1
|
Hale OJ, Wells TR, Mead RJ, Cooper HJ. Mass spectrometry imaging of SOD1 protein-metal complexes in SOD1G93A transgenic mice implicates demetalation with pathology. Nat Commun 2024; 15:6518. [PMID: 39117623 PMCID: PMC11310518 DOI: 10.1038/s41467-024-50514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motor neurons in the central nervous system (CNS). Mutations in the metalloenzyme SOD1 are associated with inherited forms of ALS and cause a toxic gain of function thought to be mediated by dimer destabilization and misfolding. SOD1 binds two Cu and two Zn ions in its homodimeric form. We have applied native ambient mass spectrometry imaging to visualize the spatial distributions of intact metal-bound SOD1G93A complexes in SOD1G93A transgenic mouse spinal cord and brain sections and evaluated them against disease pathology. The molecular specificity of our approach reveals that metal-deficient SOD1G93A species are abundant in CNS structures correlating with ALS pathology whereas fully metalated SOD1G93A species are homogenously distributed. Monomer abundance did not correlate with pathology. We also show that the dimer-destabilizing post-translational modification, glutathionylation, has limited influence on the spatial distribution of SOD1 dimers.
Collapse
Affiliation(s)
- Oliver J Hale
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Tyler R Wells
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, UK.
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Shephard VK, Brown ML, Thompson BA, Harpur A, McAlary L. Rapid classification of a novel ALS-causing I149S variant in superoxide dismutase-1. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:608-614. [PMID: 38742757 DOI: 10.1080/21678421.2024.2351177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Variants of the oxygen free radical scavenging enzyme superoxide dismutase-1 (SOD1) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS). These variants occur in roughly 20% of familial ALS cases, and 1% of sporadic ALS cases. Here, we identified a novel SOD1 variant in a patient in their 50s who presented with movement deficiencies and neuropsychiatric features. The variant was heterozygous and resulted in the isoleucine at position 149 being substituted with a serine (I149S). In silico analysis predicted the variant to be destabilizing to the SOD1 protein structure. Expression of the SOD1I149S variant with a C-terminal EGFP tag in neuronal-like NSC-34 cells resulted in extensive inclusion formation and reduced cell viability. Immunoblotting revealed that the intramolecular disulphide between Cys57 and Cys146 was fully reduced for SOD1I149S. Furthermore, SOD1I149S was highly susceptible to proteolytic digestion, suggesting a large degree of instability to the protein fold. Finally, fluorescence correlation spectroscopy and native-PAGE of cell lysates showed that SOD1I149S was monomeric in solution in comparison to the dimeric SOD1WT. This experimental data was obtained within 3 months and resulted in the rapid re-classification of the variant from a variant of unknown significance (VUS) to a clinically actionable likely pathogenic variant.
Collapse
Affiliation(s)
- Victoria K Shephard
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Bryony A Thompson
- Department of Pathology, Royal Melbourne Hospital, Melbourne, VIC, Australia, and
| | - Alisha Harpur
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Luke McAlary
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| |
Collapse
|
3
|
Percio A, Cicchinelli M, Masci D, Summo M, Urbani A, Greco V. Oxidative Cysteine Post Translational Modifications Drive the Redox Code Underlying Neurodegeneration and Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2024; 13:883. [PMID: 39199129 PMCID: PMC11351139 DOI: 10.3390/antiox13080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Redox dysregulation, an imbalance between oxidants and antioxidants, is crucial in the pathogenesis of various neurodegenerative diseases. Within this context, the "redoxome" encompasses the network of redox molecules collaborating to maintain cellular redox balance and signaling. Among these, cysteine-sensitive proteins are fundamental for this homeostasis. Due to their reactive thiol groups, cysteine (Cys) residues are particularly susceptible to oxidative post-translational modifications (PTMs) induced by free radicals (reactive oxygen, nitrogen, and sulfur species) which profoundly affect protein functions. Cys-PTMs, forming what is referred to as "cysteinet" in the redox proteome, are essential for redox signaling in both physiological and pathological conditions, including neurodegeneration. Such modifications significantly influence protein misfolding and aggregation, key hallmarks of neurodegenerative diseases such as Alzheimer's, Parkinson's, and notably, amyotrophic lateral sclerosis (ALS). This review aims to explore the complex landscape of cysteine PTMs in the cellular redox environment, elucidating their impact on neurodegeneration at protein level. By investigating specific cysteine-sensitive proteins and the regulatory networks involved, particular emphasis is placed on the link between redox dysregulation and ALS, highlighting this pathology as a prime example of a neurodegenerative disease wherein such redox dysregulation is a distinct hallmark.
Collapse
Affiliation(s)
- Anna Percio
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Michela Cicchinelli
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Mariagrazia Summo
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.C.); (D.M.); (M.S.); (A.U.)
