1
|
Caliseki M, Schaffitzel C, Kabasakal BV. The versatile role of YidC in membrane protein biosynthesis and quality control. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119956. [PMID: 40221051 DOI: 10.1016/j.bbamcr.2025.119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Membrane proteins are essential for bacterial survival, facilitating vital processes such as energy production, nutrient transport, and cell wall synthesis. YidC is a key player in membrane protein biogenesis, acting as both an insertase and a chaperone to ensure proper protein folding and integration into the lipid bilayer. Its conserved structure and adaptability enable it to mediate co-translational and post-translational protein insertion into the membrane through both Sec-dependent and Sec-independent pathways. In addition to facilitating protein insertion, YidC collaborates with FtsH in protein quality control, preventing the accumulation of misfolded proteins that could impair cellular function. This important relationship between YidC and FtsH is poorly understood, and there is a need for further investigation into their collaboration. Understanding how YidC and FtsH coordinate their roles could provide valuable insights into the links between bacterial membrane protein biogenesis and quality control pathways. Moreover, given its central functions, YidC represents a potential target for antimicrobial development. Small molecules disrupting its function in protein folding and insertion, hold promise. However, achieving bacterial specificity without impacting eukaryotic homologs remains a challenge. Here, we review our current understanding of YidC's structure, molecular function in membrane protein biogenesis and quality control, known interactions and its therapeutic potential.
Collapse
Affiliation(s)
- Mehmet Caliseki
- Turkish Accelerator and Radiation Laboratory, Ankara 06830, Türkiye; Department of Molecular Biology, Genetics and Bioengineering, Graduate School of Engineering and Natural Sciences, Sabanci University, Istanbul 34420, Türkiye; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | | | - Burak Veli Kabasakal
- Turkish Accelerator and Radiation Laboratory, Ankara 06830, Türkiye; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Kauffman P, He H, Kuhn A, Dalbey RE. Consecutive Steps of Membrane Insertion of the Two-spanning MscL Protein by Insertase YidC. J Mol Biol 2025; 437:169074. [PMID: 40058572 DOI: 10.1016/j.jmb.2025.169074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/04/2025] [Indexed: 03/23/2025]
Abstract
A fundamental problem in biology is understanding how membrane proteins are inserted and assembled into their three-dimensional structures. The YidC/Oxa1/Alb3 insertases, found in bacteria, mitochondria, and chloroplasts play crucial roles in membrane protein insertion. In this study, we investigated the YidC-mediated insertion of MscL, a 2-spanning membrane protein by analyzing a series of translational arrested intermediates and probing the interactions with YidC using thio-crosslinking. Our findings reveal that the first TM segment and the second TM segment of MscL interact cotranslationally with the YidC membrane-embedded greasy slide, although in a delayed manner. The translocation of the periplasmic loop in between the two TM segments only occurs after TM2 engages with the greasy slide of YidC, showing that full insertion occurs late during synthesis. Remarkably, TM2 does not displace TM1 from the slide, and the contact is maintained even when the full-length protein emerges from the ribosome. These results demonstrate a well-ordered sequence of events during the membrane insertion of multi-spanning membrane proteins, providing new insights into the mechanistic role of YidC in protein assembly.
Collapse
Affiliation(s)
- Philip Kauffman
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Haoze He
- Dept. of Chemistry, The University of Massachusetts, Amherst, MA 01003, USA
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Zhao Z, Yamamoto N, Young JW, Solis N, Fong A, Al-Seragi M, Kim S, Aoki H, Phanse S, Le HT, Overall CM, Nishikawa H, Babu M, Nishiyama KI, Duong van Hoa F. YibN, a bona fide interactor of the bacterial YidC insertase with effects on membrane protein insertion and membrane lipid production. J Biol Chem 2025; 301:108395. [PMID: 40081575 PMCID: PMC11997395 DOI: 10.1016/j.jbc.2025.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
YidC, a prominent member of the Oxa1 superfamily, is essential for the biogenesis of the bacterial inner membrane, significantly influencing its protein composition and lipid organization. It interacts with the Sec translocon, aiding the proper folding of multi-pass membrane proteins. It also functions independently, serving as an insertase and lipid scramblase, augmenting the insertion of smaller membrane proteins while contributing to the organization of the bilayer. Despite the wealth of structural and biochemical data available, how YidC operates remains unclear. To investigate this, we employed proximity-dependent biotin labeling (BioID) in Escherichia coli, leading to the identification of YibN as a crucial component within the YidC protein environment. We then demonstrated the association between YidC and YibN by affinity purification-mass spectrometry assays conducted on native membranes, with further confirmation using on-gel binding assays with purified proteins. Co-expression studies and in vitro assays indicated that YibN enhances the production and membrane insertion of YidC substrates, such as M13 and Pf3 phage coat proteins, ATP synthase subunit c, and various small membrane proteins like SecG. Additionally, the overproduction of YibN was found to stimulate membrane lipid production and promote inner membrane proliferation, perhaps by interfering with YidC lipid scramblase activity. Consequently, YibN emerges as a significant physical and functional interactor of YidC, influencing membrane protein insertion and lipid organization.
Collapse
Affiliation(s)
- Zhiyu Zhao
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nachi Yamamoto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - John W Young
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nestor Solis
- Department of Oral Biological and Medical Sciences, Centre of Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amos Fong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sungyoung Kim
- Department of Biochemistry, Faculty of Science, University of Regina, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Faculty of Science, University of Regina, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Faculty of Science, University of Regina, Canada
| | - Hai-Tuong Le
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Centre of Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
| | - Hanako Nishikawa
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Mohan Babu
- Department of Biochemistry, Faculty of Science, University of Regina, Canada
| | - Ken-Ichi Nishiyama
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Zhou Y, Li J, Pei Y, Xu R, Zi J, Harshaw K, Chang X. Cadmium spurred Microcystis aeruginosa to unleash more toxic metabolites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117915. [PMID: 39986053 DOI: 10.1016/j.ecoenv.2025.117915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Cyanobacterial harmful algal blooms (cHABs), normally dominated by Microcystis aeruginosa, pose a threat to aquatic ecosystems due to the release of various harmful metabolites. Cadmium (Cd), a heavy metal commonly found in surface water and sediments, often coincides with cHABs in eutrophic lakes. However, the ecotoxicological effects of Cd on M. aeruginosa and the potential for combined toxicity are not yet fully understood. In this study, we determined the effective concentrations of cadmium from 10 % (EC10) to 50 % (EC50) for M. aeruginosa based on cell density inhibition. We then conducted a combined analysis focusing on the impact of a low dose Cd (EC10, 139 μg/L) on the physiological factors, transcriptome and both intracellular and extracellular metabolites of M. aeruginosa. We found that Cd treatment decreased M. aeruginosa chlorophyll a content by 24.5 %, which coincided with the suppression of genes linked to ribosomal and photosynthesis pathways. However, Cd exposure stimulated the synthesis and extracellular release of cellular compounds by enhancing amino acid and carbohydrate metabolism. This led to elevated extracellular levels of amino acids, organic acids, and secondary metabolites - including peptides, lipids, benzenoids, terpenes, sterols, and glycosides - which could serve as potential toxic metabolites of cyanobacteria. These changes were driven by the activation of osmoregulatory mechanisms, antioxidant-related amino acids, and ATP-binding cassette transport and secretion systems. Our research indicated that low Cd concentrations could stimulate the synthesis and release of toxic metabolites and exacerbate cHAB threats in eutrophic lakes, underscoring the importance of addressing multiple stressors in freshwater environments.
