1
|
Egerton RF. Two- and three-dimensional electron imaging of beam-sensitive specimens. Micron 2025; 194:103819. [PMID: 40188715 DOI: 10.1016/j.micron.2025.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Radiation damage is the main factor that determines the spatial resolution of TEM and STEM images of beam-sensitive specimens, its influence being well represented by a dose-limited resolution (DLR). In this review, DLR is defined and evaluated for both thin and thick samples, for all common imaging modes, and for electron-accelerating voltages up to 3 MV. Damage mechanisms are discussed (including beam heating and electrostatic charge accumulation) with an emphasis on recently published work. Experimental methods for reducing beam damage are identified and future lines of investigation are suggested.
Collapse
Affiliation(s)
- R F Egerton
- Physics Department, University of Alberta, Edmonton T6G 2E1, Canada.
| |
Collapse
|
2
|
Hadjigol S, Shabani S, Jafari VF, Barlow A, Qiao GG, O'Brien-Simpson NM. Lipidated SNAPP-Stars Target and Kill Multidrug-Resistant Bacteria within Minutes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25163-25181. [PMID: 40237536 DOI: 10.1021/acsami.5c03839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The fast emergence of bacteria resistance has already threatened global health, and immediate action is required before the emergence of another global pandemic. Despite substantial progress in the chemical synthesis of novel antimicrobial compounds and advancements in understanding antimicrobial resistance, there has been only a handful of new antibiotics coming to the market. Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPP-stars) are a new class of antimicrobials. Here, we show that lipidation of lysine-valine 16-armed SNAPP-star, S16 (lipo-SNAPP-star) where the N-terminal arms are conjugated with different fatty acids (caproic, C6, lauric, C12, and stearic acid, C18) enhanced the antimicrobial activity toward S. aureus and MRSA. Lipidation enhanced activity by targeting the SNAPP-stars to the bacterial surface by binding to peptidoglycan, leading to greater inner membrane disruption and depolarization. Lipo-SNAPP-stars killed bacteria in under a minute, whereas vancomycin took >16 h. Lipo-SNAPP-stars were found to preferentially target and kill MRSA rather than S. aureus in a mixed bacteria model. Lipid chain length affected activity, with C6-S16 having greater activity compared to C12-S16 > C18-S16. Lauric and stearic acid enhanced SNAPP-star binding to the bacterial surface and membrane depolarization but impeded SNAPP-stars' ability to transit through the peptidoglycan layer to disrupt the inner membrane. Microbial flow cytometry showed that lipidation aided binding to bacteria via lipoteichoic acid and specifically to peptidoglycan. Further, lipid length enhanced bacterial binding with C18-S16 > C12-S16 > C6-S16 = S16, which contrasts the activity order of C6-S16 > S16 ≫ C12-S16 ≫ C18-S16. Our data demonstrate that lipidation enhances antimicrobial activity by targeting and binding an antimicrobial to peptidoglycan, but increasing lipid length reduces activity by retaining the antimicrobial in the outer layer. Lipidation of SNAPP-stars did not increase cytotoxicity, with C6-S16 having an improved therapeutic index compared to S16. Our data show how lipidation of SNAPP-stars enhances its antimicrobial activity, resulting in a highly biocompatible antimicrobial that targets and kills the "superbug" MRSA within minutes.
Collapse
Affiliation(s)
- Sara Hadjigol
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, The Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| | - Sadegh Shabani
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vianna F Jafari
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anders Barlow
- Materials Characterisation and Fabrication Platform, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Division of Basic and Clinical Oral Sciences, The Melbourne Dental School, Royal Dental Hospital, The University of Melbourne, 720 Swanston Street, Carlton, Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
Demidova N, Gunn JR, Gitajn IL, Alex Vitkin I, Elliott JT, Demidov VV. Optical coherence tomography for label-free detection and characterization of methicillin-resistant S. aureus biofilms. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:046003. [PMID: 40170878 PMCID: PMC11960790 DOI: 10.1117/1.jbo.30.4.046003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Significance Orthopedic implant-associated infections cause serious complications primarily attributed to bacterial biofilm formation and are often characterized by increased antibiotic resistance and diminished treatment response. Yet, no methods currently exist to identify biofilms intraoperatively-surgeons rely solely on their eyes and hands and cannot detect or differentiate infected tissue to determine the location and extent of contamination. Aim As the first step in addressing this unmet clinical need, here, we develop an optical coherence tomography (OCT)-based imaging method capable of detection in situ and quantification of one of the most dangerous orthopedic biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA). Approach Growing biofilms on orthopedic hardware, we identify MRSA distinct optical signature through histogram-based multi-parametric texture analysis of OCT images and support the findings with bioluminescence imaging and scanning electron microscopy. Under identical experimental conditions, we identify an optical signature of Escherichia coli (E. coli) biofilms and use it to distinguish and quantify both species within MRSA-E. coli biofilms. Results The developed OCT-based methodology was successfully tested for (1) MRSA colonies delineation, (2) detection of metal hardware (an important feature for clinical translation where the metal surface of most orthopedic hardware is not flat), (3) automated quantification of biofilm thickness and roughness, and (4) identification of pores and, therefore, ability to evaluate the role of porosity-one of the critical biological metrics in relation to biofilm maturity and response to treatment. For the first time, we demonstrated complex pore structures of thick ( > 100 microns ) MRSA biofilms in situ with an unprecedented level of detail. Conclusions The proposed rapid noninvasive detection/quantification of MRSA biofilms on metal surfaces and delineation of their complex network of pores opens new venues for label-free MRSA detection in preclinical models of trauma surgery, expansion to other bacterial strains, and further clinical translation.
Collapse
Affiliation(s)
- Natalia Demidova
- Dartmouth Health, Department of
Orthopaedics, Lebanon, New Hampshire, United States
- University of Toronto, Department
of Medical Biophysics, Toronto, Ontario, Canada
| | - Jason R. Gunn
- Dartmouth Health, Department of
Orthopaedics, Lebanon, New Hampshire, United States
| | - Ida Leah Gitajn
- Dartmouth Health, Department of
Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School
of Medicine, Hanover, New Hampshire, United States
| | - Ilya Alex Vitkin
- University of Toronto, Department
of Medical Biophysics, Toronto, Ontario, Canada
- University of Toronto, Department
of Radiation Oncology, Toronto, Ontario, Canada
| | - Jonathan Thomas Elliott
- Dartmouth Health, Department of
Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School
of Medicine, Hanover, New Hampshire, United States
- Dartmouth College, Thayer School
of Engineering, Hanover, New Hampshire, United States
| | - Valentin V. Demidov
- Dartmouth Health, Department of
Orthopaedics, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School
of Medicine, Hanover, New Hampshire, United States
| |
Collapse
|
4
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
5
|
Chuang C, Wang T, Chou C, Yi S, Jiang Y, Shyue J, Chen M. Sharp Transformation across Morphotropic Phase Boundary in Sub-6 nm Wake-Up-Free Ferroelectric Films by Atomic Layer Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302770. [PMID: 37759405 PMCID: PMC10646279 DOI: 10.1002/advs.202302770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Atomic layer engineering is investigated to tailor the morphotropic phase boundary (MPB) between antiferroelectric, ferroelectric, and paraelectric phases. By increasing the HfO2 seeding layer with only 2 monolayers, the overlying ZrO2 layer experiences the dramatic phase transition across the MPB. Conspicuous ferroelectric properties including record-high remanent polarization (2Pr ≈ 60 µC cm-2 ), wake-up-free operation, and high compatibility with advanced semiconductor technology nodes, are achieved in the sub-6 nm thin film. The prominent antiferroelectric to ferroelectric phase transformation is ascribed to the in-plane tensile stress introduced into ZrO2 by the HfO2 seeding layer. Based on the high-resolution and high-contrast images of surface grains extracted precisely by helium ion microscopy, the evolution of the MPB between tetragonal, orthorhombic, and monoclinic phases with grain size is demonstrated for the first time. The result indicates that a decrease in the average grain size drives the crystallization from the tetragonal to polar orthorhombic phases.
