1
|
Thakur S, Jindal V, Choi MY. CAPA Neuropeptide and Its Receptor in Insects: A Mini Review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70061. [PMID: 40304355 DOI: 10.1002/arch.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
A neuropeptide, the CAPA, and its cognate receptor have been diversely characterized in different orders of class Insecta. CAPA peptides are synthesized in the abdominal neurohemal system and activate their corresponding receptor, CAPA receptor (CAPA-R), a type of G protein-coupled receptor (GPCR), to initiate cellular signals for diverse physiological functions in insects. Activation of the CAPA-R in Malpighian tubules results in ion-water homeostasis via antidiuresis in the majority of insect species; however, diuresis and myotropic activities are also known to result. Antidiuretic activity of CAPA peptides has been reported from mosquitoes, assassin bugs, spotted wing drosophila, and more; hence, this group of peptides also holds importance as potential targets when it comes to medical and agricultural entomology. GPCRs form a diverse family of cell membrane receptors responsible for signal transduction across the cell membrane in humans as well as in insects. With the advances in knowledge of human GPCRs, their physiological functions in agriculturally important insects have offered an opportunity for designing and implementing GPCR-targeting compounds in integrated pest management programs. In this review, we present a comprehensive view on physiological factors and peptides responsible for the diuresis/anti-diuresis in insects with special reference to the CAPA peptide-receptor interaction. The major focus is on the role of CAPA peptides in fluid and energy homeostasis, stress tolerance, muscle functioning, regulation of reproduction, and diapause-related processes. We end by outlining the significance of insect excretion with respect to the capa-r gene silencing and pest management.
Collapse
Affiliation(s)
- Sudeshna Thakur
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Vikas Jindal
- Insect Molecular Biology Laboratory, Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Veenstra JA. Neuropeptides from a praying mantis: what the loss of pyrokinins and tryptopyrokinins suggests about the endocrine functions of these peptides. PeerJ 2025; 13:e19036. [PMID: 40034667 PMCID: PMC11874938 DOI: 10.7717/peerj.19036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Neuropeptides play important roles in insects, but in many cases their functions remain obscure. Comparative neuropeptidome analyses may provide clues to what these functions might be. Praying mantises are predators and close relatives of cockroaches that are scavengers. Cockroach neuropeptidomes are well established, but little is known about mantis neuropeptides. The recently published genome assembly of the praying mantis Tenodera sinensis makes it Possible to change that. Methods The genome assembly from T. sinensis was analyzed for the presence of genes coding neuropeptides. For comparison, publicly available short read archives from this and other mantis species were also examined for the presence and expression of neuropeptides. Results As a rule, the neuropeptidomes of the Mantodea and Blattodea are almost identical; praying mantises and cockroaches use very similar neuropeptides. However, there is one surprising exception. Praying mantises lack the receptors for pyrokinins, including those for the tryptopyrokinins. No typical pyrokinin genes were found, but some species do have a tryptopyrokinin gene, in others this has also been lost and, in one species it is a speudogene. For most praying mantises there is no information where tryptopyrokinin is expressed, but in Deroplatys truncata it is in the thorax and thus not in the suboesophageal ganglion, as in other insects. In the genomic short read archives of two species-out of 52-sequences were found for a tryptopyrokinin specific receptor. The phylogenetic position of those two species implies that the receptor gene was independently lost on multiple occasions. The loss of the tryptopyrokinin gene also happened more than once. Discussion The multiple independent losses of the pyrokinin receptors in mantises suggests that these receptors are irrelevant in praying mantises. This is very surprising, since expression of tryptopyrokinin is very strongly conserved in two neuroendocrine cells in the suboeosphageal ganglion. In those species for which this is known, the expression of its receptor is in the salivary gland. As a neuroendocrine, tryptopyrokinin is unlikely to acutely regulate salivation, which in other insects is regulated by well characterized neurons. If the action of tryptopyrokinin were to prime the salivary gland for subsequent salivation, it would make perfect sense for a praying mantis to lose this capacity, as they can not anticipate when they will catch their next prey. Priming the salivary gland days before it is actually needed would be energetically costly. The other pyrokinins are known to facilitate feeding and may in a similar fashion prime muscles needed for moving to the food source and digesting it. This hypothesis provides a good explanation as to why praying mantises do not need pyrokinins, and also what the function of these ubiquitous arthropod neuropeptides may be.
Collapse
Affiliation(s)
- Jan A. Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
3
|
Khan F, Tunaz H, Haas E, Kim Y, Stanley D. PGE 2 Binding Affinity of Hemocyte Membrane Preparations of Manduca sexta and Identification of the Receptor-Associated G Proteins in Two Lepidopteran Species. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e70005. [PMID: 39508136 DOI: 10.1002/arch.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Prostaglandin E2 (PGE2) is an eicosanoid that mediates a range of physiological actions in vertebrates and invertebrates, including reproduction and immunity. The PGE2 receptor was identified and functionally assessed in two lepidopteran insects, Manduca sexta and Spodoptera exigua. However, its binding affinity to the receptor has not been reported. The PGE2 receptor is a G-protein coupled receptor (GPCR) although its corresponding G-protein is not identified. PGE2 binding assays were performed with membrane preparations from hemocytes of M. sexta larvae. We recorded an optimal binding in 4 h reactions conducted at pH 7.5 with 12 nM tritium-labeled PGE2. We found that hemocytes express a single population of PGE2 binding sites with a high affinity (Kd = 35 pmol/mg protein), which are specific and saturable. The outcomes of experiments on the influence of purine nucleotides suggested these are functional GPCRs. A bioinformatics analysis led to a proposed trimeric G-protein in the S. exigua transcriptome, in which the Gα subunit is classified into five different types: Gα(o), Gα(q), Gα(s), Gα(12), and Gα(f). After confirming expressions of these five types in S. exigua, individual RNA interference (RNAi) treatments were applied to the larvae using gene-specific double-stranded RNAs. RNAi treatments specific to Gα(s) or Gα(12) gene expression significantly suppressed the cellular immune responses although the RNAi treatments specific to other three Gα components did not. While PGE2 treatments led to elevated hemocyte cAMP or Ca2+ levels, the RNAi treatments specific to Gα(s) or Gα(12) genes led to significantly reduced second messenger levels under PGE2, although the RNAi treatments specific to the other three Gα components did not. These results showed that the PGE2 receptor has high PGE2 affinity in the nanomolar range and binds G-proteins containing a Gα(s) or Gα(12) trimeric component in S. exigua and M. sexta, and likely, all lepidopteran insects.