Collapse
Affiliation(s)
- Yuan Zhou
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Ying Pei
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinmei Zi
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Keira Harshaw
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada.
| |
Collapse
|
5
|
Chen J, Zhou X, Yang Y, Li L. Protein translocation through α-helical channels and insertases. Structure 2025; 33:15-28. [PMID: 39591975 DOI: 10.1016/j.str.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Protein translocation systems are essential for distributing proteins across various lipid membranes in cells. Cellular membranes, such as the endoplasmic reticulum (ER) membrane and mitochondrial inner membrane, require highly regulated protein translocation machineries that specifically allow the passage of protein polypeptides while blocking smaller molecules like ions and water. Key translocation systems include the Sec translocation channel, the protein insertases of the Oxa1 superfamily, and the translocases of the mitochondrial inner membrane (TIM). These machineries utilize different mechanisms to create pathways for proteins to move across membranes while preventing ion leakage during the dynamic translocation processes. In this review, we highlight recent advances in our understanding of these α-helical translocation machineries and examine their structures, mechanisms, and regulation. We also discuss the therapeutic potential of these translocation pathways and summarize the progress in drug development targeting these systems for treating diseases.
Collapse
Affiliation(s)
- Jingxia Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xueyin Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yuqi Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Long Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Disela R, Neijenhuis T, Le Bussy O, Geldhof G, Klijn M, Pabst M, Ottens M. Experimental characterization and prediction of Escherichia coli host cell proteome retention during preparative chromatography. Biotechnol Bioeng 2024; 121:3848-3859. [PMID: 39267334 DOI: 10.1002/bit.28840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure-property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated R2 of 0.55 was constructed, that could be improved to a R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.
Collapse
Affiliation(s)
- Roxana Disela
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tim Neijenhuis
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | - Marieke Klijn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Kalinin IA, Peled-Zehavi H, Barshap ABD, Tamari SA, Weiss Y, Nevo R, Fluman N. Features of membrane protein sequence direct post-translational insertion. Nat Commun 2024; 15:10198. [PMID: 39587101 PMCID: PMC11589881 DOI: 10.1038/s41467-024-54575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy. We demonstrate that evolution has refined the hydrophilicity and length of the C-terminal tails of these proteins to optimize cTM insertion. Alterations in the C-tail sequence disrupt cTM insertion in both E. coli and human, leading to protein defects, loss of function, and genetic diseases. In E. coli, we identify YidC, a member of the widespread Oxa1 family, as the insertase facilitating cTMs insertion, with C-tail mutations disrupting the productive interaction of cTMs with YidC. Thus, MP sequences are fine-tuned for effective collaboration with the cellular biogenesis machinery, ensuring proper membrane protein folding.
Collapse
Affiliation(s)
- Ilya A Kalinin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Peled-Zehavi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon B D Barshap
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai A Tamari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Weiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Fluman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Ma T, Li X, Montalbán-López M, Wu X, Zheng Z, Mu D. Effect of the Membrane Insertase YidC on the Capacity of Lactococcus lactis to Secret Recombinant Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23320-23332. [PMID: 39382634 DOI: 10.1021/acs.jafc.4c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lactococcus lactis is a crucial food-grade cell factory for secreting valuable peptides and proteins primarily via the Sec-dependent pathway. YidC, a membrane insertase, facilitates protein insertion into the lipid membrane for the translocation. However, the mechanistic details of how YidC affects protein secretion in L. lactis remain elusive. This study investigates the effects of deleting yidC1/yidC2 on L. lactis phenotypes and protein secretion. Compared to the original strain, deleting yidC2 significantly decreased the relative biomass, electroporation efficiency, and F-ATP activity by 25%, 47%, and 33%, respectively, and weakened growth and stress resistance, whereas deleting yidC1 had a minimal impact. The absence of either yidC1 or yidC2 reduced target proteins secretion. Meanwhile, there is a considerable alteration in the transcription levels of genes involved in the secretion pathway, with secY transcription increasing over 135-fold. Our results provide a theoretical foundation for further improving target protein secretion and investigating the YidC function.
Collapse
Affiliation(s)
- Tiange Ma
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Xingjiang Li
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Xuefeng Wu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Dongdong Mu
- School of Food and Biological Engineering, Anhui Fermented Food Engineering Research Center, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
- Gongda Biotech (Huangshan) Limited Company, Huangshan 245400, China
| |
Collapse
|
9
|
Polasa A, Badiee SA, Moradi M. Deciphering the Interdomain Coupling in a Gram-Negative Bacterial Membrane Insertase. J Phys Chem B 2024; 128:9734-9744. [PMID: 39329451 PMCID: PMC11472308 DOI: 10.1021/acs.jpcb.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
YidC is a membrane protein that plays an important role in inserting newly generated proteins into lipid membranes. The Sec-dependent complex is responsible for inserting proteins into the lipid bilayer in bacteria. YidC facilitates the insertion and folding of membrane proteins, both in conjunction with the Sec complex and independently. Additionally, YidC acts as a chaperone during the folding of proteins. Multiple investigations have conclusively shown that Gram-positive bacterial YidC has Sec-independent insertion mechanisms. Through the use of microsecond-level all-atom molecular dynamics (MD) simulations, we have carried out an in-depth investigation of the YidC protein originating from Gram-negative bacteria. This research sheds light on the significance of multiple domains of the YidC structure at a detailed molecular level by utilizing equilibrium MD simulations. Specifically, multiple models of YidC embedded in the lipid bilayer were constructed to characterize the critical role of the C2 loop and the periplasmic domain (PD) present in Gram-negative YidC, which is absent in its Gram-positive counterpart. Based on our results, the C2 loop plays a role in the overall stabilization of the protein, most notably in the transmembrane (TM) region, and it also has an allosteric influence on the PD region. We have found critical inter- and intradomain interactions that contribute to the stability of the protein and its function. Finally, our study provides a hypothetical Sec-independent insertion mechanism for Gram-negative bacterial YidC.
Collapse
Affiliation(s)
- Adithya Polasa
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Shadi A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
10
|
Yi X, Xu X, Xu G, Zhang Y, Chen Y, Zhu Z, Guo M. The Sec pathway gene yidC regulates the virulence of mesophilic Aeromonassalmonicida. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109863. [PMID: 39209005 DOI: 10.1016/j.fsi.2024.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aeromonas salmonicida is a common pathogenic bacterial species found in both freshwater and marine fish, leading to significant economic losses in the aquaculture industry. YidC is an accessory to SecYEG and is essential for the SecYEG transporter to insert into the bacterial membrane. However, the roles of the yidC gene on the host immune response remain unclear. Here, we compared the pathogenicity of yidC gene-deleted (ΔyidC) strain and wild-type (SRW-OG1) strain of mesophilic A. salmonicida to Orange-spotted grouper (Epinephelus coioides), and explored the impacts of yidC gene on the immune response of E. coioides to mesophilic A. salmonicida infection by using Red/ET recombineering. In this study, the E. coioides in the Secondary infected group had a 53.9 % higher survival rate than those in the Primary infected group. In addition, the adhesion ability of ΔyidC strain decreased by about 83.36 % compared with that of the wild-type (SRW-OG1) strain. Further comparison of the biological phenotype of SRW-OG1 and ΔyidC revealed that this yidC gene could regulate the expression of genes related to iron metabolism and have no effect on bacterial growth under the limited iron concentration. In the low concentration of Fe3+ and Fe2+ environment, SRW-OG1 can obtain iron ions by regulating yidC. Based on the above results, yidC gene contributed to the pathogenicity of mesophilic A. salmonicida to E. coioides, deletion of yidC gene promoted the inflammation and immune response of E. coioides to mesophilic A. salmonicida infection.