Collapse
Affiliation(s)
- Chun‐Ho Chuang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Ting‐Yun Wang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Chun‐Yi Chou
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Sheng‐Han Yi
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Yu‐Sen Jiang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Jing‐Jong Shyue
- Research Center for Applied SciencesAcademia SinicaTaipei11529Taiwan
| | - Miin‐Jang Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
6
|
Uryu K, Soplop N, Sheahan TP, Catanese MT, Huynh C, Pena J, Boudreau N, Matei I, Kenific C, Hashimoto A, Hoshino A, Rice CM, Lyden D. Advancement in Cellular Topographic and Nanoparticle Capture Imaging by High Resolution Microscopy Incorporating a Freeze-Drying and Gaseous Nitrogen-based Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559906. [PMID: 37808646 PMCID: PMC10557753 DOI: 10.1101/2023.09.28.559906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Scanning electron microscopy (SEM) offers an unparalleled view of the membrane topography of mammalian cells by using a conventional osmium (OsO4) and ethanol-based tissue preparation. However, conventional SEM methods limit optimal resolution due to ethanol and lipid interactions and interfere with visualization of fluorescent reporter proteins. Therefore, SEM correlative light and electron microscopy (CLEM) has been hindered by the adverse effects of ethanol and OsO4 on retention of fluorescence signals. To overcome this technological gap in achieving high-resolution SEM and retain fluorescent reporter signals, we developed a freeze-drying method with gaseous nitrogen (FDGN). We demonstrate that FDGN preserves cyto-architecture to allow visualization of detailed membrane topography while retaining fluorescent signals and that FDGN processing can be used in conjunction with a variety of high-resolution imaging systems to enable collection and validation of unique, high-quality data from these approaches. In particular, we show that FDGN coupled with high resolution microscopy provided detailed insight into viral or tumor-derived extracellular vesicle (TEV)-host cell interactions and may aid in designing new approaches to intervene during viral infection or to harness TEVs as therapeutic agents.
Collapse
Affiliation(s)
- Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
- Janelia Rearch Campsu, Ashuburn, Virginia, 20147, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Timothy P. Sheahan
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065 USA
| | - Maria-Teresa Catanese
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065 USA
| | - Chuong Huynh
- Ion Microscopy Innovation Center, Zeiss Microscopy LLC, Peabody, MA 01960, USA
| | - John Pena
- Sonder Research X, Cornell University, Ithaca, NY 14853, USA
| | - Nancy Boudreau
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| | - Candia Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| | - Ayako Hashimoto
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| | - Ayuko Hoshino
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065 USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
7
|
Iachina I, Brewer JR, Rubahn HG, Fiutowski J. Helium Ion Microscopy and Sectioning of Spider Silk. SCANNING 2023; 2023:2936788. [PMID: 37260614 PMCID: PMC10228223 DOI: 10.1155/2023/2936788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
Focused ion beams have recently emerged as a powerful tool for ultrastructural imaging of biological samples. In this article, we show that helium ion microscopy (HIM), in combination with ion milling, can be used to visualize the inner structure of both major and minor ampullate silk fibers of the orb-web weaving spider Nephila madagascariensis. The internal nanofibrils were imaged in pristine silk fibers, with little or no damage to the sample structure observed. Furthermore, a method to cut/rupture the fibers using He+ ions combined with internal sample tension is presented. This showed that the stretching and rupturing of spider silk is a highly dynamic process with considerable material reorganization.
Collapse
Affiliation(s)
- Irina Iachina
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Denmark
- Department of Biochemisty and Molecular Biology, University of Southern Denmark, Denmark
| | - Jonathan R. Brewer
- Department of Biochemisty and Molecular Biology, University of Southern Denmark, Denmark
| | | | - Jacek Fiutowski
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Denmark
| |
Collapse
|
8
|
Wang C, Vangelatos Z, Winston T, Sun S, Grigoropoulos CP, Ma Z. Remodeling of Architected Mesenchymal Microtissues Generated on Mechanical Metamaterials. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:483-489. [PMID: 36660751 PMCID: PMC9809979 DOI: 10.1089/3dp.2021.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mechanical metamaterials constitute a nascent category of architected structures comprising arranged periodic components with tailored geometrical features. These materials are now being employed as advanced medical implants due to their extraordinary mechanical properties over traditional devices. Nevertheless, to achieve desired tissue integration and regeneration, it is critical to study how the microarchitecture affects interactions between metamaterial scaffolds and living biological tissues. Based on human induced pluripotent stem cell technology and multiphoton lithography, we report the establishment of an in vitro microtissue model to study the integration and remodeling of human mesenchymal tissues on metamaterial scaffolds with different unit geometries. Microtissues showed distinct tissue morphologies and cellular behaviors between architected octet-truss and bowtie structures. Under the active force generated from mesenchymal tissues, the octet-truss and bowtie metamaterial scaffolds demonstrated unique instability phenomena, significantly different from uniform loading using conventional mechanical testing.
Collapse
Affiliation(s)
- Chenyan Wang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Zacharias Vangelatos
- Department of Mechanical Engineering, University of California, Berkeley, California, USA
| | - Tackla Winston
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | - Shiyang Sun
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| | | | - Zhen Ma
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- BioInspired Syracuse Institute for Material and Living Systems, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
9
|
Wei K, Fu Y, Zheng Y, Yang J. Physics-Based Noise Modeling for Extreme Low-Light Photography. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:8520-8537. [PMID: 34375279 DOI: 10.1109/tpami.2021.3103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model that can accurately characterize the real noise structures. Our novel model considers the noise sources caused by digital camera electronics which are largely overlooked by existing methods yet have significant influence on raw measurement in the dark. It provides a way to decouple the intricate noise structure into different statistical distributions with physical interpretations. Moreover, our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms. In this regard, although promising results have been shown recently with deep convolutional neural networks, the success heavily depends on abundant noisy-clean image pairs for training, which are tremendously difficult to obtain in practice. Generalizing their trained models to images from new devices is also problematic. Extensive experiments on multiple low-light denoising datasets - including a newly collected one in this work covering various devices - show that a deep neural network trained with our proposed noise formation model can reach surprisingly-high accuracy. The results are on par with or sometimes even outperform training with paired real data, opening a new door to real-world extreme low-light photography.