Collapse
Affiliation(s)
- Falguni Khan
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Hasan Tunaz
- Faculty of Agriculture, Department of Plant Protection, KahramanMaras Situ Imam University, KahramanMaras, Turkey
| | - Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, Omaha, Nebraska, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - David Stanley
- Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| |
Collapse
|
4
|
Dou X, Jurenka R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front Endocrinol (Lausanne) 2023; 14:1274750. [PMID: 38161974 PMCID: PMC10755894 DOI: 10.3389/fendo.2023.1274750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Neuropeptides are involved in almost all physiological activities of insects. Their classification is based on physiological function and the primary amino acid sequence. The pyrokinin (PK)/pheromone biosynthesis activating neuropeptides (PBAN) are one of the largest neuropeptide families in insects, with a conserved C-terminal domain of FXPRLamide. The peptide family is divided into two groups, PK1/diapause hormone (DH) with a WFGPRLa C-terminal ending and PK2/PBAN with FXPRLamide C-terminal ending. Since the development of cutting-edge technology, an increasing number of peptides have been sequenced primarily through genomic, transcriptomics, and proteomics, and their functions discovered using gene editing tools. In this review, we discussed newly discovered functions, and analyzed the distribution of genes encoding these peptides throughout different insect orders. In addition, the location of the peptides that were confirmed by PCR or immunocytochemistry is also described. A phylogenetic tree was constructed according to the sequences of the receptors of most insect orders. This review offers an understanding of the significance of this conserved peptide family in insects.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, Microbiology Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
6
|
Bee-safe peptidomimetic acaricides achieved by comparative genomics. Sci Rep 2022; 12:17263. [PMID: 36241660 PMCID: PMC9568543 DOI: 10.1038/s41598-022-20110-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/08/2022] [Indexed: 01/06/2023] Open
Abstract
The devastating Varroa mite (Varroa destructor Anderson and Trueman) is an obligatory ectoparasite of the honey bee, contributing to significant colony losses in North America and throughout the world. The limited number of conventional acaricides to reduce Varroa mites and prevent disease in honey bee colonies is challenged with wide-spread resistance and low target-site selectivity. Here, we propose a biorational approach using comparative genomics for the development of honey bee-safe and selective acaricides targeting the Varroa mite-specific neuropeptidergic system regulated by proctolin, which is lacking in the honey bee. Proctolin is a highly conserved pentapeptide RYLPT (Arg-Tyr-Leu-Pro-Thr) known to act through a G protein-coupled receptor to elicit myotropic activity in arthropod species. A total of 33 different peptidomimetic and peptide variants were tested on the Varroa mite proctolin receptor. Ligand docking model and mutagenesis studies revealed the importance of the core aromatic residue Tyr2 in the proctolin ligand. Peptidomimetics were observed to have significant oral toxicity leading to the paralysis and death of Varroa mites, while there were no negative effects observed for honey bees. We have demonstrated that a taxon-specific physiological target identified by advanced genomics information offers an opportunity to develop Varroa mite-selective acaricides, hence, expedited translational processes.
Collapse
|
7
|
Dembele H, Mating M, Singh R, Fatehi S, Herrera AI, Park Y, Prakash O. Ecdysis triggering hormone peptide in the African malaria mosquito Anopheles gambiae: The peptide structure for receptor activation. INSECT SCIENCE 2022; 29:1309-1317. [PMID: 35020973 PMCID: PMC9273798 DOI: 10.1111/1744-7917.13004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Infections by mosquito-borne diseases represent one of the leading causes of death in third world countries. The rapid progression of resistance to conventional insecticide causes a significant threat to the highly efficient preventive methods currently in place. Insect neuropeptidergic system offers potential targets to control the insect vectors. The essential roles of the neuropeptide ecdysis triggering hormone (ETH) in insect development and reproduction led us to attempt understanding of the fundamentals of the biochemical interaction between ETH and its receptor in the African malaria mosquito Anopheles gambiae. One of two ETH peptides of the African malaria mosquito (AgETH1), a small peptide hormone with 17 amino acid residues (SESPGFFIKLSKSVPRI-NH2 ), was studied to elucidate its molecular structure. N-termini deletions and mutations of conserved amino acids in the ligand revealed the critical residues for the receptor activation. The solution structure of AgETH1 using 2D 1 H-1 H nuclear magnetic resonance (NMR) spectroscopy and nuclear overhauser effect (NOE) derived constraints revealed a short alpha helix between residues 3S and 11S. The NMR solution structure of AgETH1 will be of significant assistance for designing a new class of insecticidal compounds that acts on the AgETH receptor aiming for in silico docking studies.
Collapse
Affiliation(s)
- Hawa Dembele
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansas66506
| | - Moritz Mating
- Department of EntomologyKansas State UniversityManhattanKansas66506
| | - Rupinder Singh
- Department of EntomologyKansas State UniversityManhattanKansas66506
| | - Soheila Fatehi
- Department of EntomologyKansas State UniversityManhattanKansas66506
| | - Alvaro I. Herrera
- Department of Chemistry & BiochemistryAuburn UniversityAuburnAlabamaUSA
| | - Yoonseong Park
- Department of EntomologyKansas State UniversityManhattanKansas66506
| | - Om Prakash
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattanKansas66506
| |
Collapse
|
8
|
Roy MC, Nam K, Kim J, Stanley D, Kim Y. Thromboxane Mobilizes Insect Blood Cells to Infection Foci. Front Immunol 2022; 12:791319. [PMID: 34987515 PMCID: PMC8720849 DOI: 10.3389/fimmu.2021.791319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Innate immune responses are effective for insect survival to defend against entomopathogens including a fungal pathogen, Metarhizium rileyi, that infects a lepidopteran Spodoptera exigua. In particular, the fungal virulence was attenuated by cellular immune responses, in which the conidia were phagocytosed by hemocytes (insect blood cells) and hyphal growth was inhibited by hemocyte encapsulation. However, the chemokine signal to drive hemocytes to the infection foci was little understood. The hemocyte behaviors appeared to be guided by a Ca2+ signal stimulating cell aggregation to the infection foci. The induction of the Ca2+ signal was significantly inhibited by the cyclooxygenase (COX) inhibitor. Under the inhibitory condition, the addition of thromboxane A2 or B2 (TXA2 or TXB2) among COX products was the most effective to recover the Ca2+ signal and hemocyte aggregation. TXB2 alone induced a microaggregation behavior of hemocytes under in vitro conditions. Indeed, TXB2 titer was significantly increased in the plasma of the infected larvae. The elevated TXB2 level was further supported by the induction of phospholipase A2 (PLA2) activity in the hemocytes and subsequent up-regulation of COX-like peroxinectins (SePOX-F and SePOX-H) in response to the fungal infection. Finally, the expression of a thromboxane synthase (Se-TXAS) gene was highly expressed in the hemocytes. RNA interference (RNAi) of Se-TXAS expression inhibited the Ca2+ signal and hemocyte aggregation around fungal hyphae, which were rescued by the addition of TXB2. Without any ortholog to mammalian thromboxane receptors, a prostaglandin receptor was essential to mediate TXB2 signal to elevate the Ca2+ signal and mediate hemocyte aggregation behavior. Specific inhibitor assays suggest that the downstream signal after binding TXB2 to the receptor follows the Ca2+-induced Ca2+ release pathway from the endoplasmic reticulum of the hemocytes. These results suggest that hemocyte aggregation induced by the fungal infection is triggered by TXB2via a Ca2+ signal through a PG receptor.