Collapse
Affiliation(s)
- Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry.
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, China.
| | - YuNong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - ZhiQin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian, 361021, China, Engineering Research Center of the Modern Technology for Eel Industry
| | - Minglan Guo
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
11
|
Halder UC. In Silico Drug Repurposing Endorse Amprenavir, Darunavir and Saquinavir to Target Enzymes of Multidrug Resistant Uropathogenic E. Coli. Indian J Microbiol 2024; 64:1153-1214. [PMID: 39282172 PMCID: PMC11399541 DOI: 10.1007/s12088-024-01282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/05/2024] [Indexed: 09/18/2024] Open
Abstract
Multidrug resistance is a paramount impediment to successful treatment of most hospital acquired bacterial infections. A plethora of bacterial genera exhibit differential levels of resistance to the existing antibiotics. Prevalent Uropathogenic Escherichia coli or UPEC conduce high mortality among them. Multi-Drug Resistant bacterial strains utilize precise mechanisms to bypass effects of antibiotics. This is probably due to their familiar genomic origin. In this article drug repositioning method have been utilised to target 23 enzymes of UPEC strains viz. CFT073, 536 and UTI89. 3-D drug binding motifs have been predicted using SPRITE and ASSAM servers that compare amino acid side chain similarities. From the hit results anti-viral drugs have been considered for their uniqueness and specificity. Out of 14 anti-viral drugs 3 anti-HIV drugs viz. Amprenavir, Darunavir and Saquinavir have selected for maximum binding score or drug targetability. Finally, active sites of the enzymes were analyzed using GASS-WEB for eloquent drug interference. Further analyses with the active sites of all the enzymes showed that the three selected anti-HIV drugs were very much potent to inhibit their active sites. Combination or sole application of Amprenavir, Darunavir and Saquinavir to MDR-UPEC infections may leads to cure and inhibition of mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01282-x.
Collapse
Affiliation(s)
- Umesh C Halder
- Department of Zoology, Raniganj Girls' College, Searsole -Rajbari, Raniganj, Paschim Bardhaman, West Bengal 713358 India
| |
Collapse
|
12
|
Shimamoto K, Fujikawa K, Osawa T, Mori S, Nomura K, Nishiyama KI. Key contributions of a glycolipid to membrane protein integration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:387-413. [PMID: 39085064 DOI: 10.2183/pjab.100.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Regulation of membrane protein integration involves molecular devices such as Sec-translocons or the insertase YidC. We have identified an integration-promoting factor in the inner membrane of Escherichia coli called membrane protein integrase (MPIase). Structural analysis revealed that, despite its enzyme-like name, MPIase is a glycolipid with a long glycan comprising N-acetyl amino sugars, a pyrophosphate linker, and a diacylglycerol (DAG) anchor. Additionally, we found that DAG, a minor membrane component, blocks spontaneous integration. In this review, we demonstrate how they contribute to Sec-independent membrane protein integration in bacteria using a comprehensive approach including synthetic chemistry and biophysical analyses. DAG blocks unfavorable spontaneous integrations by suppressing mobility in the membrane core, whereas MPIase compensates for this. Moreover, MPIase plays critical roles in capturing a substrate protein to prevent its aggregation, attracting it to the membrane surface, facilitating its insertion into the membrane, and delivering it to other factors. The combination of DAG and MPIase efficiently regulates the integration of membrane proteins.
Collapse
Affiliation(s)
- Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
13
|
Knyazev DG, Winter L, Vogt A, Posch S, Öztürk Y, Siligan C, Goessweiner-Mohr N, Hagleitner-Ertugrul N, Koch HG, Pohl P. YidC from Escherichia coli Forms an Ion-Conducting Pore upon Activation by Ribosomes. Biomolecules 2023; 13:1774. [PMID: 38136645 PMCID: PMC10741985 DOI: 10.3390/biom13121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The universally conserved protein YidC aids in the insertion and folding of transmembrane polypeptides. Supposedly, a charged arginine faces its hydrophobic lipid core, facilitating polypeptide sliding along YidC's surface. How the membrane barrier to other molecules may be maintained is unclear. Here, we show that the purified and reconstituted E. coli YidC forms an ion-conducting transmembrane pore upon ribosome or ribosome-nascent chain complex (RNC) binding. In contrast to monomeric YidC structures, an AlphaFold parallel YidC dimer model harbors a pore. Experimental evidence for a dimeric assembly comes from our BN-PAGE analysis of native vesicles, fluorescence correlation spectroscopy studies, single-molecule fluorescence photobleaching observations, and crosslinking experiments. In the dimeric model, the conserved arginine and other residues interacting with nascent chains point into the putative pore. This result suggests the possibility of a YidC-assisted insertion mode alternative to the insertase mechanism.
Collapse
Affiliation(s)
- Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Lukas Winter
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Sandra Posch
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Yavuz Öztürk
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
| | - Christine Siligan
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nikolaus Goessweiner-Mohr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Nora Hagleitner-Ertugrul
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert Ludwig University of Freiburg, 79104 Freiburg, Germany (Y.Ö.); (H.-G.K.)
- Spemann-Graduate School of Biology and Medicine (SGBM), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, A-4020 Linz, Austria; (D.G.K.); (L.W.); (S.P.); (C.S.); (N.G.-M.); (N.H.-E.)
| |
Collapse
|
14
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
15
|
Mishra S, van Aalst EJ, Wylie BJ, Brady LJ. Cardiolipin occupancy profiles of YidC paralogs reveal the significance of respective TM2 helix residues in determining paralog-specific phenotypes. Front Mol Biosci 2023; 10:1264454. [PMID: 37867558 PMCID: PMC10588454 DOI: 10.3389/fmolb.2023.1264454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
YidC belongs to an evolutionarily conserved family of insertases, YidC/Oxa1/Alb3, in bacteria, mitochondria, and chloroplasts, respectively. Unlike Gram-negative bacteria, Gram-positives including Streptococcus mutans harbor two paralogs of YidC. The mechanism for paralog-specific phenotypes of bacterial YidC1 versus YidC2 has been partially attributed to the differences in their cytoplasmic domains. However, we previously identified a W138R gain-of-function mutation in the YidC1 transmembrane helix 2. YidC1W138R mostly phenocopied YidC2, yet the mechanism remained unknown. Primary sequence comparison of streptococcal YidCs led us to identify and mutate the YidC1W138 analog, YidC2S152 to W/A, which resulted in a loss of YidC2- and acquisition of YidC1-like phenotype. The predicted lipid-facing side chains of YidC1W138/YidC2S152 led us to propose a role for membrane phospholipids in specific-residue dependent phenotypes of S. mutans YidC paralogs. Cardiolipin (CL), a prevalent phospholipid in the S. mutans cytoplasmic membrane during acid stress, is encoded by a single gene, cls. We show a concerted mechanism for cardiolipin and YidC2 under acid stress based on similarly increased promoter activities and similar elimination phenotypes. Using coarse grain molecular dynamics simulations with the Martini2.2 Forcefield, YidC1 and YidC2 wild-type and mutant interactions with CL were assessed in silico. We observed substantially increased CL interaction in dimeric versus monomeric proteins, and variable CL occupancy in YidC1 and YidC2 mutant constructs that mimicked characteristics of the other wild-type paralog. Hence, paralog-specific amino acid- CL interactions contribute to YidC1 and YidC2-associated phenotypes that can be exchanged by point mutation at positions 138 or 152, respectively.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| | - Evan J. van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Homberg B, Rehling P, Cruz-Zaragoza LD. The multifaceted mitochondrial OXA insertase. Trends Cell Biol 2023; 33:765-772. [PMID: 36863885 DOI: 10.1016/j.tcb.2023.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
Most mitochondrial proteins are synthesized in the cytosol and transported into mitochondria by protein translocases. Yet, mitochondria contain their own genome and gene expression system, which generates proteins that are inserted in the inner membrane by the oxidase assembly (OXA) insertase. OXA contributes to targeting proteins from both genetic origins. Recent data provides insights into how OXA cooperates with the mitochondrial ribosome during synthesis of mitochondrial-encoded proteins. A picture of OXA emerges in which it coordinates insertion of OXPHOS core subunits and their assembly into protein complexes but also participates in the biogenesis of select imported proteins. These functions position the OXA as a multifunctional protein insertase that facilitates protein transport, assembly, and stability at the inner membrane.
