1
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025; 39:1011-1030. [PMID: 40140631 PMCID: PMC12055591 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
2
|
Chen Z, Zheng X, Zeng W, Wang J, Lin Q. JAK2 inactivating mutations promotes endometrial cancer progression by targeting HIF-1α. Discov Oncol 2024; 15:836. [PMID: 39720955 DOI: 10.1007/s12672-024-01722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVE Endometrial cancer (EC) is the ninth most common malignancy among women. While mutations in JAK2 are frequently observed in EC, the specific biological functions of JAK2 in endometrial cancer are poorly understood. METHODS The genetic alterations of JAK2 in different cancer types were explored using sequencing dataset deposited at TCGA database. JAK2 mutations were detected in EC formalin-fixed paraffin-embedded (FFPE) samples using Sanger sequencing. The expression levels of JAK2 was accessed using the TCGA database and immunohistochemistry. Furthermore, the relationships between JAK2 expression and staging and prognosis of EC patients were investigated using the TCGA database. Down-regulation of JAK2 were achieved by transient transfection with short hairpin RNAs (shRNAs). Effects of JAK2 on cancer cells proliferation and migration were evaluated by CCK8, colony formation, and transwell assay. The potential biological functions of JAK2 in EC were identified based on bioinformatics analysis. Effects of JAK2 on expression levels of target genes were detected by RT-qPCR and western blotting. Co-immunoprecipitation (co-IP) assays was used to detect the physical association between JAK2 and HIF-1α. RESULTS Frequent mutations and down-regulation of JAK2 were found in EC. Loss-of-function (LOF) assays suggested that JAK2 silencing in endometrial cancer cells promoted cell proliferation and migration, which were partially dependent on HIF-1α signaling pathway. Furthermore, our findings demonstrated that JAK2 interacted with HIF-1α and reduced HIF1α protein expression under hypoxia. CONCLUSION These findings revealed novel molecular mechanisms underlying JAK2 LOF mutations-driven endometrial tumorigenesis and revealed that the HIF-1α pathway may be a potential therapeutic target in JAK2-mutated endometrial cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Xuan Zheng
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Weijian Zeng
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China
| | - Juan Wang
- Hangzhou Chexmed Technology Co., Ltd., Hangzhou, 310000, China
| | - Qin Lin
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
| |
Collapse
|
3
|
Martinez-Cannon BA, Colombo I. The evolving role of immune checkpoint inhibitors in cervical and endometrial cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:23. [PMID: 39050882 PMCID: PMC11267150 DOI: 10.20517/cdr.2023.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for numerous tumor types, including cervical and endometrial cancers. Multiple ICIs against programmed cell death-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have demonstrated encouraging outcomes in controlled clinical studies for advanced cervical and endometrial cancers. For advanced cervical cancer, approved ICIs as second-line treatment include cemiplimab, nivolumab, and pembrolizumab as single agents. In the first-line treatment setting, options include pembrolizumab alone or in combination with bevacizumab, as well as atezolizumab combined with a backbone platinum-based chemotherapy plus bevacizumab. Additionally, for locally advanced cervical cancer, pembrolizumab is recommended alongside concurrent chemoradiotherapy. For endometrial cancer, pembrolizumab monotherapy, pembrolizumab in combination with lenvatinib, and dostarlimab are currently approved as second-line treatment options. Moreover, either dostarlimab or pembrolizumab can be added to first-line platinum-based chemotherapy for mismatch repair deficient malignancies. Although the inclusion of these agents in clinical practice has led to improved overall response rates and survival outcomes, many patients still lack benefits, possibly due to multiple intrinsic and adaptive resistance mechanisms to immunotherapy. This review aims to highlight the rationale for utilizing ICIs and their current role, while also delineating the proposed mechanisms of resistance to ICIs in cervical and endometrial cancer.
Collapse
Affiliation(s)
- Bertha Alejandra Martinez-Cannon
- Hematology-Oncology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico
| | - Ilaria Colombo
- Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Bellinzona 6500 - CH, Switzerland
| |
Collapse
|
4
|
Yang Q, Lv Z, Wang M, Kong M, Zhong C, Gao K, Wan X. LATS1/2 loss promote tumor immune evasion in endometrial cancer through downregulating MHC-I expression. J Exp Clin Cancer Res 2024; 43:54. [PMID: 38383447 PMCID: PMC10880206 DOI: 10.1186/s13046-024-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND LATS1/2 are frequently mutated and down-regulated in endometrial cancer (EC), but the contributions of LATS1/2 in EC progression remains unclear. Impaired antigen presentation due to mutations or downregulation of the major histocompatibility complex class I (MHC-I) has been implicated in tumor immune evasion. Herein, we elucidate the oncogenic role that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I. METHODS The mutation and expression as well as the clinical significance of LATS1/2 in EC was assessed in the TCGA cohort and our sample cohort. CRISPR-Cas9 was used to construct knockout cell lines of LATS1/2 in EC. Differentially expressed genes were analyzed by RNA-seq. The interaction between LATS1/2 and STAT1 was verified using co-immunoprecipitation and GST pull-down assays. Mass spectrometry, in vitro kinase assays, ChIP-qPCR, flow cytometry, immunohistochemistry, immunofluorescence and confocal microscopy were performed to investigate the regulation of LATS1/2 on MHC-I through interaction with and phosphorylate STAT1. The killing effect of activated PBMCs on EC cells were used to monitor anti-tumor activity. RESULTS Here, we demonstrate that LATS1/2 are frequently mutated and down-regulated in EC. Moreover, LATS1/2 loss was found to be associated with a significant down-regulation of MHC-I, independently of the Hippo-YAP pathway. Instead, LATS1/2 were found to directly interact with and phosphorylate STAT1 at Ser727, a crucial transcription factor for MHC-I upregulation in response to interferon-gamma (IFN-γ) signaling, to promote STAT1 accumulating and moving into the nucleus to enhance the transcriptional activation of IRF1/NLRC5 on MHC-I. Additionally, the loss of LATS1/2 was observed to confer increased resistance of EC cells to immune cell-mediated killing and this resistance could be reversed by over-expression of MHC-I. CONCLUSION Our findings indicate that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I, leading to the suppression of infiltrating activated CD8 + T cells and highlight the importance of LATS1/2 in IFN-γ signaling-mediated tumor immune response, suggesting that LATS1/2 is a promising target for immune checkpoint blockade therapy in EC.
Collapse
Affiliation(s)
- Qianlan Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Zehen Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengwen Kong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|
5
|
Balasooriya ER, Madhusanka D, López-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS, Egbert CM, Bulathsinghalage C, Liu L, Piccolo SR, Andersen JL. Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation. Mol Cancer Res 2024; 22:137-151. [PMID: 37847650 PMCID: PMC10831333 DOI: 10.1158/1541-7786.mcr-23-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Dept. of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Deshan Madhusanka
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tania P. López-Palacios
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Riley J. Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Dasun Jayatunge
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jake J. Owen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Jack S. Gashler
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M. Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Lu Liu
- Department of Computer Science, North Dakota State University, Fargo, North Dakota
| | | | - Joshua L. Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
6
|
Sarapultsev A, Gusev E, Komelkova M, Utepova I, Luo S, Hu D. JAK-STAT signaling in inflammation and stress-related diseases: implications for therapeutic interventions. MOLECULAR BIOMEDICINE 2023; 4:40. [PMID: 37938494 PMCID: PMC10632324 DOI: 10.1186/s43556-023-00151-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The Janus kinase-signal transducer and transcription activator pathway (JAK-STAT) serves as a cornerstone in cellular signaling, regulating physiological and pathological processes such as inflammation and stress. Dysregulation in this pathway can lead to severe immunodeficiencies and malignancies, and its role extends to neurotransduction and pro-inflammatory signaling mechanisms. Although JAK inhibitors (Jakinibs) have successfully treated immunological and inflammatory disorders, their application has generally been limited to diseases with similar pathogenic features. Despite the modest expression of JAK-STAT in the CNS, it is crucial for functions in the cortex, hippocampus, and cerebellum, making it relevant in conditions like Parkinson's disease and other neuroinflammatory disorders. Furthermore, the influence of the pathway on serotonin receptors and phospholipase C has implications for stress and mood disorders. This review expands the understanding of JAK-STAT, moving beyond traditional immunological contexts to explore its role in stress-related disorders and CNS function. Recent findings, such as the effectiveness of Jakinibs in chronic conditions such as rheumatoid arthritis, expand their therapeutic applicability. Advances in isoform-specific inhibitors, including filgotinib and upadacitinib, promise greater specificity with fewer off-target effects. Combination therapies, involving Jakinibs and monoclonal antibodies, aiming to enhance therapeutic specificity and efficacy also give great hope. Overall, this review bridges the gap between basic science and clinical application, elucidating the complex influence of the JAK-STAT pathway on human health and guiding future interventions.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia.
