1
|
Singh J, Srikrishna S. Scribble knockdown induced metastasis, identification of its associated novel molecular candidates through proteome studies. Biochem Biophys Res Commun 2025; 769:151999. [PMID: 40367906 DOI: 10.1016/j.bbrc.2025.151999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/07/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Metastasis is the primary cause of cancer associated deaths globally. Loss of function of Scribble, a cell polarity regulator and tumor suppressor gene, is associated with many forms of human cancers but its role in cell proliferation and metastasis remains unknown. We generated metastatic cancer condition in Drosophila using UASRNAi-GAL4 system by knockdown of Scribble in the wing imaginal discs and tracked metastasis events from early to late pupae (0hr-84 h s) using fluorescence microscopy. Here, we report, for the first time, that the knockdown of Scribble alone could lead to the development of primary tumor in the wing imaginal discs, which is capable of establishing metastasis, apparently leading to secondary tumor formation in pupae at early stage, eventually resulting in absolute pupal lethality without organ development. MMP1, a metastasis biomarker, levels were assessed during pre-and post-metastatic phases in pupae using qRT-PCR and Western blot analysis. Further, we analyzed the proteome of Scribble knockdown induced tumor-bearing pupae by 2-D gel electrophoresis followed by MALDI-TOF MS to identify some novel proteins possibly involved in the progression of tumorigenesis and metastasis events. Six differentially expressed proteins, Obp 99b, Fer2LCH,CG13492, Hsp23, Ubiquitin and Colt, were identified in Scrib knockdown pupae and validated their expression using qRT-PCR. Thus, our results suggested that loss of Scrib alone capable of causing metastasis, without the need for cooperative interaction with oncogenic Ras. The newly identified proteins could be important candidates for biomarker/therapeutic target against Scrib associated metastatic cancers.
Collapse
Affiliation(s)
- Jyotsna Singh
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Ding G, Li Y, Cheng C, Tan K, Deng Y, Pang H, Wang Z, Dang P, Wu X, Rushworth E, Yuan Y, Yang Z, Song W. A tumor-secreted protein utilizes glucagon release to cause host wasting. Cell Discov 2025; 11:11. [PMID: 39924534 PMCID: PMC11808122 DOI: 10.1038/s41421-024-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025] Open
Abstract
Tumor‒host interaction plays a critical role in malignant tumor-induced organ wasting across multiple species. Despite known regulation of regional wasting of individual peripheral organs by tumors, whether and how tumors utilize critical host catabolic hormone(s) to simultaneously induce systemic host wasting, is largely unknown. Using the conserved yki3SA-tumor model in Drosophila, we discovered that tumors increase the production of adipokinetic hormone (Akh), a glucagon-like catabolic hormone, to cause systemic host wasting, including muscle dysfunction, lipid loss, hyperglycemia, and ovary atrophy. We next integrated RNAi screening and Gal4-LexA dual expression system to show that yki3SA-gut tumors secrete Pvf1 to remotely activate its receptor Pvr in Akh-producing cells (APCs), ultimately promoting Akh production. The underlying molecular mechanisms involved the Pvf1-Pvr axis that triggers Mmp2-dependent ECM remodeling of APCs and enhances innervation from the excitatory cholinergic neurons. Interestingly, we also confirmed the similar mechanisms governing tumor-induced glucagon release and organ wasting in mammals. Blockade of either glucagon or PDGFR (homolog of Pvr) action efficiently ameliorated organ wasting in the presence of malignant tumors. Therefore, our results demonstrate that tumors remotely promote neural-associated Akh/glucagon production via Pvf1-Pvr axis to cause systemic host wasting.
Collapse
Affiliation(s)
- Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yifei Deng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Huiwen Pang
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhongyuan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peixuan Dang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xing Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Elisabeth Rushworth
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Winkler B, Funke D, Klämbt C. Macrophage invasion into the Drosophila brain requires JAK/STAT-dependent MMP activation in the blood-brain barrier. PLoS Biol 2025; 23:e3003035. [PMID: 39977429 PMCID: PMC11908702 DOI: 10.1371/journal.pbio.3003035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/14/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
The central nervous system is well-separated from external influences by the blood-brain barrier. Upon surveillance, infection or neuroinflammation, however, peripheral immune cells can enter the brain where they often cause detrimental effects. To invade the brain, immune cells not only have to breach cellular barriers, but they also need to traverse associated extracellular matrix barriers. Neither in vertebrates nor in invertebrates is it fully understood how these processes are molecularly controlled. We recently established Drosophila melanogaster as a model to elucidate peripheral immune cell invasion into the brain. Here, we show that neuroinflammation leads to the expression of Unpaired cytokines that activate the JAK/STAT signaling pathway in glial cells of the blood-brain barrier. This in turn triggers the expression of matrix metalloproteinases enabling remodeling of the extracellular matrix enclosing the fly brain and a subsequent invasion of immune cells into the brain. Our study demonstrates conserved mechanisms underlying immune cell invasion of the nervous system in invertebrates and vertebrates and could, thus, further contribute to understanding of JAK/STAT signaling during neuroinflammation.
Collapse
Affiliation(s)
- Bente Winkler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Dominik Funke
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
4
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2025; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
5
|
Ott RK, Williams IH, Armstrong AR. Improved whole-mount immunofluorescence protocol for consistent and robust labeling of adult Drosophila melanogaster adipose tissue. Biol Open 2024; 13:bio060491. [PMID: 39041865 PMCID: PMC11317099 DOI: 10.1242/bio.060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Energy storage and endocrine functions of the Drosophila fat body make it an excellent model for elucidating mechanisms that underlie physiological and pathophysiological organismal metabolism. Combined with Drosophila's robust genetic and immunofluorescence microscopy toolkits, studies of Drosophila fat body function are ripe for cell biological analysis. Unlike the larval fat body, which is easily removed as a single, cohesive sheet of tissue, isolating intact adult fat body proves to be more challenging, thus hindering consistent immunofluorescence labeling even within a single piece of adipose tissue. Here, we describe an improved approach to handling Drosophila abdomens that ensures full access of the adult fat body to solutions generally used in immunofluorescence labeling protocols. In addition, we assess the quality of fluorescence reporter expression and antibody immunoreactivity in response to variations in fixative type, fixation incubation time, and detergent used for cellular permeabilization. Overall, we provide several recommendations for steps in a whole-mount staining protocol that results in consistent and robust immunofluorescence labeling of the adult Drosophila fat body.
Collapse
Affiliation(s)
- Rachael K. Ott
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Isaiah H. Williams
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| | - Alissa R. Armstrong
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29072, USA
| |
Collapse
|
6
|
Wu H, Yao Z, Li H, Zhang L, Zhao Y, Li Y, Wu Y, Zhang Z, Xie J, Ding F, Zhu H. Improving dermal fibroblast-to-epidermis communications and aging wound repair through extracellular vesicle-mediated delivery of Gstm2 mRNA. J Nanobiotechnology 2024; 22:307. [PMID: 38825668 PMCID: PMC11145791 DOI: 10.1186/s12951-024-02541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.