Collapse
Affiliation(s)
- Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), 37073 University of Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Science, 37077 Göttingen, Germany.
| | | |
Collapse
|
17
|
Shiota N, Shimokawa-Chiba N, Fujiwara K, Chiba S. Identification of Bacillus subtilis YidC substrates using a MifM-instructed translation arrest-based reporter. J Mol Biol 2023:168172. [PMID: 37290739 DOI: 10.1016/j.jmb.2023.168172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
YidC is a member of the YidC/Oxa1/Alb3 protein family that is crucial for membrane protein biogenesis in the bacterial plasma membrane. While YidC facilitates the folding and complex assembly of membrane proteins along with the Sec translocon, it also functions as a Sec-independent membrane protein insertase in the YidC-only pathway. However, little is known about how membrane proteins are recognized and sorted by these pathways, especially in Gram-positive bacteria, for which only a small number of YidC substrates have been identified to date. In this study, we aimed to identify Bacillus subtilis membrane proteins whose membrane insertion depends on SpoIIIJ, the primary YidC homolog in B. subtilis. We took advantage of the translation arrest sequence of MifM, which can monitor YidC-dependent membrane insertion. Our systematic screening identified eight membrane proteins as candidate SpoIIIJ substrates. Results of our genetic study also suggest that the conserved arginine in the hydrophilic groove of SpoIIIJ is crucial for the membrane insertion of the substrates identified here. However, in contrast to MifM, a previously identified YidC substrate, the importance of the negatively charged residue on the substrates for membrane insertion varied depending on the substrate. These results suggest that B. subtilis YidC uses substrate-specific interactions to facilitate membrane insertion.
Collapse
Affiliation(s)
- Narumi Shiota
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Keigo Fujiwara
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; Institute for Protein Dynamics, Kyoto Sangyo University, Japan.
| |
Collapse
|
18
|
Bai L, Li H. Structural insights into the membrane chaperones for multi-pass membrane protein biogenesis. Curr Opin Struct Biol 2023; 79:102563. [PMID: 36863267 DOI: 10.1016/j.sbi.2023.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 03/04/2023]
Abstract
Certain transmembrane α-helices of multi-pass membrane proteins line substrate transport paths or catalytic pockets and, therefore, are partially hydrophilic. Sec61 alone is insufficient to insert these less hydrophobic segments into the membrane and needs to work with dedicated membrane chaperones. Three such membrane chaperones have been described in the literature-the endoplasmic reticulum membrane protein complex (EMC), the TMCO1 complex, and the PAT complex. Recent structural studies on these membrane chaperones have revealed their overall architecture, multi-subunit assembly, putative substrate transmembrane helix-binding pockets, and cooperative mechanisms with the ribosome and Sec61 translocon. These structures are providing initial insights into the poorly understood processes of multi-pass membrane protein biogenesis.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, 49503, United States.
| |
Collapse
|
19
|
Troman L, Alvira S, Daum B, Gold VAM, Collinson I. Interaction of the periplasmic chaperone SurA with the inner membrane protein secretion (SEC) machinery. Biochem J 2023; 480:283-296. [PMID: 36701201 PMCID: PMC9987972 DOI: 10.1042/bcj20220480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Gram-negative bacteria are surrounded by two protein-rich membranes with a peptidoglycan layer sandwiched between them. Together they form the envelope (or cell wall), crucial for energy production, lipid biosynthesis, structural integrity, and for protection against physical and chemical environmental challenges. To achieve envelope biogenesis, periplasmic and outer-membrane proteins (OMPs) must be transported from the cytosol and through the inner-membrane, via the ubiquitous SecYEG protein-channel. Emergent proteins either fold in the periplasm or cross the peptidoglycan (PG) layer towards the outer-membrane for insertion through the β-barrel assembly machinery (BAM). Trafficking of hydrophobic proteins through the periplasm is particularly treacherous given the high protein density and the absence of energy (ATP or chemiosmotic potential). Numerous molecular chaperones assist in the prevention and recovery from aggregation, and of these SurA is known to interact with BAM, facilitating delivery to the outer-membrane. However, it is unclear how proteins emerging from the Sec-machinery are received and protected from aggregation and proteolysis prior to an interaction with SurA. Through biochemical analysis and electron microscopy we demonstrate the binding capabilities of the unoccupied and substrate-engaged SurA to the inner-membrane translocation machinery complex of SecYEG-SecDF-YidC - aka the holo-translocon (HTL). Supported by AlphaFold predictions, we suggest a role for periplasmic domains of SecDF in chaperone recruitment to the protein translocation exit site in SecYEG. We propose that this immediate interaction with the enlisted chaperone helps to prevent aggregation and degradation of nascent envelope proteins, facilitating their safe passage to the periplasm and outer-membrane.
Collapse
Affiliation(s)
- Lucy Troman
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| | - Sara Alvira
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, U.K
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, U.K
| | - Vicki A. M. Gold
- Living Systems Institute, University of Exeter, Exeter, U.K
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, U.K
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| |
Collapse
|
20
|
Dalbey RE, Kaushik S, Kuhn A. YidC as a potential antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119403. [PMID: 36427551 DOI: 10.1016/j.bbamcr.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The membrane insertase YidC, is an essential bacterial component and functions in the folding and insertion of many membrane proteins during their biogenesis. It is a multispanning protein in the inner (cytoplasmic) membrane of Escherichia coli that binds its substrates in the "greasy slide" through hydrophobic interaction. The hydrophilic part of the substrate transiently localizes in the groove of YidC before it is translocated into the periplasm. The groove, which is flanked by the greasy slide, is within the center of the membrane, and provides a promising target for inhibitors that would block the insertase function of YidC. In addition, since the greasy slide is available for the binding of various substrates, it could also provide a binding site for inhibitory molecules. In this review we discuss in detail the structure and the mechanism of how YidC interacts not only with its substrates, but also with its partner proteins, the SecYEG translocase and the SRP signal recognition particle. Insight into the substrate binding to the YidC catalytic groove is presented. We wind up the review with the idea that the hydrophilic groove would be a potential site for drug binding and the feasibility of YidC-targeted drug development.