- Department of Laboratory Diagnostic and Infectious Diseases, Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Harrison JA, Pruška A, Bittner P, Muck A, Cooper-Shepherd DA, Zenobi R. Advancing Cyclic Ion Mobility Mass Spectrometry Methods for Studying Biomolecules: Toward the Conformational Dynamics of Mega Dalton Protein Aggregates. Anal Chem 2022; 94:12435-12443. [PMID: 36049221 DOI: 10.1021/acs.analchem.2c02406] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Native mass spectrometry is a powerful tool for the analysis of noncovalent complexes. When coupled with high-resolution ion mobility, this technique can be used to investigate the conformational changes induced in said complexes by different solution or gas-phase conditions. In this study, we describe how a new-generation high-resolution ion mobility instrument equipped with a cyclic ion mobility cell can be utilized for the analysis of large biomolecular systems, including temperature-induced protein aggregates of masses greater than 1.5 MDa, as well as a 63 kDa oligonucleotide complex. The effects of and the interplay between the voltages applied to the different components of the cyclic ion mobility spectrometry system on ion transmission and arrival time distribution were demonstrated using biomolecules covering the m/z range 2000-10,000. These data were used to establish a theoretical framework for achieving the best separation in the cyclic ion mobility system. Finally, the cyclic ion mobility mass spectrometer was coupled with a temperature-controlled electrospray ionization source to investigate high-mass protein aggregation. This analysis showed that it was possible to continuously monitor the change in abundance for several conformations of MDa aggregates with increasing temperature. This work significantly increases the range of biomolecules that can be analyzed by both cyclic ion mobility and temperature-controlled electrospray ionization mass spectrometry, providing new possibilities for high-resolution ion mobility analysis.
Collapse
Affiliation(s)
- Julian A Harrison
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bittner
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
5
|
Hsueh SCC, Nijland M, Peng X, Hilton B, Plotkin SS. First Principles Calculation of Protein-Protein Dimer Affinities of ALS-Associated SOD1 Mutants. Front Mol Biosci 2022; 9:845013. [PMID: 35402516 PMCID: PMC8988244 DOI: 10.3389/fmolb.2022.845013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cu,Zn superoxide dismutase (SOD1) is a 32 kDa homodimer that converts toxic oxygen radicals in neurons to less harmful species. The dimerization of SOD1 is essential to the stability of the protein. Monomerization increases the likelihood of SOD1 misfolding into conformations associated with aggregation, cellular toxicity, and neuronal death in familial amyotrophic lateral sclerosis (fALS). The ubiquity of disease-associated mutations throughout the primary sequence of SOD1 suggests an important role of physicochemical processes, including monomerization of SOD1, in the pathology of the disease. Herein, we use a first-principles statistical mechanics method to systematically calculate the free energy of dimer binding for SOD1 using molecular dynamics, which involves sequentially computing conformational, orientational, and separation distance contributions to the binding free energy. We consider the effects of two ALS-associated mutations in SOD1 protein on dimer stability, A4V and D101N, as well as the role of metal binding and disulfide bond formation. We find that the penalty for dimer formation arising from the conformational entropy of disordered loops in SOD1 is significantly larger than that for other protein-protein interactions previously considered. In the case of the disulfide-reduced protein, this leads to a bound complex whose formation is energetically disfavored. Somewhat surprisingly, the loop free energy penalty upon dimerization is still significant for the holoprotein, despite the increased structural order induced by the bound metal cations. This resulted in a surprisingly modest increase in dimer binding free energy of only about 1.5 kcal/mol upon metalation of the protein, suggesting that the most significant stabilizing effects of metalation are on folding stability rather than dimer binding stability. The mutant A4V has an unstable dimer due to weakened monomer-monomer interactions, which are manifested in the calculation by a separation free energy surface with a lower barrier. The mutant D101N has a stable dimer partially due to an unusually rigid β-barrel in the free monomer. D101N also exhibits anticooperativity in loop folding upon dimerization. These computational calculations are, to our knowledge, the most quantitatively accurate calculations of dimer binding stability in SOD1 to date.
Collapse
Affiliation(s)
- Shawn C. C. Hsueh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Mark Nijland
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, Netherlands
| | - Xubiao Peng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Center for Quantum Technology Research, School of Physics, Beijing Institute of Technology, Beijing, China
| | - Benjamin Hilton
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Imperial College London, London, United Kingdom
| | - Steven S. Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ruffo P, Perrone B, Conforti FL. SOD-1 Variants in Amyotrophic Lateral Sclerosis: Systematic Re-Evaluation According to ACMG-AMP Guidelines. Genes (Basel) 2022; 13:genes13030537. [PMID: 35328090 PMCID: PMC8955492 DOI: 10.3390/genes13030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron disease whose causes are unclear. The first ALS gene associated with the autosomal dominant form of the disease was SOD1. This gene has a high rate of rare variants, and an appropriate classification is essential for a correct ALS diagnosis. In this study, we re-evaluated the classification of all previously reported SOD1 variants (n = 202) from ALSoD, project MinE, and in-house databases by applying the ACMG-AMP criteria to ALS. New bioinformatics analysis, frequency rating, and a thorough search for functional studies were performed. We also proposed adjusting criteria strength describing how to apply them to SOD1 variants. Most of the previously reported variants have been reclassified as likely pathogenic and pathogenic based on the modified weight of the PS3 criterion, highlighting how in vivo or in vitro functional studies are determining their interpretation and classification. Furthermore, this study reveals the concordance and discordance of annotations between open databases, indicating the need for expert review to adapt the study of variants to a specific disease. Indeed, in complex diseases, such as ALS, the oligogenic inheritance, the presence of genes that act as risk factors and the reduced penetration must be considered. Overall, the diagnosis of ALS remains clinical, and improving variant classification could support genetic data as diagnostic criteria.
