1
|
Yan J, Wang M, Li X, Fan J, Yu R, Kang M, Zhang Y, Xu J, Zhang X, Zhang S. Construction of an infectious clone for enterovirus A89 and mutagenesis analysis of viral infection and cell binding. Microbiol Spectr 2024; 12:e0333223. [PMID: 38441464 PMCID: PMC10986554 DOI: 10.1128/spectrum.03332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Enterovirus A89 (EV-A89) is an unconventional strain belonging to the Enterovirus A species. Limited research has been conducted on EV-A89, leaving its biological and pathogenic properties unclear. Developing reverse genetic tools for EV-A89 would help to unravel its infection mechanisms and aid in the development of vaccines and anti-viral drugs. In this study, an infectious clone for EV-A89 was successfully constructed and recombinant enterovirus A89 (rEV-A89) was generated. The rEV-A89 exhibited similar characteristics such as growth curve, plaque morphology, and dsRNA expression with parental strain. Four amino acid substitutions were identified in the EV-A89 capsid, which were found to enhance viral infection. Mechanistic studies revealed that these substitutions increased the virus's cell-binding ability. Establishing reverse genetic tools for EV-A89 will significantly contribute to understanding viral infection and developing anti-viral strategies.IMPORTANCEEnterovirus A species contain many human pathogens and have been classified into conventional cluster and unconventional cluster. Most of the research focuses on various conventional members, while understanding of the life cycle and infection characteristics of unconventional viruses is still very limited. In our study, we constructed the infectious cDNA clone and single-round infectious particles for the unconventional EV-A89, allowing us to investigate the biological properties of recombinant viruses. Moreover, we identified key amino acids residues that facilitate EV-A89 infection and elucidate their roles in enhancing viral binding to host cells. The establishment of the reverse genetics system will greatly facilitate future study on the life cycle of EV-A89 and contribute to the development of prophylactic vaccines and anti-viral drugs.
Collapse
Affiliation(s)
- Jingjing Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaohong Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rui Yu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Miaomiao Kang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuye Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Huang S, Zhang Y, Zhang W, Chen M, Li C, Guo X, Zhu S, Zeng H, Fang L, Ke B, Li H, Yoshida H, Xu W, Deng X, Zheng H. Prevalence of Non-Polio Enteroviruses in the Sewage of Guangzhou City, China, from 2013 to 2021. Microbiol Spectr 2023; 11:e0363222. [PMID: 36995241 PMCID: PMC10269821 DOI: 10.1128/spectrum.03632-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Continuous surveillance of enteroviruses (EVs) in urban domestic sewage can timely reflect the circulation of EVs in the environment and crowds, and play a predictive and early warning role in EV-related diseases. To better understand the long-term epidemiological trends of circulating EVs and EV-related diseases, we conducted a 9-year (2013 to 2021) surveillance study of non-polio EVs (NPEVs) in urban sewage in Guangzhou city, China. After concentrating and isolating the viruses from the sewage samples, NPEVs were detected and molecular typing was performed. Twenty-one different NPEV serotypes were identified. The most isolated EVs were echovirus 11 (E11), followed by coxsackievirus (CV) B5, E6, and CVB3. EV species B prevailed in sewage samples, but variations in the annual frequency of different serotypes were also observed in different seasons, due to spatial and temporal factors. E11 and E6 were detected continuously before 2017, and the number of isolates was relatively stable during the surveillance period. However, after their explosive growth in 2018 and 2019, their numbers suddenly decreased significantly. CVB3 and CVB5 had alternating trends; CVB5 was most frequently detected in 2013 to 2014 and 2017 to 2018, while CVB3 was most frequently detected in 2015 to 2016 and 2020 to 2021. Phylogenetic analysis showed that at least two different transmission chains of CVB3 and CVB5 were prevalent in Guangzhou City. Our results show that in the absence of a comprehensive and systematic EV-related disease surveillance system in China, environmental surveillance is a powerful and effective tool to strengthen and further investigate the invisible transmission of EVs in the population. IMPORTANCE This study surveilled urban sewage samples from north China for 9 years to monitor enteroviruses. Samples were collected, processed, and viral identification and molecular typing were performed. We detected 21 different non-polio enteroviruses (NPEVs) with yearly variations in prevalence and peak seasons. In addition, this study is very important for understanding the epidemiology of EVs during the COVID-19 pandemic, as the detection frequency and serotypes of EVs in sewage changed considerably around 2020. We believe that our study makes a significant contribution to the literature because our results strongly suggest that environmental surveillance is an exceptionally important tool, which can be employed to detect and monitor organisms of public health concern, which would otherwise be missed and under-reported by case-based surveillance systems alone.