Collapse
Affiliation(s)
- Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Sharbani Kaushik
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany.
| |
Collapse
|
21
|
Miyazaki R, Ai M, Tanaka N, Suzuki T, Dhomae N, Tsukazaki T, Akiyama Y, Mori H. Inner membrane YfgM–PpiD heterodimer acts as a functional unit that associates with the SecY/E/G translocon and promotes protein translocation. J Biol Chem 2022; 298:102572. [PMID: 36209828 PMCID: PMC9643414 DOI: 10.1016/j.jbc.2022.102572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
PpiD and YfgM are inner membrane proteins that are both composed of an N-terminal transmembrane segment and a C-terminal periplasmic domain. Escherichia coli YfgM and PpiD form a stable complex that interacts with the SecY/E/G (Sec) translocon, a channel that allows protein translocation across the cytoplasmic membrane. Although PpiD is known to function in protein translocation, the functional significance of PpiD–YfgM complex formation as well as the molecular mechanisms of PpiD–YfgM and PpiD/YfgM–Sec translocon interactions remain unclear. Here, we conducted genetic and biochemical studies using yfgM and ppiD mutants and demonstrated that a lack of YfgM caused partial PpiD degradation at its C-terminal region and hindered the membrane translocation of Vibrio protein export monitoring polypeptide (VemP), a Vibrio secretory protein, in both E. coli and Vibrio alginolyticus. While ppiD disruption also impaired VemP translocation, we found that the yfgM and ppiD double deletion exhibited no additive or synergistic effects. Together, these results strongly suggest that both PpiD and YfgM are required for efficient VemP translocation. Furthermore, our site-directed in vivo photocrosslinking analysis revealed that the tetratricopeptide repeat domain of YfgM and a conserved structural domain (NC domain) in PpiD interact with each other and that YfgM, like PpiD, directly interacts with the SecG translocon subunit. Crosslinking analysis also suggested that PpiD–YfgM complex formation is required for these proteins to interact with SecG. In summary, we propose that PpiD and YfgM form a functional unit that stimulates protein translocation by facilitating their proper interactions with the Sec translocon.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Mengting Ai
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Natsuko Tanaka
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Naoshi Dhomae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Tomoya Tsukazaki
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Mori
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Nishikawa H, Sawasato K, Mori S, Fujikawa K, Nomura K, Shimamoto K, Nishiyama KI. Interaction between glycolipid MPIase and proteinaceous factors during protein integration into the cytoplasmic membrane of E. coli. Front Mol Biosci 2022; 9:986602. [PMID: 36060260 PMCID: PMC9437254 DOI: 10.3389/fmolb.2022.986602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Protein integration into biomembranes is an essential biological phenomenon common to all organisms. While various factors involved in protein integration, such as SRP, SecYEG and YidC, are proteinaceous, we identified a glycolipid named MPIase (Membrane Protein Integrase), which is present in the cytoplasmic membrane of E. coli. In vitro experiments using inverted membrane vesicles prepared from MPIase-depleted strains, and liposomes containing MPIase showed that MPIase is required for insertion of a subset of membrane proteins, which has been thought to be SecYEG-independent and YidC-dependent. Also, SecYEG-dependent substrate membrane proteins require MPIase in addition. Furthermore, MPIase is also essential for insertion of proteins with multiple negative charges, which requires both YidC and the proton motive force (PMF). MPIase directly interacts with SecYEG and YidC on the membrane. MPIase not only cooperates with these factors but also has a molecular chaperone-like function specific to the substrate membrane proteins through direct interaction with the glycan chain. Thus, MPIase catalyzes membrane insertion by accepting nascent membrane proteins on the membrane through its chaperone-like function, i.e., direct interaction with the substrate proteins, and then MPIase functionally interacts with SecYEG and YidC for substrate delivery, and acts with PMF to facilitate and complete membrane insertion when necessary. In this review, we will outline the mechanisms underlying membrane insertion catalyzed by MPIase, which cooperates with proteinaceous factors and PMF.
Collapse
Affiliation(s)
- Hanako Nishikawa
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsuhiro Sawasato
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
- *Correspondence: Ken-Ichi Nishiyama,
| |
Collapse
|
23
|
Polasa A, Hettige J, Immadisetty K, Moradi M. An investigation of the YidC-mediated membrane insertion of Pf3 coat protein using molecular dynamics simulations. Front Mol Biosci 2022; 9:954262. [PMID: 36046607 PMCID: PMC9421054 DOI: 10.3389/fmolb.2022.954262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
YidC is a membrane protein that facilitates the insertion of newly synthesized proteins into lipid membranes. Through YidC, proteins are inserted into the lipid bilayer via the SecYEG-dependent complex. Additionally, YidC functions as a chaperone in protein folding processes. Several studies have provided evidence of its independent insertion mechanism. However, the mechanistic details of the YidC SecY-independent protein insertion mechanism remain elusive at the molecular level. This study elucidates the insertion mechanism of YidC at an atomic level through a combination of equilibrium and non-equilibrium molecular dynamics (MD) simulations. Different docking models of YidC-Pf3 in the lipid bilayer were built in this study to better understand the insertion mechanism. To conduct a complete investigation of the conformational difference between the two docking models developed, we used classical molecular dynamics simulations supplemented with a non-equilibrium technique. Our findings indicate that the YidC transmembrane (TM) groove is essential for this high-affinity interaction and that the hydrophilic nature of the YidC groove plays an important role in protein transport across the cytoplasmic membrane bilayer to the periplasmic side. At different stages of the insertion process, conformational changes in YidC's TM domain and membrane core have a mechanistic effect on the Pf3 coat protein. Furthermore, during the insertion phase, the hydration and dehydration of the YidC's hydrophilic groove are critical. These results demonstrate that Pf3 coat protein interactions with the membrane and YidC vary in different conformational states during the insertion process. Finally, this extensive study directly confirms that YidC functions as an independent insertase.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
24
|
Kaushik S, He H, Dalbey RE. Bacterial Signal Peptides- Navigating the Journey of Proteins. Front Physiol 2022; 13:933153. [PMID: 35957980 PMCID: PMC9360617 DOI: 10.3389/fphys.2022.933153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain. This review summarizes the central role that the signal peptides play as address codes for proteins, their decisive role as targeting factors for delivery to the membrane and their function to activate the translocation machinery for export and membrane protein insertion. After shedding light on the navigation of proteins, the importance of removal of signal peptide and their degradation are addressed. Furthermore, the emerging work on signal peptidases as novel targets for antibiotic development is described.
Collapse
|
25
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
26
|
Nass KJ, Ilie IM, Saller MJ, Driessen AJM, Caflisch A, Kammerer RA, Li X. The role of the N-terminal amphipathic helix in bacterial YidC: Insights from functional studies, the crystal structure and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183825. [PMID: 34871574 DOI: 10.1016/j.bbamem.2021.183825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022]
Abstract
The evolutionary conserved YidC is a unique dual-function membrane protein that adopts insertase and chaperone conformations. The N-terminal helix of Escherichia coli YidC functions as an uncleaved signal sequence and is important for membrane insertion and interaction with the Sec translocon. Here, we report the first crystal structure of Thermotoga maritima YidC (TmYidC) including the N-terminal amphipathic helix (N-AH) (PDB ID: 6Y86). Molecular dynamics simulations show that N-AH lies on the periplasmic side of the membrane bilayer forming an angle of about 15° with the membrane surface. Our functional studies suggest a role of N-AH for the species-specific interaction with the Sec translocon. The reconstitution data and the superimposition of TmYidC with known YidC structures suggest an active insertase conformation for YidC. Molecular dynamics (MD) simulations of TmYidC provide evidence that N-AH acts as a membrane recognition helix for the YidC insertase and highlight the flexibility of the C1 region underlining its ability to switch between insertase and chaperone conformations. A structure-based model is proposed to rationalize how YidC performs the insertase and chaperone functions by re-positioning of N-AH and the other structural elements.