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia.
| | - Evgenii Gusev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080, Chelyabinsk, Russia
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Irina Utepova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002, Ekaterinburg, Russian Federation
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
- Clinical Research Center of Cancer Immunotherapy, Hubei Wuhan, 430022, China
| |
Collapse
|
7
|
Wu J, Subbiah V. RETooling the RET Inhibitor Pralsetinib for ESR1 Fusion-Positive Breast Cancer and Beyond. Cancer Res 2023; 83:3159-3161. [PMID: 37779428 DOI: 10.1158/0008-5472.can-23-1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 10/03/2023]
Abstract
Transcriptionally active fusions of ESR1 (ESR1-TAF) and somatic mutations in the estrogen receptor alpha (ERα) ligand-binding domain (LBD) cause endocrine therapy resistance in breast cancer. In searching for therapeutic target kinase(s) in these breast cancers, Gou and colleagues identified FLT4, RET, JAK1, and IGF1R as the top upregulated kinases induced by ESR1-TAFs and ERα LBD mutants in breast cancer cells. Among them, inhibition of RET by pralsetinib suppressed ESR1-TAF-driven and ERα LBD mutant-driven cell proliferation and patient-derived xenograft growth. Pralsetinib is an inhibitor of the RET protein tyrosine kinase that is approved for treating oncogenic RET mutation-positive and RET fusion-positive thyroid cancers and non-small cell lung cancer. The work by Gou and colleagues reinforces the knowledge of RET as an ESR1 target gene and highlights that RET interacts with ERα to promote breast cancer tumorigenesis and antiestrogen resistance. It also raises the prospect of repositioning pralsetinib to target wildtype RET in ER-positive breast cancer. See related article by Gou et al., p. 3237.
Collapse
Affiliation(s)
- Jie Wu
- Peggy and Charles Stephenson Cancer Center, and Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
9
|
Geurts BS, Battaglia TW, van Berge Henegouwen JM, Zeverijn LJ, de Wit GF, Hoes LR, van der Wijngaart H, van der Noort V, Roepman P, de Leng WWJ, Jansen AML, Opdam FL, de Jonge MJA, Cirkel GA, Labots M, Hoeben A, Kerver ED, Bins AD, Erdkamp FGL, van Rooijen JM, Houtsma D, Hendriks MP, de Groot JWB, Verheul HMW, Gelderblom H, Voest EE. Efficacy, safety and biomarker analysis of durvalumab in patients with mismatch-repair deficient or microsatellite instability-high solid tumours. BMC Cancer 2023; 23:205. [PMID: 36870947 PMCID: PMC9985217 DOI: 10.1186/s12885-023-10663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND In this study we aimed to evaluate the efficacy and safety of the PD-L1 inhibitor durvalumab across various mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H) tumours in the Drug Rediscovery Protocol (DRUP). This is a clinical study in which patients are treated with drugs outside their labeled indication, based on their tumour molecular profile. PATIENTS AND METHODS Patients with dMMR/MSI-H solid tumours who had exhausted all standard of care options were eligible. Patients were treated with durvalumab. The primary endpoints were clinical benefit ((CB): objective response (OR) or stable disease ≥16 weeks) and safety. Patients were enrolled using a Simon like 2-stage model, with 8 patients in stage 1, up to 24 patients in stage 2 if at least 1/8 patients had CB in stage 1. At baseline, fresh frozen biopsies were obtained for biomarker analyses. RESULTS Twenty-six patients with 10 different cancer types were included. Two patients (2/26, 8%) were considered as non-evaluable for the primary endpoint. CB was observed in 13 patients (13/26, 50%) with an OR in 7 patients (7/26, 27%). The remaining 11 patients (11/26, 42%) had progressive disease. Median progression-free survival and median overall survival were 5 months (95% CI, 2-not reached) and 14 months (95% CI, 5-not reached), respectively. No unexpected toxicity was observed. We found a significantly higher structural variant (SV) burden in patients without CB. Additionally, we observed a significant enrichment of JAK1 frameshift mutations and a significantly lower IFN-γ expression in patients without CB. CONCLUSION Durvalumab was generally well-tolerated and provided durable responses in pre-treated patients with dMMR/MSI-H solid tumours. High SV burden, JAK1 frameshift mutations and low IFN-γ expression were associated with a lack of CB; this provides a rationale for larger studies to validate these findings. TRIAL REGISTRATION Clinical trial registration: NCT02925234. First registration date: 05/10/2016.
Collapse
Affiliation(s)
- Birgit S Geurts
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Thomas W Battaglia
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - J Maxime van Berge Henegouwen
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Laurien J Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Gijs F de Wit
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, Utrecht, the Netherlands
| | - Hanneke van der Wijngaart
- Oncode Institute, Utrecht, the Netherlands.,Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | | | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy W J de Leng
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Anne M L Jansen
- Department of Pathology, University Medical Cancer Centre Utrecht, Utrecht, the Netherlands
| | - Frans L Opdam
- Department of Clinical Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maja J A de Jonge
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Geert A Cirkel
- Department of Medical Oncology, Meander, Amersfoort, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Amsterdam University Medical Centre, location VUMC, Amsterdam, the Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, Department of Internal Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Emile D Kerver
- Department of Medical Oncology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centre, location AUMC, Amsterdam, the Netherlands
| | - Frans G L Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geelen, the Netherlands
| | - Johan M van Rooijen
- Department of Medical Oncology, Martini Hospital, Groningen, the Netherlands
| | - Danny Houtsma
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | - Mathijs P Hendriks
- Department of Medical Oncology, Northwest Clinics, Alkmaar, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Gao K, Shi Q, Gu Y, Yang W, He Y, Lv Z, Ding Y, Cao W, Wang C, Wan X. SPOP mutations promote tumor immune escape in endometrial cancer via the IRF1-PD-L1 axis. Cell Death Differ 2023; 30:475-487. [PMID: 36481790 PMCID: PMC9950446 DOI: 10.1038/s41418-022-01097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Blockade of programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) has evolved into one of the most promising immunotherapy strategies for cancer patients. Tumor cells frequently overexpress PD-L1 to evade T cell-mediated immune surveillance. However, the specific genetic alterations that drive aberrant overexpression of PD-L1 in cancer cells remain poorly understood. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in endometrial cancer (EC). Here, we report that SPOP negatively regulates PD-L1 expression at the transcriptional level. Wild-type SPOP binds to IRF1, a primary transcription factor responsible for the inducible expression of PD-L1, and subsequently triggers its ubiquitin- proteasomal degradation to suppress IRF1-mediated transcriptional upregulation of PD-L1. In contrast, EC-associated SPOP mutants lose their capacity to degrade IRF1 but stabilize IRF1, and upregulate PD-L1 expression. EC-associated SPOP mutations accelerate xenograft tumor growth partially by increasing IRF1 and PD-L1 expression. Together, we identify SPOP as a negative regulator of the IRF1-PD-L1 axis and characterize the critical roles of IRF1 and PD-L1 in SPOP mutation-driven tumor immune evasion in EC.
Collapse
Affiliation(s)
- Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Qing Shi
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ye Gu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wanqi Yang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanlong He
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Lin Q, Chen Z, Shi W, Lv Z, Wan X, Gao K. JAK1 inactivation promotes proliferation and migration of endometrial cancer cells via upregulating the hypoxia-inducible factor signaling pathway. Cell Commun Signal 2022; 20:177. [PMID: 36376931 PMCID: PMC9661757 DOI: 10.1186/s12964-022-00990-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Loss-of-function (LOF) mutations of JAK1, a member of the JAK kinase family, were frequently observed in EC, indicating that JAK1 may act as a tumor suppressor, at least in EC. However, the mechanism of JAK1 mediated regulation of tumorigenesis remains poorly understood. METHODS The genetic alterations of JAK1 in EC using latest sequencing dataset of EC deposited in TCGA database. The RNA-Seq dataset of EC and normal endometrial tissues from TCGA cohort was analyzed. The expression of JAK1 in EC and normal endometrial tissues were investigated using immunohistochemistry. The expression levels of genes in endometrial cancer cells were detected by quantitative reverse transcription-PCR (RT-qPCR) and western blotting. JAK1 protein was efficiently depleted by the two shRNAs. HIF1/2-α protein was efficiently depleted by siRNAs. JAK1 overexpressed EC cells were generated by an expressing plasmid. The proliferation and migration ability of cancer cells were evaluated by CCK8, colony formation assays and transwell assays. The global transcriptomic changes in JAK1-depleted KLE cells were investigated using RNA-Seq. Gene Ontology (GO) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to identify the most significant pathways that were altered in JAK1-depleted KLE cells. The physical association between HIF-1/2α and JAK1 using co-immunoprecipitation (co-IP) assays. RESULTS In the present study, we found that JAK1 was frequently mutated and downregulated in EC. JAK1 knockdown promotes EC cell proliferation and migration. JAK1 overexpression reduces EC cell proliferation and migration. We examined the transcriptional profiling changes in JAK1-depleted EC cells and unexpectedly found that the hypoxia inducible factor (HIF) pathway was activated. Mechanistically, JAK1 interacts with HIF-1/2α, and reduces HIF1/2-α protein expression under hypoxia. HIF-1/2α knockdown reverses the JAK1 knockdown-induced growth and migration of EC cells under hypoxia. JAK1 knockdown or pharmacological inhibition of JAK1 kinase activity by Ruxolitinib upregulates transcription of HIF target genes under hypoxia. JAK1 overexpression downregulates transcription of HIF target genes under hypoxia. CONCLUSIONS These findings provide novel insights into the functional link between JAK1 LOF mutations and abnormal HIF pathway activation in EC and suggest that pharmacological inhibition of HIF1/2 represents a promising therapeutic strategy targeting JAK1-mutated ECs. Video Abstract.