Collapse
|
10
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
11
|
Schmidt M. [Not Available]. BIOSPEKTRUM : ZEITSCHRIFT DER GESELLSCHAFT FUR BIOLOGISHE CHEMIE (GBCH) UND DER VEREINIGUNG FUR ALLGEMEINE UND ANGEWANDTE MIKROBIOLOGIE (VAAM) 2022; 28:377-380. [PMID: 35698575 PMCID: PMC9178215 DOI: 10.1007/s12268-022-1772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The past decade has seen the advent of a new imaging technique in the life sciences that is ideal for microbiological applications: the helium ion microscope (HIM). Its lateral resolution is better than one nanometre, it has a large depth-of-field and can image non-conductive specimens which renders the tool ideal for studying microbiological objects such as microbes attached to surfaces, microbial biofilms and viruses. Here we compare HIM with electron microscopy techniques and highlight selected examples that demonstrate the new possibilities for microbiology opened up by this technique.
Collapse
Affiliation(s)
- Matthias Schmidt
- ProVIS - Zentrum für Chemische Mikroskopie Abteilung Isotopen Biogeochemie Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstraße 15, D-04318 Leipzig, Deutschland
| |
Collapse
|
12
|
Li W, Hadjigol S, Mazo AR, Holden J, Lenzo J, Shirbin SJ, Barlow A, Shabani S, Huang T, Reynolds EC, Qiao GG, O'Brien-Simpson NM. Star-Peptide Polymers are Multi-Drug-Resistant Gram-Positive Bacteria Killers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25025-25041. [PMID: 35500245 DOI: 10.1021/acsami.1c23734] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance in bacteria, especially Gram-positive bacteria like Staphylococcus aureus, is gaining considerable momentum worldwide and unless checked will pose a global health crisis. With few new antibiotics coming on the market, there is a need for novel antimicrobial materials that target and kill multi-drug-resistant (MDR) Gram-positive pathogens like methicillin-resistant Staphylococcus aureus (MRSA). In this study, using a novel mixed-bacteria antimicrobial assay, we show that the star-peptide polymers preferentially target and kill Gram-positive pathogens including MRSA. A major effect on the activity of the star-peptide polymer was structure, with an eight-armed structure inducing the greatest bactericidal activity. The different star-peptide polymer structures were found to induce different mechanisms of bacterial death both in vitro and in vivo. These results highlight the potential utility of peptide/polymers to fabricate materials for therapeutic development against MDR Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Wenyi Li
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sara Hadjigol
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alicia Rasines Mazo
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - James Holden
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason Lenzo
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven J Shirbin
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anders Barlow
- Materials Characterisation and Fabrication Platform, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sadegh Shabani
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Huang
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric C Reynolds
- Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Wightman R. An Overview of Cryo-Scanning Electron Microscopy Techniques for Plant Imaging. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091113. [PMID: 35567113 PMCID: PMC9106016 DOI: 10.3390/plants11091113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 05/02/2023]
Abstract
Many research questions require the study of plant morphology, in particular cells and tissues, as close to their native context as possible and without physical deformations from some preparatory chemical reagents or sample drying. Cryo-scanning electron microscopy (cryoSEM) involves rapid freezing and maintenance of the sample at an ultra-low temperature for detailed surface imaging by a scanning electron beam. The data are useful for exploring tissue/cell morphogenesis, plus an additional cryofracture/cryoplaning/milling step gives information on air and water spaces as well as subcellular ultrastructure. This review gives an overview from sample preparation through to imaging and a detailed account of how this has been applied across diverse areas of plant research. Future directions and improvements to the technique are discussed.
Collapse
Affiliation(s)
- Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
14
|
Merolli A, Kasaei L, Ramasamy S, Kolloli A, Kumar R, Subbian S, Feldman LC. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci Rep 2022; 12:3794. [PMID: 35260703 PMCID: PMC8904465 DOI: 10.1038/s41598-022-07867-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA. .,Department Physics and Astronomy, Rutgers University, DLS Building, 145 Bevier Road, Room 108, Piscataway, NJ, 08854, USA.
| | - Leila Kasaei
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Leonard C Feldman
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
15
|
Li W, Lin F, Hung A, Barlow A, Sani MA, Paolini R, Singleton W, Holden J, Hossain MA, Separovic F, O'Brien-Simpson NM, Wade JD. Enhancing proline-rich antimicrobial peptide action by homodimerization: influence of bifunctional linker. Chem Sci 2022; 13:2226-2237. [PMID: 35310489 PMCID: PMC8864714 DOI: 10.1039/d1sc05662j] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are host defense peptides, and unlike conventional antibiotics, they possess potent broad spectrum activities and, induce little or no antimicrobial resistance. They are attractive lead molecules for rational development to improve their therapeutic index. Our current studies examined dimerization of the de novo designed proline-rich AMP (PrAMP), Chex1-Arg20 hydrazide, via C-terminal thiol addition to a series of bifunctional benzene or phenyl tethers to determine the effect of orientation of the peptides and linker length on antimicrobial activity. Antibacterial assays confirmed that dimerization per se significantly enhances Chex1-Arg20 hydrazide action. Greatest advantage was conferred using perfluoroaromatic linkers (tetrafluorobenzene and octofluorobiphenyl) with the resulting dimeric peptides 6 and 7 exhibiting potent action against Gram-negative bacteria, especially the World Health Organization's critical priority-listed multidrug-resistant (MDR)/extensively drug-resistant (XDR) Acinetobacter baumannii as well as preformed biofilms. Mode of action studies indicated these lead PrAMPs can interact with both outer and inner bacterial membranes to affect the membrane potential and stress response. Additionally, 6 and 7 possess potent immunomodulatory activity and neutralise inflammation via nitric oxide production in macrophages. Molecular dynamics simulations of adsorption and permeation mechanisms of the PrAMP on a mixed lipid membrane bilayer showed that a rigid, planar tethered dimer orientation, together with the presence of fluorine atoms that provide increased bacterial membrane interaction, is critical for enhanced dimer activity. These findings highlight the advantages of use of such bifunctional tethers to produce first-in-class, potent PrAMP dimers against MDR/XDR bacterial infections.
Collapse
Affiliation(s)
- Wenyi Li
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - Feng Lin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
| | - Andrew Hung
- School of Science, RMIT University Australia
| | - Anders Barlow
- Materials Characterization and Fabrication Platform Australia
| | - Marc-Antoine Sani
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Rita Paolini
- Melbourne Dental School, Centre for Oral Health Research Australia
| | | | - James Holden
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Frances Separovic
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| | - Neil M O'Brien-Simpson
- The Bio21 Institute of Molecular Science and Biotechnology Australia
- Melbourne Dental School, Centre for Oral Health Research Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne Australia
- School of Chemistry, University of Melbourne Victoria 3010 Australia
| |
Collapse
|
16
|
Audinot JN, Philipp P, De Castro O, Biesemeier A, Hoang QH, Wirtz T. Highest resolution chemical imaging based on secondary ion mass spectrometry performed on the helium ion microscope. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:105901. [PMID: 34404033 DOI: 10.1088/1361-6633/ac1e32] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.