Collapse
Affiliation(s)
- Karol J Nass
- Photon Science Division, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Ioana M Ilie
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Manfred J Saller
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9727 AG Groningen, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9727 AG Groningen, The Netherlands
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
27
|
Chen Y, Sotomayor M, Capponi S, Hariharan B, Sahu ID, Haase M, Lorigan GA, Kuhn A, White SH, Dalbey RE. A hydrophilic microenvironment in the substrate-translocating groove of the YidC membrane insertase is essential for enzyme function. J Biol Chem 2022; 298:101690. [PMID: 35148995 PMCID: PMC8920935 DOI: 10.1016/j.jbc.2022.101690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022] Open
Abstract
The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sara Capponi
- Department of Industrial and Applied Genomics, IBM AI and Cognitive Software Organization, IBM Almaden Research Center, San Jose, California, USA; NSF Center for Cellular Construction, University of California in San Francisco, San Francisco, California, USA
| | | | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA; Natural Science Division, Campbellsville University, Campbellsville, Kentucky, USA
| | - Maximilian Haase
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
28
|
Güngör B, Flohr T, Garg SG, Herrmann JM. The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria. PLoS Biol 2022; 20:e3001380. [PMID: 35231030 PMCID: PMC8887752 DOI: 10.1371/journal.pbio.3001380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2-Get1 and Emc6-Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6-Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6-Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.
Collapse
Affiliation(s)
- Büsra Güngör
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sriram G. Garg
- Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
29
|
Vermaas JV, Mayne CG, Shinn E, Tajkhorshid E. Assembly and Analysis of Cell-Scale Membrane Envelopes. J Chem Inf Model 2022; 62:602-617. [PMID: 34910495 PMCID: PMC8903035 DOI: 10.1021/acs.jcim.1c01050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The march toward exascale computing will enable routine molecular simulation of larger and more complex systems, for example, simulation of entire viral particles, on the scale of approximately billions of atoms─a simulation size commensurate with a small bacterial cell. Anticipating the future hardware capabilities that will enable this type of research and paralleling advances in experimental structural biology, efforts are currently underway to develop software tools, procedures, and workflows for constructing cell-scale structures. Herein, we describe our efforts in developing and implementing an efficient and robust workflow for construction of cell-scale membrane envelopes and embedding membrane proteins into them. A new approach for construction of massive membrane structures that are stable during the simulations is built on implementing a subtractive assembly technique coupled with the development of a structure concatenation tool (fastmerge), which eliminates overlapping elements based on volumetric criteria rather than adding successive molecules to the simulation system. Using this approach, we have constructed two "protocells" consisting of MARTINI coarse-grained beads to represent cellular membranes, one the size of a cellular organelle and another the size of a small bacterial cell. The membrane envelopes constructed here remain whole during the molecular dynamics simulations performed and exhibit water flux only through specific proteins, demonstrating the success of our methodology in creating tight cell-like membrane compartments. Extended simulations of these cell-scale structures highlight the propensity for nonspecific interactions between adjacent membrane proteins leading to the formation of protein microclusters on the cell surface, an insight uniquely enabled by the scale of the simulations. We anticipate that the experiences and best practices presented here will form the basis for the next generation of cell-scale models, which will begin to address the addition of soluble proteins, nucleic acids, and small molecules essential to the function of a cell.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401
| | - Christopher G. Mayne
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Eric Shinn
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
30
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Niu Q, Liu S, Yin M, Lei S, Rezzonico F, Zhang L. Phytobacter diazotrophicus from Intestine of Caenorhabditis elegans Confers Colonization-Resistance against Bacillus nematocida Using Flagellin (FliC) as an Inhibition Factor. Pathogens 2022; 11:pathogens11010082. [PMID: 35056030 PMCID: PMC8778419 DOI: 10.3390/pathogens11010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/04/2022] Open
Abstract
Symbiotic microorganisms in the intestinal tract can influence the general fitness of their hosts and contribute to protecting them against invading pathogens. In this study, we obtained isolate Phytobacter diazotrophicus SCO41 from the gut of free-living nematode Caenorhabditis elegans that displayed strong colonization-resistance against invading biocontrol bacterium Bacillus nematocida B16. The colonization-resistance phenotype was found to be mediated by a 37-kDa extracellular protein that was identified as flagellin (FliC). With the help of genome information, the fliC gene was cloned and heterologously expressed in E. coli. It could be shown that the B. nematocida B16 grows in chains rather than in planktonic form in the presence of FliC. Scanning Electronic Microscopy results showed that protein FliC-treated B16 bacterial cells are thinner and longer than normal cells. Localization experiments confirmed that the protein FliC is localized in both the cytoplasm and the cell membrane of B16 strain, in the latter especially at the position of cell division. ZDOCK analysis showed that FliC could bind with serine/threonine protein kinase, membrane protein insertase YidC and redox membrane protein CydB. It was inferred that FliC interferes with cell division of B. nematocidal B16, therefore inhibiting its colonization of C. elegans intestines in vivo. The isolation of P. diazotrophicus as part of the gut microbiome of C. elegans not only provides interesting insights about the lifestyle of this nitrogen-fixing bacterium, but also reveals how the composition of the natural gut microbiota of nematodes can affect biological control efforts by protecting the host from its natural enemies.
Collapse
Affiliation(s)
- Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Suyao Liu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Mingshen Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| | - Fabio Rezzonico
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland
| | - Lin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang 473061, China
| |
Collapse
|
32
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
33
|
Bai L, Li H. Cryo-EM structures of the endoplasmic reticulum membrane complex. FEBS J 2022; 289:102-112. [PMID: 33629497 PMCID: PMC8382784 DOI: 10.1111/febs.15786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
The transmembrane α-helices of membrane proteins are in general highly hydrophobic, and they enter the lipid bilayer through a lateral gate in the Sec61 translocon. However, some transmembrane α-helices are less hydrophobic and form membrane channels or substrate-binding pockets. Insertion of these amphipathic transmembrane α-helices into the membrane requires the specific membrane-embedded insertase called the endoplasmic reticulum membrane complex (EMC), which is a multi-subunit chaperone distinct from the GET insertase complex. Four recent cryo-electron microscopy studies on the eukaryotic EMC have revealed their remarkable architectural conservation from yeast to humans; a general consensus on the substrate transmembrane helix-binding pocket; and the evolutionary link to the prokaryotic insertases of the tail-anchored membrane proteins. These structures provide a solid framework for future mechanistic investigation.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
34
|
Ackermann B, Dünschede B, Pietzenuk B, Justesen BH, Krämer U, Hofmann E, Günther Pomorski T, Schünemann D. Chloroplast Ribosomes Interact With the Insertase Alb3 in the Thylakoid Membrane. FRONTIERS IN PLANT SCIENCE 2021; 12:781857. [PMID: 35003166 PMCID: PMC8733628 DOI: 10.3389/fpls.2021.781857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Members of the Oxa1/YidC/Alb3 protein family are involved in the insertion, folding, and assembly of membrane proteins in mitochondria, bacteria, and chloroplasts. The thylakoid membrane protein Alb3 mediates the chloroplast signal recognition particle (cpSRP)-dependent posttranslational insertion of nuclear-encoded light harvesting chlorophyll a/b-binding proteins and participates in the biogenesis of plastid-encoded subunits of the photosynthetic complexes. These subunits are cotranslationally inserted into the thylakoid membrane, yet very little is known about the molecular mechanisms underlying docking of the ribosome-nascent chain complexes to the chloroplast SecY/Alb3 insertion machinery. Here, we show that nanodisc-embedded Alb3 interacts with ribosomes, while the homolog Alb4, also located in the thylakoid membrane, shows no ribosome binding. Alb3 contacts the ribosome with its C-terminal region and at least one additional binding site within its hydrophobic core region. Within the C-terminal region, two conserved motifs (motifs III and IV) are cooperatively required to enable the ribosome contact. Furthermore, our data suggest that the negatively charged C-terminus of the ribosomal subunit uL4c is involved in Alb3 binding. Phylogenetic analyses of uL4 demonstrate that this region newly evolved in the green lineage during the transition from aquatic to terrestrial life.