Collapse
Affiliation(s)
- Haiyan Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Hongkun Li
- Department of Cardiology, Changzhi Medical College Affiliated Heji Hospital, Shanxi, 046000, China
| | - Laihai Zhang
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuying Zhao
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yongwei Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yating Wu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhenchun Zhang
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Feixue Ding
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People Hospital, School of Medicine, JiaoTong University, Shanghai, 200001, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
7
|
Wu L, Xu Y, Li L, Cao D, Liu F, Zhao H. Matrix metalloproteinase 2 contributes to adult eclosion and immune response in the small hive beetle, Aethina tumida. INSECT SCIENCE 2024; 31:733-747. [PMID: 37751529 DOI: 10.1111/1744-7917.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
During the pupal-adult eclosion process of holometabolous insects, the old cuticle is shed and replaced by a completely different new cuticle that requires tanning and expansion, along with extensive extracellular matrix (ECM) remodeling. In vertebrates, matrix metalloproteinases (MMPs), a class of zinc-dependent endopeptidases, play key roles in regulating the ECM that surrounds cells. However, little is known about these extracellular proteinases available in insects. The small hive beetle (SHB), Aethina tumida, is a widespread invasive parasite of honey bees. In this study, 6 MMP homologs were identified in the SHB genome. RNA interference experiments showed that all 6 AtMmps are not required for the larval-pupal transition, only AtMmp2 was essential for pupal-adult eclosion in SHB. Knockdown of AtMmp2 resulted in eclosion defects and wing expansion failure, as well as mortality within 3 d of adult eclosion. Transcriptomic analysis revealed that knockdown of AtMmp2 significantly increased expression of the Toll and Imd pathways, chitin metabolism, and cross-linking (such as the pro-phenoloxidase activating cascade pathway and the tyrosine-mediated cuticle sclerotization and pigmentation pathway). These data revealed evolutionarily conserved functions of Mmp2 in controlling adult eclosion and wing expansion, also provided a preliminary exploration of the novel function of regulating Toll and Imd pathways, as well as new insights into how MMPs regulate insect development and defense barriers.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yajing Xu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liangbin Li
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dainan Cao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fang Liu
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratssory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
9
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
10
|
Takarada K, Kinoshita J, Inoue YH. Ectopic expression of matrix metalloproteinases and filopodia extension via JNK activation are involved in the invasion of blood tumor cells in Drosophila mxc mutant. Genes Cells 2023; 28:709-726. [PMID: 37615261 PMCID: PMC11448368 DOI: 10.1111/gtc.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Drosophila mxcmbn1 mutant exhibits severe hyperplasia in larval hematopoietic tissue called the lymph glands (LGs). However, the malignant nature of these cells remains unknown. We aimed to identify if mxcmbn1 LG cells behave as malignant tumor cells and uncover the mechanism(s) underlying the malignancy of the mutant hemocytes. When mutant LG cells were allografted into normal adult abdomens, they continued to proliferate; however, normal LG cells did not proliferate. Mutant circulating hemocytes also attached to the larval central nervous system (CNS), where the basement membrane was disrupted. The mutant hemocytes displayed higher expression of matrix metalloproteinase (MMP) 1 and MMP2 and higher activation of the c-Jun N-terminal kinase (JNK) pathway than normal hemocytes. Depletion of MMPs or JNK mRNAs in LGs resulted in reduced numbers of hemocytes attached to the CNS, suggesting that the invasive phenotype involved elevated expression of MMPs via hyperactivation of the JNK pathway. Moreover, hemocytes with elongated filopodia and extra lamellipodia were frequently observed in the mutant hemolymph, which also depended on JNK signaling. Thus, the MMP upregulation and overextension of actin-based cell protrusions were also involved in hemocyte invasion in mxcmbn1 larvae. These findings contribute to the understanding of molecular mechanisms underlying mammalian leukemic invasion.
Collapse
Affiliation(s)
- Kazuki Takarada
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Juri Kinoshita
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| | - Yoshihiro H. Inoue
- Research Center of Biomedical Research, Graduate School of Science and TechnologyKyoto Institute of TechnologyKyotoJapan
| |
Collapse
|
11
|
Kim CJ, Kim HH, Kim HK, Lee S, Jang D, Kim C, Lim DH. MicroRNA miR-263b-5p Regulates Developmental Growth and Cell Association by Suppressing Laminin A in Drosophila. BIOLOGY 2023; 12:1096. [PMID: 37626982 PMCID: PMC10451713 DOI: 10.3390/biology12081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Basement membranes (BMs) play important roles under various physiological conditions in animals, including ecdysozoans. During development, BMs undergo alterations through diverse intrinsic and extrinsic regulatory mechanisms; however, the full complement of pathways controlling these changes remain unclear. Here, we found that fat body-overexpression of Drosophila miR-263b, which is highly expressed during the larval-to-pupal transition, resulted in a decrease in the overall size of the larval fat body, and ultimately, in a severe growth defect accompanied by a reduction in cell proliferation and cell size. Interestingly, we further observed that a large proportion of the larval fat body cells were prematurely disassociated from each other. Moreover, we present evidence that miR-263b-5p suppresses the main component of BMs, Laminin A (LanA). Through experiments using RNA interference (RNAi) of LanA, we found that its depletion phenocopied the effects in miR-263b-overexpressing flies. Overall, our findings suggest a potential role for miR-263b in developmental growth and cell association by suppressing LanA expression in the Drosophila fat body.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (C.J.K.); (H.H.K.); (H.K.K.); (S.L.); (D.J.); (C.K.)
| |
Collapse
|
12
|
Wen D, Chen Z, Wen J, Jia Q. Sterol Regulation of Development and 20-Hydroxyecdysone Biosynthetic and Signaling Genes in Drosophila melanogaster. Cells 2023; 12:1739. [PMID: 37443773 PMCID: PMC10340181 DOI: 10.3390/cells12131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ecdysteroids are crucial in regulating the growth and development of insects. In the fruit fly Drosophila melanogaster, both C27 and C28 ecdysteroids have been identified. While the biosynthetic pathway of the C27 ecdysteroid 20-hydroxyecdysone (20E) from cholesterol is relatively well understood, the biosynthetic pathway of C28 ecdysteroids from C28 or C29 dietary sterols remains unknown. In this study, we found that different dietary sterols (including the C27 sterols cholesterol and 7-dehydrocholesterol, the C28 sterols brassicasterol, campesterol, and ergosterol, and the C29 sterols β-sitosterol, α-spinasterol, and stigmasterol) differentially affected the expression of 20E biosynthetic genes to varying degrees, but similarly activated 20E primary response gene expression in D. melanogaster Kc cells. We also found that a single dietary sterol was sufficient to support D. melanogaster growth and development. Furthermore, the expression levels of some 20E biosynthetic genes were significantly altered, whereas the expression of 20E signaling primary response genes remained unaffected when flies were reared on lipid-depleted diets supplemented with single sterol types. Overall, our study provided preliminary clues to suggest that the same enzymatic system responsible for the classical C27 ecdysteroid 20E biosynthetic pathway also participated in the conversion of C28 and C29 dietary sterols into C28 ecdysteroids.