Collapse
Affiliation(s)
- Miltan Chandra Roy
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Jaesu Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| | - David Stanley
- Biological Control of Insect Research Laboratory, United States Department of Agriculture-Agricultural Research Station (USDA/ARS), Columbia, MO, United States
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
9
|
Shen CH, Xu QY, Fu KY, Guo WC, Jin L, Li GQ. Two Splice Isoforms of Leptinotarsa Ecdysis Triggering Hormone Receptor Have Distinct Roles in Larva-Pupa Transition. Front Physiol 2020; 11:593962. [PMID: 33335488 PMCID: PMC7736071 DOI: 10.3389/fphys.2020.593962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Insect ecdysis triggering hormone (ETH) receptors (ETHRs) are rhodopsin-like G protein-coupled receptors. Upon binding its ligand ETH, ETHR initiates a precisely programed ecdysis behavior series and physiological events. In Drosophila melanogaster, the ethr gene produces two functionally distinct splicing isoforms, ethra and ethrb. ETH/ETHRA activates eclosion hormone (EH), kinin, crustacean cardioactive peptide (CCAP), and bursicon (burs and pburs) neurons, among others, in a rigid order, to elicit the behavioral sequences and physiological actions for ecdysis at all developmental stages, whereas ETH/ETHRB is required at both pupal and adult ecdysis. However, the role of ETHRB in regulation of molting has not been clarified in any non-drosophila insects. In the present paper, we found that 20-hydroxyecdysone (20E) signaling triggers the expression of both ethra and ethrb in a Coleopteran insect pest, the Colorado potato beetle Leptinotarsa decemlineata. RNA interference (RNAi) was performed using double-stranded RNAs (dsRNAs) targeting the common (dsethr) or isoform-specific (dsethra, dsethrb) regions of ethr. RNAi of dsethr, dsethra, or dsethrb by the final-instar larvae arrested larva development. The arrest was not rescued by feeding 20E. All the ethra depleted larvae stopped development at prepupae stage; the body cavity was expanded by a large amount of liquid. Comparably, more than 80% of the ethrb RNAi larvae developmentally halted at the prepupae stage. The remaining Ldethrb hypomorphs became pupae, with blackened wings and highly-expressed burs, pburs and four melanin biosynthesis genes. Therefore, ETHRA and ETHRB play isoform-specific roles in regulation of ecdysis during larva-pupa transition in L. decemlineata.
Collapse
Affiliation(s)
- Chen-Hui Shen
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Lin Jin
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Ahn SJ, Corcoran JA, Vander Meer RK, Choi MY. Identification and Characterization of GPCRs for Pyrokinin and CAPA Peptides in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). Front Physiol 2020; 11:559. [PMID: 32547421 PMCID: PMC7274154 DOI: 10.3389/fphys.2020.00559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023] Open
Abstract
The brown marmorated stink bug, Halyomorpha halys, is an invasive hemipteran that causes significant economic losses to various agricultural products around the world. Recently, the pyrokinin and capa genes that express multiple neuropeptides were described in this species. Here we report six pyrokinin and capa GPCRs including two splice variants, and evaluate their (a) ability to respond to neuropeptides in cell-based assays, and (b) expression levels by RT-PCR. Functional studies revealed that the H. halys pyrokinin receptor-1 (HalhaPK-R1a & b) responded to the pyrokinin 2 (PK2) type peptide. RT-PCR results revealed that these receptors had little or no expression in the tissues tested, including the whole body, central nervous system, midgut, Malpighian tubules, and reproductive organs of males and females. HalhaPK-R2 showed the strongest response to PK2 peptides and a moderate response to pyrokinin 1 (PK1) type peptides (= DH, diapause hormone), and was expressed in all tissues tested. HalhaPK-R3a & b responded to both PK1 and PK2 peptides. Their gene expression was restricted mostly to the central nervous system and Malpighian tubules. All PK receptors were dominantly expressed in the fifth nymph. HalhaCAPA-R responded specifically to CAPA-PVK peptides (PVK1 and PVK2), and was highly expressed in the Malpighian tubules with low to moderate expression in other tissues, and life stages. Of the six GPCRs, HalhaPK-R3b showed the strongest response to PK1. Our experiments associated the following peptide ligands to the six GPCRs: HalhaPK-R1a & b and HalhaPK-R2 are activated by PK2 peptides, HalhaPK-R3a & b are activated by PK1 (= DH) peptides, and HalhaCAPA-R is activated by PVK peptides. These results pave the way for investigations into the biological functions of H. halys PK and CAPA peptides, and possible species-specific management of H. halys.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, United States.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jacob A Corcoran
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, United States
| | - Robert K Vander Meer
- USDA Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, United States
| | - Man-Yeon Choi
- USDA Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, United States
| |
Collapse
|
11
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Sajadi F, Uyuklu A, Paputsis C, Lajevardi A, Wahedi A, Ber LT, Matei A, Paluzzi JPV. CAPA neuropeptides and their receptor form an anti-diuretic hormone signaling system in the human disease vector, Aedes aegypti. Sci Rep 2020; 10:1755. [PMID: 32020001 PMCID: PMC7000730 DOI: 10.1038/s41598-020-58731-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Insect CAPA neuropeptides are homologs of mammalian neuromedin U and are known to influence ion and water balance by regulating the activity of the Malpighian 'renal' tubules (MTs). Several diuretic hormones are known to increase primary fluid and ion secretion by insect MTs and, in adult female mosquitoes, a calcitonin-related peptide (DH31) called mosquito natriuretic peptide, increases sodium secretion to compensate for the excess salt load acquired during blood-feeding. An endogenous mosquito anti-diuretic hormone was recently described, having potent inhibitory activity against select diuretic hormones, including DH31. Herein, we functionally deorphanized, both in vitro and in vivo, a mosquito anti-diuretic hormone receptor (AedaeADHr) with expression analysis indicating highest enrichment in the MTs where it is localized within principal cells. Characterization using a heterologous in vitro system demonstrated the receptor was highly sensitive to mosquito CAPA neuropeptides while in vivo, AedaeADHr knockdown abolished CAPA-induced anti-diuretic control of DH31-stimulated MTs. CAPA neuropeptides are produced within a pair of neurosecretory cells in each of the abdominal ganglia, whose axonal projections innervate the abdominal neurohaemal organs, where these neurohormones are released into circulation. Lastly, pharmacological inhibition of nitric oxide synthase (NOS) and protein kinase G (PKG) signaling eliminated anti-diuretic activity of CAPA, highlighting the role of the second messenger cGMP and NOS/PKG in this anti-diuretic signaling pathway.