Collapse
Affiliation(s)
- Jean-Nicolas Audinot
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Patrick Philipp
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Olivier De Castro
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Antje Biesemeier
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Quang Hung Hoang
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
17
|
Allen FI. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:633-664. [PMID: 34285866 PMCID: PMC8261528 DOI: 10.3762/bjnano.12.52] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/30/2021] [Indexed: 05/28/2023]
Abstract
The helium ion microscope has emerged as a multifaceted instrument enabling a broad range of applications beyond imaging in which the finely focused helium ion beam is used for a variety of defect engineering, ion implantation, and nanofabrication tasks. Operation of the ion source with neon has extended the reach of this technology even further. This paper reviews the materials modification research that has been enabled by the helium ion microscope since its commercialization in 2007, ranging from fundamental studies of beam-sample effects, to the prototyping of new devices with features in the sub-10 nm domain.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Toumpanaki E, Shah DU, Eichhorn SJ. Beyond What Meets the Eye: Imaging and Imagining Wood Mechanical-Structural Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001613. [PMID: 32830395 PMCID: PMC11469293 DOI: 10.1002/adma.202001613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Wood presents a hierarchical structure, containing features at all length scales: from the tracheids or vessels that make up its cellular structure, through to the microfibrils within the cell walls, down to the molecular architecture of the cellulose, lignin, and hemicelluloses that comprise its chemical makeup. This structure renders it with high mechanical (e.g., modulus and strength) and interesting physical (e.g., optical) properties. A better understanding of this structure, and how it plays a role in governing mechanical and other physical parameters, will help to better exploit this sustainable resource. Here, recent developments on the use of advanced imaging techniques for studying the structural properties of wood in relation to its mechanical properties are explored. The focus is on synchrotron nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray tomographical imaging, Raman and infrared spectroscopies, confocal microscopy, electron microscopy, and atomic force microscopy. Critical discussion on the role of imaging techniques and how fields are developing rapidly to incorporate both spatial and temporal ranges of analysis is presented.
Collapse
Affiliation(s)
- Eleni Toumpanaki
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolUniversity WalkBristolBS8 1TRUK
| | - Darshil U. Shah
- Department of ArchitectureCentre for Natural Materials InnovationUniversity of CambridgeCambridgeCB2 1PXUK
| | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolUniversity WalkBristolBS8 1TRUK
| |
Collapse
|
19
|
Revealing Inflammatory Indications Induced by Titanium Alloy Wear Debris in Periprosthetic Tissue by Label-Free Correlative High-Resolution Ion, Electron and Optical Microspectroscopy. MATERIALS 2021; 14:ma14113048. [PMID: 34205030 PMCID: PMC8199876 DOI: 10.3390/ma14113048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023]
Abstract
The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.
Collapse
|
20
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
21
|
Seeing chromosome structure reveals its function. Chromosome Res 2021; 29:1-3. [PMID: 33713240 DOI: 10.1007/s10577-021-09657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Sartsanga C, Phengchat R, Fukui K, Wako T, Ohmido N. Surface structures consisting of chromatin fibers in isolated barley (Hordeum vulgare) chromosomes revealed by helium ion microscopy. Chromosome Res 2021; 29:81-94. [PMID: 33615407 DOI: 10.1007/s10577-021-09649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
The chromosome compaction of chromatin fibers results in the formation of the nucleosome, which consists of a DNA unit coiled around a core of histone molecules associated with linker histone. The compaction of chromatin fibers has been a topic of controversy since the discovery of chromosomes in the 19th century. Although chromatin fibers were first identified using electron microscopy, the chromatin fibers on the surface of chromosome structures in plants remain unclear due to shrinking and breaking caused by prior chromosome isolation or preparation with alcohol and acid fixation, and critical point drying occurred into dehydration and denatured chromosomal proteins. This study aimed to develop a high-quality procedure for the isolation and preparation of plant chromosomes, maintaining the native chromosome structure, to elucidate the organization of chromatin fibers on the surface of plant chromosomes by electron microscopy. A simple technique to isolate intact barley (Hordeum vulgare) chromosomes with a high yield was developed, allowing chromosomes to be observed with a high-resolution scanning ion microscopy and helium ion microscopy (HIM) imaging technology, based on a scanning helium ion beam. HIM images from the surface chromatin fibers were analyzed to determine the size and alignment of the chromatin fibers. The unit size of the chromatin fibers was 11.6 ± 3.5 nm and was closely aligned to the chromatin network model. Our findings indicate that compacting the surface structure of barley via a chromatin network and observation via HIM are powerful tools for investigating the structure of chromatin.
Collapse
Affiliation(s)
- Channarong Sartsanga
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Rinyaporn Phengchat
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshiyuki Wako
- Institute of Crop Sciences, National Agriculture and Food Research Organization, 2-1-1 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
23
|
Mass spectrometry imaging of untreated wet cell membranes in solution using single-layer graphene. Nat Methods 2021; 18:316-320. [PMID: 33542509 DOI: 10.1038/s41592-020-01055-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/11/2023]
Abstract
We report a means by which atomic and molecular secondary ions, including cholesterol and fatty acids, can be sputtered through single-layer graphene to enable secondary ion mass spectrometry (SIMS) imaging of untreated wet cell membranes in solution at subcellular spatial resolution. We can observe the intrinsic molecular distribution of lipids, such as cholesterol, phosphoethanolamine and various fatty acids, in untreated wet cell membranes without any labeling. We show that graphene-covered cells prepared on a wet substrate with a cell culture medium reservoir are alive and that their cellular membranes do not disintegrate during SIMS imaging in an ultra-high-vacuum environment. Ab initio molecular dynamics calculations and ion dose-dependence studies suggest that sputtering through single-layer graphene occurs through a transient hole generated in the graphene layer. Cholesterol imaging shows that methyl-β-cyclodextrin preferentially extracts cholesterol molecules from the cholesterol-enriched regions in cell membranes.
Collapse
|
24
|
Frese N, Schmerer P, Wortmann M, Schürmann M, König M, Westphal M, Weber F, Sudhoff H, Gölzhäuser A. Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:172-179. [PMID: 33614383 PMCID: PMC7871036 DOI: 10.3762/bjnano.12.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Helium ion microscopy (HIM) offers the opportunity to obtain direct views of biological samples such as cellular structures, virus particles, and microbial interactions. Imaging with the HIM combines sub-nanometer resolution, large depth of field, and high surface sensitivity. Due to its charge compensation capability, the HIM can image insulating biological samples without additional conductive coatings. Here, we present an exploratory HIM study of SARS-CoV-2 infected Vero E6 cells, in which several areas of interaction between cells and virus particles, as well as among virus particles, were imaged. The HIM pictures show the three-dimensional appearance of SARS-CoV-2 and the surface of Vero E6 cells at a multiplicity of infection of approximately 1 with great morphological detail. The absence of a conductive coating allows for a distinction between virus particles bound to the cell membrane and virus particles lying on top of the membrane. After prolonged imaging, it was found that ion-induced deposition of hydrocarbons from the vacuum renders the sample sufficiently conductive to allow for imaging even without charge compensation. The presented images demonstrate the potential of the HIM in bioimaging, especially for the imaging of interactions between viruses and their host organisms.
Collapse
Affiliation(s)
- Natalie Frese
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Patrick Schmerer
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany
| | - Matthias Schürmann
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Friedemann Weber
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Germany
| | - Holger Sudhoff
- University Clinic for Otolaryngology, Head and Neck Surgery, Medical Faculty OWL at Bielefeld University, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
25
|
Parent LR, Gnanasekaran K, Korpanty J, Gianneschi NC. 100th Anniversary of Macromolecular Science Viewpoint: Polymeric Materials by In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Lett 2021; 10:14-38. [PMID: 35548998 DOI: 10.1021/acsmacrolett.0c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.