Collapse
|
7
|
Cha SJ, Lee S, Choi HJ, Han YJ, Jeon YM, Jo M, Lee S, Nahm M, Lim SM, Kim SH, Kim HJ, Kim K. Therapeutic modulation of GSTO activity rescues FUS-associated neurotoxicity via deglutathionylation in ALS disease models. Dev Cell 2022; 57:783-798.e8. [PMID: 35320731 DOI: 10.1016/j.devcel.2022.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Fused in sarcoma (FUS) is a DNA/RNA-binding protein that is involved in DNA repair and RNA processing. FUS is associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the molecular mechanisms underlying FUS-mediated neurodegeneration are largely unknown. Here, using a Drosophila model, we showed that the overexpression of glutathione transferase omega 2 (GstO2) reduces cytoplasmic FUS aggregates and prevents neurodegenerative phenotypes, including neurotoxicity and mitochondrial dysfunction. We found a FUS glutathionylation site at the 447th cysteine residue in the RanBP2-type ZnF domain. The glutathionylation of FUS induces FUS aggregation by promoting phase separation. GstO2 reduced cytoplasmic FUS aggregation by deglutathionylation in Drosophila brains. Moreover, we demonstrated that the overexpression of human GSTO1, the homolog of Drosophila GstO2, attenuates FUS-induced neurotoxicity and cytoplasmic FUS accumulation in mouse neuronal cells. Thus, the modulation of FUS glutathionylation might be a promising therapeutic strategy for FUS-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun Joo Cha
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Yeo Jeong Han
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea.
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
8
|
McAlary L, Shephard VK, Wright GSA, Yerbury JJ. A copper chaperone-mimetic polytherapy for SOD1-associated amyotrophic lateral sclerosis. J Biol Chem 2022; 298:101612. [PMID: 35065969 PMCID: PMC8885447 DOI: 10.1016/j.jbc.2022.101612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| | - V K Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - G S A Wright
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Farrawell NE, Yerbury JJ. Mutant Cu/Zn Superoxide Dismutase (A4V) Turnover Is Altered in Cells Containing Inclusions. Front Mol Neurosci 2021; 14:771911. [PMID: 34803609 PMCID: PMC8597841 DOI: 10.3389/fnmol.2021.771911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
SOD1 mutations account for ∼20% of familial amyotrophic lateral sclerosis (ALS) cases in which the hallmark pathological feature is insoluble SOD1 aggregates within motor neurons. Here, we investigated the degradation and synthesis of mutant SOD1 to determine whether the aggregation of mutant SOD1A4V affects these processes. We confirm that, in general, the degradation of mutant SOD1A4V occurs at a significantly faster rate than wild-type SOD1. We also report that the turnover and synthesis of mutant SOD1A4V is impaired in the presence of insoluble SOD1A4V aggregates. However, the timing of aggregation of SOD1A4V did not coincide with UPS dysfunction. Together, these results reveal the impact of SOD1 aggregation on protein degradation pathways, highlighting the importance of the UPS in preventing neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
10
|
Rogawski R, Rogel A, Bloch I, Gal M, Horovitz A, London N, Sharon M. Intracellular Protein–Drug Interactions Probed by Direct Mass Spectrometry of Cell Lysates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Itai Bloch
- Biotechnology Department MIGAL-Galilee Research Institute Kiryat-Shmona 11016 Israel
| | - Maayan Gal
- Department of Oral Biology The Goldschleger School of Dental Medicine Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nir London
- Department of Chemical and Structural Biology Weizmann Institute of Science Rehovot 7610001 Israel
| | - Michal Sharon
- Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
11
|
Rogawski R, Rogel A, Bloch I, Gal M, Horovitz A, London N, Sharon M. Intracellular Protein-Drug Interactions Probed by Direct Mass Spectrometry of Cell Lysates. Angew Chem Int Ed Engl 2021; 60:19637-19642. [PMID: 34101963 PMCID: PMC8457057 DOI: 10.1002/anie.202104947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/23/2021] [Indexed: 12/22/2022]
Abstract
Understanding protein–ligand interactions in a cellular context is an important goal in molecular biology and biochemistry, and particularly for drug development. Investigators must demonstrate that drugs penetrate cells and specifically bind their targets. Towards that end, we present a native mass spectrometry (MS)‐based method for analyzing drug uptake and target engagement in eukaryotic cells. This method is based on our previously introduced direct‐MS method for rapid analysis of proteins directly from crude samples. Here, direct‐MS enables label‐free studies of protein–drug binding in human cells and is used to determine binding affinities of lead compounds in crude samples. We anticipate that this method will enable the application of native MS to a range of problems where cellular context is important, including protein–protein interactions, drug uptake and binding, and characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adi Rogel
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Itai Bloch
- Biotechnology Department, MIGAL-Galilee Research Institute, Kiryat-Shmona, 11016, Israel
| | - Maayan Gal
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
12
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
13
|
Eleutherio ECA, Silva Magalhães RS, de Araújo Brasil A, Monteiro Neto JR, de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys 2020; 697:108701. [PMID: 33259795 DOI: 10.1016/j.abb.2020.108701] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
During cellular respiration, radicals, such as superoxide, are produced, and in a large concentration, they may cause cell damage. To combat this threat, the cell employs the enzyme Cu/Zn Superoxide Dismutase (SOD1), which converts the radical superoxide into molecular oxygen and hydrogen peroxide, through redox reactions. Although this is its main function, recent studies have shown that the SOD1 has other functions that deviates from its original one including activation of nuclear gene transcription or as an RNA binding protein. This comprehensive review looks at the most important aspects of human SOD1 (hSOD1), including the structure, properties, and characteristics as well as transcriptional and post-translational modifications (PTM) that the enzyme can receive and their effects, and its many functions. We also discuss the strategies currently used to analyze it to better understand its participation in diseases linked to hSOD1 including Amyotrophic Lateral Sclerosis (ALS), cancer, and Parkinson.