Collapse
Affiliation(s)
- Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China;
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China;
| | - Jiamin Wen
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Qiangqiang Jia
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China;
- Guangdong Provincial Key Laboratory of Insect Development Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
13
|
Lei Y, Huang Y, Yang K, Cao X, Song Y, Martín-Blanco E, Pastor-Pareja JC. FGF signaling promotes spreading of fat body precursors necessary for adult adipogenesis in Drosophila. PLoS Biol 2023; 21:e3002050. [PMID: 36947563 PMCID: PMC10069774 DOI: 10.1371/journal.pbio.3002050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 04/03/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Knowledge of adipogenetic mechanisms is essential to understand and treat conditions affecting organismal metabolism and adipose tissue health. In Drosophila, mature adipose tissue (fat body) exists in larvae and adults. In contrast to the well-known development of the larval fat body from the embryonic mesoderm, adult adipogenesis has remained mysterious. Furthermore, conclusive proof of its physiological significance is lacking. Here, we show that the adult fat body originates from a pool of undifferentiated mesodermal precursors that migrate from the thorax into the abdomen during metamorphosis. Through in vivo imaging, we found that these precursors spread from the ventral midline and cover the inner surface of the abdomen in a process strikingly reminiscent of embryonic mesoderm migration, requiring fibroblast growth factor (FGF) signaling as well. FGF signaling guides migration dorsally and regulates adhesion to the substrate. After spreading is complete, precursor differentiation involves fat accumulation and cell fusion that produces mature binucleate and tetranucleate adipocytes. Finally, we show that flies where adult adipogenesis is impaired by knock down of FGF receptor Heartless or transcription factor Serpent display ectopic fat accumulation in oenocytes and decreased resistance to starvation. Our results reveal that adult adipogenesis occurs de novo during metamorphosis and demonstrate its crucial physiological role.
Collapse
Affiliation(s)
- Yuting Lei
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhao Song
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Barcelona, Spain
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Institute of Neurosciences, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, San Juan de Alicante, Spain
| |
Collapse
|
14
|
Mmp-induced fat body cell dissociation promotes pupal development and moderately averts pupal diapause by activating lipid metabolism. Proc Natl Acad Sci U S A 2023; 120:e2215214120. [PMID: 36574695 PMCID: PMC9910469 DOI: 10.1073/pnas.2215214120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Lepidoptera and Diptera, the fat body dissociates into single cells in nondiapause pupae, but it does not dissociate in diapause pupae until diapause termination. Using the cotton bollworm, Helicoverpa armigera, as a model of pupal diapause insects, we illustrated the catalytic mechanism and physiological importance of fat body cell dissociation in regulating pupal development and diapause. In nondiapause pupae, cathepsin L (CatL) activates matrix metalloproteinases (Mmps) that degrade extracellular matrix proteins and cause fat body cell dissociation. Mmp-induced fat body cell dissociation activates lipid metabolism through transcriptional regulation, and the resulting energetic supplies increase brain metabolic activity (i.e., mitochondria respiration and insulin signaling) and thus promote pupal development. In diapause pupae, low activities of CatL and Mmps prevent fat body cell dissociation and lipid metabolism from occurring, maintaining pupal diapause. Importantly, as demonstrated by chemical inhibitor treatments and CRISPR-mediated gene knockouts, Mmp inhibition delayed pupal development and moderately increased the incidence of pupal diapause, while Mmp stimulation promoted pupal development and moderately averted pupal diapause. This study advances our recent understanding of fat body biology and insect diapause regulation.
Collapse
|
15
|
Kinoshita S, Takarada K, Kinoshita Y, Inoue YH. Drosophila hemocytes recognize lymph gland tumors of mxc mutants and activate the innate immune pathway in a reactive oxygen species-dependent manner. Biol Open 2022; 11:bio059523. [PMID: 36226812 PMCID: PMC9641529 DOI: 10.1242/bio.059523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanisms of cancer cell recognition and elimination by the innate immune system remains unclear. The immune signaling pathways are activated in the fat body to suppress the tumor growth in mxcmbn1 hematopoietic tumor mutants in Drosophila by inducing antimicrobial peptides (AMP). Here, we investigated the regulatory mechanism underlying the activation in the mutant. Firstly, we found that reactive oxygen species (ROS) accumulated in the hemocytes due to induction of dual oxidase and one of its activators. This was required for the AMP induction and the tumor growth suppression. Next, more hemocytes transplanted from normal larvae were associated with the mutant tumor than normal lymph glands (LGs). Matrix metalloproteinase 1 and 2 (MMP2) were highly expressed in the tumors. The basement membrane components in the tumors were reduced and ultimately lost inside. Depletion of the MMP2 rather than MMP1 resulted in a significantly reduced AMP expression in the mutant larvae. The hemocytes may recognize the disassembly of basement membrane in the tumors and activate the ROS production. Our findings highlight the mechanism via which macrophage-like hemocytes recognize tumor cells and subsequently convey the information to induce AMPs in the fat body. They contribute to uncover the role of innate immune system against cancer.
Collapse
Affiliation(s)
- Suzuko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kazuki Takarada
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuriko Kinoshita
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yoshihiro H. Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
16
|
Güneş E, Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes? CHEMOSPHERE 2022; 296:133972. [PMID: 35192850 DOI: 10.1016/j.chemosphere.2022.133972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
With their increasing use in today's industry, heavy metals cause biochemical and biophysical changes by affecting the control and regulatory systems of living things. Cadmium (Cd), a heavy metal, spreads to the environment through both natural sources and industrial activities. It is taken into the organism through water, food, skin contact or smoke. Systems and organs of living things are directly or indirectly affected by Cd toxicity. Besides their recreational usage, herbal products such as coffee are preferred in alternative medicine because of their antioxidant, anti-inflammatory, anticancer and antidiabetic effects. Turkish coffee (TK) is a drink rich in flavorings, phenolic compounds and antioxidant compounds. The study evaluated the possible antioxidant role of TK against oxidative stress induced by Cadmium acetate (CdA) in the fat tissues of old-young female individuals of Drosophila melanogaster. The female flies were fed with either a standard diet, or CdA (10-30 mg), or TK (2%), or both (CdA + TK) for 3 and 10 days. Following the completion of the feeding period, the amounts of fatbody and oxidative stress markers (oxidative stress index, malondialdehyde), activities of antioxidant enzymes (Glutathione-S-transferase, Catalase, and Superoxide dismutase) and their levels were measured. Fat body lipid droplets were high in the individuals exposed to high concentrations of CdA. It was determined that lipid droplets decreased but did not significantly alter oxidative stress in the individuals treated with TK (p = 0.05). This article may be of help in terms of the use of TK compounds as antioxidants to evaluate their effects in preventing heavy metal accumulation and stress in the aging process.
Collapse
Affiliation(s)
- Eda Güneş
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Necmettin Erbakan University, Konya, Turkey.
| | - Erhan Şensoy
- Department of Midwifery, Faculty of Health Science, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
17
|
Xiao G. Molecular physiology of zinc in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100899. [PMID: 35276390 DOI: 10.1016/j.cois.2022.100899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
New research in Drosophila melanogaster has revealed the molecular mechanisms of zinc involvement in many biological processes. A newly discovered Metallothionein is predicted to have a higher zinc specificity than the other isoforms. Zinc negatively regulates tyrosine hydroxylase activity by antagonizing iron binding, thus rendering the enzyme ineffective or non-functional. The identification of a new chaperone of the protein disulfide isomerase family provided mechanistic insight into the protein trafficking defects caused by zinc dyshomeostasis in the secretory pathway. Insect models of tumor pathogenesis indicate that zinc regulates the structural stabilization of cells by transcriptionally regulating matrix metalloproteinases while zinc dyshomeostasis in the secretory pathway modulates cell signaling through endoplastic recticulum stress.