Collapse
Affiliation(s)
- Shufen Huang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
- School of Public Health, Southern Medical University, Baiyun District, Guangzhou, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Wei Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Meizhong Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
- School of Public Health, Southern Medical University, Baiyun District, Guangzhou, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Xue Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Hanri Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Hiromu Yoshida
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China
| | - Xiaoling Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Panyu District, Guangzhou, China
| |
Collapse
|
3
|
Onvimala N, Kosoltanapiwat N, Pumirat P, Vanaporn M, Nimmanitya S, Tacharoenmuang R, Guntapong R, Leaungwutiwong P. Genotyping of non-polio enteroviruses associated with acute flaccid paralysis in Thailand in 2013 and 2014. Virol J 2021; 18:153. [PMID: 34301271 PMCID: PMC8305495 DOI: 10.1186/s12985-021-01621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acute flaccid paralysis (AFP) surveillance was conducted as part of the World Health Organization’s strategy for completely eradicating poliomyelitis and leaving non-polio enteroviruses NPEVs as one of the main potential causes of AFP. We aimed to detect NPEV in association with AFP. Methods We used 459 isolates reported to be Negative Polio and some NPEVs by the World Health Organization Polio Regional Reference Laboratory (Thailand), which had been obtained during polio surveillance programmes conducted in Thailand in 2013–2014. Of 459 isolates, 35 belonged to the genus Enterovirus by RT-PCR and genotyping by DNA sequencing. Results This study found 17 NPEV genotypes, with 3, 13 and 1 belonging to enterovirus (EV) species A (EV-A), EV-B, and EV-C, respectively. The EV-A types identified included coxsackievirus A2 (CA2), CA4, and EV71, typically associated with hand, foot and mouth diseases. EV-B is the most prevalent cause of AFP in Thailand, while CA21 was the only type of EV-C detected. The EV-B species (13/35; 76.5%) constituted the largest proportion of isolates, followed by EV-A (3/35; 17.6%) and EV-C (1/35; 5.9%). For the EV-B species, Echovirus (E) 30 and CVB were the most frequent isolates. E30, CVB, E14, and E6 were considered endemic strains. Conclusion NPEVs, e.g. CA4, are reported for the first time in Thailand. Despite some limitations to this study, this is the first report on the circulation patterns of NPEVs associated with AFP in Thailand. AFP surveillance has unearthed many unknown NPEVs and, the cases of death due to AFP occur annually. Therefore, it is important to study NPEVs in the wake of the eradication of poliovirus in the context of the continued incidence of paralysis.
Collapse
Affiliation(s)
- Napa Onvimala
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medical Sciences, National Institute of Health, MOPH, Nonthaburi, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suchitra Nimmanitya
- Department of Disease Control, Bureau of General Communicable Diseases, MOPH, Nonthaburi, Thailand
| | - Ratana Tacharoenmuang
- Department of Medical Sciences, National Institute of Health, MOPH, Nonthaburi, Thailand
| | - Ratigorn Guntapong
- Department of Medical Sciences, National Institute of Health, MOPH, Nonthaburi, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Enteroviruses from Humans and Great Apes in the Republic of Congo: Recombination within Enterovirus C Serotypes. Microorganisms 2020; 8:microorganisms8111779. [PMID: 33202777 PMCID: PMC7709013 DOI: 10.3390/microorganisms8111779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Enteroviruses (EVs) are viruses of the family Picornaviridae that cause mild to severe infections in humans and in several animal species, including non-human primates (NHPs). We conducted a survey and characterization of enteroviruses circulating between humans and great apes in the Congo. Fecal samples (N = 24) of gorillas and chimpanzees living close to or distant from humans in three Congolese parks were collected, as well as from healthy humans (N = 38) living around and within these parks. Enteroviruses were detected in 29.4% of gorilla and 13.15% of human feces, including wild and human-habituated gorillas, local humans and eco-guards. Two identical strains were isolated from two humans coming from two remote regions. Their genomes were similar and all genes showed their close similarity to coxsackieviruses, except for the 3C, 3D and 5′-UTR regions, where they were most similar to poliovirus 1 and 2, suggesting recombination. Recombination events were found between these strains, poliovirus 1 and 2 and EV-C99. It is possible that the same EV-C species circulated in both humans and apes in different regions in the Congo, which must be confirmed in other investigations. In addition, other studies are needed to further investigate the circulation and genetic diversity of enteroviruses in the great ape population, to draw a definitive conclusion on the different species and types of enteroviruses circulating in the Republic of Congo.