Collapse
|
14
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
15
|
McAlary L, Chew YL, Lum JS, Geraghty NJ, Yerbury JJ, Cashman NR. Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Front Cell Neurosci 2020; 14:581907. [PMID: 33328890 PMCID: PMC7671971 DOI: 10.3389/fncel.2020.581907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of the motor neurons that innervate muscle, resulting in gradual paralysis and culminating in the inability to breathe or swallow. This neuronal degeneration occurs in a spatiotemporal manner from a point of onset in the central nervous system (CNS), suggesting that there is a molecule that spreads from cell-to-cell. There is strong evidence that the onset and progression of ALS pathology is a consequence of protein misfolding and aggregation. In line with this, a hallmark pathology of ALS is protein deposition and inclusion formation within motor neurons and surrounding glia of the proteins TAR DNA-binding protein 43, superoxide dismutase-1, or fused in sarcoma. Collectively, the observed protein aggregation, in conjunction with the spatiotemporal spread of symptoms, strongly suggests a prion-like propagation of protein aggregation occurs in ALS. In this review, we discuss the role of protein aggregation in ALS concerning protein homeostasis (proteostasis) mechanisms and prion-like propagation. Furthermore, we examine the experimental models used to investigate these processes, including in vitro assays, cultured cells, invertebrate models, and murine models. Finally, we evaluate the therapeutics that may best prevent the onset or spread of pathology in ALS and discuss what lies on the horizon for treating this currently incurable disease.
Collapse
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Yee Lian Chew
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Stephen Lum
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas John Geraghty
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Justin John Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Neil R. Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
McAlary L, Yerbury JJ, Cashman NR. The prion-like nature of amyotrophic lateral sclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:261-296. [PMID: 32958236 DOI: 10.1016/bs.pmbts.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
McAlary L, Harrison JA, Aquilina JA, Fitzgerald SP, Kelso C, Benesch JL, Yerbury JJ. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2019; 92:1702-1711. [DOI: 10.1021/acs.analchem.9b01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Julian A. Harrison
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - J. Andrew Aquilina
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Celine Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Justin L.P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
18
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
19
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Ansammlungen gefalteter Proteine im Kontext von Evolution, Krankheiten und Proteinentwicklung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201806092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
20
|
Garcia‐Seisdedos H, Villegas JA, Levy ED. Infinite Assembly of Folded Proteins in Evolution, Disease, and Engineering. Angew Chem Int Ed Engl 2019; 58:5514-5531. [PMID: 30133878 PMCID: PMC6471489 DOI: 10.1002/anie.201806092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Indexed: 12/14/2022]
Abstract
Mutations and changes in a protein's environment are well known for their potential to induce misfolding and aggregation, including amyloid formation. Alternatively, such perturbations can trigger new interactions that lead to the polymerization of folded proteins. In contrast to aggregation, this process does not require misfolding and, to highlight this difference, we refer to it as agglomeration. This term encompasses the amorphous assembly of folded proteins as well as the polymerization in one, two, or three dimensions. We stress the remarkable potential of symmetric homo-oligomers to agglomerate even by single surface point mutations, and we review the double-edged nature of this potential: how aberrant assemblies resulting from agglomeration can lead to disease, but also how agglomeration can serve in cellular adaptation and be exploited for the rational design of novel biomaterials.
Collapse
Affiliation(s)
| | - José A. Villegas
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| | - Emmanuel D. Levy
- Department of Structural BiologyWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
21
|
Farrawell NE, Yerbury MR, Plotkin SS, McAlary L, Yerbury JJ. CuATSM Protects Against the In Vitro Cytotoxicity of Wild-Type-Like Copper-Zinc Superoxide Dismutase Mutants but not Mutants That Disrupt Metal Binding. ACS Chem Neurosci 2019; 10:1555-1564. [PMID: 30462490 DOI: 10.1021/acschemneuro.8b00527] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the SOD1 gene are associated with some forms of familial amyotrophic lateral sclerosis (fALS). There are more than 150 different mutations in the SOD1 gene that have various effects on the copper-zinc superoxide dismutase (SOD1) enzyme structure, including the loss of metal binding and a decrease in dimer affinity. The copper-based therapeutic CuATSM has been proven to be effective at rescuing neuronal cells from SOD1 mutant toxicity and has also increased the life expectancy of mice expressing the human transgenes SOD1G93A and SOD1G37R. Furthermore, CuATSM is currently the subject of a phase I/II clinical trial in Australia as a treatment for ALS. To determine if CuATSM protects against a broad variety of SOD1 mutations, we used a well-established cell culture model of SOD1-fALS. NSC-34 cells expressing SOD1-EGFP constructs were treated with CuATSM and examined by time-lapse microscopy. Our results show a concentration-dependent protection of cells expressing mutant SOD1A4V over the experimental time period. We tested the efficacy of CuATSM on 10 SOD1-fALS mutants and found that while protection was observed in cells expressing pathogenic wild-type-like mutants, cells expressing a truncation mutant or metal binding region mutants were not. We also show that CuATSM rescue is associated with an increase in human SOD1 activity and a decrease in the level of SOD1 aggregation in vitro. In conclusion, CuATSM has shown to be a promising therapeutic for SOD1-associated ALS; however, our in vitro results suggest that the protection afforded varies depending on the SOD1 variant, including negligible protection to mutants with deficient copper binding.