Collapse
Affiliation(s)
- Lucas R. Parent
- Innovation Partnership Building, The University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | | | |
Collapse
|
26
|
Schmidt M, Byrne JM, Maasilta IJ. Bio-imaging with the helium-ion microscope: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1-23. [PMID: 33489663 PMCID: PMC7801799 DOI: 10.3762/bjnano.12.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/26/2020] [Indexed: 06/01/2023]
Abstract
Scanning helium-ion microscopy (HIM) is an imaging technique with sub-nanometre resolution and is a powerful tool to resolve some of the tiniest structures in biology. In many aspects, the HIM resembles a field-emission scanning electron microscope (FE-SEM), but the use of helium ions rather than electrons provides several advantages, including higher surface sensitivity, larger depth of field, and a straightforward charge-compensating electron flood gun, which enables imaging of non-conductive samples, rendering HIM a promising high-resolution imaging technique for biological samples. Starting with studies focused on medical research, the last decade has seen some particularly spectacular high-resolution images in studies focused on plants, microbiology, virology, and geomicrobiology. However, HIM is not just an imaging technique. The ability to use the instrument for milling biological objects as small as viruses offers unique opportunities which are not possible with more conventional focused ion beams, such as gallium. Several pioneering technical developments, such as methods to couple secondary ion mass spectrometry (SIMS) or ionoluminescence with the HIM, also offer the possibility for new and exciting research on biological materials. In this review, we present a comprehensive overview of almost all currently published literature which has demonstrated the application of HIM for imaging of biological specimens. We also discuss some technical features of this unique type of instrument and highlight some of the new advances which will likely become more widely used in the years to come.
Collapse
Affiliation(s)
- Matthias Schmidt
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - James M Byrne
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
27
|
Anaerobic benzene mineralization by natural microbial communities from Niger Delta. Biodegradation 2020; 32:37-52. [PMID: 33269416 PMCID: PMC7940306 DOI: 10.1007/s10532-020-09922-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
The Niger Delta is one of the most damaged ecosystems in the world, mainly due to petroleum contamination by oil exploration accidents. We investigated the natural attenuation potential of Niger Delta subsurface sediment samples for anaerobic hydrocarbon degradation using benzene as a model compound under iron-reducing, sulfate-reducing, and methanogenic conditions. Benzene was slowly mineralized under methanogenic and iron-reducing conditions using nitrilotriacetic acid (NTA)-Fe(III), or poorly crystalline Fe(III) oxyhydroxides as electron acceptors, analyzed by measurement of 13CO2 produced from added 13C-labelled benzene. Highest mineralization rates were observed in microcosms amended with Fe(III) oxyhydroxides. The microbial communities of benzene-mineralizing enrichment cultures were characterized by next-generation sequencing of the genes coding for 16S rRNA and methyl coenzyme M reductase A (mcrA). Abundant phylotypes were affiliated to Betaproteobacteriales, Ignavibacteriales, Desulfuromonadales, and Methanosarcinales of the genera Methanosarcina and Methanothrix, illustrating that the enriched benzene-mineralizing communities were diverse and may contain more than a single benzene degrader. The diversity of the microbial communities was furthermore confirmed by scanning helium-ion microscopy which revealed the presence of various rod-shaped as well as filamentous microbial morphotypes.
Collapse
|
28
|
Loganathan N, Ferguson BO, Arey B, Argersinger HE, Bowers GM. A Mechanistic Exploration of Natural Organic Matter Aggregation and Surface Complexation in Smectite Mesopores. J Phys Chem A 2020; 124:9832-9843. [DOI: 10.1021/acs.jpca.0c08244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Brennan O. Ferguson
- Division of Chemistry, Alfred University, Alfred, New York 14802, United States
| | - Bruce Arey
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Geoffrey M. Bowers
- Department of Chemistry and Biochemistry, St. Mary’s College of Maryland, St. Mary’s City, Maryland 20686, United States
| |
Collapse
|
29
|
Ball MR, Taylor RJM, Einsle JF, Khanom F, Guillermier C, Harrison RJ. Helium ion microscope - secondary ion mass spectrometry for geological materials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1504-1515. [PMID: 33083198 PMCID: PMC7537380 DOI: 10.3762/bjnano.11.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The helium ion microscope (HIM) is a focussed ion beam instrument with unprecedented spatial resolution for secondary electron imaging but has traditionally lacked microanalytical capabilities. With the addition of the secondary ion mass spectrometry (SIMS) attachment, the capabilities of the instrument have expanded to microanalysis of isotopes from Li up to hundreds of atomic mass units, effectively opening up the analysis of all natural and geological systems. However, the instrument has thus far been underutilised by the geosciences community, due in no small part to a lack of a thorough understanding of the quantitative capabilities of the instrument. Li represents an ideal element for an exploration of the instrument as a tool for geological samples, due to its importance for economic geology and a green economy, and the difficult nature of observing Li with traditional microanalytical techniques. Also Li represents a "best-case" scenario for isotopic measurements. Here we present details of sample preparation, instrument sensitivity, theoretical, and measured detection limits for both elemental and isotopic analysis as well as practicalities for geological sample analyses of Li alongside a discussion of potential geological use cases of the HIM-SIMS instrument.
Collapse
Affiliation(s)
- Matthew R Ball
- Department of Earth Sciences, University of Cambridge, UK
| | | | - Joshua F Einsle
- School of Geographical and Earth Sciences, University of Glasgow, UK
| | | | | | | |
Collapse
|
30
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
31
|
Microscopic and nanoscopic protein imaging by SIMS and helium ion microscopy. Biointerphases 2020; 15:038501. [PMID: 32590901 DOI: 10.1116/6.0000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Single protein imaging and understanding their interactions are of paramount importance to understand the life phenomena. Recently reported multiplex protein SIMS imaging methodology using metal-oxide nanoparticle conjugated antibodies can be extended to a single protein imaging methodology using He ion microscopy (HIM). It is proposed here that single protein can be imaged in the microscale and the nanoscale by the complementary use of SIMS and HIM.
Collapse
|
32
|
Bandara CD, Ballerin G, Leppänen M, Tesfamichael T, Ostrikov KK, Whitchurch CB. Resolving Bio-Nano Interactions of E. coli Bacteria-Dragonfly Wing Interface with Helium Ion and 3D-Structured Illumination Microscopy to Understand Bacterial Death on Nanotopography. ACS Biomater Sci Eng 2020; 6:3925-3932. [PMID: 33463326 DOI: 10.1021/acsbiomaterials.9b01973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces. Advanced imaging methods could clarify this by enabling visualization of the interaction. Charged particle microscopes can achieve the required nanoscale resolution but are limited to dry samples. In contrast, light-based methods enable the characterization of living (hydrated) samples but are limited by the resolution achievable. Here we utilized both helium ion microscopy (HIM) and 3D structured illumination microscopy (3D-SIM) techniques to understand the interaction of Gram-negative bacterial membranes with nanopillars such as those found on dragonfly wings. Helium ion microscopy enables cutting and imaging at nanoscale resolution, while 3D-SIM is a super-resolution optical microscopy technique that allows visualization of live, unfixed bacteria at ∼100 nm resolution. Upon bacteria-nanopillar interaction, the energy stored due to the bending of natural nanopillars was estimated and compared with fabricated vertically aligned carbon nanotubes. With the same deflection, shorter dragonfly wing nanopillars store slightly higher energy compared to carbon nanotubes. This indicates that fabricated surfaces may achieve similar bactericidal efficiency as dragonfly wings. This study reports in situ characterization of bacteria-nanopillar interactions in real-time close to its natural state. These microscopic approaches will help further understanding of bacterial membrane interactions with nanotextured surfaces and the bactericidal mechanisms of nanotopographies so that more efficient bactericidal nanotextured surfaces can be designed and fabricated, and their bacteria-nanotopography interactions can be assessed in situ.