Collapse
|
5
|
Suresh S, Rawlinson WD, Andrews PI, Stelzer‐Braid S. Global epidemiology of nonpolio enteroviruses causing severe neurological complications: A systematic review and meta‐analysis. Rev Med Virol 2019; 30:e2082. [DOI: 10.1002/rmv.2082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sarika Suresh
- Melbourne Medical SchoolUniversity of Melbourne Parkville Australia
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
| | - William D. Rawlinson
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Serology and Virology Division (SAViD)Microbiology NSW Health Pathology Randwick Australia
| | - Peter Ian Andrews
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Department of Paediatric NeurologySydney Children's Hospital Randwick Australia
| | - Sacha Stelzer‐Braid
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
| |
Collapse
|
6
|
Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017. Sci Rep 2019; 9:10583. [PMID: 31332200 PMCID: PMC6646367 DOI: 10.1038/s41598-019-46870-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022] Open
Abstract
Echovirus 11 (E-11) is one of the most frequently isolated enteroviruses causing meningitis and other diseases such as hand, foot, and mouth disease (HFMD) and acute flaccid paralysis (AFP). Fifty-nine newly determined E-11 VP1 sequences from the China AFP and HFMD surveillance network and 500 E-11 VP1 sequences obtained from the GenBank database, which were associated with 12 categories of diseases, were screened for phylogenetic analysis. Based on the standard method of genotype classification, E-11 strains circulated worldwide were reclassified into six genotypes as A, B, C, D, E, and F, in which genotype F is newly divided, and genotypes A and C are further divided into A1–5 and C1–4 by this research, whereas genotype D was still divided into D1–5 as in a previous study of Oberste et al. Sub-genotype A1 was the predominant sub-genotype in mainland China between 2008–2017, whereas sub-genotype D5 was the predominant sub-genotype circulated outside China from 1998–2014. However, genotype and sub-genotype spectra showed statistical significance among AFP and HFMD cases (χ2 = 60.86, P < 0.001), suggesting that different genotypes might have a tendency to cause different diseases. Strengthening the surveillance of E-11 might provide further information about pathogenic evolution or specific nucleotide mutation associated with different clinical diseases.
Collapse
|
7
|
Co-Circulation of Echovirus 6 and 30 with Coxsackievirus A6 Among Children with Hand, Foot, and Mouth Disease in Ahvaz, Southwest Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.83522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ribeiro GDO, Luchs A, Milagres FADP, Komninakis SV, Gill DE, Lobato MCABS, Brustulin R, Chagas RTD, Abrão MDFNDS, Soares CVDDA, Witkin SS, Villanova F, Deng X, Sabino EC, Delwart E, da Costa AC, Leal É. Detection and Characterization of Enterovirus B73 from a Child in Brazil. Viruses 2018; 11:v11010016. [PMID: 30597828 PMCID: PMC6357135 DOI: 10.3390/v11010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022] Open
Abstract
Enterovirus B73 is a new member of the Enterovirus B species. First detected in the USA, it has been subsequently identified in China, India, Oman, and the Netherlands. In this study, we characterize the first B73 strain (named TO-127) to be detected in South America. TO-127 was obtained from a child with acute gastroenteritis living in a rural area in Northern Brazil. The subject was not infected with any known enteric pathogens such as norovirus, rotavirus, helminths, or enteric bacteria. Analysis of the nearly full-length TO-127 genome (6993 nt) indicated a 74–75% nucleotide similarity with EV-B73 strains from other countries. Evolutionary analysis suggests that B73 is endemic and widespread.