Collapse
Affiliation(s)
- Guiran Xiao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
18
|
Xu DC, Wang L, Yamada KM, Baena-Lopez LA. Non-apoptotic activation of Drosophila caspase-2/9 modulates JNK signaling, the tumor microenvironment, and growth of wound-like tumors. Cell Rep 2022; 39:110718. [PMID: 35443185 PMCID: PMC9082238 DOI: 10.1016/j.celrep.2022.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance to apoptosis due to caspase deregulation is considered one of the main hallmarks of cancer. However, the discovery of novel non-apoptotic caspase functions has revealed unknown intricacies about the interplay between these enzymes and tumor progression. To investigate this biological problem, we capitalized on a Drosophila tumor model with human relevance based on the simultaneous overactivation of the EGFR and the JAK/STAT signaling pathways. Our data indicate that widespread non-apoptotic activation of initiator caspases limits JNK signaling and facilitates cell fate commitment in these tumors, thus preventing the overgrowth and exacerbation of malignant features of transformed cells. Intriguingly, caspase activity also reduces the presence of macrophage-like cells with tumor-promoting properties in the tumor microenvironment. These findings assign tumor-suppressing activities to caspases independent of apoptosis, while providing molecular details to better understand the contribution of these enzymes to tumor progression.
Collapse
Affiliation(s)
- Derek Cui Xu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA; Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.
| | | |
Collapse
|
19
|
Davis JR, Ainslie AP, Williamson JJ, Ferreira A, Torres-Sánchez A, Hoppe A, Mangione F, Smith MB, Martin-Blanco E, Salbreux G, Tapon N. ECM degradation in the Drosophila abdominal epidermis initiates tissue growth that ceases with rapid cell-cycle exit. Curr Biol 2022; 32:1285-1300.e4. [PMID: 35167804 PMCID: PMC8967408 DOI: 10.1016/j.cub.2022.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022]
Abstract
During development, multicellular organisms undergo stereotypical patterns of tissue growth in space and time. How developmental growth is orchestrated remains unclear, largely due to the difficulty of observing and quantitating this process in a living organism. Drosophila histoblast nests are small clusters of progenitor epithelial cells that undergo extensive growth to give rise to the adult abdominal epidermis and are amenable to live imaging. Our quantitative analysis of histoblast proliferation and tissue mechanics reveals that tissue growth is driven by cell divisions initiated through basal extracellular matrix degradation by matrix metalloproteases secreted by the neighboring larval epidermal cells. Laser ablations and computational simulations show that tissue mechanical tension does not decrease as the histoblasts fill the abdominal epidermal surface. During tissue growth, the histoblasts display oscillatory cell division rates until growth termination occurs through the rapid emergence of G0/G1 arrested cells, rather than a gradual increase in cell-cycle time as observed in other systems such as the Drosophila wing and mouse postnatal epidermis. Different developing tissues can therefore achieve their final size using distinct growth termination strategies. Thus, adult abdominal epidermal development is characterized by changes in the tissue microenvironment and a rapid exit from the cell cycle.
Collapse
Affiliation(s)
- John Robert Davis
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna P Ainslie
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John J Williamson
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Ferreira
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alejandro Torres-Sánchez
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Hoppe
- Faculty of Science, Engineering and Computing, Kingston University, Kingston-upon-Thames KT1 2EE, UK
| | - Federica Mangione
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthew B Smith
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, C/Baldiri Reixac, 4-8, Torre R, 3era Planta, 08028 Barcelona, Spain
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
20
|
Bindhani B, Maity S, Chakrabarti I, Saha SK. Roles of matrix metalloproteinases in development, immunology, and ovulation in fruit Fly (Drosophila). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21849. [PMID: 34779010 DOI: 10.1002/arch.21849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Matrix metalloproteinase (MMP), a protease enzyme, participates in proteolytic cleavage of extracellular matrix proteins from Drosophila and mammals. But, recent studies have revealed other physiologically important roles of MMP in Drosophila. MMP contributes to cardioblast movement and distribution of collagen proteins during cardiogenesis in developing Drosophila. Tissue remodeling, especially tracheal development is also maintained by MMP. MMP regulates certain immunological functions in Drosophila such as wound repairing, plasmatocyte assemblage at the injured site of the basement membrane and glial response to axon degeneration in Drosophila nervous system. But, the contribution of MMP to tumor formation and metastasis in Drosophila has made it an interesting topic among researchers. Ovulation and egg laying are also found to be affected positively by MMP in Drosophila.
Collapse
Affiliation(s)
- Banani Bindhani
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sulagna Maity
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Ipsit Chakrabarti
- Department of Zoology, Dinabandhu Andrews College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Samir Kumar Saha
- Department of Zoology, West Bengal State University, Barasat, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Liu TH, Wei Y, Dong XL, Chen P, Wang L, Yang X, Lu C, Pan MH. The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, Bombyx mori. FEBS J 2021; 289:2828-2846. [PMID: 34862848 DOI: 10.1111/febs.16313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
The matrix metalloproteinases (MMPs) and their endogenous inhibitory factors, tissue inhibitors of metalloproteinases (TIMPs), are implicated in many diseases. However, the mammalian MMPs (> 20) and TIMPs (> 3) are larger in number, and so little is known about their individual roles in organisms. Hence, we have systematically studied the roles of all three MMPs and one TIMP in silkworm innate immunity and metamorphosis. We observed that MMPs and TIMP are highly expressed during the pupation stage of the silkworms, and TIMP could interact with each MMPs. High-activity MMPs and low-activity TIMP may enhance the infection of B. mori nucleopolyhedrovirus in both in vitro and in vivo. MMPs' knockout and TIMP overexpression delayed silkworm development and even caused death. Interestingly, different MMPs' knockout led to different tubular tissue dysplasia. These findings provide insights into the conserved functions of MMPs and TIMP in human organogenesis and immunoregulation.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Department of Bioinformatics, Chongqing Medical University, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Ling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Tumor-derived MMPs regulate cachexia in a Drosophila cancer model. Dev Cell 2021; 56:2664-2680.e6. [PMID: 34473940 DOI: 10.1016/j.devcel.2021.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022]
Abstract
Cachexia, the wasting syndrome commonly observed in advanced cancer patients, accounts for up to one-third of cancer-related mortalities. We have established a Drosophila larval model of organ wasting whereby epithelial overgrowth in eye-antennal discs leads to wasting of the adipose tissue and muscles. The wasting is associated with fat-body remodeling and muscle detachment and is dependent on tumor-secreted matrix metalloproteinase 1 (Mmp1). Mmp1 can both modulate TGFβ signaling in the fat body and disrupt basement membrane (BM)/extracellular matrix (ECM) protein localization in both the fat body and the muscle. Inhibition of TGFβ signaling or Mmps in the fat body/muscle using a QF2-QUAS binary expression system rescues muscle wasting in the presence of tumor. Altogether, our study proposes that tumor-derived Mmps are central mediators of organ wasting in cancer cachexia.
Collapse
|
23
|
Fear-of-intimacy-mediated zinc transport controls fat body cell dissociation through modulating Mmp activity in Drosophila. Cell Death Dis 2021; 12:874. [PMID: 34564691 PMCID: PMC8464599 DOI: 10.1038/s41419-021-04147-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases that have been implicated in tumour invasion and metastasis. Drosophila fat body is important for energy storage and utilization, as well as biosynthetic and metabolic activities. The fat body undergoes remodelling during metamorphosis which is characterized by the dissociation of the fat body into individual cells. Mmps play important roles in the regulation of fat body cell dissociation. Here we show that a zinc transporter fear-of-intimacy (foi) is necessary for the cell dissociation of fat body in Drosophila. The progression of fat body cell dissociation was delayed by fat body-specific foi knockdown while it was accelerated by foi overexpression (OE). In essence, these phenotypes are closely associated with intracellular zinc homeostasis, which can be modulated by dietary zinc intervention or genetic modulation of other zinc transporters. Further study indicated that Mmp1 and Mmp2 levels could be transcriptionally regulated by zinc in vivo. Consistently, the retarded fat body cell dissociation caused by Mmp1 or Mmp2 RNAi could be regulated by modulating the expression of foi. Further, by using Drosophila models of malignant tumour RafGOFscrib−/− and RasV12lgl−/−, we showed that the tumour growth, invasion and migration could be markedly inhibited by foi knockdown. These findings demonstrate a close connection between zinc levels and cell dissociation in vivo, and also suggest that manipulation of zinc levels may provide a novel therapeutic strategy for cancer.