Collapse
Affiliation(s)
- Chaturanga D Bandara
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.,School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Giulia Ballerin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Miika Leppänen
- Nanoscience Center, Department of Physics, Department of Biological and Environmental Science, University of Jyvaskyla, FI-40014 Jyvaskyla, Finland
| | - Tuquabo Tesfamichael
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
33
|
Thayer RC, Allen FI, Patel NH. Structural color in Junonia butterflies evolves by tuning scale lamina thickness. eLife 2020; 9:52187. [PMID: 32254023 PMCID: PMC7138606 DOI: 10.7554/elife.52187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
In diverse organisms, nanostructures that coherently scatter light create structural color, but how such structures are built remains mysterious. We investigate the evolution and genetic regulation of butterfly scale laminae, which are simple photonic nanostructures. In a lineage of buckeye butterflies artificially selected for blue wing color, we found that thickened laminae caused a color shift from brown to blue. Deletion of the optix patterning gene also altered color via lamina thickening, revealing shared regulation of pigments and lamina thickness. Finally, we show how lamina thickness variation contributes to the color diversity that distinguishes sexes and species throughout the genus Junonia. Thus, quantitatively tuning one dimension of scale architecture facilitates both the microevolution and macroevolution of a broad spectrum of hues. Because the lamina is an intrinsic component of typical butterfly scales, our findings suggest that tuning lamina thickness is an available mechanism to create structural color across the Lepidoptera. From iridescent blues to vibrant purples, many butterflies display dazzling ‘structural colors’ created not by pigments but by microscopic structures that interfere with light. For instance, the scales that coat their wings can contain thin films of chitin, the substance that normally makes the external skeleton of insects. In slim layers, however, chitin can also scatter light to produce color, the way that oil can create iridescence at the surface of water. The thickness of the film, which is encoded by the genes of the butterfly, determines what color will be produced. Yet, little is known about how common thin films are in butterflies, exactly how genetic information codes for them, and how their thickness and the colors they produce can evolve. To investigate, Thayer et al. used a technique called Helium Ion Microscopy and examined the wings of ten related species of butterflies, showing that thin film structures were present across this sample. However, the different species have evolved many different structural colors over the past millions of years by changing the thickness of the films. Next, Thayer et al. showed that this evolution could be reproduced at a faster pace in the laboratory using common buckeye butterflies. These insects mostly have brown wings, but they can have specks of blue created by thin film structures. Individuals with more blue on their wings were mated and over the course of a year, the thickness of the film structures increased by 74%, leading to shiny blue butterflies. Deleting a gene called optix from the insects also led to blue wings. Optix was already known to control the patterns of pigments in butterflies, but it now appears that it controls structural colors as well. From solar panels to new fabrics, microscopic structures that can scatter light are useful in a variety of industries. Understanding how these elements exist and evolve in organisms may help to better design them for human purposes.
Collapse
Affiliation(s)
- Rachel C Thayer
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
34
|
Affiliation(s)
- David Wulff
- Department of Chemical Engineering University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Waterloo Institute for Nanotechnology Waterloo Ontario N2L 3G1 Canada
| | - Marc G. Aucoin
- Department of Chemical Engineering University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Waterloo Institute for Nanotechnology Waterloo Ontario N2L 3G1 Canada
| | - Frank X. Gu
- Department of Chemical Engineering University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Waterloo Institute for Nanotechnology Waterloo Ontario N2L 3G1 Canada
- Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| |
Collapse
|
35
|
Peng M, Murray-Bruce J, Berggren KK, Goyal VK. Source shot noise mitigation in focused ion beam microscopy by time-resolved measurement. Ultramicroscopy 2020; 211:112948. [PMID: 32171978 DOI: 10.1016/j.ultramic.2020.112948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/23/2019] [Accepted: 01/26/2020] [Indexed: 11/18/2022]
Abstract
Focused ion beam microscopy suffers from source shot noise - random variation in the number of incident ions in any fixed dwell time - along with random variation in the number of detected secondary electrons per incident ion. This multiplicity of sources of randomness increases the variance of the measurements and thus worsens the trade-off between incident ion dose and image accuracy. Repeated measurement with low dwell time, without changing the total ion dose, is a way to introduce time resolution to this form of microscopy. Through theoretical analyses and Monte Carlo simulations, we show that three ways to process time-resolved measurements result in mean-squared error (MSE) improvements compared to the conventional method of having no time resolution. In particular, maximum likelihood estimation provides reduction in MSE or reduction in required dose by a multiplicative factor approximately equal to the secondary electron yield. This improvement factor is similar to complete mitigation of source shot noise. Experiments with a helium ion microscope are consistent with the analyses and suggest accuracy improvement for a fixed source dose by a factor of about 4.
Collapse
Affiliation(s)
- Minxu Peng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - John Murray-Bruce
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Karl K Berggren
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vivek K Goyal
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
36
|
Kim CS, Hobbs RG, Agarwal A, Yang Y, Manfrinato VR, Short MP, Li J, Berggren KK. Focused-helium-ion-beam blow forming of nanostructures: radiation damage and nanofabrication. NANOTECHNOLOGY 2020; 31:045302. [PMID: 31578000 DOI: 10.1088/1361-6528/ab4a65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Targeted irradiation of nanostructures by a finely focused ion beam provides routes to improved control of material modification and understanding of the physics of interactions between ion beams and nanomaterials. Here, we studied radiation damage in crystalline diamond and silicon nanostructures using a focused helium ion beam, with the former exhibiting extremely long-range ion propagation and large plastic deformation in a process visibly analogous to blow forming. We report the dependence of damage morphology on material, geometry, and irradiation conditions (ion dose, ion energy, ion species, and location). We anticipate that our method and findings will not only improve the understanding of radiation damage in isolated nanostructures, but will also support the design of new engineering materials and devices for current and future applications in nanotechnology.