Collapse
Affiliation(s)
| | - Adriana Luchs
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo 01246-000, Brazil.
| | - Flávio Augusto de Pádua Milagres
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil.
- Institute of Biological Sciences, Federal University of Tocantins, Tocantins 77001-090, Brazil.
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil.
| | - Shirley Vasconcelos Komninakis
- Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo André 09060-870, Brazil.
- Retrovirology Laboratory, Federal University of São Paulo, São Paulo 04023-062, Brazil.
| | - Danielle Elise Gill
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil.
| | - Márcia Cristina Alves Brito Sayão Lobato
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil.
- Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo André 09060-870, Brazil.
| | - Rafael Brustulin
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil.
- Institute of Biological Sciences, Federal University of Tocantins, Tocantins 77001-090, Brazil.
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil.
| | - Rogério Togisaki das Chagas
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil.
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil.
| | | | - Cassia Vitória de Deus Alves Soares
- Secretary of Health of Tocantins, Tocantins 77453-000, Brazil.
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins 77016-330, Brazil.
| | - Steven S Witkin
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Pará 66075-000, Brazil.
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94143, USA.
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil.
- LIM/46, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil.
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94143, USA.
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Pará 66075-000, Brazil.
| |
Collapse
|
9
|
Molecular characterization of echovirus 12 strains isolated from healthy children in China. Sci Rep 2018; 8:11716. [PMID: 30082917 PMCID: PMC6078983 DOI: 10.1038/s41598-018-30250-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/25/2018] [Indexed: 12/26/2022] Open
Abstract
Human echovirus 12 (E-12) belongs to the enterovirus B species. To date, only one full-length genome sequence of E-12 (prototype strain Travis) is available in the GenBank database. This study determined the complete sequence of three E-12 strains, which were isolated from the stools of three healthy children in Yunnan, China, in 2013. We revealed that the three Yunnan E-12 strains had only 80.8-80.9% nucleotide identity and 96.4-96.8% amino acid identity with the Travis strain based on pairwise comparisons of the complete genome nucleotide and amino acid sequences. The three Yunnan strains shared 99.7% nucleotide identity and 99.1-99.5% amino acid similarity. Phylogenetic and similarity plot analyses showed that intertypic recombination occurred in the non-structural regions of the three Yunnan E-12 strains. This is the first report of the complete genome sequence of E-12 in China and it enriches the complete genome sequences of E-12 in the GenBank database.
Collapse
|
10
|
Shabani A, Makvandi M, Samarbafzadeh A, Teimoori A, Rasti M, Karami C, Rastegarvand N, Nikfar R, Shamsizadeh A, Salehi A, Angali KA. Echovirus 30 and coxsackievirus A9 infection among young neonates with sepsis in Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:258-265. [PMID: 30483379 PMCID: PMC6243150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Human enteroviruses (EV) are the most common causes of neonatal sepsis-like disease. The frequencies of EV including coxsackievirus A, coxsackievirus B and Echovirus serotypes have been studied in young infants (younger than three months) with sepsis. So far, the role of enteroviruses among neonates with sepsis was not determined in Ahvaz, Iran. Therefore, this study was aimed to evaluate the frequency of EV among hospitalized young infants with clinical signs and symptoms of sepsis in Ahvaz. MATERIALS AND METHODS Blood specimens from 128 neonates (younger than 90 days), including 56 (43.75%) girls and 72 (56.25%) boys, were collected from hospitalized neonates with clinical signs and symptoms of sepsis-like symptoms. All blood samples were negative for bacterial culture. RNA was extracted from all sera and tested for detection of 5'UTR (Untranslated Region) of the EV by RT-PCR. To determine specific strains of EV, positive 5'UTR samples were further tested for detection of the VP1 region of EV by RT-PCR. RESULTS Overall, 50/128 (39.06%) specimens, including 24 (48%) girls and 26 (52%) boys, were positive for EV. 21/50 (42%) specimens were positive for the VP1 region. Randomly, 8 positive VP1 were selected and sequenced. Analysis of sequencing data showed 7/21 (33.33%) samples were positive for Echovirus 30 and 1/21 (4.76%) samples were positive for CVA9. CONCLUSION The results of this survey indicate high prevalence of 39.06% of EV among young neonates with sepsis. A high prevalence of 33.3% Echoviruses 30 and a low rate of 4.76% coxsackievirus A9 infection has been observed in neonatal patients with viral sepsis. This outbreak is probably one of the first Enterovirus outbreaks to be reported in Ahvaz, Iran. The results of this survey will help to minimize unneeded use of antimicrobial drugs and reduce unnecessary hospitalization.