Collapse
Affiliation(s)
- Qin Lin
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China ,grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zheng Chen
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Wei Shi
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China ,grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 China
| | - Zeheng Lv
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China
| | - Xiaoping Wan
- grid.24516.340000000123704535Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 20092 China
| | - Kun Gao
- grid.24516.340000000123704535Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204 China
| |
Collapse
|
12
|
Ribas A, Haining WN, Schumacher TNM. When Cancer Cells Become the Enablers of an Antitumor Immune Response. Cancer Discov 2022; 12:2244-2248. [PMID: 36196573 DOI: 10.1158/2159-8290.cd-22-0706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-specific cytotoxic T cells unleashed by the blockade of immune checkpoints have to overcome a hostile tumor microenvironment (TME). They start from very small numbers of T cells with tumor antigen specificity and, despite expansion, likely remain at a numerical disadvantage to the tumor cells they target. To overcome these obstacles, we propose that T cells need to change the TME to make it permissive for their antitumor effects by altering the phenotype of cells beyond the cancer cells they are in physical contact with. In this process, IFNγ secreted by tumor-specific T cells plays a critical role, as it changes the expression of hundreds of genes in cancer cells and other immune cells in the TME up to 40 layers of cells away from their location, effectively turning these cells into enablers of the antitumor immune response. In this perspective, we postulate that the clinical activity of cancer immunotherapy with immune-checkpoint blocking antibodies and adoptively transferred T cells requires that cancer cells facilitate the antitumor immune response. IFNγ effectively changes the balance of power in the TME to enable the antitumor activity of tumor antigen-specific cytotoxic T cells.
Collapse
Affiliation(s)
- Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | - Ton N M Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
13
|
Glaire MA, Ryan NAJ, Ijsselsteijn ME, Kedzierska K, Obolenski S, Ali R, Crosbie EJ, Bosse T, de Miranda NFCC, Church DN. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. J Pathol 2022; 257:340-351. [PMID: 35262923 PMCID: PMC9322587 DOI: 10.1002/path.5894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022]
Abstract
Defective DNA mismatch repair (dMMR) causes elevated tumour mutational burden (TMB) and microsatellite instability (MSI) in multiple cancer types. dMMR/MSI colorectal cancers (CRCs) have enhanced T-cell infiltrate and favourable outcome; however, this association has not been reliably detected in other tumour types, including endometrial cancer (EC). We sought to confirm this and explore the underpinning mechanisms. We first meta-analysed CRC and EC trials that have examined the prognostic value of dMMR/MSI and confirmed that dMMR/MSI predicts better prognosis in CRC, but not EC, with statistically significant variation between cancers (hazard ratio [HR] = 0.63, 95% confidence interval [CI] = 0.54-0.73 versus HR = 1.15, 95% CI = 0.72-1.58; PINT = 0.02). Next, we studied intratumoural immune infiltrate in CRCs and ECs of defined MMR status and found that while dMMR was associated with increased density of tumour-infiltrating CD3+ and CD8+ T-cells in both cancer types, the increases were substantially greater in CRC and significant only in this group (PINT = 4.3e-04 and 7.3e-03, respectively). Analysis of CRC and EC from the independent Cancer Genome Atlas (TCGA) series revealed similar variation and significant interactions in proportions of tumour-infiltrating lymphocytes, CD8+ , CD4+ , NK cells and immune checkpoint expression, confirming a more vigorous immune response to dMMR/MSI in CRC than EC. Agnostic analysis identified the IFNγ pathway activity as strongly upregulated by dMMR/MSI in CRC, but downregulated in EC by frequent JAK1 mutations, the impact of which on IFNγ response was confirmed by functional analyses. Collectively, our results confirm the discordant prognosis of dMMR/MSI in CRC and EC and suggest that this relates to differences in intratumoural immune infiltrate and tumour genome. Our study underscores the need for tissue-specific analysis of cancer biomarkers and may help inform immunotherapy use. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mark A Glaire
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Neil AJ Ryan
- Division of Cancer Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, St Mary's HospitalManchesterUK
- Division of Evolution and Genomic Medicine, Faculty of Biology, Medicine and HealthUniversity of Manchester, St. Mary's HospitalManchesterUK
- The Academic Women's Health Unit, Translational Health SciencesBristol Medical School, University of BristolBristolUK
| | | | - Katarzyna Kedzierska
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Sofia Obolenski
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Reem Ali
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, St Mary's HospitalManchesterUK
- Department of Obstetrics and GynaecologySt Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Tjalling Bosse
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - Noel FCC de Miranda
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
| | - David N Church
- Cancer Genomics and Immunology Group, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Oxford Cancer Centre, Churchill Hospital, Oxford University Hospitals Foundation NHS TrustOxfordUK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
14
|
Spinelli FR, Colbert RA, Gadina M. JAK1: Number one in the family; number one in inflammation? Rheumatology (Oxford) 2021; 60:ii3-ii10. [PMID: 33950229 PMCID: PMC8599761 DOI: 10.1093/rheumatology/keab024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Several cytokines involved in inflammatory pathologies signal via the Janus kinase-signal transducer and activator of transcription pathway. Four JAKs are known: JAK1, JAK2, JAK3 and TYK2. The specific activation of JAKs and STATs determines the biological effects of each cytokine. JAK1 is involved in the signalling of 'γc' receptor cytokines (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21), pro-inflammatory cytokines including IL-6, as well as IFN. The critical position of JAK1 downstream of these cytokines suggests that JAK1-selective inhibitors are comparable to non-selective ones, without the unwanted consequences of JAK2- or JAK3-blockade. JAK inhibition has led to a better understanding of the biology of synovial inflammation and bone homeostasis. Moreover, the efficacy of non-selective JAK inhibitors and novel JAK1-selective drugs in RA supports a role for JAK1 in its pathogenesis. JAK1-selective drugs are also showing promise in axial spondyloarthritis, suggesting that they may target additional regulatory pathways that impact cytokines such as TNF and IL-17A, which do not use JAKs. Additionally, evidence now supports a JAK1 predominance in the signalling of IL-6 and oncostatin M, and indirectly, of TNF in synovial fibroblasts, macrophages and endothelial cells. Notably, bone homeostasis is also dependent on cytokines relying on JAK1 signalling to promote receptor activator of NF-κB ligand expression in osteoblasts and T cells, contributing to osteoclastogenesis. Here, the contribution of JAK1 over other kinases is unclear. While beneficial effects of JAK inhibitors on bone erosion are supported by preclinical and clinical data, effects on new bone formation in axial spondyloarthritis requires additional study.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari—Reumatologia, Sapienza Università di Roma, Rome, Italy
| | | | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
He Y, Ma H, Wang J, Kang Y, Xue Q. miR-20a-5p inhibits endometrial cancer progression by targeting janus kinase 1. Oncol Lett 2021; 21:427. [PMID: 33850568 PMCID: PMC8025135 DOI: 10.3892/ol.2021.12688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer (EC) is a multi-factorial disease of which pathogenesis has not been fully elucidated. The function and underlying mechanism of microRNA-20a-5p (miR-20a-5p) in EC remain poorly understood. The present study aimed to analyze the association between miR-20a-5p expression and the clinicopathological characteristics of patients with EC. Whether miR-20a-5p could inhibit EC progression by targeting janus kinase 1 (Jak1) was subsequently investigated. To do so, human EC tissues and paracancerous tissues were collected from 47 patients with EC. miR-20a-5p and Jak1 mRNA and protein expression was determined by reverse transcription quantitative PCR and western blotting, respectively. Cell proliferation, invasive ability and adhesion were investigated by MTT, Matrigel invasion and cell adhesion assays, respectively. Dual luciferase reporter assay was used to verify whether miR-20a-5p could directly target Jak1. The results demonstrated that miR-20a-5p was downregulated and that Jak1 was upregulated in EC tissues compared with paracancerous tissues. In addition, miR-20a-5p expression and Jak1 expression level were negatively correlated in EC tissues. miR-20a-5p expression was also significantly associated with the depth of myometrial invasion, FIGO stage, histologic grade and lymph node metastasis in patients with EC. Furthermore, Jak1 was identified as a new direct target of miR-20a-5p, and Jak1 overexpression was demonstrated to reverse the effects of miR-20a-5p-mimic on EC cell proliferation, invasive ability and adhesion. Taken together, the results from this study revealed for the first time that miR-20a-5p expression was significantly associated with the clinicopathological characteristics of patients with EC. These findings suggested that miR-20a-5p may act as a tumor suppressor in EC, in part through decreasing Jak1 expression. miR-20a-5p and Jak1 may therefore serve as potential therapeutic targets in EC.