Collapse
|
24
|
TSLP-induced collagen type-I synthesis through STAT3 and PRMT1 is sensitive to calcitriol in human lung fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119083. [PMID: 34147561 DOI: 10.1016/j.bbamcr.2021.119083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Airway wall remodeling, a main pathology of asthma was linked to vitamin-D deficiency and protein arginine methyltransferase-1 (PRMT1) expression in sub-epithelial cell layers. Calcitriol reduced remodeling in asthma model, but its mode of action is unclear. This study assessed the effect of calcitriol on PRMT1-dependent fibroblast remodeling in human lung fibroblasts, and allergen-induced asthma in E3-rats. Fibroblasts were activated with thymic stromal lymphopoietin (TLSP); asthma was induced by ovalbumin inhalation in rats. The airway structure was assessed by immunohistology. Protein expression in fibroblasts and activation of the mitogen activated protein kinases were detected by Western-blotting. Transcription factor activation was determined by luciferase reporter assay. PRMT1 action was blocked by siRNA and PRMT-inhibition. Ovalbumin upregulated the expression of TSLP, PRMT1, matrix metallopro-teinase-1 (MMP1), interleukin-25, and collagen type-I in sub-epithelial fibroblasts. In isolated fibroblasts, TSLP induced the same proteins, which were blocked by inhibition of Erk1/2 and p38. TLSP induced PRMT1 through activation of signal transducer and activator of transcription-3. PRMT1 inhibition reduced collagen type-I expression and suppressed MMP1. In fibroblasts, calcitriol supplementation over 12 days prevented TSLP-induced remodeling by blocking the PRMT1 levels. Interestingly, short-term calcitriol treatment had no such effect. The data support the beneficial role of calcitriol in asthma therapy.
Collapse
|
25
|
Fat Body-Multifunctional Insect Tissue. INSECTS 2021; 12:insects12060547. [PMID: 34208190 PMCID: PMC8230813 DOI: 10.3390/insects12060547] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Efficient and proper functioning of processes within living organisms play key roles in times of climate change and strong human pressure. In insects, the most abundant group of organisms, many important changes occur within their tissues, including the fat body, which plays a key role in the development of insects. Fat body cells undergo numerous metabolic changes in basic energy compounds (i.e., lipids, carbohydrates, and proteins), enabling them to move and nourish themselves. In addition to metabolism, the fat body is involved in the development of insects by determining the time an individual becomes an adult, and creates humoral immunity via the synthesis of bactericidal proteins and polypeptides. As an important tissue that integrates all signals from the body, the processes taking place in the fat body have an impact on the functioning of the entire body. Abstract The biodiversity of useful organisms, e.g., insects, decreases due to many environmental factors and increasing anthropopressure. Multifunctional tissues, such as the fat body, are key elements in the proper functioning of invertebrate organisms and resistance factors. The fat body is the center of metabolism, integrating signals, controlling molting and metamorphosis, and synthesizing hormones that control the functioning of the whole body and the synthesis of immune system proteins. In fat body cells, lipids, carbohydrates and proteins are the substrates and products of many pathways that can be used for energy production, accumulate as reserves, and mobilize at the appropriate stage of life (diapause, metamorphosis, flight), determining the survival of an individual. The fat body is the main tissue responsible for innate and acquired humoral immunity. The tissue produces bactericidal proteins and polypeptides, i.e., lysozyme. The fat body is also important in the early stages of an insect’s life due to the production of vitellogenin, the yolk protein needed for the development of oocytes. Although a lot of information is available on its structure and biochemistry, the fat body is an interesting research topic on which much is still to be discovered.
Collapse
|
26
|
A Matrix Metalloproteinase Mediates Tracheal Development in Bombyx mori. Int J Mol Sci 2021; 22:ijms22115618. [PMID: 34070691 PMCID: PMC8198827 DOI: 10.3390/ijms22115618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin β1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2′-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin β1.
Collapse
|
27
|
Chen X, Yang L, Huang R, Li S, Jia Q. Matrix metalloproteinases are involved in eclosion and wing expansion in the American cockroach, Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103551. [PMID: 33556555 DOI: 10.1016/j.ibmb.2021.103551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are the major proteinases that process or degrade numerous extracellular matrix (ECM) components and are evolutionarily conserved from nematodes to humans. During molting in insects, the old cuticle is removed and replaced by a new counterpart. Although the regulatory mechanisms of hormones and nutrients in molting have been well studied, very little is known about the roles of ECM-modifying enzymes in this process. Here, we found that MMPs are necessary for imaginal molting of the American cockroach, Periplaneta americana. Inhibition of Mmp activity via inhibitor treatment led to the failure of eclosion and wing expansion. Five Mmps genes were identified from the P. americana genome, and PaMmp2 played the dominant roles during molting. Further microscopic investigations showed that newly formed adult cuticles were attenuated and that then chitin content was reduced upon Mmp inhibition. Transcriptomic analysis of the integument demonstrated that multiple signaling and metabolic pathways were changed. Microscopic investigation of the wings showed that epithelial cells were restrained together because they were incapable of degrading the ECM upon Mmp inhibition. Transcriptomic analysis of the wing identified dozens of possible genes functioned in wing expansion. This is the first study to show the essential roles of Mmps in the nymph-adult transition of hemimetabolous insects.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
28
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
29
|
Rojo-Arreola L, García-Carreño F, Romero R, Díaz Dominguez L. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. PLoS One 2020; 15:e0239413. [PMID: 32946520 PMCID: PMC7500676 DOI: 10.1371/journal.pone.0239413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
In arthropods, the cleavage of specific proteins by peptidases has pivotal roles in multiple physiological processes including oogenesis, immunity, nutrition, and parasitic infection. These enzymes are also key players in the larval development, and well-described triggers of molting and metamorphosis. In this work the peptidase complement throughout the larvae development of Penaeus vannamei was quantified at the transcript and activity level using qPCR and fluorogenic substrates designed to be hydrolyzed by class-specific peptidases respectively, providing a detailed identification of the proteolytic repertoire in P. vannamei larvae. Significant changes in the peptidase activity profile were observed. During the lecithotrophic naupliar instars, the dominant peptidase activity and expression derive from cysteine peptidases, suggesting that enzymes of this class hydrolyze the protein components of yolk as the primary amino acid source. At the first feeding instar, zoea, dominant serine peptidase activity was found where trypsin activity is particularly high, supporting previous observations that during zoea the breakdown of food protein is primarily enzymatic. At decapodid stages the peptidase expression and activity is more diverse indicating that a multienzyme network achieves food digestion. Our results suggest that proteolytic enzymes fulfill specific functions during P. vannamei larval development.