Collapse
Affiliation(s)
- Farwa Sajadi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Ali Uyuklu
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Christine Paputsis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Aryan Lajevardi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Lindsay Taylor Ber
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Andreea Matei
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
13
|
Zhang F, Wang J, Thakur K, Hu F, Zhang JG, Jiang XF, An SH, Jiang H, Jiang L, Wei ZJ. Isolation functional characterization of allatotropin receptor from the cotton bollworm, Helicoverpa armigera. Peptides 2019; 122:169874. [PMID: 29198647 DOI: 10.1016/j.peptides.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Insect allatotropin (AT) plays multi-functions including regulation of juvenile hormone synthesis, growth, development and reproduction. In the present study, the full-length cDNA encoding the AT receptor was cloned from the brain of Helicoverpa armigera (Helar-ATR). The ORF of Helar-ATR exhibited the characteristic seven transmembrane domains of the G protein-coupled receptor (GPCR) and was close to the ATR of Manduca sexta in the phylogenetic tree. The Helar-ATR expressed in vertebrate cell lines can be activated by Helar-AT and each Helar-ATL in a dose-responsive manner, in the following order: Helar-ATLI > Helar-ATLII > Helar-AT > Helar-ATLIII. Helar-ATLI and Helar-ATLII represented the functional ligands to Helar-ATR in vitro, while Helar-AT and Helar-ATLIII behaved as partial agonists. The in vitro functional analysis suggested that the Helar-ATR signal was mainly coupled with elevated levels of Ca2+ and independent of cAMP levels. Helar-ATR mRNA in larvae showed the highest level in the brain, followed by the thorax ganglion, abdomen ganglion, fat body and midgut. Helar-ATR mRNA levels in the complex of the brain-thoracic-abdomen ganglion on the 2nd day of the larval stage and during later pupal stages were observed to be relatively higher than in the wandering and early pupal stages.
Collapse
Affiliation(s)
- Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jun Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Hen An
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
14
|
Hao K, Tu X, Ullah H, McNeill MR, Zhang Z. Novel Lom-dh Genes Play Potential Role in Promoting Egg Diapause of Locusta migratoria L. Front Physiol 2019; 10:767. [PMID: 31275172 PMCID: PMC6591537 DOI: 10.3389/fphys.2019.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/03/2019] [Indexed: 11/18/2022] Open
Abstract
Diapause hormone (DH) neuropeptides in insects are produced by the genes belonging to pban/capa family. Previous studies show that DH contains a conserved sequence of WFGPRXa that plays vital role in diapause regulation of some Lepidopteran species. However, the function of DH in other species is still unknown. In order to expand our understanding of DH function in diapause induction, Lom-pban, Lom-capa, and five candidates DH precursor genes (Lom-dh1, Lom-dh2, Lom-dh3, Lom-dh4, Lom-dh5) of Locusta migratoria L. were subsequently cloned. We identified Lom-dh1 to Lom-dh5 as novel genes that encoded five types (type I–V) of 44 tandem repeats of DH-like neuropeptides, which might promote egg diapause of L. migratoria. To test this hypothesis, we identified four types of eight new neuropeptides encoded by Lom-dh using liquid chromatography–tandem mass spectrometry from the central neuron system of L. migratoria under both short (10:14 L:D) and long (16:8 L:D) photoperiods. Later on, we synthesized four type I DH-like neuropeptides, LDH1, SDH1, LDH2, and SDH2, encoded by Lom-dh2/Lom-dh3 and injected them into fifth instar female locusts. Egg diapause incidences were observed after female oviposition. The four DH-like neuropeptides significantly increased the incidence of egg diapause under the short photoperiod, but the response was absent under the long photoperiod. Injection of dsLom-dh into female adults of L. migratoria under the short photoperiod could inhibit egg diapause, with no response under the long photoperiod. This study identified a new member of pban/capa family being the second example beside Bombyx mori, where the DH showed significant role on maternal induction of diapause.
Collapse
Affiliation(s)
- Kun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hidayat Ullah
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Agriculture, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | | | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Veenstra JA. Coleoptera genome and transcriptome sequences reveal numerous differences in neuropeptide signaling between species. PeerJ 2019; 7:e7144. [PMID: 31245184 PMCID: PMC6585902 DOI: 10.7717/peerj.7144] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Background Insect neuropeptides are interesting for the potential their receptors hold as plausible targets for a novel generation of pesticides. Neuropeptide genes have been identified in a number of different species belonging to a variety of insects. Results suggest significant neuropeptide variation between different orders, but much less is known of neuropeptidome variability within an insect order. I therefore compared the neuropeptidomes of a number of Coleoptera. Methodology Publicly available genome sequences, transcriptomes and the original sequence data in the form of short sequence read archives were analyzed for the presence or absence of genes coding neuropeptides as well as some neuropeptide receptors in seventeen beetle species. Results Significant differences exist between the Coleoptera analyzed here, while many neuropeptides that were previously characterized from Tribolium castaneum appear very similar in all species, some are not and others are lacking in one or more species. On the other hand, leucokinin, which was presumed to be universally absent from Coleoptera, is still present in non-Polyphaga beetles. Conclusion The variability in neuropeptidome composition between species from the same insect order may be as large as the one that exists between species from different orders.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Bordeaux, Pessac, France
| |
Collapse
|
16
|