Collapse
Affiliation(s)
- Ying He
- Department of Gynaecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Hui Ma
- Department of Gynaecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Jing Wang
- Department of Gynaecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yanhua Kang
- Department of Gynaecology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Qianlong Xue
- Emergency Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
16
|
Elkoshi Z. The Binary Classification of Protein Kinases. J Inflamm Res 2021; 14:929-947. [PMID: 33776467 PMCID: PMC7988341 DOI: 10.2147/jir.s303750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
In an earlier publication a binary model for chronic diseases classification has been proposed. According to the model, chronic diseases were classified as “high Treg” or “low Treg” diseases, depending on whether the immune response is anti- or pro-inflammatory and assuming that regulatory T cells are major determinants of the response. It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low Treg”. This paper proposes a molecular cause for this binary response. The mechanism proposed depends on the effect of protein kinases on the immune system. Thus, protein kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive “high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) activity. Analysis of literature data reveals that the two classes of kinases display distinctive properties relating to their interactions with pathogens and environmental factors. Pathogens that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are associated with “high Treg” pathogens while those diseases driven by PIKs are associated with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequencies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corresponding two classes of protein kinase inhibitors are mutually exclusive in terms of their approved therapeutic indications. There is no protein kinase inhibitor that is approved for the treatment of both autoimmune diseases and “high Treg” cancers. Although there are exceptions to the conclusions presented above, these conclusions are supported by the great bulk of published data. It therefore seems that the binary division of protein kinases is a useful tool for elucidating (at the molecular level) many distinctive properties of cancers and autoimmune diseases.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
17
|
Deshpande M, Romanski PA, Rosenwaks Z, Gerhardt J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers (Basel) 2020; 12:E3319. [PMID: 33182707 PMCID: PMC7697596 DOI: 10.3390/cancers12113319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/05/2023] Open
Abstract
Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR) and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies. Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations leading to dMMR account for approximately 90% of these cancers. However, in 5-10% of cases, MMR protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6, PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract, and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status. Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic value, and advances in therapeutic strategies to treat these cancers.
Collapse
Affiliation(s)
- Madhura Deshpande
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Phillip A. Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Zev Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (M.D.); (P.A.R.); (Z.R.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
18
|
Takahashi N, Rajapakse VN, Pongor L, Kumar S, Tlemsani C, Erwin-Cohen R, Young HA, Hewitt S, Wei JS, Khan J, Villarino AV, Trepel JB, Thomas A. Dynamics of genomic and immune responses during primary immunotherapy resistance in mismatch repair-deficient tumors. Cold Spring Harb Mol Case Stud 2020; 6:a005678. [PMID: 33028646 PMCID: PMC7552928 DOI: 10.1101/mcs.a005678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
Mismatch repair-deficient (dMMR) cancers generate a substantial number of immunogenic neoantigens, rendering them sensitive to immunotherapy. Yet, there is considerable variability in responses, and roughly one-half of dMMR cancers are refractory to immunotherapy. Here we study a patient with dMMR lung cancer refractory to immunotherapy. The tumor exhibited typical dMMR molecular features, including exceptionally high frameshift insertions and deletions (indels). Despite the treatment inducing abundant intratumoral T-cell infiltrates, it failed to elicit tumor regression, pointing to the T cells lacking cytotoxic activity. A post-treatment tumor demonstrated compound heterozygous frameshift deletions located upstream of the kinase domain in the gene encoding JAK1 protein, down-regulation of JAK1 and mediators of its signal transduction, and total loss of JAK1 phosphorylation. Importantly, one of the JAK1 mutations, despite not being detected in the pretreatment tumor, was found at low variant allele frequency in the pretreatment circulating tumor DNA, suggesting clonal selection of the mutation. To our knowledge, this report provides the most detailed look yet at defective JAK1 signaling in the context of dMMR and immunotherapy resistance. Together with observations of JAK1 frameshift indels being enriched in dMMR compared with MMR-proficient tumors, our findings demonstrate the critical function of JAK1 in immunological surveillance of dMMR cancer.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Camille Tlemsani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Rebecca Erwin-Cohen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Howard A Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Stephen Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alejandro V Villarino
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
20
|
Zhan L, Liu X, Zhang J, Cao Y, Wei B. Immune disorder in endometrial cancer: Immunosuppressive microenvironment, mechanisms of immune evasion and immunotherapy. Oncol Lett 2020; 20:2075-2090. [PMID: 32782525 PMCID: PMC7400772 DOI: 10.3892/ol.2020.11774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy is an emerging clinical approach that has gained traction over the past decade as a novel treatment option for lung cancer and melanoma. Notably, researchers have made marked improvements in the treatment of endometrial cancer (EC), and potential immune responses have been identified in patients with EC, thereby offering the possibility of exploring immunotherapy for EC. Nevertheless, various needs remain unmet, and immunotherapy applications in EC have yielded limited success, as only a minority of patients exhibited a clinical response. Therefore, further understanding of immune dysfunction associated with EC is still required. The present review describes recent findings regarding the immunosuppressive microenvironment of EC, with emphasis on immune evasion mechanisms and immunotherapy in EC.
Collapse
Affiliation(s)
- Lei Zhan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xiaojing Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jing Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
21
|
Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM, Kalbasi A, Parisi G, Zaretsky JM, Garcia-Diaz A, Puig-Saus C, Cheung-Lau G, Wohlwender T, Krystofinski P, Vega-Crespo A, Lee CM, Mascaro P, Grasso CS, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Ribas A. Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discov 2020; 10:1140-1157. [PMID: 32467343 DOI: 10.1158/2159-8290.cd-19-1409] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Mechanism-based strategies to overcome resistance to PD-1 blockade therapy are urgently needed. We developed genetic acquired resistant models of JAK1, JAK2, and B2M loss-of-function mutations by gene knockout in human and murine cell lines. Human melanoma cell lines with JAK1/2 knockout became insensitive to IFN-induced antitumor effects, while B2M knockout was no longer recognized by antigen-specific T cells and hence was resistant to cytotoxicity. All of these mutations led to resistance to anti-PD-1 therapy in vivo. JAK1/2-knockout resistance could be overcome with the activation of innate and adaptive immunity by intratumoral Toll-like receptor 9 agonist administration together with anti-PD-1, mediated by natural killer (NK) and CD8 T cells. B2M-knockout resistance could be overcome by NK-cell and CD4 T-cell activation using the CD122 preferential IL2 agonist bempegaldesleukin. Therefore, mechanistically designed combination therapies can overcome genetic resistance to PD-1 blockade therapy. SIGNIFICANCE: The activation of IFN signaling through pattern recognition receptors and the stimulation of NK cells overcome genetic mechanisms of resistance to PD-1 blockade therapy mediated through deficient IFN receptor and antigen presentation pathways. These approaches are being tested in the clinic to improve the antitumor activity of PD-1 blockade therapy.This article is highlighted in the In This Issue feature, p. 1079.
Collapse
Affiliation(s)
- Davis Y Torrejon
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gabriel Abril-Rodriguez
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Ameya S Champhekar
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jennifer Tsoi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Angel Garcia-Diaz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Cristina Puig-Saus
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gardenia Cheung-Lau
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Thomas Wohlwender
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Paige Krystofinski
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christopher M Lee
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Pau Mascaro
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Catherine S Grasso
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Begoña Comin-Anduix
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Siwen Hu-Lieskovan
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California. .,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
22
|
Gulhan DC, Garcia E, Lee EK, Lindemann NI, Liu JF, Matulonis UA, Park PJ, Konstantinopoulos PA. Genomic Determinants of De Novo Resistance to Immune Checkpoint Blockade in Mismatch Repair-Deficient Endometrial Cancer. JCO Precis Oncol 2020; 4:492-497. [PMID: 32494760 PMCID: PMC7269172 DOI: 10.1200/po.20.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
23
|
Wang TT, Yang J, Dighe S, Schmachtenberg MW, Leigh NT, Farber E, Onengut-Gumuscu S, Feith DJ, Ratan A, Loughran TP, Olson TL. Whole Genome Sequencing of Spontaneously Occurring Rat Natural Killer Large Granular Lymphocyte Leukemia Identifies JAK1 Somatic Activating Mutation. Cancers (Basel) 2020; 12:cancers12010126. [PMID: 31947841 PMCID: PMC7017127 DOI: 10.3390/cancers12010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023] Open
Abstract
Large granular lymphocyte (LGL) leukemia arises spontaneously in elderly Fischer (F344) rats. This rodent model has been shown to emulate many aspects of the natural killer (NK) variant of human LGL leukemia. Previous transplantation of leukemic material into young F344 rats resulted in several strains of rat NK (RNK) primary leukemic cells. One strain, RNK-16, was adapted into the RNK-16 cell line and established as an aggressive NK-LGL leukemia model. Whole genome sequencing of the RNK-16 cell line identified 255,838 locations where the RNK16 had an alternate allele that was different from F334, including a mutation in Jak1. Functional studies showed Jak1 Y1034C to be a somatic activating mutation that mediated increased STAT signaling, as assessed by phosphoprotein levels. Sanger sequencing of Jak1 in RNK-1, -3, -7, and -16 found only RNK-16 to harbor the Y1034C Jak1 mutation. In vivo studies revealed that rats engrafted with RNK-16 primary material developed leukemia more rapidly than those engrafted with RNK-1, -3, and -7. Additionally, ex vivo RNK-16 spleen cells from leukemic rats exhibited increased STAT1, STAT3, and STAT5 phosphorylation compared to other RNK strains. Therefore, we report and characterize a novel gain-of-function Jak1 mutation in a spontaneous LGL leukemia model that results in increased downstream STAT signaling.
Collapse
Affiliation(s)
- T. Tiffany Wang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Jun Yang
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Shubha Dighe
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Matthew W. Schmachtenberg
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Nathan T. Leigh
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - David J. Feith
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; (E.F.); (S.O.-G.); (A.R.)
| | - Thomas P. Loughran
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
| | - Thomas L. Olson
- Department of Medicine and University of Virginia Cancer Center, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (T.T.W.); (J.Y.); (S.D.); (M.W.S.); (N.T.L.); (D.J.F.)
