy and PetrographyUniversity of InnsbruckInnsbruckAustria
| | - A. Kioka
- Institute of GeologyUniversity of InnsbruckInnsbruckAustria
- Department of Earth Resources EngineeringKyushu UniversityFukuokaJapan
| | - G. Wefer
- MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| | - K. Ikehara
- Geological Survey of JapanNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - J. Moernaut
- Institute of GeologyUniversity of InnsbruckInnsbruckAustria
| | | | - M. Strasser
- Institute of GeologyUniversity of InnsbruckInnsbruckAustria
- MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany
| |
Collapse
|
22
|
Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, Juliarni, Rastelli E, Danovaro R, Corinaldesi C, Kitahashi T, Tasumi E, Nishizawa M, Takai K, Nomaki H, Nunoura T. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME JOURNAL 2019; 14:740-756. [PMID: 31827245 PMCID: PMC7031335 DOI: 10.1038/s41396-019-0564-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and Mariana Trenches. Tag-sequencing analyses showed specific distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean. Our trans-trench analysis highlights intra- and inter-trench distributions of microbial assemblages and geochemistry in surface seafloor sediments, providing novel insights into ultradeep-sea microbial ecology, one of the last frontiers on our planet.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| | - Miho Hirai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Yohei Matsui
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Akiko Makabe
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hiroaki Minegishi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.,Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, 350-8585, Saitama, Japan
| | - Miwako Tsuda
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Juliarni
- Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, 80121, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Tomo Kitahashi
- Marine Biodiversity and Environmental Assessment Research Center (BioEnv), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Kanagawa, Japan.
| |
Collapse
|
23
|
Rastelli E, Corinaldesi C, Dell'Anno A, Tangherlini M, Lo Martire M, Nishizawa M, Nomaki H, Nunoura T, Danovaro R. Drivers of Bacterial α- and β-Diversity Patterns and Functioning in Subsurface Hadal Sediments. Front Microbiol 2019; 10:2609. [PMID: 31798555 PMCID: PMC6868121 DOI: 10.3389/fmicb.2019.02609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
Oceanic trenches at hadal (>6,000 m) depths are hot spots of organic matter deposition and mineralization and can host abundant and active bacterial assemblages. However, the factors able to shape their biodiversity and functioning remain largely unexplored, especially in subsurface sediments. Here, we investigated the patterns and drivers of benthic bacterial α- and β-diversity (i.e., OTU richness and turnover diversity) along the vertical profile down to 1.5 m sediment depth in the Izu-Bonin Trench (at ~10,000 m water depth). The protease and glucosidase enzymatic activity rates were also determined, as a proxy of organic matter degradation potential in the different sediment layers. Molecular fingerprinting based on automated ribosomal intergenic spacer analysis (ARISA) indicated that the α-diversity of bacterial assemblages remained high throughout the vertical profile and that the turnover (β-) diversity among sediment horizons reached values up to 90% of dissimilarity. Multivariate distance-based linear modeling (DISTLM) pointed out that the diversity and functioning of the hadal bacterial assemblages were influenced by the variability of environmental conditions (including the availability of organic resources and electron donors/acceptors) and of viral production rates along the sediment vertical profile. Based on our results, we can argue that the heterogeneity of physical-chemical features of the hadal sediments of the Izu-Bonin Trench contribute to increase the niches availability for different bacterial taxa, while viruses contribute to maintain high levels of bacterial turnover diversity and to enhance organic matter cycling in these extremely remote and isolated ecosystems.
Collapse
Affiliation(s)
- Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Manabu Nishizawa
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hidetaka Nomaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Roberto Danovaro
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
24
|
Seawater, biota and sediment partitioning of 137Cs in the east coast of Peninsular Malaysia. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T, Nomaki H, Danovaro R, Corinaldesi C. Viral Infections Boost Prokaryotic Biomass Production and Organic C Cycling in Hadal Trench Sediments. Front Microbiol 2019; 10:1952. [PMID: 31507564 PMCID: PMC6716271 DOI: 10.3389/fmicb.2019.01952] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Hadal trenches are among the most remote and least explored ecosystems on Earth and can support high benthic microbial standing stocks and activities. However, information on the role of viruses in such ecosystems and their interactions with prokaryotic hosts is very limited. Here, we investigated activities of benthic viruses and prokaryotes and their interactions in three hadal trenches (Japan, Izu-Ogasawara and Mariana trenches) and in their nearby abyssal sites. Our findings reveal that these hadal trenches, compared with the surrounding abyssal sites, support higher abundances and biomasses of prokaryotes. In addition, the high prokaryotic biomasses of hadal trenches could favor high rates of viral infection and cell lysis, especially in the Japan Trench. Hadal viruses can release large amounts of highly labile and promptly available organic material by inducing cell lysis, which could contribute to sustain benthic prokaryotes and decrease their dependency on the enzymatic digestion of the more refractory fraction of sediment organic matter. Our results suggest that this process can contribute to explain the discrepancy between high prokaryote biomass and apparent low efficiency in the utilization of the sedimentary organic matter in the hadal ecosystems. Concluding, hadal trenches may be characterized by a highly dynamic viral component, which can boost prokaryotic biomass production, thereby profoundly influencing the functioning of these remote and extreme ecosystems.