Collapse
Affiliation(s)
- Abdolnabi Shabani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Corresponding author: Manoochehr Makvandi, Ph.D, Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98 61 33738313, Fax: +98 61 33738313,
| | - Alireza Samarbafzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Teimoori
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rasti
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chiman Karami
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasteran Rastegarvand
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Department of Infectious Diseases, Abozar Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Nikfar
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Shamsizadeh
- Department of Infectious Diseases, Abozar Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Salehi
- Parasitology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Biostatistic Department, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: Classification, Diseases They Cause, and Approaches to Development of Antiviral Drugs. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523062 PMCID: PMC7087576 DOI: 10.1134/s0006297917130041] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.
Collapse
Affiliation(s)
- O S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
12
|
Morrey JD, Wang H, Hurst BL, Zukor K, Siddharthan V, Van Wettere AJ, Sinex DG, Tarbet EB. Causation of Acute Flaccid Paralysis by Myelitis and Myositis in Enterovirus-D68 Infected Mice Deficient in Interferon αβ/γ Receptor Deficient Mice. Viruses 2018; 10:E33. [PMID: 29329211 PMCID: PMC5795446 DOI: 10.3390/v10010033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 11/16/2022] Open
Abstract
Enterovirus D68 (EV-D68) caused a large outbreak in the summer and fall of 2014 in the United States. It causes serious respiratory disease, but causation of associated paralysis is controversial, because the virus is not routinely identified in cerebrospinal fluid. To establish clinical correlates with human disease, we evaluated EV-D68 infection in non-lethal paralysis mouse models. Ten-day-old mice lacking interferon responses were injected intraperitoneally with the virus. Paralysis developed in hindlimbs. After six weeks of paralysis, the motor neurons were depleted due to viral infection. Hindlimb muscles were also infected and degenerating. Even at the earliest stage of paralysis, muscles were still infected and were degenerating, in addition to presence of virus in the spinal cord. To model natural respiratory infection, five-day-old mice were infected intranasally with EV-D68. Two of the four infected mice developed forelimb paralysis. The affected limbs had muscle disease, but no spinal cord infection was detected. The unique contributions of this study are that EV-D68 causes paralysis in mice, and that causation by muscle disease, with or without spinal cord disease, may help to resolve the controversy that the virus can cause paralysis, even if it cannot be identified in cerebrospinal fluid.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - Hong Wang
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - Katherine Zukor
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - Venkatraman Siddharthan
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - Arnaud J Van Wettere
- Utah Veterinary Diagnostics Laboratory, Department of Animal, Dairy, and Veterinary Sciences, 950 East 1400 North, Utah State University, Logan, UT 84341, USA.
| | - Donal G Sinex
- Department of Communication Disorders and Deaf Education, 2800 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
13
|
Isolation and Characterization of a Highly Mutated Chinese Isolate of Enterovirus B84 from a Patient with Acute Flaccid Paralysis. Sci Rep 2016; 6:31059. [PMID: 27499334 PMCID: PMC4976325 DOI: 10.1038/srep31059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/13/2016] [Indexed: 12/03/2022] Open
Abstract
Enterovirus B84 (EV-B84) is a newly identified serotype within the species Enterovirus B (EV-B). To date, only ten nucleotide sequences of EV-B84 are published and only one full-length genome sequence (the prototype strain) is available in the GenBank database. Here, a highly mutated EV-B84 (strain AFP452/GD/CHN/2004) was recovered from a patient with acute flaccid paralysis in the Guangdong province of China in 2004 making this the first report of EV-B84 in China. Sequence comparison and phylogenetic dendrogram analysis revealed high variation from the global EV-B84 strains (African and Indian strains) and frequent intertypic recombination in the non-structural protein region, suggesting high genetic diversity in EV-B84. The Chinese EV-B84 strain, apparently evolving independently of the other ten strains, strongly suggests that the EV-B84 strain has been circulating for many years. However, the extremely low isolation rate suggests that it is not a prevalent EV serotype in China or worldwide. This study provides valuable information about the molecular epidemiology of EV-B84 in China, and will be helpful in future studies to understand the association of EV-B84 with neurological disorders; it also helps expand the number of whole virus genome sequences of EV-B84 in the GenBank database.