- Correspondence: ; Tel.: +1-(434)-243-8332
| |
Collapse
|
24
|
Konstantinopoulos PA, Luo W, Liu JF, Gulhan DC, Krasner C, Ishizuka JJ, Gockley AA, Buss M, Growdon WB, Crowe H, Campos S, Lindeman NI, Hill S, Stover E, Schumer S, Wright AA, Curtis J, Quinn R, Whalen C, Gray KP, Penson RT, Cannistra SA, Fleming GF, Matulonis UA. Phase II Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch Repair Proficient Recurrent/Persistent Endometrial Cancer. J Clin Oncol 2019; 37:2786-2794. [PMID: 31461377 PMCID: PMC9798913 DOI: 10.1200/jco.19.01021] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Despite the tissue-agnostic approval of pembrolizumab in mismatch repair deficient (MMRD) solid tumors, important unanswered questions remain about the role of immune checkpoint blockade in mismatch repair-proficient (MMRP) and -deficient endometrial cancer (EC). METHODS This phase II study evaluated the PD-L1 inhibitor avelumab in two cohorts of patients with EC: (1) MMRD/POLE (polymerase ε) cohort, as defined by immunohistochemical (IHC) loss of expression of one or more mismatch repair (MMR) proteins and/or documented mutation in the exonuclease domain of POLE; and (2) MMRP cohort with normal IHC expression of all MMR proteins. Coprimary end points were objective response (OR) and progression-free survival at 6 months (PFS6). Avelumab 10 mg/kg intravenously was administered every 2 weeks until progression or unacceptable toxicity. RESULTS Thirty-three patients were enrolled. No patient with POLE-mutated tumor was enrolled in the MMRD cohort, and all MMRP tumors were not POLE-mutated. The MMRP cohort was closed at the first stage because of futility: Only one of 16 patients exhibited both OR and PFS6 responses. The MMRD cohort met the predefined primary end point of four ORs after accrual of only 17 patients; of 15 patients who initiated avelumab, four exhibited OR (one complete response, three partial responses; OR rate, 26.7%; 95% CI, 7.8% to 55.1%) and six (including all four ORs) PFS6 responses (PFS6, 40.0%; 95% CI, 16.3% to 66.7%), four of which are ongoing as of data cutoff date. Responses were observed in the absence of PD-L1 expression. IHC captured all cases of MMRD subsequently determined by polymerase chain reaction or genomically via targeted sequencing. CONCLUSION Avelumab exhibited promising activity in MMRD EC regardless of PD-L1 status. IHC for MMR assessment is a useful tool for patient selection. The activity of avelumab in MMRP/non-POLE-mutated ECs was low.
Collapse
Affiliation(s)
- Panagiotis A. Konstantinopoulos
- Dana-Farber Cancer Institute, Boston, MA,Panagiotis A. Konstantinopoulos, MD, PhD, Dana-Farber Cancer Institute, Harvard Medical School, Yawkey Center for Cancer Care, YC-1424, 450 Brookline Ave, Boston, MA, 02215; e-mail:
| | - Weixiu Luo
- Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | | | - Mary Buss
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | | | | | - Sarah Hill
- Brigham and Women’s Hospital, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Daza-Cajigal V, Albuquerque AS, Pearson J, Hinley J, Mason AS, Stahlschmidt J, Thrasher AJ, Mishra V, Southgate J, Burns SO. Loss of Janus Associated Kinase 1 Alters Urothelial Cell Function and Facilitates the Development of Bladder Cancer. Front Immunol 2019; 10:2065. [PMID: 31552026 PMCID: PMC6746825 DOI: 10.3389/fimmu.2019.02065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
Inherited Primary Immunodeficiency (PID) disorders are associated with increased risk of malignancy that may relate to impaired antitumor immune responses or a direct role for PID germline mutations in tumorigenesis. We recently identified germline loss of function mutations in Janus Associated Kinase 1 (JAK1) causing primary immunodeficiency characterized by infections and associated with early onset, fatal high-grade bladder carcinoma. Somatic mutations in JAK1, required for immune cell signaling in response to interferon gamma (IFNγ), have been associated with several non-hematopoietic and hematopoietic cancer cell types but pathogenic mechanisms remain largely unexplored. Here we demonstrate that JAK1 is required for the intrinsic IFNγ response of urothelial cells impacting immunogenicity and cell survival. Specifically, JAK1-deficient urothelial cells showed reduced surface expression of major histocompatibility complex class II (MHC II), intercellular adhesion molecule-1 (ICAM-1) and programmed death-ligand-1 (PD-L1) after IFNγ stimulation and were resistant to IFNγ-induced apoptosis and lymphocyte-mediated killing. In addition, we identify a previously unknown role for IFNγ signaling in modulating urothelial differentiation. Together, our findings support a role for urothelial cell JAK1 in immune surveillance and development of bladder cancer. Our results have implications for patients with rare JAK1 PID and, more broadly, inform development of biomarker and targeted therapies for urothelial carcinoma.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Human Immunopathology Research Laboratory, Institut d'Investigació Sanitaria de Palma (IdISPa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Joanna Pearson
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Jennifer Hinley
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew S Mason
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Jens Stahlschmidt
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.,Department of Histopathology, St James's University Hospital, Leeds, United Kingdom
| | - Adrian J Thrasher
- Great Ormond Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Molecular and Cellular Immunology, Institute of Child Health, University College London, London, United Kingdom
| | - Vibhash Mishra
- Department of Urology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jennifer Southgate
- Jack Birch Unit, Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
26
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
27
|
Han P, Dai Q, Fan L, Lin H, Zhang X, Li F, Yang X. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance. Front Immunol 2019; 10:251. [PMID: 30837996 PMCID: PMC6389627 DOI: 10.3389/fimmu.2019.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Somatic gene mutations play a critical role in immune evasion by tumors. However, there is limited information on genes that confer immunotherapy resistance in melanoma. To answer this question, we established a whole-genome knockout B16/ovalbumin cell line by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease technology, and determined by in vivo adoptive OT-I T-cell transfer and an in vitro OT-I T-cell-killing assay that Janus kinase (JAK)1 deficiency mediates T-cell resistance via a two-step mechanism. Loss of JAK1 reduced JAK-Signal transducer and activator of transcription signaling in tumor cells—resulting in tumor resistance to the T-cell effector molecule interferon—and suppressed T-cell activation by impairing antigen presentation. These findings provide a novel method for exploring immunotherapy resistance in cancer and identify JAK1 as potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Ping Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lilv Fan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlin Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanming Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
T Virtanen A, Haikarainen T, Raivola J, Silvennoinen O. Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases. BioDrugs 2019; 33:15-32. [PMID: 30701418 PMCID: PMC6373396 DOI: 10.1007/s40259-019-00333-w] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines, many of which signal through the JAK-STAT (Janus kinase-Signal Transducers and Activators of Transcription) pathway, play a central role in the pathogenesis of inflammatory and autoimmune diseases. Currently three JAK inhibitors have been approved for clinical use in USA and/or Europe: tofacitinib for rheumatoid arthritis, psoriatic arthritis and ulcerative colitis, baricitinib for rheumatoid arthritis, and ruxolitinib for myeloproliferative neoplasms. The clinical JAK inhibitors target multiple JAKs at high potency and current research has focused on more selective JAK inhibitors, almost a dozen of which currently are being evaluated in clinical trials. In this narrative review, we summarize the status of the pan-JAK and selective JAK inhibitors approved or in clinical trials, and discuss the rationale for selective targeting of JAKs in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Anniina T Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Juuli Raivola
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Fimlab Laboratories, 33520, Tampere, Finland.
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, (Viikinkaari 5), 00014, Helsinki, Finland.
| |
Collapse
|
29
|
Dual JAK1 and STAT3 mutations in a breast implant-associated anaplastic large cell lymphoma. Virchows Arch 2018; 473:505-511. [PMID: 29637270 DOI: 10.1007/s00428-018-2352-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 01/12/2023]
|
30
|
Ozcan M, Janikovits J, von Knebel Doeberitz M, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 2018; 7:e1445453. [PMID: 29900056 PMCID: PMC5993484 DOI: 10.1080/2162402x.2018.1445453] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.
Collapse
Affiliation(s)
- Mine Ozcan
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Jonas Janikovits
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| |
Collapse
|
31
|
Stelloo E, Versluis MA, Nijman HW, de Bruyn M, Plat A, Osse EM, van Dijk RH, Nout RA, Creutzberg CL, de Bock GH, Smit VT, Bosse T, Hollema H. Microsatellite instability derived JAK1 frameshift mutations are associated with tumor immune evasion in endometrioid endometrial cancer. Oncotarget 2018; 7:39885-39893. [PMID: 27213585 PMCID: PMC5129978 DOI: 10.18632/oncotarget.9414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/26/2016] [Indexed: 12/26/2022] Open
Abstract
JAK1 frameshift mutations may promote cancer cell immune evasion by impeding upregulation of the antigen presentation pathway in microsatellite unstable endometrial cancers (ECs). This study investigated the JAK1 mutation frequency, its functional implication in immune evasion and its prognostic significance in microsatellite unstable EC. Microsatellite instability and three microsatellite repeats within JAK1 were analyzed in 181 ECs. Sixty-two (34%) ECs showed microsatellite instability, of which 22 (35%) had a JAK1 mutation. LMP7, TAP1 and HLA class I protein expression and the presence of CD8-positive T-cells were analyzed in the microsatellite unstable ECs. JAK1 mutant microsatellite unstable ECs showed impaired upregulation of LMP7 (P=0.074) and HLA class I (P<0.001), validated using RNAseq data of the TCGA. TAP1 expression and presence of CD8-positive T-cells were not related to JAK1 mutations. In 198 additional microsatellite unstable ECs, the JAK1 mutation frequency was confirmed but no prognostic significance was found. For, JAK1 wildtype (n=135, 72%) and mutant (n=52, 28%) ECs, 10-year recurrence free rates were 84% and 77% (P=0.301). These observations show that JAK1 mutations are highly frequent in microsatellite unstable EC, not associated with survival, but are associated with impaired upregulation of LMP7 and HLA class I and may therefore facilitate immune escape.