Collapse
Affiliation(s)
- Natalie E. Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Maddison R. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Steven S. Plotkin
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Genome Sciences and Technology Program, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Luke McAlary
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
- School of Biological Sciences, Centre of Medicine and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
22
|
Sala FA, Wright GSA, Antonyuk SV, Garratt RC, Hasnain SS. Molecular recognition and maturation of SOD1 by its evolutionarily destabilised cognate chaperone hCCS. PLoS Biol 2019; 17:e3000141. [PMID: 30735496 PMCID: PMC6383938 DOI: 10.1371/journal.pbio.3000141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/21/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) maturation comprises a string of posttranslational modifications which transform the nascent peptide into a stable and active enzyme. The successive folding, metal ion binding, and disulphide acquisition steps in this pathway can be catalysed through a direct interaction with the copper chaperone for SOD1 (CCS). This process confers enzymatic activity and reduces access to noncanonical, aggregation-prone states. Here, we present the functional mechanisms of human copper chaperone for SOD1 (hCCS)-catalysed SOD1 activation based on crystal structures of reaction precursors, intermediates, and products. Molecular recognition of immature SOD1 by hCCS is driven by several interface interactions, which provide an extended surface upon which SOD1 folds. Induced-fit complexation is reliant on the structural plasticity of the immature SOD1 disulphide sub-loop, a characteristic which contributes to misfolding and aggregation in neurodegenerative disease. Complexation specifically stabilises the SOD1 disulphide sub-loop, priming it and the active site for copper transfer, while delaying disulphide formation and complex dissociation. Critically, a single destabilising amino acid substitution within the hCCS interface reduces hCCS homodimer affinity, creating a pool of hCCS available to interact with immature SOD1. hCCS substrate specificity, segregation between solvent and biological membranes, and interaction transience are direct results of this substitution. In this way, hCCS-catalysed SOD1 maturation is finessed to minimise copper wastage and reduce production of potentially toxic SOD1 species.
Collapse
Affiliation(s)
- Fernanda A. Sala
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard C. Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Pokrishevsky E, McAlary L, Farrawell NE, Zhao B, Sher M, Yerbury JJ, Cashman NR. Tryptophan 32-mediated SOD1 aggregation is attenuated by pyrimidine-like compounds in living cells. Sci Rep 2018; 8:15590. [PMID: 30349065 PMCID: PMC6197196 DOI: 10.1038/s41598-018-32835-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Over 160 mutations in superoxide dismutase 1 (SOD1) are associated with familial amyotrophic lateral sclerosis (fALS), where the main pathological feature is deposition of SOD1 into proteinaceous cytoplasmic inclusions. We previously showed that the tryptophan residue at position 32 (W32) mediates the prion-like propagation of SOD1 misfolding in cells, and that a W32S substitution blocks this phenomenon. Here, we used in vitro protein assays to demonstrate that a W32S substitution in SOD1-fALS mutants significantly diminishes their propensity to aggregate whilst paradoxically decreasing protein stability. We also show SOD1-W32S to be resistant to seeded aggregation, despite its high abundance of unfolded protein. A cell-based aggregation assay demonstrates that W32S substitution significantly mitigates inclusion formation. Furthermore, this assay reveals that W32 in SOD1 is necessary for the formation of a competent seed for aggregation under these experimental conditions. Following the observed importance of W32 for aggregation, we established that treatment of living cells with the W32-interacting 5-Fluorouridine (5-FUrd), and its FDA approved analogue 5-Fluorouracil (5-FU), substantially attenuate inclusion formation similarly to W32S substitution. Altogether, we highlight W32 as a significant contributor to SOD1 aggregation, and propose that 5-FUrd and 5-FU present promising lead drug candidates for the treatment of SOD1-associated ALS.