Collapse
Affiliation(s)
| | | | - Rogelio Romero
- Centro de Investigaciones Biológicas del Noroeste, México City, México
| | | |
Collapse
|
30
|
Wen D, Chen Z, Zhang Z, Jia Q. The expression, purification, and substrate analysis of matrix metalloproteinases in Drosophila melanogaster. Protein Expr Purif 2020; 171:105629. [PMID: 32201229 DOI: 10.1016/j.pep.2020.105629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are evolutionarily conserved extracellular matrix proteinases. Genetic analysis of the Drosophila MMPs, Mmp1 and Mmp2, in vivo reveal that they play vital roles in tissue remodeling. Although the catalytic domain (CD) undertakes most MMP functions, few studies have sought to demonstrate the biochemical properties of the CDs of fly MMPs. Here, we identified the overexpression, purification, and refolding of the CDs of Drosophila Mmp1 and Mmp2 for biochemical studies. Zymography assays and substrate degradation analysis showed that both Mmp1-CD and Mmp2-CD were able to digest casein, gelatin, fibronectin, collagen (types I, IV, and V), while Mmp2-CD showed much higher degradation activity compared with Mmp1-CD. Moreover, human collagen III could be degraded by Mmp1-CD but not Mmp2-CD, and rat collagen I and laminin could be degraded by Mmp2-CD but not Mmp1-CD, suggesting that Drosophila Mmp1 and Mmp2 might have overlapping yet distinct substrate specificity. Using synthetic fluorescent substrates, we further demonstrated that the enzymatic activity of Mmp1-CD and Mmp2-CD could be inhibited by human tissue inhibitors of metalloproteinases (TIMPs). These results reveal the context of the cooperative yet distinct roles of Mmp1 and Mmp2 in tissue remodeling.
Collapse
Affiliation(s)
- Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China
| | - Zeyan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
31
|
Sugar Alcohols of Polyol Pathway Serve as Alarmins to Mediate Local-Systemic Innate Immune Communication in Drosophila. Cell Host Microbe 2019; 26:240-251.e8. [PMID: 31350199 DOI: 10.1016/j.chom.2019.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022]
Abstract
Interorgan immunological communication is critical to connect the local-systemic innate immune response and orchestrate a homeostatic host defense. However, the factors and their roles in this process remain unclear. We find Drosophila IMD response in guts can sequentially trigger a systemic IMD reaction in the fat body. Sugar alcohols of the polyol pathway are essential for the spatiotemporal regulation of gut-fat body immunological communication (GFIC). IMD activation in guts causes elevated levels of sorbitol and galactitol in hemolymph. Aldose reductase (AR) in hemocytes, the rate-limiting enzyme of the polyol pathway, is necessary and sufficient for the increase of plasma sugar alcohols. Sorbitol relays GFIC by subsequent activation of Metalloprotease 2, which cleaves PGRP-LC to activate IMD response in fat bodies. Thus, this work unveils how GFIC relies on the intermediate activation of the polyol pathway in hemolymph and demonstrates that AR provides a critical metabolic checkpoint in the global inflammatory response.
Collapse
|
32
|
Beňová-Liszeková D, Beňo M, Farkaš R. A protocol for processing the delicate larval and prepupal salivary glands of Drosophila for scanning electron microscopy. Microsc Res Tech 2019; 82:1145-1156. [PMID: 30912875 DOI: 10.1002/jemt.23263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/16/2019] [Accepted: 03/10/2019] [Indexed: 11/05/2022]
Abstract
Although scanning electron microscopy (SEM) has been broadly used for the examination of fixed whole insects or their hard exoskeleton-derived structures, including model organisms such as Drosophila, the routine use of SEM to evaluate vulnerable soft internal organs and tissues was often hampered by their fragile nature and frequent surface contamination. Here, we describe a simple four-step protocol that allows for the reliable and reproducible preparation of the larval and prepupal salivary glands (SGs) of Drosophila for SEM devoid of any surface contamination. The steps are to: first, proteolytically digest the adhering fat body; second, use detergent washes to remove contaminating coarse tissue fragments, including sticky remnants of the fat body; third, use nonionic emulsifying polysorbate emulsifiers to remove fine contaminants from the SGs surface; and fourth, use aminopolycarboxylate-based chelating agents to detach sessile hemocytes. Short but repeated rinses in 100 μL of a saline-based buffer between steps ensure efficient removal of remnants removed by each treatment. After these steps, the SGs are fixed in glutaraldehyde, postfixed in osmium tetroxide, dehydrated, critically point-dried, mounted on aluminum stubs, sputter coated with gold-palladium alloy and examined in the SEM.
Collapse
Affiliation(s)
- Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
33
|
Abstract
The insect fat body is analogous to vertebrate adipose tissue and liver. In this review, the new and exciting advancements made in fat body biology in the last decade are summarized. Controlled by hormonal and nutritional signals, insect fat body cells undergo mitosis during embryogenesis, endoreplication during the larval stages, and remodeling during metamorphosis and regulate reproduction in adults. Fat body tissues are major sites for nutrient storage, energy metabolism, innate immunity, and detoxification. Recent studies have revealed that the fat body plays a central role in the integration of hormonal and nutritional signals to regulate larval growth, body size, circadian clock, pupal diapause, longevity, feeding behavior, and courtship behavior, partially by releasing fat body signals to remotely control the brain. In addition, the fat body has emerged as a fascinating model for studying metabolic disorders and immune diseases. Potential future directions for fat body biology are also proposed herein.
Collapse
Affiliation(s)
- Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Xiaoqiang Yu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, Guangdong 510631, China; , ,
| |
Collapse
|
34
|
Guo SY, Wu WM, Li SY, Liu Y, Ruan ZF, Ye MQ, Xiao Y, Zhong YJ, Cao Y, Li K, Tian L. 20-Hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction. INSECT MOLECULAR BIOLOGY 2018; 27:724-738. [PMID: 29888823 DOI: 10.1111/imb.12511] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During insect larval-pupal metamorphosis, the obsolete larval organs and tissues undergo histolysis and programmed cell death to recycle cellular materials. It has been demonstrated that some cathepsins are essential for histolysis in larval tissues, but the process of tissue destruction is not well documented. Fat body, the homologous organ to mammalian liver and adipose tissue, goes through a distinct destruction process during larval-pupal transition. Herein, we found that most of the Bombyx proteases - including Bombyx cathepsin B (BmCatB) (BmCatLL-2), Bombyx cathepsin D (BmCatD), Bombyx cathepsin L like-1 (BmCatLL-1) and -2(BmCatLL-2), Bombyx fibroinase (BmBcp), Bombyx matrix metalloprotease (BmMmp), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs 1 (BmAdamTS-1), Bombyx A disintegrin and metalloproteinase with thrombospondin motifs like (BmAdamTS L) and Bombyx cysteine protease inhibitor (Bmbcpi)- were expressed highly in fat body during feeding and metamorphosis, with a peak occurring during the nonfeeding moulting or prepupal stage, as well as being responsive to 20-hydroxyecdysone (20E). The aforementioned protease genes expression was upregulated by injection of 20E into the feeding larvae, while blocking 20E signalling transduction led to downregulation. Western blotting and immunofluorescent staining of BmCatB and BmBcp confirmed the coincident variation of their messenger RNA (mRNA) and protein level during the development and after the treatments. Moreover, BmCatB, BmBcp, BmMmp and BmAdamTS-1 RNA interference all led to blockage of larval fat body destruction. Taken together, we conclude that 20E regulates larval fat body destruction by upregulating related protease gene expression and protein levels during larval-pupal transition.