Alford L, Marley R, Dornan A, Pierre J, Dow JAT, Nachman RJ, Davies SA. Assessment of neuropeptide binding sites and the impact of biostable kinin and CAP2b analogue treatment on aphid (Myzus persicae and Macrosiphum rosae) stress tolerance. PEST MANAGEMENT SCIENCE 2019; 75:1750-1759. [PMID: 30734498 PMCID: PMC6593983 DOI: 10.1002/ps.5372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Neuropeptides are regulators of critical life processes in insects and, due to their high specificity, represent potential targets in the development of greener insecticidal agents. Fundamental to this drive is understanding neuroendocrine pathways that control key physiological processes in pest insects and the screening of potential analogues. The current study investigated neuropeptide binding sites of kinin and CAPA (CAPA-1) in the aphids Myzus persicae and Macrosiphum rosae and the effect of biostable analogues on aphid fitness under conditions of desiccation, starvation and thermal (cold) stress. RESULTS M. persicae and M. rosae displayed identical patterns of neuropeptide receptor mapping along the gut, with the gut musculature representing the main target for kinin and CAPA-1 action. While kinin receptor binding was observed in the brain and VNC of M. persicae, this was not observed in M. rosae. Furthermore, no CAPA-1 receptor binding was observed in the brain and VNC of either species. CAP2b/PK analogues (with CAPA receptor cross-activity) were most effective in reducing aphid fitness under conditions of desiccation and starvation stress, particularly analogues 1895 (2Abf-Suc-FGPRLa) and 2129 (2Abf-Suc-ATPRIa), which expedited aphid mortality. All analogues, with the exception of 2139-Ac, were efficient at reducing aphid survival under cold stress, although were equivalent in the strength of their effect. CONCLUSION In demonstrating the effects of analogues belonging to the CAP2b neuropeptide family and key analogue structures that reduce aphid fitness under stress conditions, this research will feed into the development of second generation analogues and ultimately the development of neuropeptidomimetic-based insecticidal agents. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Lucy Alford
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Richard Marley
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Anthony Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Jean‐Sébastien Pierre
- UMR 6553 ECOBIO, Centre National de la Recherche ScientifiqueUniversité de Rennes IRennes CedexFrance
| | - Julian AT Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research CenterU.S. Department of AgricultureCollege StationTexasUSA
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
17
|
Zhou H, Zhang YQ, Lai T, Liu XJ, Guo FY, Guo T, Ding W. Acaricidal Mechanism of Scopoletin Against Tetranychus cinnabarinus. Front Physiol 2019; 10:164. [PMID: 30894818 PMCID: PMC6414448 DOI: 10.3389/fphys.2019.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/11/2019] [Indexed: 01/10/2023] Open
Abstract
Scopoletin is a promising acaricidal botanical natural compound against Tetranychus cinnabarinus, and its acaricidal mechanism maybe involve calcium overload according to our previous study. To seek potential candidate target genes of calcium overload induced by scopoletin in T. cinnabarinus, RNA-seq was utilized to detect changes in transcription levels. 24 and 48 h after treatment, 70 and 102 differentially expressed genes were obtained, respectively. Target genes included 3 signal transduction genes, 4 cell apoptosis genes, 4 energy metabolism genes, and 2 transcription factor genes. The role of 3 calcium signaling pathway-related genes, namely, G-protein-coupled neuropeptide receptor, Bcl-2 protein and guanylate kinase (designated TcGPCR, TcBAG, and TcGUK, respectively) in the calcium overload were investigated in this study. RT-qPCR detection showed that scopoletin treatment upregulated the expression level of TcGPCR and downregulated the expression level of TcBAG and TcGUK. The result of RNAi indicated that downregulation of TcGPCR decreased susceptibility to scopoletin, and downregulation of TcBAG and TcGUK enhanced susceptibility to scopoletin. Functional expression in Chinese hamster ovary cells showed that scopoletin induced a significant increase in intracellular free calcium [Ca2+]i levels by activating TcGPCR. These results demonstrated that the acaricidal mechanism of scopoletin was via disrupting intracellular Ca2+ homeostasis and calcium signaling pathway mediated by GPCR, BAG, and GUK.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Ding
- Institute of Pesticide Science, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A27 is a specific receptor for B. mori capability (CAPA) periviscerokinin (PVK), that is, Bom-CAPA-PVK receptor 2. Upon stimulation of Bom-CAPA-PVK-1 or -PVK-2, Bom-CAPA-PVK receptor 2 significantly increases cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. However, the underlying mechanism(s) for CAPA/CAPA receptor system mediation of extracellular signal-regulated kinases1/2 (ERK1/2) activation remains to be explained further. Here, we discovered that Bom-CAPA-PVK receptor 2 stimulated ERK1/2 phosphorylation in a dose- and time-dependent manner in response to Bom-CAPA-PVK-1 or -PVK-2 with similar potencies. Furthermore, ERK1/2 phosphorylation can be inhibited by Gq inhibitor UBO-QIC, PLC inhibitor U73122, protein kinase C (PKC) inhibitor Go 6983, phospholipase D (PLD) inhibitor FIPI and Ca2+ chelators EGTA and BAPTA-AM. Moreover, Bom-CAPA-PVK-R2-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ-specific inhibitors, phosphatidylinositol 3-kinase (PI3K)-specific inhibitor Wortmannin and Src-specific inhibitor PP2. Our data also demonstrate that receptor tyrosine kinase (RTK) transactivation pathways are involved in the mechanisms of Bom-CAPA-PVK receptor to ERK1/2 phosphorylation. In addition, β-arrestin1/2 is not involved in Bom-CAPA-PVK-R2-mediated ERK1/2 activation but required for the agonist-independent, ERK1/2 activation-dependent internalization of the G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyuan Yang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Jiang L, Zhang F, Hou Y, Thakur K, Hu F, Zhang JG, Jiang XF, Liu YQ, Wei ZJ. Isolation and functional characterization of the pheromone biosynthesis activating neuropeptide receptor of Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2018; 117:42-50. [PMID: 29800669 DOI: 10.1016/j.ijbiomac.2018.05.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Insect pheromone biosynthesis activating neuropeptide (PBAN) controls the synthesis and actuating of sex pheromones of female adult. In the current examination, the full-length cDNA encoding the PBAN receptor was cloned from the pheromone gland (PG) of Antheraea pernyi (AntpePBANR). The AntpePBANR displayed the characteristic seven transmembrane areas of the G protein-coupled receptor (GPCR) and was closely related to the PBANR from Bombyx mori and Manduca sexta in the phylogenetic tree. The AntpePBANR expressed in mammalian cell lines were enacted by AntpePBAN in a concentration-dependent manner. AntpePBANR activation resulted in the calcium mobilization but did not activate the cAMP elevation pathway. Cells expressing AntpePBANR were profoundly responsive to Antpe-γ-SGNP (suboesophageal ganglion neuropeptides) and Antpe-DH (diapause hormone), different individuals from FXPRLamide (X = T, S or V) family in A. pernyi. Deletion of residues in the C-terminal hexapeptide (FSPRLamide) proved that P, R and L played the key parts in initiating the AntpePBANR, the amination to the last C terminal residues which can also likewise impact the activation of AntpePBAN receptor altogether. The mRNA of the AntpePBANR gene demonstrated the most noteworthy transcript levels in pheromone gland followed by fat body.
Collapse
Affiliation(s)
- Li Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fang Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Yang Hou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Kiran Thakur
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Fei Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Jian-Guo Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Xing-Fu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yan-Qun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, PR China.