Collapse
Affiliation(s)
- Edward Pokrishevsky
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Luke McAlary
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Natalie E Farrawell
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Beibei Zhao
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Mine Sher
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Justin J Yerbury
- Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
24
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
25
|
Farrawell NE, Lambert-Smith I, Mitchell K, McKenna J, McAlary L, Ciryam P, Vine KL, Saunders DN, Yerbury JJ. SOD1 A4V aggregation alters ubiquitin homeostasis in a cell model of ALS. J Cell Sci 2018; 131:jcs.209122. [PMID: 29748379 DOI: 10.1242/jcs.209122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
A hallmark of amyotrophic lateral sclerosis (ALS) pathology is the accumulation of ubiquitylated protein inclusions within motor neurons. Recent studies suggest the sequestration of ubiquitin (Ub) into inclusions reduces the availability of free Ub, which is essential for cellular function and survival. However, the dynamics of the Ub landscape in ALS have not yet been described. Here, we show that Ub homeostasis is altered in a cell model of ALS induced by expressing mutant SOD1 (SOD1A4V). By monitoring the distribution of Ub in cells expressing SOD1A4V, we show that Ub is present at the earliest stages of SOD1A4V aggregation, and that cells containing SOD1A4V aggregates have greater ubiquitin-proteasome system (UPS) dysfunction. Furthermore, SOD1A4V aggregation is associated with the redistribution of Ub and depletion of the free Ub pool. Ubiquitomics analysis indicates that expression of SOD1A4V is associated with a shift of Ub to a pool of supersaturated proteins, including those associated with oxidative phosphorylation and metabolism, corresponding with altered mitochondrial morphology and function. Taken together, these results suggest that misfolded SOD1 contributes to UPS dysfunction and that Ub homeostasis is an important target for monitoring pathological changes in ALS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Isabella Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Kristen Mitchell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Jessie McKenna
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522.,Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Prajwal Ciryam
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208-3500, USA.,Department of Neurology, Columbia University College of Physicians & Surgeons, New York, NY 10032-3784, USA
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522.,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, UNSW Australia 2052
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia 2522 .,Molecular Horizons and School of Chemistry & Molecular Bioscience, University of Wollongong, NSW, Australia 2522
| |
Collapse
|
26
|
Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to
SOD
1 oxidation and aggregation. FEBS Lett 2018; 592:1725-1737. [DOI: 10.1002/1873-3468.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ramu Manjula
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| | - Gareth S. A. Wright
- Molecular Biophysics Group Institute of Integrative Biology Faculty of Health and Life Sciences University of Liverpool UK
| | | | - Balasundaram Padmanabhan
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| |
Collapse
|
27
|
The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat Commun 2018; 9:1693. [PMID: 29703933 PMCID: PMC5923229 DOI: 10.1038/s41467-018-04114-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/04/2018] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutase-1 (SOD1) mutants, including those with unaltered enzymatic activity, are known to cause amyotrophic lateral sclerosis (ALS). Several destabilizing factors contribute to pathogenicity including a reduced ability to complete the normal maturation process which comprises folding, metal cofactor acquisition, intra-subunit disulphide bond formation and dimerization. Immature SOD1 forms toxic oligomers and characteristic large insoluble aggregates within motor system cells. Here we report that the cysteine-reactive molecule ebselen efficiently confers the SOD1 intra-subunit disulphide and directs correct SOD1 folding, depopulating the globally unfolded precursor associated with aggregation and toxicity. Assisted formation of the unusual SOD1 cytosolic disulphide bond could have potential therapeutic applications. In less reducing environments, ebselen forms a selenylsulphide with Cys111 and restores the monomer–dimer equilibrium of A4V SOD1 to wild-type. Ebselen is therefore a potent bifunctional pharmacological chaperone for SOD1 that combines properties of the SOD1 chaperone hCCS and the recently licenced antioxidant drug, edaravone. Mutations in superoxide dismutase-1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Here the authors present the SOD1 crystal structure bound to the small cysteine-reactive molecule ebselen and show that ebselen is a chaperone for SOD1.
Collapse
|
28
|
Zeineddine R, Farrawell NE, Lambert-Smith IA, Yerbury JJ. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones 2017; 22:893-902. [PMID: 28560609 PMCID: PMC5655364 DOI: 10.1007/s12192-017-0804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
Abstract
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.
Collapse
Affiliation(s)
- Rafaa Zeineddine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
29
|
Abstract
Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated with many hereditary and acquired diseases. Mutations in the primary protein sequence (gain or loss of a cysteine) are most frequent in membrane and secretory proteins, correlating with the key roles of disulfide bonds. On the contrary, in the cytosol and nucleus, aberrant post-translational oxidative modifications of thiol groups, reflecting redox changes in the surrounding environment, are a more frequent cause of dysregulation of protein function. This essay highlights the regulatory functions performed by protein cysteine residues and provides a framework for understanding how mutation and/or (in)activation of this key amino acid can cause disease.
Collapse
Affiliation(s)
- Annamaria Fra
- Department of Molecular and Translational Medicine, University of BresciaBrescia, Italy
| | - Edgar D Yoboue
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele UniversityMilan, Italy.,Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
30
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
31
|
McAlary L, Aquilina JA, Yerbury JJ. Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity. Front Neurosci 2016; 10:499. [PMID: 27867347 PMCID: PMC5095133 DOI: 10.3389/fnins.2016.00499] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the rapid and progressive degeneration of upper and lower motor neurons in the spinal cord, brain stem and motor cortex. The first gene linked to ALS was the gene encoding the free radical scavenging enzyme superoxide dismutase-1 (SOD1) that currently has over 180, mostly missense, ALS-associated mutations identified. SOD1-associated fALS patients show remarkably broad mean survival times (<1 year to ~17 years death post-diagnosis) that are mutation dependent. A hallmark of SOD1-associated ALS is the deposition of SOD1 into large insoluble aggregates in motor neurons. This is thought to be a consequence of mutation induced structural destabilization and/or oxidative damage leading to the misfolding and aggregation of SOD1 into a neurotoxic species. Here we aim to understand the relationship between SOD1 variant toxicity, structural stability, and aggregation propensity using a combination of cell culture and purified protein assays. Cell based assays indicated that aggregation of SOD1 variants correlate closely to cellular toxicity. However, the relationship between cellular toxicity and disease severity was less clear. We next utilized mass spectrometry to interrogate the structural consequences of metal loss and disulfide reduction on fALS-associated SOD1 variant structure. All variants showed evidence of unfolded, intermediate, and compact conformations, with SOD1G37R, SOD1G93A and SOD1V148G having the greatest abundance of intermediate and unfolded SOD1. SOD1G37R was an informative outlier as it had a high propensity to unfold and form oligomeric aggregates, but it did not aggregate to the same extent as SOD1G93A and SOD1V148G in in vitro aggregation assays. Furthermore, seeding the aggregation of DTT/EDTA-treated SOD1G37R with preformed SOD1G93A fibrils elicited minimal aggregation response, suggesting that the arginine substitution at position-37 blocks the templating of SOD1 onto preformed fibrils. We propose that this difference may be explained by multiple strains of SOD1 aggregate and this may also help explain the slow disease progression observed in patients with SOD1G37R.