Collapse
Affiliation(s)
- Ellen Stelloo
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco A Versluis
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Hans W Nijman
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Annechien Plat
- Department of Gynecologic Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Elisabeth M Osse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinhardt H van Dijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geertruida H de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent T Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Furman C, Zhu P, Korpal M. Modulation of immunosurveillance by tumor-intrinsic genomic alterations. Immunotherapy 2017; 9:1305-1307. [PMID: 29185394 DOI: 10.2217/imt-2017-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Craig Furman
- H3 Biomedicine, Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Ping Zhu
- H3 Biomedicine, Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Manav Korpal
- H3 Biomedicine, Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Albacker LA, Wu J, Smith P, Warmuth M, Stephens PJ, Zhu P, Yu L, Chmielecki J. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS One 2017; 12:e0176181. [PMID: 29121062 PMCID: PMC5679612 DOI: 10.1371/journal.pone.0176181] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/06/2017] [Indexed: 12/17/2022] Open
Abstract
Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.
Collapse
Affiliation(s)
- Lee A. Albacker
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
- * E-mail: (LA); (LY)
| | - Jeremy Wu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Peter Smith
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Markus Warmuth
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Philip J. Stephens
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
| | - Ping Zhu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
| | - Lihua Yu
- H3 Biomedicine, Cambridge, Massachusetts, United States of America
- * E-mail: (LA); (LY)
| | - Juliann Chmielecki
- Foundation Medicine Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
34
|
Shen T, Chen Z, Zhao ZJ, Wu J. Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer. Oncotarget 2017; 8:60975-60986. [PMID: 28977839 PMCID: PMC5617399 DOI: 10.18632/oncotarget.17689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/06/2017] [Indexed: 01/05/2023] Open
Abstract
Recognition of major histocompatibility complex (MHC) class I antigens on tumor cells by cytotoxic T cells is involved in T cell-mediated tumor immune surveillance and immune checkpoint therapy. The interferon-γ (IFNγ)-IRF1 signaling pathway regulates MHC class I antigen presentation. To examine genetic defects of the IFNγ-IRF1 pathway in non-small cell lung cancer (NSCLC), we analyzed The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LuAd) and lung squamous cell carcinoma (LuSc) data. Loss-of-function (LOF) genetic alterations of the IFNγ-IRF1 pathway genes (IFNGR1, IFNGR2, JAK1, JAK2, STAT1, IRF1) were found in 64 (6.3%) of 1,016 patients. These genetic defects occur prevalently in JAK2 (33 cases) and often through deletions (29 cases) of chromosome 9p24.1. JAK2 deletions were frequently, but not always, associated with deletions of PD-L1 gene (CD274), PD-L2 gene (PDCD1LG2), PTPRD, and CDKN2A/CDKN2B at the chromosome 9p24.1-9p21.3 region. IRF1 expression was correlated with immune cytolytic activity markers GZMA and PRF1 in NSCLC. IFNγ induced IRF1 expression and cell surface HLA-A/HLA-B/HLA-C (HLA-ABC) in A549, H661, H292, and H2172 cells that contained the wildtype JAK2, but not in H1573 and H1623 cells that were JAK2 defective. Deletion of JAK2 or inhibition of the JAK2 kinase activity resulted in loss of IFNγ-induced IRF1 and cell surface HLA-ABC in JAK2 wildtype NSCLC cells, whereas expression of exogenous JAK2 in H1573 cells restored the IFNγ responses. These findings show that JAK2 deficiency is the major mechanism of genetic defects of the IFNγ-IRF1 pathway in NSCLC and reveal a previously unrecognized significance of chromosome 9p deletion in NSCLC.
Collapse
Affiliation(s)
- Tao Shen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Zhengming Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, New York, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
35
|
Kim TE, Hong S, Song K, Park SH, Shin YK. Sensitization of glycoengineered interferon-β1a-resistant cancer cells by cFLIP inhibition for enhanced anti-cancer therapy. Oncotarget 2017; 8:13957-13970. [PMID: 28086218 PMCID: PMC5355153 DOI: 10.18632/oncotarget.14573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
In this study, we examined the molecular mechanism underlying the resistance of cancer cells to R27T, a glycoengineered version of recombinant human interferon (IFN)-β1a, and sought to overcome R27T resistance through combination therapy. R27T has been shown to induce anti-proliferation and apoptosis in human OVCAR-3 and MCF-7 cells, but not in HeLa cells. R27T treatment increased caspase-8 activity and the consequent cleavage of caspase-8 and -3 in R27T-sensitive OVCAR-3 cells, but not in R27T-resistant HeLa cells. Conversely, R27T increased the expression of cellular FLICE-like inhibitory protein (cFLIP) in HeLa cells, but not in OVCAR-3 cells. The sensitization of HeLa cells with cFLIP small interfering RNA or 4,5,6,7-tetrabromobenzotriazole (TBB, an inhibitor of casein kinase-2) facilitated R27T-induced caspase activation, and consequently apoptosis. In OVCAR-3-xenografted mice, intraperitoneal administration of R27T showed 2.1-fold higher anti-tumor efficacy than did the control vehicle. The combined administration of R27T and TBB showed the greatest anti-tumor effect in HeLa tumor-bearing mice, reducing the relative tumor volume by 35.7% compared to that in R27T-treated mice. Taken together, our results suggest that R27T has potential as an anti-cancer drug, and combination therapy with cFLIP inhibitors may be an effective strategy for overcoming R27T resistance.
Collapse
Affiliation(s)
- Tae-Eun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- Abion Inc., R&D Center, Seoul 08394, Republic of Korea
| | - Sang-Ho Park
- Abion Inc., R&D Center, Seoul 08394, Republic of Korea.,GE Healthcare Korea, R&D Center, Incheon 21988, Republic of Korea
| | - Young Kee Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
Analysis of somatic microsatellite indels identifies driver events in human tumors. Nat Biotechnol 2017; 35:951-959. [DOI: 10.1038/nbt.3966] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/18/2017] [Indexed: 01/03/2023]
|
37
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
38
|
Ventriglia J, Paciolla I, Pisano C, Cecere SC, Di Napoli M, Tambaro R, Califano D, Losito S, Scognamiglio G, Setola SV, Arenare L, Pignata S, Della Pepa C. Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives. Cancer Treat Rev 2017; 59:109-116. [DOI: 10.1016/j.ctrv.2017.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 12/14/2022]
|
39
|
Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, Real B, Bielefeld N, Howe S, Weide B, Gutzmer R, Utikal J, Loquai C, Gogas H, Klein-Hitpass L, Zeschnigk M, Westendorf AM, Trilling M, Horn S, Schilling B, Schadendorf D, Griewank KG, Paschen A. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun 2017; 8:15440. [PMID: 28561041 PMCID: PMC5460020 DOI: 10.1038/ncomms15440] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making.