Collapse
Affiliation(s)
- Chung-Soo Kim
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wong CS, Whaley JA, Wada T, Harayama S, Oya Y, Kolasinski RD. Changes in surface morphology of helium-induced tungsten nanostructure during high-temperature annealing. NUCLEAR MATERIALS AND ENERGY 2020. [DOI: 10.1016/j.nme.2020.100730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Safder M, Temelli F, Ullah A. Supercritical CO2 extraction and solvent-free rapid alternative bioepoxy production from spent hens. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Kulomäki S, Lahtinen E, Perämäki S, Väisänen A. Determination of mercury at picogram level in natural waters with inductively coupled plasma mass spectrometry by using 3D printed metal scavengers. Anal Chim Acta 2019; 1092:24-31. [DOI: 10.1016/j.aca.2019.09.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
|
40
|
Lim H, Lee SY, Moon DW, Kim JY. Preparation of cellular samples using graphene cover and air-plasma treatment for time-of-flight secondary ion mass spectrometry imaging. RSC Adv 2019; 9:28432-28438. [PMID: 35529615 PMCID: PMC9071169 DOI: 10.1039/c9ra05205d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
We report on sample preparation methods based on plasma treatment for an improvement of multiple molecular ion images of cellular membranes in the ToF-SIMS method. The air-plasma treatment of fixed cellular samples efficiently removed the organic residues of any solutions used during sample preparation and improved the quality of ToF-SIMS images due to the resulting clean surface. We also studied cell preparation methods that combine single-layer graphene covering with air-plasma treatment to achieve a synergistic effect that eliminates background spectra by organic impurities while minimizing morphological cell deformation in a vacuum environmental analysis. When the cellular sample on the glass substrate is completely covered with the single-layer graphene, the cells trapped between the graphene and the substrate can effectively reduce morphological deformation by slow-dehydration. After slow-dehydration of cells is completed inside the graphene-cover, the covered graphene layer can be peeled off by air-plasma treatment, and the unwanted organic residues on the surface of cells and substrate can also be removed by plasma cleaning, thereby much improving ion imaging of cells with the ToF-SIMS method. It is confirmed that the cell samples in which the graphene-cover was removed by air-plasma treatment maintained their morphology well in comparison with the rapid air-dried cells in atomic force microscopy (AFM) and ToF-SIMS images. Cell preparation methods that combine a single-layer graphene cover with air-plasma treatment for improvement of ToF-SIMS imaging.![]()
Collapse
Affiliation(s)
- Heejin Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| | - Sun Young Lee
- Division of Technology Business, National Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu Pohang Gyeongbuk 37673 Republic of Korea
| | - Dae Won Moon
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| | - Jae Young Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea .,Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun Daegu 42988 Republic of Korea
| |
Collapse
|
41
|
Nanotechnology in Cement-Based Materials: A Review of Durability, Modeling, and Advanced Characterization. NANOMATERIALS 2019; 9:nano9091213. [PMID: 31466289 PMCID: PMC6780866 DOI: 10.3390/nano9091213] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
Abstract
In the context of increasing applications of various nanomaterials in construction, this work reviews the renewed knowledge of nanotechnology in cement-based materials, focusing on the relevant papers published over the last decade. The addition of nanomaterials in cement-based materials, associated with their dispersion in cement composites, is explored to evaluate their effects on the resistance of cement-based materials to physical deteriorations, chemical deteriorations, and rebar corrosion. This review also examines the proposed nanoscale modeling of interactions between admixed nanomaterials and cement hydration products. At last, the recent progress of advanced characterization that employs techniques to characterize the properties of cement-based materials at the nanoscale is summarized.
Collapse
|
42
|
Mousley M, Eswara S, De Castro O, Bouton O, Klingner N, Koch CT, Hlawacek G, Wirtz T. Stationary beam full-field transmission helium ion microscopy using sub-50 keV He +: Projected images and intensity patterns. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1648-1657. [PMID: 31467826 PMCID: PMC6693417 DOI: 10.3762/bjnano.10.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/14/2019] [Indexed: 06/02/2023]
Abstract
A dedicated transmission helium ion microscope (THIM) for sub-50 keV helium has been constructed to investigate ion scattering processes and contrast mechanisms, aiding the development of new imaging and analysis modalities. Unlike a commercial helium ion microscope (HIM), the in-house built instrument allows full flexibility in experimental configuration. Here, we report projection imaging and intensity patterns obtained from powder and bulk crystalline samples using stationary broad-beam as well as convergent-beam illumination conditions in THIM. The He+ ions formed unexpected spot patterns in the far field for MgO, BN and NaCl powder samples, but not for Au-coated MgO. The origin of the spot patterns in these samples was investigated. Surface diffraction of ions was excluded as a possible cause because the recorded scattering angles do not correspond to the predicted Bragg angles. Complementary secondary electron (SE) imaging in the HIM revealed that these samples charge significantly under He+ ion irradiation. The spot patterns obtained in the THIM experiments are explained as artefacts related to sample charging. The results presented here indicate that factors other than channeling, blocking and surface diffraction of ions have an impact on the final intensity distribution in the far field. Hence, the different processes contributing to the final intensities will need to be understood in order to decouple and study the relevant ion-beam scattering and deflection phenomena.
Collapse
Affiliation(s)
- Michael Mousley
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Santhana Eswara
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Olivier De Castro
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Olivier Bouton
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nico Klingner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Christoph T Koch
- Department of Physics, Humboldt University of Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Gregor Hlawacek
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
43
|
Lahtinen E, Turunen L, Hänninen MM, Kolari K, Tuononen HM, Haukka M. Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique. ACS OMEGA 2019; 4:12012-12017. [PMID: 31460313 PMCID: PMC6682100 DOI: 10.1021/acsomega.9b00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alternative and effective way to produce highly active and easily reusable heterogeneous catalysts without significantly reducing the catalytic efficiency of the active Pd/SiO2 component. The ability to control the size, porosity, mechanical properties, flow properties, physical properties, and chemical properties of the catalyst objects opens up possibilities to optimize devices for different reaction environments including batch reactions and continuous flow systems.
Collapse
Affiliation(s)
- Elmeri Lahtinen
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Lotta Turunen
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Mikko M. Hänninen
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Kalle Kolari
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Heikki M. Tuononen
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| | - Matti Haukka
- Department of Chemistry, University
of Jyväskylä, P.O. Box
35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
44
|
Lee CW, Schleife A. Hot-Electron-Mediated Ion Diffusion in Semiconductors for Ion-Beam Nanostructuring. NANO LETTERS 2019; 19:3939-3947. [PMID: 31091106 DOI: 10.1021/acs.nanolett.9b01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ion-beam-based techniques are widely utilized to synthesize, modify, and characterize materials at the nanoscale, with applications from the semiconductor industry to medicine. Interactions of the beam with the target are fundamentally interesting, as they trigger multilength and time-scale processes that need to be quantitatively understood to achieve nanoscale precision. Here we demonstrate for magnesium oxide, as a testbed semiconductor material, that in a kinetic-energy regime in which electronic effects are usually neglected, a proton beam efficiently excites oxygen-vacancy-related electrons. We quantitatively describe the excited-electron distribution and the emerging ion dynamics using first-principles techniques. Contrary to the common picture of charging the defect, we discover that most of the excited electrons remain locally near the oxygen vacancy. Using these results, we bridge time scales from ultrafast electron dynamics directly after impact to ion diffusion over migration barriers in semiconductors and discover a diffusion mechanism that is mediated by hot electrons. Our quantitative simulations predict that this mechanism strongly depends on the projectile-ion velocity, suggesting the possibility of using it for precise sample manipulation via nanoscale diffusion enhancement in semiconductors with a deep, neutral, intrinsic defect.
Collapse
|
45
|
Wirtz T, De Castro O, Audinot JN, Philipp P. Imaging and Analytics on the Helium Ion Microscope. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:523-543. [PMID: 30699036 DOI: 10.1146/annurev-anchem-061318-115457] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron-based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.