Collapse
Affiliation(s)
- Luke McAlary
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| | - J Andrew Aquilina
- Science Medicine and Health Faculty, School of Biological Sciences, University of Wollongong Wollongong, NSW, Australia
| | - Justin J Yerbury
- Lab 210, Illawarra Health and Medical Research InstituteWollongong, NSW, Australia; Science Medicine and Health Faculty, School of Biological Sciences, University of WollongongWollongong, NSW, Australia
| |
Collapse
|
32
|
Fay JM, Zhu C, Proctor EA, Tao Y, Cui W, Ke H, Dokholyan NV. A Phosphomimetic Mutation Stabilizes SOD1 and Rescues Cell Viability in the Context of an ALS-Associated Mutation. Structure 2016; 24:1898-1906. [PMID: 27667694 PMCID: PMC5093072 DOI: 10.1016/j.str.2016.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023]
Abstract
The majority of amyotrophic lateral sclerosis (ALS)-related mutations in the enzyme Cu,Zn superoxide dismutase (SOD1), as well as a post-translational modification, glutathionylation, destabilize the protein and lead to a misfolded oligomer that is toxic to motor neurons. The biophysical role of another physiological SOD1 modification, T2-phosphorylation, has remained a mystery. Here, we find that a phosphomimetic mutation, T2D, thermodynamically stabilizes SOD1 even in the context of a strongly SOD1-destabilizing mutation, A4V, one of the most prevalent and aggressive ALS-associated mutations in North America. This stabilization protects against formation of toxic SOD oligomers and positively impacts motor neuron survival in cellular assays. We solve the crystal structure of T2D-SOD1 and explain its stabilization effect using discrete molecular dynamics (DMD) simulations. These findings imply that T2-phosphorylation may be a plausible innate cellular protection response against SOD1-induced cytotoxicity, and stabilizing the SOD1 native conformation might offer us viable pharmaceutical strategies against currently incurable ALS.
Collapse
Affiliation(s)
- James M Fay
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cheng Zhu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth A Proctor
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yazhong Tao
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Wenjun Cui
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Acetylation at lysine 71 inactivates superoxide dismutase 1 and sensitizes cancer cells to genotoxic agents. Oncotarget 2016; 6:20578-91. [PMID: 26008972 PMCID: PMC4653027 DOI: 10.18632/oncotarget.3987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023] Open
Abstract
Cancer cells are characterized by a high dependency on antioxidant enzymes to cope with the elevated rates of reactive oxygen species (ROS). Impairing antioxidant capacity in cancer cells disturbs the ROS homeostasis and exposes cancer cells to massive oxidative stress. In this study, we have discovered that superoxide dismutase 1 (SOD1), a major player in maintaining the cellular redox status, was acetylated at lysine 71. This acetylation, which was primarily deacetylated by Sirtuin 1 (SIRT1), suppressed the enzymatic activity of SOD1 via disrupting its association with copper chaperone for SOD1 (CCS). More importantly, genotoxic agents, such as camptothecin (CPT), induced SOD1 acetylation by disrupting its binding with SIRT1. CPT-induced SOD1 acetylation was stimulated by its provoked ROS, suggesting a positive feedback loop, in which ROS per se impairs the antioxidative defence of cancer cells and reinforces oxidative stress stimulated by anticancer agents. The intrinsic abundance of SOD1 acetylation varied among cancer cells, and high level of SOD1 acetylation was correlated with elevated sensitivity to CPT. Together, our findings gained mechanistic insights into how cytotoxic agents fine tune the intracellular ROS homeostasis to strengthen their anticancer effects, and suggested SOD1 acetylation as a candidate biomarker for predicting response to CPT-based chemotherapy.
Collapse
|
34
|
Jovcevski B, Kelly MA, Rote AP, Berg T, Gastall HY, Benesch JLP, Aquilina JA, Ecroyd H. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. ACTA ACUST UNITED AC 2015; 22:186-95. [PMID: 25699602 DOI: 10.1016/j.chembiol.2015.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
Serine phosphorylation of the mammalian small heat-shock protein Hsp27 at residues 15, 78, and 82 is thought to regulate its structure and chaperone function; however, the site-specific impact has not been established. We used mass spectrometry to assess the combinatorial effect of mutations that mimic phosphorylation upon the oligomeric state of Hsp27. Comprehensive dimerization yielded a relatively uncrowded spectrum, composed solely of even-sized oligomers. Modification at one or two serines decreased the average oligomeric size, while the triple mutant was predominantly a dimer. These changes were reflected in a greater propensity for oligomers to dissociate upon increased modification. The ability of Hsp27 to prevent amorphous or fibrillar aggregation of target proteins was enhanced and correlated with the amount of dissociated species present. We propose that, in vivo, phosphorylation promotes oligomer dissociation, thereby enhancing chaperone activity. Our data support a model in which dimers are the chaperone-active component of Hsp27.