Collapse
Affiliation(s)
- Bernd Ackermann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Björn Pietzenuk
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bo Højen Justesen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
35
|
Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments. Mol Biol Evol 2021; 38:5241-5254. [PMID: 34436602 PMCID: PMC8662606 DOI: 10.1093/molbev/msab253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of mitochondria by the conversion of a bacterial endosymbiont was a key moment in the evolution of eukaryotes. It was made possible by outsourcing the endosymbiont's genetic control to the host nucleus, while developing the import machinery for proteins synthesized on cytosolic ribosomes. The original protein export machines of the nascent organelle remained to be repurposed or were completely abandoned. This review follows the evolutionary fates of three prokaryotic inner membrane translocases Sec, Tat, and YidC. Homologs of all three translocases can still be found in current mitochondria, but with different importance for mitochondrial function. Although the mitochondrial YidC homolog, Oxa1, became an omnipresent independent insertase, the other two remained only sporadically present in mitochondria. Only a single substrate is known for the mitochondrial Tat and no function has yet been assigned for the mitochondrial Sec. Finally, this review compares these ancestral mitochondrial proteins with their paralogs operating in the plastids and the endomembrane system.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
36
|
Laskowski PR, Pluhackova K, Haase M, Lang BM, Nagler G, Kuhn A, Müller DJ. Monitoring the binding and insertion of a single transmembrane protein by an insertase. Nat Commun 2021; 12:7082. [PMID: 34873152 PMCID: PMC8648943 DOI: 10.1038/s41467-021-27315-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/11/2021] [Indexed: 11/27/2022] Open
Abstract
Cells employ highly conserved families of insertases and translocases to insert and fold proteins into membranes. How insertases insert and fold membrane proteins is not fully known. To investigate how the bacterial insertase YidC facilitates this process, we here combine single-molecule force spectroscopy and fluorescence spectroscopy approaches, and molecular dynamics simulations. We observe that within 2 ms, the cytoplasmic α-helical hairpin of YidC binds the polypeptide of the membrane protein Pf3 at high conformational variability and kinetic stability. Within 52 ms, YidC strengthens its binding to the substrate and uses the cytoplasmic α-helical hairpin domain and hydrophilic groove to transfer Pf3 to the membrane-inserted, folded state. In this inserted state, Pf3 exposes low conformational variability such as typical for transmembrane α-helical proteins. The presence of YidC homologues in all domains of life gives our mechanistic insight into insertase-mediated membrane protein binding and insertion general relevance for membrane protein biogenesis.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Maximilian Haase
- Molecular Microbiology, Biology Institute, Universität Hohenheim, 70599, Stuttgart, Germany
| | - Brian M Lang
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Gisela Nagler
- Molecular Microbiology, Biology Institute, Universität Hohenheim, 70599, Stuttgart, Germany
| | - Andreas Kuhn
- Molecular Microbiology, Biology Institute, Universität Hohenheim, 70599, Stuttgart, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
37
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Mishra S, Brady LJ. The Cytoplasmic Domains of Streptococcus mutans Membrane Protein Insertases YidC1 and YidC2 Confer Unique Structural and Functional Attributes to Each Paralog. Front Microbiol 2021; 12:760873. [PMID: 34795653 PMCID: PMC8595059 DOI: 10.3389/fmicb.2021.760873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Integral and membrane-anchored proteins are pivotal to survival and virulence of the dental pathogen, Streptococcus mutans. The bacterial chaperone/insertase, YidC, contributes to membrane protein translocation. Unlike Escherichia coli, most Gram-positive bacteria contain two YidC paralogs. Herein, we evaluated structural features that functionally delineate S. mutans YidC1 and YidC2. Bacterial YidCs contain five transmembrane domains (TMD), two cytoplasmic loops, and a cytoplasmic tail. Because S. mutans YidC1 (SmYidC1) and YidC2 (SmYidC2) cytoplasmic domains (CD) are less well conserved than are TMD, we engineered ectopic expression of the 14 possible YidC1-YidC2 CD domain swap combinations. Growth and stress tolerance of each was compared to control strains ectopically expressing unmodified yidC1 or yidC2. Acid and osmotic stress sensitivity are associated with yidC2 deletion. Sensitivity to excess zinc was further identified as a ΔyidC1 phenotype. Overall, YidC1 tolerated CD substitutions better than YidC2. Preferences toward particular CD combinations suggested potential intramolecular interactions. In silico analysis predicted salt-bridges between C1 and C2 loops of YidC1, and C1 loop and C-terminal tail of YidC2, respectively. Mutation of contributing residues recapitulated ΔyidC1- and ΔyidC2-associated phenotypes. Taken together, this work revealed the importance of cytoplasmic domains in distinct functional attributes of YidC1 and YidC2, and identified key residues involved in interdomain interactions.
Collapse
Affiliation(s)
| | - L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Endo Y, Shimizu Y, Nishikawa H, Sawasato K, Nishiyama KI. Interplay between MPIase, YidC, and PMF during Sec-independent insertion of membrane proteins. Life Sci Alliance 2021; 5:5/1/e202101162. [PMID: 34642230 PMCID: PMC8548208 DOI: 10.26508/lsa.202101162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
Charges in the N-terminal region and the synthesis level of membrane proteins with N-out topology determine YidC and PMF dependencies with the interplay between glycolipid MPIase, YidC, and PMF. Integral membrane proteins with the N-out topology are inserted into membranes usually in YidC- and PMF-dependent manners. The molecular basis of the various dependencies on insertion factors is not fully understood. A model protein, Pf3-Lep, is inserted independently of both YidC and PMF, whereas the V15D mutant requires both YidC and PMF in vivo. We analyzed the mechanisms that determine the insertion factor dependency in vitro. Glycolipid MPIase was required for insertion of both proteins because MPIase depletion caused a significant defect in insertion. On the other hand, YidC depletion and PMF dissipation had no effects on Pf3-Lep insertion, whereas V15D insertion was reduced. We reconstituted (proteo)liposomes containing MPIase, YidC, and/or F0F1-ATPase. MPIase was essential for insertion of both proteins. YidC and PMF stimulated Pf3-Lep insertion as the synthesis level increased. V15D insertion was stimulated by both YidC and PMF irrespective of the synthesis level. These results indicate that charges in the N-terminal region and the synthesis level are the determinants of YidC and PMF dependencies with the interplay between MPIase, YidC, and PMF.
Collapse
Affiliation(s)
- Yuta Endo
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Yuko Shimizu
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hanako Nishikawa
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Katsuhiro Sawasato
- Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Ken-Ichi Nishiyama
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan .,Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
40
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
41
|
Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity. Commun Biol 2021; 4:963. [PMID: 34385596 PMCID: PMC8361080 DOI: 10.1038/s42003-021-02493-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Gene expression toxicity is an important biological phenomenon and a major bottleneck in biotechnology. Escherichia coli BL21(DE3) is the most popular choice for recombinant protein production, and various derivatives have been evolved or engineered to facilitate improved yield and tolerance to toxic genes. However, previous efforts to evolve BL21, such as the Walker strains C41 and C43, resulted only in decreased expression strength of the T7 system. This reveals little about the mechanisms at play and constitutes only marginal progress towards a generally higher producing cell factory. Here, we restrict the solution space for BL21(DE3) to evolve tolerance and isolate a mutant strain Evo21(DE3) with a truncation in the essential RNase E. This suggests that RNA stability plays a central role in gene expression toxicity. The evolved rne truncation is similar to a mutation previously engineered into the commercially available BL21Star(DE3), which challenges the existing assumption that this strain is unsuitable for expressing toxic proteins. We isolated another dominant mutation in a presumed substrate binding site of RNase E that improves protein production further when provided as an auxiliary plasmid. This makes it easy to improve other BL21 variants and points to RNases as prime targets for cell factory optimisation.