Collapse
Affiliation(s)
- Elisabetta Manea
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Hidetaka Nomaki
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
26
|
Abstract
Deep-sea trenches, depths 6000-11,000 m, are characterized by high pressures, low temperatures, and absence of sunlight. These features make up the majority of the deepest marine habitat-the hadal zone-home to distinct communities from those in the surrounding abyssal plains. The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from ∼6000 to 8200 m, comprising the dominant ichthyofauna in at least six trenches worldwide. The hadal fish community is distinct from the abyssal community where elongate, scavenging fishes such as rattails (Macrouridae), cutthroat eels (Synaphobranchidae), tripodfishes (Ipnopidae), eelpouts (Zoarcidae), and cusk eels (Ophidiidae) are most common. Until recently, little was known about the biology of these deepest-living fishes, or the factors that drive their success at hadal depths. Here, I review recent investigations spanning the abyssal-hadal boundary and discuss the factors structuring these communities, including the roles of pressure adaptation, feeding ecology, and life history. Hadal fishes show specialized adaptation to hydrostatic pressure both in accumulation of the pressure-counteractant trimethylamine n-oxide and in intrinsic changes to enzymes. Stomach content and amino acid isotope analyses, and jaw morphology suggest that suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench where amphipods are increasingly abundant. Analysis of otolith growth zones suggest that snailfishes may be adapted to a seismically active, high-disturbance hadal environment by having relatively short life-spans. This review synthesizes the known literature on the planet's deepest-living fishes and informs new understanding of adaptations to life in the trenches.
Collapse
Affiliation(s)
- M E Gerringer
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
27
|
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches. Front Microbiol 2019; 10:347. [PMID: 30930856 PMCID: PMC6428765 DOI: 10.3389/fmicb.2019.00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eleanna Grammatopoulou
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom
| | - Michelle Pombrol
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Xiaoxiong Xu
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Oladayo Osuntokun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Jessica Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Clifton C Nunnally
- Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, United States
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawai'i at Ma-noa, Honolulu, HI, United States
| | - Daniel J Mayor
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom.,National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton, United Kingdom
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci Rep 2019; 9:1553. [PMID: 30733607 PMCID: PMC6367409 DOI: 10.1038/s41598-019-38834-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
The giant 2011 Tohoku-oki earthquake has been inferred to remobilise fine-grained, young surface sediment enriched in organic matter from the slope into the >7 km deep Japan Trench. Yet, this hypothesis and assessment of its significance for the carbon cycle has been hindered by limited data density and resolution in the hadal zone. Here we combine new high-resolution bathymetry data with sub-bottom profiler images and sediment cores taken during 2012–2016 in order to map for the first time the spatial extent of the earthquake-triggered event deposit along the hadal Japan Trench. We quantify a sediment volume of ~0.2 km3 deposited from spatially-widespread remobilisation of young surficial seafloor slope sediments triggered by the 2011 earthquake and its aftershock sequence. The mapped volume and organic carbon content in sediment cores encompassing the 2011 event reveals that this single tectonic event delivered >1 Tg of organic carbon to the hadal trench. This carbon supply is comparable to high carbon fluxes described for other Earth system processes, shedding new light on the impact of large earthquakes on long-term carbon cycling in the deep-sea.
Collapse
|
29
|
Yang J, Cui Z, Dada OA, Yang Y, Yu H, Xu Y, Lin Z, Chen Y, Tang X. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean. MARINE POLLUTION BULLETIN 2018; 135:1035-1041. [PMID: 30300997 DOI: 10.1016/j.marpolbul.2018.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/10/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, we carried out grain size and heavy metal analyses and also assessed heavy metal enrichment and ecological risk indices in ten sediment samples collected by the manned submersible Jiaolong at different segments of the Yap Trench. The results showed that the sediments in the Yap Trench were mainly slumping deposits composed of sandy silt. Heavy metals in the sediments showed different spatial distribution patterns from north to south direction of the trench. The distribution pattern of these heavy metals also differed in the eastern and western flanks of the trench. From the results of the enrichment factors, only arsenic, chromium, and manganese showed a slight enrichment. However, all elements were affected by natural factors. Further, most elements showed a low ecological risk, and only arsenic showed a moderate risk at two stations. Finally, the potential ecological risk of the whole study area was at a low level.