Collapse
Affiliation(s)
- Blagojce Jovcevski
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Megan A Kelly
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthea P Rote
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Heidi Y Gastall
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - J Andrew Aquilina
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
35
|
Shi Y, Acerson MJ, Shuford KL, Shaw BF. Voltage-Induced Misfolding of Zinc-Replete ALS Mutant Superoxide Dismutase-1. ACS Chem Neurosci 2015. [PMID: 26207449 DOI: 10.1021/acschemneuro.5b00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The monomerization of Cu, Zn superoxide dismutase (SOD1) is an early step along pathways of misfolding linked to amyotrophic lateral sclerosis (ALS). Monomerization requires the reversal of two post-translational modifications that are thermodynamically favorable: (i) dissociation of active-site metal ions and (ii) reduction of intramolecular disulfide bonds. This study found, using amide hydrogen/deuterium (H/D) exchange, capillary electrophoresis, and lysine-acetyl protein charge ladders, that ALS-linked A4V SOD1 rapidly monomerizes and partially unfolds in an external electric field (of physiological strength), without loss of metal ions, exposure to disulfide-reducing agents, or Joule heating. Voltage-induced monomerization was not observed for metal-free A4V SOD1, metal-free WT SOD1, or metal-loaded WT SOD1. Computational modeling suggested a mechanism for this counterintuitive effect: subunit macrodipoles of dimeric SOD1 are antiparallel and amplified 2-fold by metal coordination, which increases torque at the dimer interface as subunits rotate to align with the electric field.
Collapse
Affiliation(s)
- Yunhua Shi
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Mark J. Acerson
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kevin L. Shuford
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Bryan F. Shaw
- Department
of Chemistry and
Biochemistry, Baylor University, Waco, Texas 76706, United States
| |
Collapse
|
36
|
Nagano S, Takahashi Y, Yamamoto K, Masutani H, Fujiwara N, Urushitani M, Araki T. A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Hum Mol Genet 2015; 24:3427-39. [DOI: 10.1093/hmg/ddv093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
|
37
|
Auclair JR, Salisbury JP, Johnson JL, Petsko GA, Ringe D, Bosco DA, Agar NYR, Santagata S, Durham HD, Agar JN. Artifacts to avoid while taking advantage of top-down mass spectrometry based detection of protein S-thiolation. Proteomics 2014; 14:1152-7. [PMID: 24634066 DOI: 10.1002/pmic.201300450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 11/12/2022]
Abstract
Bottom-up MS studies typically employ a reduction and alkylation step that eliminates a class of PTM, S-thiolation. Given that molecular oxygen can mediate S-thiolation from reduced thiols, which are abundant in the reducing intracellular milieu, we investigated the possibility that some S-thiolation modifications are artifacts of protein preparation. Cu/Zn-superoxide dismutase (SOD1) was chosen for this case study as it has a reactive surface cysteine residue, which is readily cysteinylated in vitro. The ability of oxygen to generate S-thiolation artifacts was tested by comparing purification of SOD1 from postmortem human cerebral cortex under aerobic and anaerobic conditions. S-thiolation was ∼50% higher in aerobically processed preparations, consistent with oxygen-dependent artifactual S-thiolation. The ability of endogenous small molecule disulfides (e.g. cystine) to participate in artifactual S-thiolation was tested by blocking reactive protein cysteine residues during anaerobic homogenization. A 50-fold reduction in S-thiolation occurred indicating that the majority of S-thiolation observed aerobically was artifact. Tissue-specific artifacts were explored by comparing brain- and blood-derived protein, with remarkably more artifacts observed in brain-derived SOD1. Given the potential for such artifacts, rules of thumb for sample preparation are provided. This study demonstrates that without taking extraordinary precaution, artifactual S-thiolation of highly reactive, surface-exposed, cysteine residues can result.
Collapse
Affiliation(s)
- Jared R Auclair
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA; Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Redler RL, Fee L, Fay JM, Caplow M, Dokholyan NV. Non-native soluble oligomers of Cu/Zn superoxide dismutase (SOD1) contain a conformational epitope linked to cytotoxicity in amyotrophic lateral sclerosis (ALS). Biochemistry 2014; 53:2423-32. [PMID: 24660965 PMCID: PMC4004233 DOI: 10.1021/bi500158w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Soluble misfolded Cu/Zn superoxide
dismutase (SOD1) is implicated
in motor neuron death in amyotrophic lateral sclerosis (ALS); however,
the relative toxicities of the various non-native species formed by
SOD1 as it misfolds and aggregates are unknown. Here, we demonstrate
that early stages of SOD1 aggregation involve the formation of soluble
oligomers that contain an epitope specific to disease-relevant misfolded
SOD1; this epitope, recognized by the C4F6 antibody, has been proposed
as a marker of toxic species. Formation of potentially toxic oligomers
is likely to be exacerbated by an oxidizing cellular environment,
as evidenced by increased oligomerization propensity and C4F6 reactivity
when oxidative modification by glutathione is present at Cys-111.
These findings suggest that soluble non-native SOD1 oligomers, rather
than native-like dimers or monomers, share structural similarity to
pathogenic misfolded species found in ALS patients and therefore represent
potential cytotoxic agents and therapeutic targets in ALS.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, 120 Mason Farm Road, CB# 7260, University of North Carolina , Chapel Hill, North Carolina, United States 27599
| | | | | | | | | |
Collapse
|