| |
Collapse
|
21
|
Shen Z, Jiang X, Yan L, Chen Y, Wang W, Shi Y, Shi L, Liu D, Zhou N. Structural basis for the interaction of diapause hormone with its receptor in the silkworm, Bombyx mori. FASEB J 2018; 32:1338-1353. [PMID: 29101222 DOI: 10.1096/fj.201700931r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Diapause hormone (DH) is a 24-aa amidated neuropeptide that elicits the embryonic diapause of the silkworm, Bombyx mori ( Bommo), via sensitive and selective interaction with its receptor, Bommo DH receptor ( Bommo-DHR). Previous studies of the structure-activity relationship of Bommo-DH were all based on an in vivo diapause-induction bioassay, which has provided little information on the structure of Bommo-DHR or its iteration with DH. Here, to unveil the interaction of Bommo-DH with its receptor, N-terminally truncated analogs and alanine-scanning mutants of Bommo-DH were chemically synthesized and functionally evaluated by using a Cy5.5-labeled Bommo-DH competitive binding assay and Bommo-DHR-based functional assays, including cAMP assay and Ca2+ mobilization assay. Our study demonstrates that the C-terminal residues of Arg23 and Leu24 of Bommo-DH are essential for the binding and activation of Bommo-DHR, and that Trp19 and Phe20 also contribute to the functional activity of Bommo-DH. In contrast, when Gly21 or Pro22 were replaced with alanine, both mutants exhibited binding and signaling activities that were indistinguishable from the wild-type peptide. Furthermore, our homology modeling and molecular dynamics simulations, together with experimental validations, have identified the residues of Glu89, Phe172, Phe194, and Tyr299 in Bommo-DHR that are critically involved in the interaction with Bommo-DH. These results may deepen our understanding of the interactions of class-A GPCRs with their peptidic ligands, particularly those between pheromone biosynthesis-activating neuropeptide/DH family neuropeptides and their cognate receptors.-Shen, Z., Jiang, X., Yan, L., Chen, Y., Wang, W., Shi, Y., Shi, L., Liu, D., Zhou, N. Structural basis for the interaction of diapause hormone with its receptor in the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xue Jiang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Weiwei Wang
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Dongxiang Liu
- Department of Pharmacology III, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Shen Z, Chen Y, Hong L, Cui Z, Yang H, He X, Shi Y, Shi L, Han F, Zhou N. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem 2017; 292:16554-16570. [PMID: 28842502 DOI: 10.1074/jbc.m117.803445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/11/2017] [Indexed: 01/14/2023] Open
Abstract
CAPA peptides, such as periviscerokinin (PVK), are insect neuropeptides involved in many signaling pathways controlling, for example, metabolism, behavior, and reproduction. They are present in a large number of insects and, together with their cognate receptors, are important for research into approaches for improving insect control. However, the CAPA receptors in the silkworm (Bombyx mori) insect model are unknown. Here, we cloned cDNAs of two putative CAPA peptide receptor genes, BNGR-A27 and -A25, from the brain of B. mori larvae. We found that the predicted BNGR-A27 ORF encodes 450 amino acids and that one BNGR-A25 splice variant encodes a full-length isoform (BNGR-A25L) of 418 amino acid residues and another a short isoform (BNGR-A25S) of 341 amino acids with a truncated C-terminal tail. Functional assays indicated that both BNGR-A25L and -A27 are activated by the PVK neuropeptides Bom-CAPA-PVK-1 and -PVK-2, leading to a significant increase in cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. In contrast, BNGR-A25S was not significantly activated in response to the PVK peptides. Moreover, Bom-CAPA-PVK-1 directly bound to BNGR-A25L and -A27, but not BNGR-A25S. Of note, CAPA-PVK-mediated ERK1/2 phosphorylation and receptor internalization confirmed that BNGR-A25L and -A27 are two canonical receptors for Bombyx CAPA-PVKs. However, BNGR-A25S alone is a nonfunctional receptor but serves as a dominant-negative protein for BNGR-A25L. These results provide evidence that BNGR-A25L and -A27 are two functional Gq-coupled receptors for Bombyx CAPA-PVKs, enabling the further elucidation of the endocrinological roles of Bom-CAPA-PVKs and their receptors in insect biology.
Collapse
Affiliation(s)
- Zhangfei Shen
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Yu Chen
- From the Institute of Biochemistry, College of Life Sciences
| | - Lingjuan Hong
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenteng Cui
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Huipeng Yang
- From the Institute of Biochemistry, College of Life Sciences
| | - Xiaobai He
- From the Institute of Biochemistry, College of Life Sciences
| | - Ying Shi
- From the Institute of Biochemistry, College of Life Sciences
| | - Liangen Shi
- the Department of Economic Zoology, College of Animal Sciences, and
| | - Feng Han
- the Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Naiming Zhou
- From the Institute of Biochemistry, College of Life Sciences,
| |
Collapse
|
23
|
The ecdysis triggering hormone system is essential for successful moulting of a major hemimetabolous pest insect, Schistocerca gregaria. Sci Rep 2017; 7:46502. [PMID: 28417966 PMCID: PMC5394484 DOI: 10.1038/srep46502] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Insects are enclosed in a rigid exoskeleton, providing protection from desiccation and mechanical injury. To allow growth, this armour needs to be replaced regularly in a process called moulting. Moulting entails the production of a new exoskeleton and shedding of the old one and is induced by a pulse in ecdysteroids, which activates a peptide-mediated signalling cascade. In Holometabola, ecdysis triggering hormone (ETH) is the key factor in this cascade. Very little functional information is available in Hemimetabola, which display a different kind of development characterized by gradual changes. This paper reports on the identification of the ETH precursor and the pharmacological and functional characterisation of the ETH receptor in a hemimetabolous pest species, the desert locust, Schistocerca gregaria. Activation of SchgrETHR by SchgrETH results in an increase of both Ca2+ and cyclic AMP, suggesting that SchgrETHR displays dual coupling properties in an in vitro cell-based assay. Using qRT-PCR, an in-depth profiling study of SchgrETH and SchgrETHR transcripts was performed. Silencing of SchgrETH and SchgrETHR resulted in lethality at the expected time of ecdysis, thereby showing their crucial role in moulting.
Collapse
|
24
|
Gui SH, Jiang HB, Liu XQ, Xu L, Wang JJ. Molecular characterizations of natalisin and its roles in modulating mating in the oriental fruit fly, Bactrocera dorsalis (Hendel). INSECT MOLECULAR BIOLOGY 2017; 26:103-112. [PMID: 27862548 DOI: 10.1111/imb.12274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Initially, natalisin (NTL) was identified from three holometabolous insect species, Drosophila melanogaster, Tribolium castaneum and Bombyx mori, and was documented to regulate reproductive behaviours in D. melanogaster and T. castaneum. In this study, we report the sequences of the NTL precursor and its receptor (NTLR) from an important agricultural pest, Bactrocera dorsalis (Hendel). NTLR is a typical G-protein coupled receptor and phylogenetic analysis showed that B. dorsalis NTLR was closely related to insect natalisin receptors from other species. A functional assay of NTLR transiently expressed in Chinese hamster ovary cells showed that it was activated by putative natalisin mature peptides in a concentration-dependent manner, with 50% effective concentrations (EC50 ) at nanomolar or micromolar levels. As indicated by quantitative real-time PCR, both NTL and NTLR had the highest expression in the central nervous system of B. dorsalis compared with the other tested tissues. Three pairs of adult brain neurones of B. dorsalis were identified with immunohistochemical antibody staining against D. melanogaster NTL4, and in situ hybridization with specific DNA probes. Moreover, RNA interference mediated by double-stranded RNA injection in adults provided evidence for the important roles of NTL in regulating both male and female mating frequencies in this fly.