Collapse
|
42
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. Nat Struct Mol Biol 2021; 28:234-239. [PMID: 33664512 DOI: 10.1038/s41594-021-00567-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Members of the Oxa1 superfamily perform membrane protein insertion in bacteria, the eukaryotic endoplasmic reticulum (ER), and endosymbiotic organelles. Here, we review recent structures of the three ER-resident insertases and discuss the extent to which structure and function are conserved with their bacterial counterpart YidC.
Collapse
|
44
|
Molecular communication of the membrane insertase YidC with translocase SecYEG affects client proteins. Sci Rep 2021; 11:3940. [PMID: 33594158 PMCID: PMC7886851 DOI: 10.1038/s41598-021-83224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
The membrane insertase YidC inserts newly synthesized proteins by its hydrophobic slide consisting of the two transmembrane (TM) segments TM3 and TM5. Mutations in this part of the protein affect the insertion of the client proteins. We show here that a quintuple mutation, termed YidC-5S, inhibits the insertion of the subunit a of the FoF1 ATP synthase but has no effect on the insertion of the Sec-independent M13 procoat protein and the C-tail protein SciP. Further investigations show that the interaction of YidC-5S with SecY is inhibited. The purified and fluorescently labeled YidC-5S did not approach SecYEG when both were co-reconstituted in proteoliposomes in contrast to the co-reconstituted YidC wild type. These results suggest that TM3 and TM5 are involved in the formation of a common YidC-SecYEG complex that is required for the insertion of Sec/YidC-dependent client proteins.
Collapse
|
45
|
A Celecoxib Derivative Eradicates Antibiotic-Resistant Staphylococcus aureus and Biofilms by Targeting YidC2 Translocase. Int J Mol Sci 2020; 21:ijms21239312. [PMID: 33297331 PMCID: PMC7730571 DOI: 10.3390/ijms21239312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/02/2022] Open
Abstract
The treatment of Staphylococcus aureus infections is impeded by the prevalence of MRSA and the formation of persisters and biofilms. Previously, we identified two celecoxib derivatives, Cpd36 and Cpd46, to eradicate MRSA and other staphylococci. Through whole-genome resequencing, we obtained several lines of evidence that these compounds might act by targeting the membrane protein translocase YidC2. Our data showed that ectopic expression of YidC2 in S. aureus decreased the bacterial susceptibility to Cpd36 and Cpd46, and that the YidC2-mediated tolerance to environmental stresses was suppressed by both compounds. Moreover, the membrane translocation of ATP synthase subunit c, a substrate of YidC2, was blocked by Cpd46, leading to a reduction in bacterial ATP production. Furthermore, we found that the thermal stability of bacterial YidC2 was enhanced, and introducing point mutations into the substrate-interacting cavity of YidC2 had a dramatic effect on Cpd36 binding via surface plasmon resonance assays. Finally, we demonstrated that these YidC2 inhibitors could effectively eradicate MRSA persisters and biofilms. Our findings highlight the potential of impeding YidC2-mediated translocation of membrane proteins as a new strategy for the treatment of bacterial infections.
Collapse
|
46
|
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, Weissman JS. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife 2020; 9:e62611. [PMID: 33236988 PMCID: PMC7785296 DOI: 10.7554/elife.62611] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.
Collapse
Affiliation(s)
- Lakshmi E Miller-Vedam
- Molecular, Cellular, and Computational Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Katerina D Popova
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Nicole T Schirle Oakdale
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica L Bonnar
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jesuraj R Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Elizabeth A Boydston
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
47
|
Alvira S, Watkins DW, Troman LA, Allen WJ, Lorriman JS, Degliesposti G, Cohen EJ, Beeby M, Daum B, Gold VAM, Skehel JM, Collinson I. Inter-membrane association of the Sec and BAM translocons for bacterial outer-membrane biogenesis. eLife 2020; 9:e60669. [PMID: 33146611 PMCID: PMC7695460 DOI: 10.7554/elife.60669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
The outer-membrane of Gram-negative bacteria is critical for surface adhesion, pathogenicity, antibiotic resistance and survival. The major constituent - hydrophobic β-barrel Outer-Membrane Proteins (OMPs) - are first secreted across the inner-membrane through the Sec-translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation. OMPs are then offloaded to the β-Barrel Assembly Machinery (BAM) in the outer-membrane for insertion and folding. We show the Holo-TransLocon (HTL) - an assembly of the protein-channel core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane 'insertase' YidC - contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation. Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of conformational changes via SecDF across the periplasm to BAM. The latter presumably drives efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and communication, the importance of which is becoming increasingly apparent.
Collapse
Affiliation(s)
- Sara Alvira
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Daniel W Watkins
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Luca A Troman
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - William J Allen
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - James S Lorriman
- School of Biochemistry, University of BristolBristolUnited Kingdom
| | - Gianluca Degliesposti
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Eli J Cohen
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Morgan Beeby
- Department of Life Sciences, Imperial College LondonLondonUnited Kingdom
| | - Bertram Daum
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - Vicki AM Gold
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- College of Life and Environmental Sciences, University of ExeterExeterUnited Kingdom
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ian Collinson
- School of Biochemistry, University of BristolBristolUnited Kingdom
| |
Collapse
|
48
|
Hariharan B, Pross E, Soman R, Kaushik S, Kuhn A, Dalbey RE. Polarity/charge as a determinant of translocase requirements for membrane protein insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183502. [PMID: 33130098 DOI: 10.1016/j.bbamem.2020.183502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
The YidC insertase of Escherichia coli inserts membrane proteins with small periplasmic loops (~20 residues). However, it has difficulty transporting loops that contain positively charged residues compared to negatively charged residues and, as a result, increasing the positive charge has an increased requirement for the Sec machinery as compared to negatively charged loops (Zhu et al., 2013; Soman et al., 2014). This suggested that the polarity and charge of the periplasmic regions of membrane proteins determine the YidC and Sec translocase requirements for insertion. Here we tested this polarity/charge hypothesis by showing that insertion of our model substrate protein procoat-Lep can become YidC/Sec dependent when the periplasmic loop was converted to highly polar even in the absence of any charged residues. Moreover, adding a number of hydrophobic amino acids to a highly polar loop can decrease the Sec-dependence of the otherwise strictly Sec-dependent membrane proteins. We also demonstrate that the length of the procoat-Lep loop is indeed a determinant for Sec-dependence by inserting alanine residues that do not markedly change the overall hydrophilicity of the periplasmic loop. Taken together, the results support the polarity/charge hypothesis as a determinant for the translocase requirement for procoat insertion.
Collapse
Affiliation(s)
- Balasubramani Hariharan
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Eva Pross
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Raunak Soman
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Sharbani Kaushik
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| |
Collapse
|
49
|
Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. Mol Cell 2020; 80:72-86.e7. [DOI: 10.1016/j.molcel.2020.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/31/2023]
|
50
|
Marconnet A, Michon B, Le Bon C, Giusti F, Tribet C, Zoonens M. Solubilization and Stabilization of Membrane Proteins by Cycloalkane-Modified Amphiphilic Polymers. Biomacromolecules 2020; 21:3459-3467. [DOI: 10.1021/acs.biomac.0c00929] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anaïs Marconnet
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Baptiste Michon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christel Le Bon
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Fabrice Giusti
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Manuela Zoonens
- Université de Paris, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS, UMR 7099, F-75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, F-75005 Paris, France
| |
Collapse
|