Collapse
Affiliation(s)
- S-Y Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - W-M Wu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - S-Y Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Liu
- Shanghai Generay Biotech Co. Ltd, Shanghai, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Z F Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M-Q Ye
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Y Xiao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y-J Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Y Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - K Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - L Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Comparative Transcriptome Analysis Provides Novel Insight into Morphologic and Metabolic Changes in the Fat Body during Silkworm Metamorphosis. Int J Mol Sci 2018; 19:ijms19113525. [PMID: 30423910 PMCID: PMC6274779 DOI: 10.3390/ijms19113525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022] Open
Abstract
The fat body plays key roles in energy storage and utilization as well as biosynthetic and metabolic activities in insects. During metamorphosis from larva to pupa, the fat body undergoes dramatic changes in morphology and metabolic processes. However, the genetic basis underlying these changes has not been completely understood. In this study, the authors performed a time-course transcriptome analysis of the fat body during silkworm metamorphosis using RNA-sequencing. A total of 5217 differentially expressed genes (DEGs) were identified in the fat body at different developmental time points. DEGs involved in lipid synthesis and degradation were highly expressed at the third day of the last larval instar and during the prepupal-pupal transition, respectively. DEGs involved in the ecdysone signaling and bone morphogenetic protein (BMP) signaling pathways that modulate organ development exhibited a high expression level during the fat body remodeling process from prepupa to pupa. Intriguingly, the RNA interference-mediated knockdown of either decapentaplegic (Dpp) or protein 60A (Gbb), two DEGs involved in the BMP signaling pathway, inhibited fat body dissociation but promoted lipid mobilization, suggesting that the BMP signaling pathway not only is required for fat body remodeling, but also moderately inhibits lipid mobilization to ensure an appropriate lipid supply during the pupal-adult transition. In conclusion, the comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis.
Collapse
|
36
|
Jia Q, Chen X, Wu L, Ruan Z, Li K, Li S. Matrix metalloproteinases promote fat body cell dissociation and ovary development in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:8-15. [PMID: 30300619 DOI: 10.1016/j.jinsphys.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Matrix metalloproteinases (Mmps) are pivotal extracellular proteinases participating in tissue remodeling. Three Mmps genes have been identified from the silkworm, Bombyx mori, and their expression levels and enzyme activity are consistent with progressive fat body cell dissociation during the early pupal stages. Using both loss-of-function and gain-of-function experiments, we have demonstrated that Mmps are functionally required for fat body cell dissociation and ovary development in female pupae. Moderate inhibition of Mmps activity via inhibitor treatments delayed fat body cell dissociation and ovary development, while severe inhibition blocked these developmental processes and eventually led to pupal lethality. Individual RNAi knockdown of each Mmp delayed fat body cell dissociation, with the strongest and weakest phenotypes occurring for Mmp3 and Mmp1, respectively. By contrast, overexpression of each Mmp promoted fat body cell dissociation and ovary development, with the strongest stimulatory effects for Mmp3 overexpression and the weakest effects for Mmp1 overexpression. This is the first time to show that Mmps induce fat body cell dissociation in Lepidoptera, and we also hypothesize that Mmps-induced fat body cell dissociation is required for ovary development in this insect species.
Collapse
Affiliation(s)
- Qiangqiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxi Chen
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lixian Wu
- Research Institute of Applied Biology and College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zifeng Ruan
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
37
|
DeVault L, Li T, Izabel S, Thompson-Peer KL, Jan LY, Jan YN. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2. Genes Dev 2018; 32:402-414. [PMID: 29563183 PMCID: PMC5900713 DOI: 10.1101/gad.308270.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/26/2018] [Indexed: 11/30/2022]
Abstract
DeVault et al. show that the capacity for regeneration was present in adult neurons but diminished as the animal aged. The regenerated dendrites showed preferential alignment with the extracellular matrix, and inhibition of matrix metalloproteinase 2 led to increased dendrite regeneration. Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging.
Collapse
Affiliation(s)
- Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Sarah Izabel
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
38
|
Yang CN, Wu MF, Liu CC, Jung WH, Chang YC, Lee WP, Shiao YJ, Wu CL, Liou HH, Lin SK, Chan CC. Differential protective effects of connective tissue growth factor against Aβ neurotoxicity on neurons and glia. Hum Mol Genet 2018; 26:3909-3921. [PMID: 29016849 DOI: 10.1093/hmg/ddx278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Impaired clearance of amyloid-β peptide (Aβ) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aβ uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aβ degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aβ deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aβ42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aβ neurotoxicity in the central nervous system.
Collapse
Affiliation(s)
- Cheng-Ning Yang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Fang Wu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Chung-Chih Liu
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Wei-Hung Jung
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chin Chang
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Young-Ji Shiao
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Horng-Huei Liou
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sze-Kwan Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, College of Medicine, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
39
|
Sun YX, Tang L, Wang P, Abbas MN, Tian JW, Zhu BJ, Liu CL. Cathepsin L-like protease can regulate the process of metamorphosis and fat body dissociation in Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:114-123. [PMID: 28958702 DOI: 10.1016/j.dci.2017.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Cathepsins are a group of protease, located in lysosome and play a vital role in physiological process. Here, we reported cathepsin L-like protease (Ap-cathL), which contained an open reading frame of 1155 bp and encoding 385 amino acid residues protein. The I29 inhibitor domain and peptidase C1A (clan CA of cysteine proteases, papain family C1 subfamily) putative conserved domains were detected in Ap-cathL. Quantitative real-time PCR (qRT-PCR) analysis revealed that Ap-cathL highly expressed in the fat body and midgut. The high expression during the molting stage, pupal stage and following 20E (20-hydroxyecdysone) treatment indicated that it maybe involved in the process of molting and metamorphosis. In addition, depletion of Ap-cathL influenced the expression of apoptosis pathway related genes. The protease inhibitor and RNA interference experiments showed that Ap-cathL was involved in the fat body dissociation of A. pernyi. These results suggest that Ap-cathL may involve in the process of metamorphosis and fat body dissociation of A. pernyi.
Collapse
Affiliation(s)
- Yu-Xuan Sun
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Lin Tang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Pei Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | | | - Ji-Wu Tian
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Bao-Jian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Chao-Liang Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
40
|
Deady LD, Li W, Sun J. The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles. eLife 2017; 6:29887. [PMID: 29256860 PMCID: PMC5768419 DOI: 10.7554/elife.29887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. The release of an egg from the ovary of a female animal is a process known as ovulation. Animals as different as humans and fruit flies ovulate in largely similar ways. Yet the systems involved in controlling ovulation are still not well understood. An egg cell develops within a collection of cells that help the egg to form properly. Together, this unit is called a follicle. During ovulation, connections between the egg and the rest of the follicle break down and the egg is eventually ejected. Ovulation happens in response to a hormone signal from the brain. In humans, this hormone is called luteinizing hormone, whereas in flies it is called octopamine. Specialized protein molecules on the surface of the follicle cells receive these hormone signals, but can only cause ovulation in mature follicles. It was not clear what allows only mature follicles to ovulate. Deady et al. have now used the fruit fly Drosophila melanogaster to examine ovulation to identify how the process is controlled. The results showed that a protein called Hindsight primes follicle cells for ovulation. When a follicle reaches its final stage (called stage 14 in flies), the gene for Hindsight becomes active and produces the protein. This protein then activates other genes. One of the activated genes makes a protein that receives the hormone signal, while another makes a protein that breaks down follicle cells and allows the egg to be released. The findings of Deady et al. reveal that Hindsight is needed for ovulation in flies. Further experiments then showed that the gene for equivalent human protein can be transplanted into flies and can still prime follicles for ovulation. This indicates that the genes in humans and flies may perform the same tasks. Studying ovulation is an important part of understanding female fertility and could help scientists to understand more about human reproduction. These results may also lead to new contraceptives and improved approaches for treating infertility.