Collapse
Affiliation(s)
- S-H Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - H-B Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - X-Q Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - L Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - J-J Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Gondalia K, Qudrat A, Bruno B, Fleites Medina J, Paluzzi JPV. Identification and functional characterization of a pyrokinin neuropeptide receptor in the Lyme disease vector, Ixodes scapularis. Peptides 2016; 86:42-54. [PMID: 27667704 DOI: 10.1016/j.peptides.2016.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/21/2022]
Abstract
Pyrokinin-related peptides are pleiotropic factors that are defined by their conserved C-terminal sequence FXPRL-NH2. The pyrokinin nomenclature derives from their originally identified myotropic actions and, as seen in some family members, a blocked amino terminus with pyroglutamate. The black-legged tick, Ixodes scapularis, is well known as a vector of Lyme disease and various other illnesses; however, in comparison to blood-feeding insects, knowledge on its physiology (along with other Ixodid ticks) is rather limited. In this study, we have isolated, examined the expression profile, and functionally deorphanized the pyrokinin peptide receptor in the medically important tick, I. scapularis. Phylogenetic analysis supports that the cloned receptor is indeed a bona fide member of the pyrokinin-related peptide receptor family. The tick pyrokinin receptor transcript expression is most abundant in the central nervous system (i.e. synganglion), but is also detected in trachea, female reproductive tissues, and in a pooled sample comprised of Malpighian (renal) tubules and the hindgut. Finally, functional characterization of the identified receptor confirmed it as a pyrokinin peptide receptor as it was activated equally by four endogenous pyrokinin-related peptides. The receptor was slightly promiscuous as it was also activated by a peptide sharing some structural similarity, namely the CAPA-periviserokinin (CAPA-PVK) peptide. Nonetheless, the I. scapularis pyrokinin receptor required a CAPA-PVK peptide concentration of well over three orders of magnitude to achieve a comparable receptor activation response, which indicates it is quite selective for its native pyrokinin peptide ligands. This study sets the stage for future research to examine the prospective tissue targets identified in order to resolve the physiological roles of this family of peptides in Ixodid ticks.
Collapse
Affiliation(s)
- Kinsi Gondalia
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Anam Qudrat
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Brigida Bruno
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Janet Fleites Medina
- Vivarium Facility, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
26
|
Veenstra JA. Neuropeptide Evolution: Chelicerate Neurohormone and Neuropeptide Genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016:S0016-6480(15)00248-8. [PMID: 27838380 DOI: 10.1016/j.ygcen.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 101 neuropeptide GPCRs. High neuropeptide transcripts were also found in the trancriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 74 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is not impossible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
27
|
Li HM, Jiang HB, Gui SH, Liu XQ, Liu H, Lu XP, Smagghe G, Wang JJ. Characterization of a β-Adrenergic-Like Octopamine Receptor in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). Int J Mol Sci 2016; 17:ijms17101577. [PMID: 27669213 PMCID: PMC5085626 DOI: 10.3390/ijms17101577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/04/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
The biogenic amine octopamine plays a critical role in the regulation of many physiological processes in insects. Octopamine transmits its action through a set of specific G-protein coupled receptors (GPCRs), namely octopamine receptors. Here, we report on a β-adrenergic-like octopamine receptor gene (BdOctβR1) from the oriental fruit fly, Bactrocera dorsalis (Hendel), a destructive agricultural pest that occurs in North America and the Asia-Pacific region. As indicated by RT-qPCR, BdOctβR1 was highly expressed in the central nervous system (CNS) and Malpighian tubules (MT) in the adult flies, suggesting it may undertake important roles in neural signaling in the CNS as well as physiological functions in the MT of this fly. Furthermore, its ligand specificities were tested in a heterologous expression system where BdOctβR1 was expressed in HEK-293 cells. Based on cyclic AMP response assays, we found that BdOctβR1 could be activated by octopamine in a concentration-dependent manner, confirming that this receptor was functional, while tyramine and dopamine had much less potency than octopamine. Naphazoline possessed the highest agonistic activity among the tested agonists. In antagonistic assays, mianserin had the strongest activity and was followed by phentolamine and chlorpromazine. Furthermore, when the flies were kept under starvation, there was a corresponding increase in the transcript level of BdOctβR1, while high or low temperature stress could not induce significant expression changes. The above results suggest that BdOctβR1 may be involved in the regulation of feeding processes in Bactrocera dorsalis and may provide new potential insecticide leads targeting octopamine receptors.
Collapse
Affiliation(s)
- Hui-Min Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Shun-Hua Gui
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, Ghent 9000, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:78-88. [PMID: 27318251 DOI: 10.1016/j.ibmb.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajie Chen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
29
|
Nagai-Okatani C, Nagasawa H, Nagata S. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori. PLoS One 2016; 11:e0156501. [PMID: 27248837 PMCID: PMC4889062 DOI: 10.1371/journal.pone.0156501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/16/2016] [Indexed: 01/26/2023] Open
Abstract
Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A24 as an ion transport peptide-like (ITPL) receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs), we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1–5). In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (SN); (CNO)
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail: (SN); (CNO)
| |
Collapse
|
30
|
Veenstra JA. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016; 229:41-55. [PMID: 26928473 DOI: 10.1016/j.ygcen.2015.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 120 neuropeptide GPCRs. Many neuropeptide transcripts were also found in the transcriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 93 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is plausible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
31
|
Jiang H, Kim D, Dobesh S, Evans JD, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor. Sci Rep 2016; 6:19547. [PMID: 26817786 PMCID: PMC4730192 DOI: 10.1038/srep19547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and the NTL receptor in their genome sequences, providing the rationale for investigating these receptors to understand their specificities to various ligands. We characterized the receptors for NTL and TRP of V. destructor (VdNTL-R and VdTRP-R, respectively) and for TRP of A. mellifera (AmTRP-R) in a heterologous reporter assay system to determine the activities of various ligands including TRP/NTL peptides and peptidomimetics. Although we found that AmTRP-R is highly promiscuous, activated by various ligands including two VdNTL peptides when a total of 36 ligands were tested, we serendipitously found that peptides carrying the C-terminal motif -FWxxRamide are highly specific to VdTRP-R. This motif can serve as a seed sequence for designing a VdTRP-R-specific agonist.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sharon Dobesh
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jay D. Evans
- Bee Research Laboratory, BARC-E, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
32
|
Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Ichida Takahama M, Mizoguchi A. Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 2015; 5:15566. [PMID: 26497859 PMCID: PMC4620438 DOI: 10.1038/srep15566] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
The insect neuropeptide family FXPRLa, which carries the Phe-Xaa-Pro-Arg-Leu-NH2 sequence at the C-terminus, is involved in many physiological processes. Although ligand-receptor interactions in FXPRLa signaling have been examined using in vitro assays, the correlation between these interactions and in vivo physiological function is unclear. Diapause in the silkworm, Bombyx mori, is thought to be elicited by diapause hormone (DH, an FXPRLa) signaling, which consists of interactions between DH and DH receptor (DHR). Here, we performed transcription activator-like effector nuclease (TALEN)-based mutagenesis of the Bombyx DH-PBAN and DHR genes and isolated the null mutants of these genes in a bivoltine strain. All mutant silkworms were fully viable and showed no abnormalities in the developmental timing of ecdysis or metamorphosis. However, female adults oviposited non-diapause eggs despite diapause-inducing temperature and photoperiod conditions. Therefore, we conclude that DH signaling is essential for diapause induction and consists of highly sensitive and specific interactions between DH and DHR selected during ligand-receptor coevolution in Bombyx mori.