Collapse
Affiliation(s)
- Tom Wirtz
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Olivier De Castro
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Jean-Nicolas Audinot
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| | - Patrick Philipp
- Advanced Instrumentation for Ion Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), L-4422 Belvaux, Luxembourg;
| |
Collapse
|
46
|
Ketola AE, Leppänen M, Turpeinen T, Papponen P, Strand A, Sundberg A, Arstila K, Retulainen E. Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging. RSC Adv 2019; 9:15668-15677. [PMID: 35514833 PMCID: PMC9064282 DOI: 10.1039/c9ra01447k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
TEMPO-oxidized cellulose nanofibrils (TCNFs) have unique properties, which can be utilised in many application fields from printed electronics to packaging. Visual characterisation of TCNFs has been commonly performed using Scanning Electron Microscopy (SEM). However, a novel imaging technique, Helium Ion Microscopy (HIM), offers benefits over SEM, including higher resolution and the possibility of imaging non-conductive samples uncoated. HIM has not been widely utilized so far, and in this study the capability of HIM for imaging of TCNFs was evaluated. Freeze drying and critical point drying (CPD) techniques were applied to preserve the open fibril structure of the gel-like TCNFs. Both drying methods worked well, but CPD performed better resulting in the specific surface area of 386 m2 g-1 when compared to 172 m2 g-1 and 42 m2 g-1 of freeze dried samples frozen in propane and nitrogen, respectively. HIM imaging of TCNFs was successful but high magnification imaging was challenging because the ion beam tended to degrade the TCNFs. The effect of the imaging parameters on the degradation was studied and an ion dose as low as 0.9 ion per nm2 was required to prevent the damage. This study points out the differences between the gentle drying methods of TCNFs and demonstrates beam damage during imaging like none previously reported with HIM. The results can be utilized in future studies of cellulose or other biological materials as there is a growing interest for both the HIM technique and bio-based materials.
Collapse
Affiliation(s)
- Annika E Ketola
- VTT Technical Research Centre of Finland Ltd P. O. Box 1603 FI-40101 Jyväskylä Finland
| | - Miika Leppänen
- University of Jyväskylä, Nanoscience Centre, Department of Physics and Department of Biological and Environmental Science FI-40014 Jyväskylä Finland
| | - Tuomas Turpeinen
- VTT Technical Research Centre of Finland Ltd P. O. Box 1603 FI-40101 Jyväskylä Finland
| | - Petri Papponen
- University of Jyväskylä, Nanoscience Centre, Department of Physics and Department of Biological and Environmental Science FI-40014 Jyväskylä Finland
| | - Anders Strand
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre Porthansgatan 3 FI-20500 Åbo/Turku Finland
| | - Anna Sundberg
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre Porthansgatan 3 FI-20500 Åbo/Turku Finland
| | - Kai Arstila
- University of Jyväskylä, Nanoscience Centre, Department of Physics and Department of Biological and Environmental Science FI-40014 Jyväskylä Finland
| | - Elias Retulainen
- VTT Technical Research Centre of Finland Ltd P. O. Box 1603 FI-40101 Jyväskylä Finland
| |
Collapse
|
47
|
Lybrand RA, Austin JC, Fedenko J, Gallery RE, Rooney E, Schroeder PA, Zaharescu DG, Qafoku O. A coupled microscopy approach to assess the nano-landscape of weathering. Sci Rep 2019; 9:5377. [PMID: 30926847 PMCID: PMC6441011 DOI: 10.1038/s41598-019-41357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/04/2019] [Indexed: 11/08/2022] Open
Abstract
Mineral weathering is a balanced interplay among physical, chemical, and biological processes. Fundamental knowledge gaps exist in characterizing the biogeochemical mechanisms that transform microbe-mineral interfaces at submicron scales, particularly in complex field systems. Our objective was to develop methods targeting the nanoscale by using high-resolution microscopy to assess biological and geochemical drivers of weathering in natural settings. Basalt, granite, and quartz (53-250 µm) were deployed in surface soils (10 cm) of three ecosystems (semiarid, subhumid, humid) for one year. We successfully developed a reference grid method to analyze individual grains using: (1) helium ion microscopy to capture micron to sub-nanometer imagery of mineral-organic interactions; and (2) scanning electron microscopy to quantify elemental distribution on the same surfaces via element mapping and point analyses. We detected locations of biomechanical weathering, secondary mineral precipitation, biofilm formation, and grain coatings across the three contrasting climates. To our knowledge, this is the first time these coupled microscopy techniques were applied in the earth and ecosystem sciences to assess microbe-mineral interfaces and in situ biological contributors to incipient weathering.
Collapse
Affiliation(s)
- Rebecca A Lybrand
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA.
| | - Jason C Austin
- Department of Geology, University of Georgia, Athens, GA, 30602, USA
| | - Jennifer Fedenko
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Rachel E Gallery
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Erin Rooney
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Paul A Schroeder
- Department of Geology, University of Georgia, Athens, GA, 30602, USA
| | - Dragos G Zaharescu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Odeta Qafoku
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
48
|
Drukier AK, Baum S, Freese K, Górski M, Stengel P. Paleo-detectors: Searching for dark matter with ancient minerals. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.043014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Lahtinen E, Precker RLM, Lahtinen M, Hey-Hawkins E, Haukka M. Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix. Chempluschem 2019; 84:222-225. [PMID: 31950695 DOI: 10.1002/cplu.201900081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Metal-organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well-defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three-dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow-through filters containing the MOF copper(II) benzene-1,3,5-tricarboxylate (HKUST-1). These filters were printed simply by mixing HKUST-1 with an easily printable nylon-12 polymer matrix. By using the SLS, powdery particles were fused together in such a way that the structure of the printed solid material resembles the structure of a powder bed. The MOF additive is firmly attached only on the surface of partially fused polymer particles and therefore remains accessible to fluids passing through the filter. Powder X-ray analysis of the printed object confirmed that printing did not have any negative impact on the structure of the MOF. CO2 -adsorption studies also showed that the activity of the MOF was not affected by the printing process. SLS offers a straightforward and easy way to fabricate tailor-made MOF-containing filters for practical applications.
Collapse
Affiliation(s)
- Elmeri Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| | - Rafaella L M Precker
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry, Leipzig University, Johannisallee, 29, 04103, Leipzig, Germany
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry, Leipzig University, Johannisallee, 29, 04103, Leipzig, Germany
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FIN-40014, Jyväskylä, Finland
| |
Collapse
|
50
|
Hartl H, Guo Y, Ostrikov K, Xian Y, Zheng J, Li X, Fairfull-Smith KE, MacLeod J. Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule. RSC Adv 2019; 9:2848-2856. [PMID: 35520486 PMCID: PMC9059961 DOI: 10.1039/c8ra08920e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022] Open
Abstract
This work demonstrates a new pathway to the direct on-surface fabrication of surface coatings by showing that application of a plasma can lead to dehalogenative coupling of small aromatic molecules at a catalytic surface. Specifically, we show that a room temperature, atmospheric pressure plasma can be used to fabricate a coating through a surface-confined dehalogenation reaction. Plasma treatments were performed using a dielectric barrier discharge (DBD) technique under pure nitrogen with a variety of power levels and durations. Samples were analysed by optical and helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), optical profilometry, and contact angle measurement. By varying the plasma parameters we could control the chemistry, morphology and roughness of the film. Surface wettability also varied with the plasma parameters, with high-dose plasmas leading to a hydrophobic surface with water contact angles up to 130°. New surface coating pathway by plasma-enabled surface-catalyzed reaction, offering control of surface chemistry, wettability and roughness.![]()
Collapse
Affiliation(s)
- Hugo Hartl
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia 4000
| | - Yanru Guo
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia 4000
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia 4000
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory
| | - Yubin Xian
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology
- School of Electrical and Electronic Engineering
- Huazhong University of Science and Technology
- Wuhan
- People's Republic of China
| | - Jie Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Xingguo Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Kathryn E. Fairfull-Smith
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia 4000
| | - Jennifer MacLeod
- School of Chemistry, Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia 4000
| |
Collapse
|