Collapse
Affiliation(s)
- Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Natalia Pieper
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Christina Heeke
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Raffaela Maltaner
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nadine Stadtler
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Birgit Real
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Nicola Bielefeld
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Sebastian Howe
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Center Tübingen, 72076 Tübingen, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Utikal
- German Cancer Research Center (DKFZ), Skin Cancer Unit, Heidelberg and University Medical Center Mannheim, Department of Dermatology, Venereology and Allergology, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Carmen Loquai
- Skin Cancer Center, Department of Dermatology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Helen Gogas
- First Department of Medicine,National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ludger Klein-Hitpass
- Institute of Cell Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Zeschnigk
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, West German Cancer Center and the German Cancer Consortium (DKTK), 45122 Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Mirko Trilling
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Susanne Horn
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany.,Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Klaus G Griewank
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, 45122 Essen, Germany
| |
Collapse
|
40
|
Sveen A, Johannessen B, Tengs T, Danielsen SA, Eilertsen IA, Lind GE, Berg KCG, Leithe E, Meza-Zepeda LA, Domingo E, Myklebost O, Kerr D, Tomlinson I, Nesbakken A, Skotheim RI, Lothe RA. Multilevel genomics of colorectal cancers with microsatellite instability-clinical impact of JAK1 mutations and consensus molecular subtype 1. Genome Med 2017; 9:46. [PMID: 28539123 PMCID: PMC5442873 DOI: 10.1186/s13073-017-0434-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Approximately 15% of primary colorectal cancers have DNA mismatch repair deficiency, causing a complex genome with thousands of small mutations-the microsatellite instability (MSI) phenotype. We investigated molecular heterogeneity and tumor immunogenicity in relation to clinical endpoints within this distinct subtype of colorectal cancers. METHODS A total of 333 primary MSI+ colorectal tumors from multiple cohorts were analyzed by multilevel genomics and computational modeling-including mutation profiling, clonality modeling, and neoantigen prediction in a subset of the tumors, as well as gene expression profiling for consensus molecular subtypes (CMS) and immune cell infiltration. RESULTS Novel, frequent frameshift mutations in four cancer-critical genes were identified by deep exome sequencing, including in CRTC1, BCL9, JAK1, and PTCH1. JAK1 loss-of-function mutations were validated with an overall frequency of 20% in Norwegian and British patients, and mutated tumors had up-regulation of transcriptional signatures associated with resistance to anti-PD-1 treatment. Clonality analyses revealed a high level of intra-tumor heterogeneity; however, this was not associated with disease progression. Among the MSI+ tumors, the total mutation load correlated with the number of predicted neoantigens (P = 4 × 10-5), but not with immune cell infiltration-this was dependent on the CMS class; MSI+ tumors in CMS1 were highly immunogenic compared to MSI+ tumors in CMS2-4. Both JAK1 mutations and CMS1 were favorable prognostic factors (hazard ratios 0.2 [0.05-0.9] and 0.4 [0.2-0.9], respectively, P = 0.03 and 0.02). CONCLUSIONS Multilevel genomic analyses of MSI+ colorectal cancer revealed molecular heterogeneity with clinical relevance, including tumor immunogenicity and a favorable patient outcome associated with JAK1 mutations and the transcriptomic subgroup CMS1, emphasizing the potential for prognostic stratification of this clinically important subtype. See related research highlight by Samstein and Chan 10.1186/s13073-017-0438-9.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Bjarne Johannessen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Torstein Tengs
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Stine A. Danielsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Ina A. Eilertsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Kaja C. G. Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
| | - Enric Domingo
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Ola Myklebost
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
| | - David Kerr
- Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Arild Nesbakken
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
- Department of Gastrointestinal Surgery, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- K. G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, P.O. Box 4953, Nydalen, NO-0424 Oslo Norway
- Centre for Cancer Biomedicine, Institute for Clinical Medicine, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo Norway
| |
Collapse
|
41
|
Li B, Eschrich SA, Berglund A, Mitchell M, Fenstermacher D, Danaee H, Dai H, Sullivan D, Trepicchio WL, Dalton WS. Use of the Total Cancer Care System to Enrich Screening for CD30-Positive Solid Tumors for Patient Enrollment Into a Brentuximab Vedotin Clinical Trial: A Pilot Study to Evaluate Feasibility. JMIR Res Protoc 2017; 6:e45. [PMID: 28320689 PMCID: PMC5379017 DOI: 10.2196/resprot.7289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
Background One approach to identify patients who meet specific eligibility criteria for target-based clinical trials is to use patient and tumor registries to prescreen patient populations. Objective Here we demonstrate that the Total Cancer Care (TCC) Protocol, an ongoing, observational study, may provide a solution for rapidly identifying patients with CD30-positive tumors eligible for CD30-targeted therapies such as brentuximab vedotin. Methods The TCC patient gene expression profiling database was retrospectively screened for CD30 gene expression determined using HuRSTA-2a520709 Affymetrix arrays (GPL15048). Banked tumor tissue samples were used to determine CD30 protein expression by semiquantitative immunohistochemistry. Statistical comparisons of Z- and H-scores were performed using R statistical software (The R Foundation), and the predictive value, accuracy, sensitivity, and specificity of CD30 gene expression versus protein expression was estimated. Results As of March 2015, 120,887 patients have consented to the institutional review board–approved TCC Protocol. A total of 39,157 fresh frozen tumor specimens have been collected, from which over 14,000 samples have gene expression data available. CD30 RNA was expressed in a number of solid tumors; the highest median CD30 RNA expression was observed in primary tumors from lymph node, soft tissue (many sarcomas), lung, skin, and esophagus (median Z-scores 1.011, 0.399, 0.202, 0.152, and 1.011, respectively). High level CD30 gene expression significantly enriches for CD30-positive protein expression in breast, lung, skin, and ovarian cancer; accuracy ranged from 72% to 79%, sensitivity from 75% to 100%, specificity from 70% to 76%, positive predictive value from 20% to 40%, and negative predictive value from 95% to 100%. Conclusions The TCC gene expression profiling database guided tissue selection that enriched for CD30 protein expression in a number of solid tumor types. Such an approach may improve screening efficiency for enrolling patients into biomarker-based clinical trials.
Collapse
Affiliation(s)
- Bin Li
- Takeda Pharmaceuticals International Company, Takeda Data Science Institute, Cambridge, MA, United States
| | - Steven A Eschrich
- H Lee Moffitt Cancer Center and Research Institute, Biostatistics and Bioinformatics, Tampa, FL, United States
| | - Anders Berglund
- H Lee Moffitt Cancer Center and Research Institute, Biostatistics and Bioinformatics, Tampa, FL, United States
| | | | | | - Hadi Danaee
- Takeda Pharmaceuticals International Company, Translational and Biomarker Research, Cambridge, MA, United States
| | - Hongyue Dai
- M2Gen, Bioinformatics, Tampa, FL, United States
| | - Daniel Sullivan
- H Lee Moffitt Cancer Center and Research Institute, Blood and Marrow Transplantation, Tampa, FL, United States
| | - William L Trepicchio
- Takeda Pharmaceuticals International Company, Translational and Biomarker Research, Cambridge, MA, United States
| | | |
Collapse
|
42
|
Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, Ribas A. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discov 2017; 7:188-201. [PMID: 27903500 PMCID: PMC5296316 DOI: 10.1158/2159-8290.cd-16-1223] [Citation(s) in RCA: 984] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.
Collapse
Affiliation(s)
| | - Jesse M Zaretsky
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Angel Garcia-Diaz
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Anusha Kalbasi
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Willy Hugo
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Salemiz Sandoval
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Davis Y Torrejon
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Nicolaos Palaskas
- University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Giulia Parisi
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Ariel Azhdam
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Bartosz Chmielowski
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Grace Cherry
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Elizabeth Seja
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Beata Berent-Maoz
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - I Peter Shintaku
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Dung T Le
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Drew M Pardoll
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Luis A Diaz
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Paul C Tumeh
- University of California, Los Angeles (UCLA), Los Angeles, California
| | - Thomas G Graeber
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Roger S Lo
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Begoña Comin-Anduix
- University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Antoni Ribas
- University of California, Los Angeles (UCLA), Los Angeles, California.
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
43
|
Le Gallo M, Lozy F, Bell DW. Next-Generation Sequencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:119-148. [DOI: 10.1007/978-3-319-43139-0_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Eletto D, Burns SO, Angulo I, Plagnol V, Gilmour KC, Henriquez F, Curtis J, Gaspar M, Nowak K, Daza-Cajigal V, Kumararatne D, Doffinger R, Thrasher AJ, Nejentsev S. Biallelic JAK1 mutations in immunodeficient patient with mycobacterial infection. Nat Commun 2016; 7:13992. [PMID: 28008925 PMCID: PMC5196432 DOI: 10.1038/ncomms13992] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Mutations in genes encoding components of the immune system cause primary immunodeficiencies. Here, we study a patient with recurrent atypical mycobacterial infection and early-onset metastatic bladder carcinoma. Exome sequencing identified two homozygous missense germline mutations, P733L and P832S, in the JAK1 protein that mediates signalling from multiple cytokine receptors. Cells from this patient exhibit reduced JAK1 and STAT phosphorylation following cytokine stimulations, reduced induction of expression of interferon-regulated genes and dysregulated cytokine production; which are indicative of signalling defects in multiple immune response pathways including Interferon-γ production. Reconstitution experiments in the JAK1-deficient cells demonstrate that the impaired JAK1 function is mainly attributable to the effect of the P733L mutation. Further analyses of the mutant protein reveal a phosphorylation-independent role of JAK1 in signal transduction. These findings clarify JAK1 signalling mechanisms and demonstrate a critical function of JAK1 in protection against mycobacterial infection and possibly the immunological surveillance of cancer. JAK1 mediates intracellular signalling from multiple cytokine receptors. Here, Eletto et al. identify JAK1 mutations that disrupt multiple signalling pathways and are associated with primary immunodeficiency, atypical mycobacterial infection susceptibility and early-onset metastatic bladder carcinoma.
Collapse
Affiliation(s)
- Davide Eletto
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London NW3 2PF, UK.,Department of Immunology, Royal Free London NHS Foundation Trust, London NW3 2PF, UK
| | - Ivan Angulo
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vincent Plagnol
- University College London Genetics Institute, University College London, London WC1E 6BT, UK
| | - Kimberly C Gilmour
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Frances Henriquez
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - James Curtis
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Miguel Gaspar
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Karolin Nowak
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Vanessa Daza-Cajigal
- University College London Institute of Immunity and Transplantation, London NW3 2PF, UK
| | - Dinakantha Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Adrian J Thrasher
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK.,University College London Institute of Child Health, London WC1N 1EH, UK
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
45
|
Abstract
Loss-of-function mutations in JAK1/2 can lead to acquired resistance to anti-programmed death protein 1 (PD-1) therapy. We reasoned that they may also be involved in primary resistance to anti-PD-1 therapy. JAK1/2-inactivating mutations were noted in tumor biopsies of 1 of 23 patients with melanoma and in 1 of 16 patients with mismatch repair-deficient colon cancer treated with PD-1 blockade. Both cases had a high mutational load but did not respond to anti-PD-1 therapy. Two out of 48 human melanoma cell lines had JAK1/2 mutations, which led to a lack of PD-L1 expression upon interferon gamma exposure mediated by an inability to signal through the interferon gamma receptor pathway. JAK1/2 loss-of-function alterations in The Cancer Genome Atlas confer adverse outcomes in patients. We propose that JAK1/2 loss-of-function mutations are a genetic mechanism of lack of reactive PD-L1 expression and response to interferon gamma, leading to primary resistance to PD-1 blockade therapy. SIGNIFICANCE A key functional result from somatic JAK1/2 mutations in a cancer cell is the inability to respond to interferon gamma by expressing PD-L1 and many other interferon-stimulated genes. These mutations result in a genetic mechanism for the absence of reactive PD-L1 expression, and patients harboring such tumors would be unlikely to respond to PD-1 blockade therapy. Cancer Discov; 7(2); 188-201. ©2016 AACR.See related commentary by Marabelle et al., p. 128This article is highlighted in the In This Issue feature, p. 115.