Collapse
|
14
|
Tang J, Li Q, Tian B, Zhang J, Li K, Ding Z, Lu L. Complete Genome Analysis of an Enterovirus EV-B83 Isolated in China. Sci Rep 2016; 6:29432. [PMID: 27405393 PMCID: PMC4942604 DOI: 10.1038/srep29432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022] Open
Abstract
Enterovirus B83 (EV-B83) is a recently identified member of enterovirus species B. It is a rarely reported serotype and up to date, only the complete genome sequence of the prototype strain from the United States is available. In this study, we describe the complete genomic characterization of an EV-B83 strain 246/YN/CHN/08HC isolated from a healthy child living in border region of Yunnan Province, China in 2008. Compared with the prototype strain, it had 79.6% similarity in the complete genome and 78.9% similarity in the VP1 coding region, reflecting the great genetic divergence among them. VP1-coding region alignment revealed it had 77.2–91.3% with other EV-B83 sequences available in GenBank. Similarity plot analysis revealed it had higher identity with several other EV-B serotypes than the EV-B83 prototype strain in the P2 and P3 coding region, suggesting multiple recombination events might have occurred. The great genetic divergence with previously isolated strains and the extremely rare isolation suggest this serotype has circulated at a low epidemic strength for many years. This is the first report of complete genome of EV-B83 in China.
Collapse
Affiliation(s)
- Jingjing Tang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Qiongfen Li
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Bingjun Tian
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Jie Zhang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Kai Li
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Zhengrong Ding
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Lin Lu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| |
Collapse
|
15
|
Datta SS, Ropa B, Sui GP, Khattar R, Krishnan RSSG, Okayasu H. Using short-message-service notification as a method to improve acute flaccid paralysis surveillance in Papua New Guinea. BMC Public Health 2016; 16:409. [PMID: 27185174 PMCID: PMC4869347 DOI: 10.1186/s12889-016-3062-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/30/2016] [Indexed: 11/20/2022] Open
Abstract
Background High quality acute flaccid paralysis (AFP) surveillance is required to maintain polio-free status of a country. Papua New Guinea (PNG) is considered as one of the highest risk countries for polio re-importation and circulation in the Western Pacific Region (WPRO) of the World Health Organization due to poor healthcare infrastructure and inadequate performance in AFP surveillance. The Government of PNG, in collaboration with WHO, piloted the introduction of short-message-service (SMS) to sensitize pediatricians and provincial disease control officers on AFP and to receive notification of possible AFP cases to improve surveillance quality in PNG. Methods Ninety six health care professionals were registered to receive SMS reminders to report any case of acute flaccid paralysis. Fourteen SMS messages were sent to each participant from September 2012 to November 2013. The number of reported AFP cases were compared before and after the introduction of SMS. Results Two hundred fifty three unique responses were received with an overall response rate of 21 %. More than 80 % of responses were reported within 3 days of sending the SMS. The number of reported AFP cases increased from 10 cases per year in 2009–2012 to 25 cases per year during the study period and correlated with provincial participation of the health care professionals. Conclusions Combined with improved sensitization of health care professionals on AFP reporting criteria and sample collection, SMS messaging provides an effective means to increase timely reporting and improve the availability of epidemiologic information on polio surveillance in PNG.