Collapse
Affiliation(s)
- Jichao Yang
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China; Ocean University of China, Qingdao 266100, China
| | - Zhen Cui
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China.
| | - Olusegun A Dada
- Dept. of Marine Science & Technology, Federal University of Technology, Akure 340252, Nigeria
| | - Yaomin Yang
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China.
| | - Hongjun Yu
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China
| | - Yue Xu
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China
| | - Zhen Lin
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China
| | - Yu Chen
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China
| | - Xin Tang
- National Deep Sea Center, State Oceanic Administration, Qingdao 266237, China
| |
Collapse
|
30
|
Tectonically-triggered sediment and carbon export to the Hadal zone. Nat Commun 2018; 9:121. [PMID: 29317639 PMCID: PMC5760703 DOI: 10.1038/s41467-017-02504-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 12/05/2017] [Indexed: 11/08/2022] Open
Abstract
Sediments in deep ocean trenches may contain crucial information on past earthquake history and constitute important sites of carbon burial. Here we present 14C data on bulk organic carbon (OC) and its thermal decomposition fractions produced by ramped pyrolysis/oxidation for a core retrieved from the >7.5 km-deep Japan Trench. High-resolution 14C measurements, coupled with distinctive thermogram characteristics of OC, reveal hemipelagic sedimentation interrupted by episodic deposition of pre-aged OC in the trench. Low δ13C values and diverse 14C ages of thermal fractions imply that the latter material originates from the adjacent margin, and the co-occurrence of pre-aged OC with intervals corresponding to known earthquake events implies tectonically triggered, gravity-flow-driven supply. We show that 14C ages of thermal fractions can yield valuable chronological constraints on sedimentary sequences. Our findings shed new light on links between tectonically driven sedimentological processes and marine carbon cycling, with implications for carbon dynamics in hadal environments. Within sediments in deep ocean trenches an earthquake record may be observed. Here, the authors present 14C data on bulk organic carbon (OC) and thermal decomposition from a sediment core in the Japan Trench and match OC values with known earthquake events.
Collapse
|
31
|
Seike K, Shirai K, Murakami-Sugihara N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS One 2017; 12:e0182753. [PMID: 28854254 PMCID: PMC5576643 DOI: 10.1371/journal.pone.0182753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022] Open
Abstract
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
Collapse
Affiliation(s)
- Koji Seike
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
32
|
Strand P, Sundell-Bergman S, Brown JE, Dowdall M. On the divergences in assessment of environmental impacts from ionising radiation following the Fukushima accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:159-173. [PMID: 28119209 DOI: 10.1016/j.jenvrad.2016.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The accident at the Fukushima-Daiichi Nuclear Power Station on March 11, 2011, led to significant contamination of the surrounding terrestrial and marine environments. Whilst impacts on human health remain the primary concern in the aftermath of such an accident, recent years have seen a significant body of work conducted on the assessment of the accident's impacts on both the terrestrial and marine environment. Such assessments have been undertaken at various levels of biological organisation, for different species, using different methodologies and coming, in many cases, to divergent conclusions as to the effects of the accident on the environment. This article provides an overview of the work conducted in relation to the environmental impacts of the Fukushima accident, critically comparing and contrasting methodologies and results with a view towards finding reasons for discrepancies, should they indeed exist. Based on the outcomes of studies conducted to date, it would appear that in order to avoid the fractured and disparate conclusions drawn in the aftermath of previous accidents, radioactive contaminants and their effects can no longer simply be viewed in isolation with respect to the ecosystems these effects may impact. A combination of laboratory based and field studies with a focus on ecosystem functioning and effects could offer the best opportunities for coherence in the interpretation of the results of studies into the environmental impacts of ionising radiation.
Collapse
Affiliation(s)
- P Strand
- CERAD, Norwegian University of Life Sciences, 1430 Ås, Norway.