Collapse
Affiliation(s)
- Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yoko Takasu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba 305-8634, Japan
| | - Masayo Kunii
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Ryoma Tsuchiya
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Moeka Mukaida
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Hideki Sezutsu
- National Institute of Agrobiological Sciences (NIAS), Tsukuba 305-8634, Japan
| | | | - Akira Mizoguchi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Jiang H, Kim HG, Park Y. Alternatively spliced orcokinin isoforms and their functions in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:1-9. [PMID: 26235678 PMCID: PMC4628601 DOI: 10.1016/j.ibmb.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 05/21/2023]
Abstract
Orcokinin and orcomyotropin were originally described as neuropeptides in crustaceans but have now been uncovered in many species of insects in which they are called orcokinin-A (OK-A) and orcokinin-B (OK-B), respectively. The two groups of mature peptides are products of alternatively spliced transcripts of the single copy gene orcokinin in insects. We investigated the expression patterns and the functions of OK-A and OK-B in the red flour beetle Tribolium castaneum. In situ hybridization and immunohistochemistry using isoform-specific probes and antibodies for each OK-A and OK-B suggests that both peptides are co-expressed in 5-7 pairs of brain cells and in the midgut enteroendocrine cells, which contrasts to expression patterns in other insects in which the two peptides are expressed in different cells. We developed a novel behavioral assay to assess the phenotypes of orcokinin RNA interference (RNAi) in T. castaneum. RNAi of ok-a and ok-b alone or in combination resulted in higher frequencies and longer durations of death feigning in response to mechanical stimulation in the adult assay. In the larval behavioral assays, we observed longer recovery times from knockout induced by water submergence in the insects treated with RNAi for ok-a and ok-b alone or in combination. We conclude that both OK-A and OK-B have "awakening" activities and are potentially involved in the control of circadian rhythms.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 40071, People's Republic of China; Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Hong Geun Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
34
|
Campeiro JD, Neshich IP, Sant’Anna OA, Lopes R, Ianzer D, Assakura MT, Neshich G, Hayashi MA. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain – Potential BPP-like precursor protein? Biochem Pharmacol 2015; 96:202-15. [DOI: 10.1016/j.bcp.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
35
|
Dickinson PS, Kurland SC, Qu X, Parker BO, Sreekrishnan A, Kwiatkowski MA, Williams AH, Ysasi AB, Christie AE. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system. ACTA ACUST UNITED AC 2015. [PMID: 26206359 DOI: 10.1242/jeb.124818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Sienna C Kurland
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Xuan Qu
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Brett O Parker
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Anirudh Sreekrishnan
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Molly A Kwiatkowski
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alex H Williams
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alexandra B Ysasi
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
36
|
Jiang H, Wei Z, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 2015; 68:246-52. [PMID: 25447413 PMCID: PMC4437919 DOI: 10.1016/j.peptides.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
The neuropeptidergic system in insects is an excellent target for pest control strategies. One promising biorational approach is the use of peptidomimetics modified from endogenous ligands to enhance biostability and bioavailability. In this study, we functionally characterized five different G protein-coupled receptors in a phylogenetic cluster, containing receptors for PRXamide in the red flour beetle Tribolium castaneum, by evaluating a series of 70 different peptides and peptidomimetics. Three pyrokinin receptors (TcPKr-A, -B, and -C), cardioacceleratory peptide receptor (TcCAPAr) and ecdysis triggering hormone receptor (TcETHr) were included in the study. Strong agonistic or antagonistic peptidomimetics were identified, and included beta-proline (β(3)P) modification of the core amino acid residue proline and also a cyclo-peptide. It is common for a ligand to act on multiple receptors. In a number of cases, a ligand acting as an agonist on one receptor was an efficient antagonist on another receptor, suggesting complex outcomes of a peptidomimetic in a biological system. Interestingly, TcPK-A was highly promiscuous with a high number of agonists, while TcPK-C and TcCAPAr had a lower number of agonists, but a higher number of compounds acting as an antagonist. This observation suggests that a target GPCR with more promiscuity will provide better success for peptidomimetic approaches. This study is the first description of peptidomimetics on a CAPA receptor and resulted in the identification of peptidomimetic analogs that demonstrate antagonism of CAPA ligands. The PRXamide receptor assays with peptidomimetics provide useful insights into the biochemical properties of receptors.
Collapse
Affiliation(s)
- Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Zhaojun Wei
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States; Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
37
|
Yang Y, Nachman RJ, Pietrantonio PV. Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, Rhipicephalus (Boophilus) microplus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:13-23. [PMID: 25747529 DOI: 10.1016/j.ibmb.2015.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
We identified the first pyrokinin receptor (Rhimi-PKR) in Chelicerata and analyzed structure-activity relationships of cognate ligand neuropeptides and their analogs. Based on comparative and phylogenetic analyses, this receptor, which we cloned from larvae of the cattle tick Rhipicephalus microplus (Acari: Ixodidae), is the ortholog of the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN)/diapause hormone (DH) neuropeptide family receptor. Rhimi-PKR functional analyses using calcium bioluminescence were performed with a developed stable recombinant CHO-K1 cell line. Rhimi-PKR was activated by four endogenous PKs from the Lyme disease vector, the tick Ixodes scapularis (EC50s range: 85.4 nM-546 nM), and weakly by another tick PRX-amide peptide, periviscerokinin (PVK) (EC50 = 24.5 μM). PK analogs with substitutions of leucine, isoleucine or valine at the C-terminus for three tick PK peptides, Ixosc-PK1, Ixosc-PK2, and Ixosc-PK3, retained their potency on Rhimi-PKR. Therefore, Rhimi-PKR is less selective and substantially more tolerant than insect PK receptors of C-terminal substitutions of leucine to isoleucine or valine, a key structural feature that serves to distinguish insect PK from PVK/CAP2b receptors. In females, ovary and synganglion had the highest Rhimi-PKR relative transcript abundance followed by the rectal sac, salivary glands, Malpighian tubules, and midgut. This is the first pharmacological analysis of a PK/PBAN/DH-like receptor from the Chelicerata, which will now permit the discovery of the endocrinological roles of this neuropeptide family in vectors of vertebrate pathogens.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX 77845, USA
| | | |
Collapse
|