Collapse
Affiliation(s)
| | - Berry Ropa
- National Surveillance Unit, National Department of Health, Port Moresby, Papua New Guinea
| | - Gerard Pai Sui
- National Surveillance Unit, National Department of Health, Port Moresby, Papua New Guinea
| | - Ramzi Khattar
- University Health Network, Multi-Organ Transplant Program, Toronto, Canada. .,University of Toronto, Max Bell Research Centre, 200 Elizabeth St, Room 2-416, Toronto, ON, M5G 0A3, Canada.
| | | | | |
Collapse
|
16
|
Fan Q, Zhang Y, Hu L, Sun Q, Cui H, Yan D, Sikandaner H, Tang H, Wang D, Zhu Z, Zhu S, Xu W. A Novel Recombinant Enterovirus Type EV-A89 with Low Epidemic Strength in Xinjiang, China. Sci Rep 2015; 5:18558. [PMID: 26685900 PMCID: PMC4685259 DOI: 10.1038/srep18558] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022] Open
Abstract
Enterovirus A89 (EV-A89) is a novel member of the EV-A species. To date, only one full-length genome sequence (the prototype strain) has been published. Here, we report the molecular identification and genomic characterization of a Chinese EV-A89 strain, KSYPH-TRMH22F/XJ/CHN/2011, isolated in 2011 from a contact of an acute flaccid paralysis (AFP) patient during AFP case surveillance in Xinjiang China. This was the first report of EV-A89 in China. The VP1 coding sequence of this strain demonstrated 93.2% nucleotide and 99.3% amino acid identity with the EV-A89 prototype strain. In the P2 and P3 regions, the Chinese EV-A89 strain demonstrated markedly higher identity than the prototype strains of EV-A76, EV-A90, and EV-A91, indicating that one or more recombination events between EV-A89 and these EV-A types might have occurred. Long-term evolution of these EV types originated from the same ancestor provides the spatial and temporal circumstances for recombination to occur. An antibody sero-prevalence survey against EV-A89 in two Xinjiang prefectures demonstrated low positive rates and low titres of EV-A89 neutralization antibody, suggesting limited range of transmission and exposure to the population. This study provides a solid foundation for further studies on the biological and pathogenic properties of EV-A89.
Collapse
Affiliation(s)
- Qin Fan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Lan Hu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hui Cui
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi City, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Huerxidan Sikandaner
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Haishu Tang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Urumqi City, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhen Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
17
|
Lin CH, Wang YB, Chen SH, Hsiung CA, Lin CY. Precise genotyping and recombination detection of Enterovirus. BMC Genomics 2015; 16 Suppl 12:S8. [PMID: 26678286 PMCID: PMC4682392 DOI: 10.1186/1471-2164-16-s12-s8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution.
Collapse
|
18
|
Angez M, Shaukat S, Zahra R, Sharif S, Alam MM, Khurshid A, Rana MS, Zaidi SSZ. Identification of new genotype of Echovirus 19 from children with Acute Flaccid Paralysis in Pakistan. Sci Rep 2015; 5:17456. [PMID: 26644348 PMCID: PMC4672337 DOI: 10.1038/srep17456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
Enteroviruses are known to cause childhood paralysis. The purpose of this study was to examine the genetic diversity and to determine the association of non-polio enteroviruses (NPEVs) with acute flaccid Paralysis (AFP). Stool samples (n = 1191) of children with AFP were collected from Khyber Pakhtunkhwa and Federally Administered Tribal Areas of Pakistan. Poliovirus was isolated in 205 (17.2%) samples and NPEVs were found in 215 (18.0%) samples. Out of 215 viruses, 124 (57.7%) were typed into 19 different types of enteroviruses while 91 (42.3%) remained untypeable on microneutralization assay that were reconfirmed as NPEVs by real time PCR. Echovirus 19 (20/35; 57.1%) was found the most prevalent type based on VP1 nucleotide sequencing with increased genetic diversity. Phylogenetic analysis revealed the circulation of a new genotype of E-19 in the country. The findings of this study are of great importance for future research and propose to establish the enterovirus surveillance system in the country to readily identify more enteroviruses and to monitor the emergence of new variants/genotypes especially at the moment when we are at the verge of polio eradication phase.
Collapse
Affiliation(s)
- Mehar Angez
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan.,Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Shahzad Shaukat
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Salmaan Sharif
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| | - Adnan Khurshid
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| | - Muhammad Suleman Rana
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad-45500, Pakistan
| |
Collapse
|