| | - S Sundell-Bergman
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Box 7014, 750 07 Uppsala, Sweden
| | - J E Brown
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| | - M Dowdall
- Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway
| |
Collapse
|
33
|
Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 2017; 1:51. [DOI: 10.1038/s41559-016-0051] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022]
|
34
|
Nunoura T, Hirai M, Yoshida-Takashima Y, Nishizawa M, Kawagucci S, Yokokawa T, Miyazaki J, Koide O, Makita H, Takaki Y, Sunamura M, Takai K. Distribution and Niche Separation of Planktonic Microbial Communities in the Water Columns from the Surface to the Hadal Waters of the Japan Trench under the Eutrophic Ocean. Front Microbiol 2016; 7:1261. [PMID: 27559333 PMCID: PMC4978738 DOI: 10.3389/fmicb.2016.01261] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023] Open
Abstract
The Japan Trench is located under the eutrophic Northwestern Pacific while the Mariana Trench that harbors the unique hadal planktonic biosphere is located under the oligotrophic Pacific. Water samples from the sea surface to just above the seafloor at a total of 11 stations including a trench axis station, were investigated several months after the Tohoku Earthquake in March 2011. High turbidity zones in deep waters were observed at most of the sampling stations. The small subunit (SSU) rRNA gene community structures in the hadal waters (water depths below 6000 m) at the trench axis station were distinct from those in the overlying meso-, bathy and abyssopelagic waters (water depths between 200 and 1000 m, 1000 and 4000 m, and 4000 and 6000 m, respectively), although the SSU rRNA gene sequences suggested that potential heterotrophic bacteria dominated in all of the waters. Potential niche separation of nitrifiers, including ammonia-oxidizing archaea (AOA), was revealed by quantitative PCR analyses. It seems likely that Nitrosopumilus-like AOAs respond to a high flux of electron donors and dominate in several zones of water columns including shallow and very deep waters. This study highlights the effects of suspended organic matter, as induced by seafloor deformation, on microbial communities in deep waters and confirm the occurrence of the distinctive hadal biosphere in global trench environments hypothesized in the previous study.
Collapse
Affiliation(s)
- Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Miho Hirai
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Yukari Yoshida-Takashima
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Manabu Nishizawa
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Taichi Yokokawa
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Junichi Miyazaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Osamu Koide
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Hiroko Makita
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Yoshihiro Takaki
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and TechnologyYokosuka, Japan; Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and TechnologyYokosuka, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, The University of Tokyo Tokyo, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| |
Collapse
|
35
|
Jamin T, Gordillo L, Ruiz-Chavarría G, Berhanu M, Falcon E. Experiments on generation of surface waves by an underwater moving bottom. Proc Math Phys Eng Sci 2015. [DOI: 10.1098/rspa.2015.0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report laboratory experiments on surface waves generated in a uniform fluid layer whose bottom undergoes an upward motion. Simultaneous measurements of the free-surface deformation and the fluid velocity field are focused on the role of the bottom kinematics (i.e. its spatio-temporal features) in wave generation. We observe that the fluid layer transfers bottom motion to the free surface as a temporal high-pass filter coupled with a spatial low-pass filter. Both filter effects are often neglected in tsunami warning systems, particularly in real-time forecast. Our results display good agreement with a prevailing linear theory without any parameter fitting. Based on our experimental findings, we provide a simple theoretical approach for modelling the rapid kinematics limit that is applicable even for initially non-flat bottoms: this may be a key step for more realistic varying bathymetry in tsunami scenarios.
Collapse
Affiliation(s)
- Timothée Jamin
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75013 Paris, France
| | - Leonardo Gordillo
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75013 Paris, France
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile
| | | | - Michael Berhanu
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75013 Paris, France
| | - Eric Falcon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75013 Paris, France
| |
Collapse
|
36
|
Otosaka S, Nakanishi T, Suzuki T, Satoh Y, Narita H. Vertical and lateral transport of particulate radiocesium off Fukushima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12595-12602. [PMID: 25310600 DOI: 10.1021/es503736d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Transport processes of particulate radiocesium were investigated using a sediment trap deployed at about 100 km east of the Fukushima Daiichi Nuclear Power Plant. A sediment trap was installed at 873 m depth of the station (119 m above the bottom), and time-series sampling of sinking particles was carried out from August, 2011 to June, 2013. The accident-derived radiocesium was detected from sinking particles over two years after the accident. Observed 137Cs flux was highest in September 2011 (98 mBq m(-2) day(-1): decay-corrected to March 11, 2011), and decreased over time with seasonal fluctuations. Particulate fluxes of radiocesium were mainly affected by two principal processes. One was the rapid sinking of radiocesium-bound particles (moderate mode). This mode was dominant especially in the early postaccident stage, and was presumed to establish the distribution of radiocesium in the offshore seabed. Another mode was observed in winter, and secondary transport of particles attributed to turbulence near the seabed increased fluxes of particulate radiocesium (turbulence mode). Although the latter process would not drastically change the distribution of sedimentary radiocesium in the short term, attention should be paid as this key process redistributing the accident-derived radiocesium may cumulatively affect the long-term distribution.
Collapse
Affiliation(s)
- Shigeyoshi Otosaka
- Research Group for Environmental Science, Japan Atomic Energy Agency , 2-4 Shiraka-Shirane, Tokai-mura, Ibaraki 319-1195, Japan
| | | | | | | | | |
Collapse
|