Collapse
|
46
|
Huang Q, Schneeberger VE, Luetteke N, Jin C, Afzal R, Budzevich MM, Makanji RJ, Martinez GV, Shen T, Zhao L, Fung KM, Haura EB, Coppola D, Wu J. Preclinical Modeling of KIF5B-RET Fusion Lung Adenocarcinoma. Mol Cancer Ther 2016; 15:2521-2529. [PMID: 27496134 DOI: 10.1158/1535-7163.mct-16-0258] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
RET fusions have been found in lung adenocarcinoma, of which KIF5B-RET is the most prevalent. We established inducible KIF5B-RET transgenic mice and KIF5B-RET-dependent cell lines for preclinical modeling of KIF5B-RET-associated lung adenocarcinoma. Doxycycline-induced CCSP-rtTA/tetO-KIF5B-RET transgenic mice developed invasive lung adenocarcinoma with desmoplastic reaction. Tumors regressed upon suppression of KIF5B-RET expression. By culturing KIF5B-RET-dependent BaF3 (B/KR) cells with increasing concentrations of cabozantinib or vandetanib, we identified cabozantinib-resistant RETV804L mutation and vandetanib-resistant-RETG810A mutation. Among cabozantinib, lenvatinib, ponatinib, and vandetanib, ponatinib was identified as the most potent inhibitor against KIF5B-RET and its drug-resistant mutants. Interestingly, the vandetanib-resistant KIF5B-RETG810A mutant displayed gain-of-sensitivity (GOS) to ponatinib and lenvatinib. Treatment of doxycycline-induced CCSP-rtTA/tetO-KIF5B-RET bitransgenic mice with ponatinib effectively induced tumor regression. These results indicate that KIF5B-RET-associated lung tumors are addicted to the fusion oncogene and ponatinib is the most effective inhibitor for targeting KIF5B-RET in lung adenocarcinoma. Moreover, this study finds a novel vandetanib-resistant RETG810A mutation and identifies lenvatinib and ponatinib as the secondary drugs to overcome this vandetanib resistance mechanism. Mol Cancer Ther; 15(10); 2521-9. ©2016 AACR.
Collapse
Affiliation(s)
- Qingling Huang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valentina E Schneeberger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Noreen Luetteke
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, Georgia
| | - Roha Afzal
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mikalai M Budzevich
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Rikesh J Makanji
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gary V Martinez
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lichao Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kar-Ming Fung
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida
| | - Domenico Coppola
- Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida. Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma. Department of Oncology Sciences, University of South Florida College of Medicine, Tampa, Florida.
| |
Collapse
|
47
|
Gibson WJ, Hoivik EA, Halle MK, Taylor-Weiner A, Cherniack AD, Berg A, Holst F, Zack TI, Werner HMJ, Staby KM, Rosenberg M, Stefansson IM, Kusonmano K, Chevalier A, Mauland KK, Trovik J, Krakstad C, Giannakis M, Hodis E, Woie K, Bjorge L, Vintermyr OK, Wala JA, Lawrence MS, Getz G, Carter SL, Beroukhim R, Salvesen HB. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat Genet 2016; 48:848-55. [PMID: 27348297 PMCID: PMC4963271 DOI: 10.1038/ng.3602] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
Recent studies have detailed the genomic landscape of primary endometrial cancers, but the evolution of these cancers into metastases has not been characterized. We performed whole-exome sequencing of 98 tumor biopsies including complex atypical hyperplasias, primary tumors and paired abdominopelvic metastases to survey the evolutionary landscape of endometrial cancer. We expanded and reanalyzed The Cancer Genome Atlas (TCGA) data, identifying new recurrent alterations in primary tumors, including mutations in the estrogen receptor cofactor gene NRIP1 in 12% of patients. We found that likely driver events were present in both primary and metastatic tissue samples, with notable exceptions such as ARID1A mutations. Phylogenetic analyses indicated that the sampled metastases typically arose from a common ancestral subclone that was not detected in the primary tumor biopsy. These data demonstrate extensive genetic heterogeneity in endometrial cancers and relative homogeneity across metastatic sites.
Collapse
Affiliation(s)
- William J Gibson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Erling A Hoivik
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Mari K Halle
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Anna Berg
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Frederik Holst
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Travis I Zack
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrica M J Werner
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Kjersti M Staby
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Mara Rosenberg
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Ingunn M Stefansson
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kanthida Kusonmano
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
- Present address: Bioinformatics and Systems Biology Program, Computational Biology Unit, School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Aaron Chevalier
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Karen K Mauland
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Jone Trovik
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marios Giannakis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eran Hodis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathrine Woie
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Line Bjorge
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jeremiah A Wala
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Scott L Carter
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Joint Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Broad Institute, Boston, Massachusetts, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA
| | - Helga B Salvesen
- Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
48
|
Rausell A, Muñoz M, Martinez R, Roger T, Telenti A, Ciuffi A. Innate immune defects in HIV permissive cell lines. Retrovirology 2016; 13:43. [PMID: 27350062 PMCID: PMC4924258 DOI: 10.1186/s12977-016-0275-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Primary CD4+ T cells and cell lines differ in their permissiveness to HIV infection. Impaired innate immunity may contribute to this different phenotype. Findings We used transcriptome profiling of 1503 innate immunity genes in primary CD4+ T cells and permissive cell lines. Two clusters of differentially expressed genes were identified: a set of 249 genes that were highly expressed in primary cells and minimally expressed in cell lines and a set of 110 genes with the opposite pattern. Specific to HIV, HEK293T, Jurkat, SupT1 and CEM cell lines displayed unique patterns of downregulation of genes involved in viral sensing and restriction. Activation of primary CD4+ T cells resulted in reversal of the pattern of expression of those sets of innate immunity genes. Functional analysis of prototypical innate immunity pathways of permissive cell lines confirmed impaired responses identified in transcriptome analyses. Conclusion Integrity of innate immunity genes and pathways needs to be considered in designing gain/loss functional genomic screens of viral infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0275-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Rausell
- Clinical Bioinformatics lab, Imagine Institute, Paris Descartes University - Sorbonne Paris Cité, 75015, Paris, France.
| | - Miguel Muñoz
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Amalio Telenti
- Genetic Medicine, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital of Lausanne (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
49
|
Pereira B, Chin SF, Rueda OM, Vollan HKM, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DWY, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Børresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 2016; 7:11479. [PMID: 27161491 PMCID: PMC4866047 DOI: 10.1038/ncomms11479] [Citation(s) in RCA: 1139] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.
Collapse
Affiliation(s)
- Bernard Pereira
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Hans-Kristian Moen Vollan
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello, Oslo 0310, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Elena Provenzano
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Helen A. Bardwell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Michelle Pugh
- Inivata, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Linda Jones
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Stephen-John Sammut
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Dana W. Y. Tsui
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bin Liu
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Sarah-Jane Dawson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia
| | - Jean Abraham
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Helen Northen
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - John F. Peden
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Abhik Mukherjee
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Gulisa Turashvili
- Department of Pathology and Molecular Medicine, Queen's University/Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - Andrew R. Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Steve McKinney
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Arusha Oloumi
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Sohrab Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Leigh Murphy
- Research Institute in Oncology and Hematology, 675 McDermot Avenue, Winnipeg, Mannitoba, Canada R3E 0V9
| | - David R. Bentley
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Ian O. Ellis
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham and Nottingham University Hospital NHS Trust, Nottingham NG5 1PB, UK
| | - Arnie Purushotham
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and Research Oncology, Cancer Division, King's College London, London SE1 9RT, UK
| | - Sarah E. Pinder
- NIHR Comprehensive Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and Research Oncology, Cancer Division, King's College London, London SE1 9RT, UK
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Montebello, Oslo 0310, Norway
- The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Helena M. Earl
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul D. Pharoah
- Strangeways Research Laboratory, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Mark T. Ross
- Illumina, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada V5Z 1L3
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 2QQ, UK
- Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
50
|
Schneeberger VE, Ren Y, Luetteke N, Huang Q, Chen L, Lawrence HR, Lawrence NJ, Haura EB, Koomen JM, Coppola D, Wu J. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget 2016; 6:6191-202. [PMID: 25730908 PMCID: PMC4467431 DOI: 10.18632/oncotarget.3356] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Valentina E Schneeberger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yuan Ren
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Noreen Luetteke
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Qingling Huang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Liwei Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Harshani R Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Nicholas J Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Eric B Haura
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Domenico Coppola
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| |
Collapse
|