Collapse
Affiliation(s)
- Lylah D Deady
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Wei Li
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States.,Institute for Systems Genomics, University of Connecticut, Connecticut, United States
| |
Collapse
|
41
|
Jia Q, Liu S, Wen D, Cheng Y, Bendena WG, Wang J, Li S. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. J Biol Chem 2017; 292:21504-21516. [PMID: 29118190 DOI: 10.1074/jbc.m117.818880] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Tissue remodeling is a crucial process in animal development and disease progression. Coordinately controlled by the two main insect hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), tissues are remodeled context-specifically during insect metamorphosis. We previously discovered that two matrix metalloproteinases (Mmps) cooperatively induce fat body cell dissociation in Drosophila However, the molecular events involved in this Mmp-mediated dissociation are unclear. Here we report that JH and 20E coordinately and precisely control the developmental timing of Mmp-induced fat body cell dissociation. We found that during the larval-prepupal transition, the anti-metamorphic factor Kr-h1 transduces JH signaling, which directly inhibited Mmp expression and activated expression of tissue inhibitor of metalloproteinases (timp) and thereby suppressed Mmp-induced fat body cell dissociation. We also noted that upon a decline in the JH titer, a prepupal peak of 20E suppresses Mmp-induced fat body cell dissociation through the 20E primary-response genes, E75 and Blimp-1, which inhibited expression of the nuclear receptor and competence factor βftz-F1 Moreover, upon a decline in the 20E titer, βftz-F1 expression was induced by the 20E early-late response gene DHR3, and then βftz-F1 directly activated Mmp expression and inhibited timp expression, causing Mmp-induced fat body cell dissociation during 6-12 h after puparium formation. In conclusion, coordinated signaling via JH and 20E finely tunes the developmental timing of Mmp-induced fat body cell dissociation. Our findings shed critical light on hormonal regulation of insect metamorphosis.
Collapse
Affiliation(s)
- Qiangqiang Jia
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Di Wen
- the Department of Life Science, Qiannan Normal College for Nationalities, Duyun, Guizhou 558000, China
| | - Yongxu Cheng
- the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - William G Bendena
- the Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Jian Wang
- the Department of Entomology, University of Maryland, College Park, Maryland 20742
| | - Sheng Li
- From the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China,
| |
Collapse
|
42
|
|
43
|
Dai J, Ma M, Feng Z, Pastor-Pareja JC. Inter-adipocyte Adhesion and Signaling by Collagen IV Intercellular Concentrations in Drosophila. Curr Biol 2017; 27:2729-2740.e4. [PMID: 28867208 DOI: 10.1016/j.cub.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023]
Abstract
Sheet-forming Collagen IV is the main component of basement membranes, which are planar polymers of extracellular matrix underlying epithelia and surrounding organs in all animals. Adipocytes in both insects and mammals are mesodermal in origin and often classified as mesenchymal. However, they form true tissues where cells remain compactly associated. Neither the mechanisms providing this tissue-level organization nor its functional significance are known. Here we show that discrete Collagen IV intercellular concentrations (CIVICs), distinct from basement membranes and thicker in section, mediate inter-adipocyte adhesion in Drosophila. Loss of these Collagen-IV-containing structures in the larval fat body caused intercellular gaps and disrupted continuity of the adipose tissue layer. We also found that Integrin and Syndecan matrix receptors attach adipocytes to CIVICs and direct their formation. Finally, we show that Integrin-mediated adhesion to CIVICs promotes normal adipocyte growth and prevents autophagy through Src-Pi3K-Akt signaling. Our results evidence a surprising non-basement membrane role of Collagen IV in non-epithelial tissue morphogenesis while demonstrating adhesion and signaling functions for these structures.
Collapse
Affiliation(s)
- Jianli Dai
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengqi Ma
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
44
|
Noncanonical Decapentaplegic Signaling Activates Matrix Metalloproteinase 1 To Restrict Hedgehog Activity and Limit Ectopic Eye Differentiation in Drosophila. Genetics 2017; 207:197-213. [PMID: 28696218 DOI: 10.1534/genetics.117.201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
One of the pertinent issues associated with cellular plasticity is to understand how the delicate balance between the determined state of cells and the extent to which they can transdetermine is maintained. Employing the well-established model of generating ectopic eyes in developing wing discs of Drosophila by ectopic eyeless expression, we provide evidence for the genetic basis of this mechanism. By both loss-of-function and gain-of-function genetic analyses, we demonstrate that Matrix metalloproteinase 1 (Mmp1) plays an important role in regulating the extent of ectopic ommatidial differentiation. Transcriptional activation of ectopic Mmp1 by the morphogen Decapentaplegic (Dpp) is not triggered by its canonical signaling pathway which involves Mad. Rather, Dpp activates an alternate cascade involving dTak1 and JNK, to induce ectopic Mmp1 expression. Mutational analyses reveal that Mmp1 negatively regulates ectopic eye differentiation by restricting the rate of proliferation and the levels of expression of retinal-determining genes dachshund and eyes absent This is primarily achieved by restricting the range of Hedgehog (Hh) signaling. Importantly, the increase in proliferation and upregulation of target retinal-determining genes, as observed upon attenuating Mmp1 activity, gets significantly rescued when ectopic eyes are generated in wing discs of hh heterozygous mutants. In conjunction with the previously established instructive and permissive roles of Dpp in facilitating ectopic eye differentiation in wing discs, the outcome of this study sheds light on a mechanism by which Dpp plays a dual role in modulating the delicate balance between the determined state of cells and the extent they can transdetermine.
Collapse
|
45
|
Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci Rep 2017; 7:44560. [PMID: 28300207 PMCID: PMC5353688 DOI: 10.1038/srep44560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are extracellular proteases that can cleave extracellular matrix and alter signaling pathways. They have been implicated in many disease states, but it has been difficult to understand the contribution of individual MMPs, as there are over 20 MMPs in vertebrates. The vertebrate MMPs have overlapping substrates, they exhibit genetic redundancy and compensation, and pharmacological inhibitors are non-specific. In contrast, there are only two MMP genes in Drosophila, DmMmp1 and DmMmp2, which makes Drosophila an attractive system to analyze the basis of MMP specificity. Previously, Drosophila MMPs have been categorized by their pericellular localization, as Mmp1 appeared to be secreted and Mmp2 appeared to be membrane-anchored, suggesting that protein localization was the critical distinction in this small MMP family. We report here that products of both genes are found at the cell surface and released into media. Additionally, we show that products of both genes contain GPI-anchors, and unexpectedly, that GPI-anchored MMPs promote cell adhesion when they are rendered inactive. Finally, by using new reagents and assays, we show that the two MMPs cleave different substrates, suggesting that this is the important distinction within this smallest MMP family.
Collapse
|
46
|
Raza QS, Vanderploeg JL, Jacobs JR. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development. PLoS One 2017; 12:e0171905. [PMID: 28192468 PMCID: PMC5305246 DOI: 10.1371/journal.pone.0171905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/28/2017] [Indexed: 01/10/2023] Open
Abstract
Matrix Metalloproteinases (Mmps) degrade glycoproteins and proteoglycans of the extracellular matrix (ECM) or cell surface and are crucial for morphogenesis. Mmps and their inhibitors are expressed during early stages of cardiac development in vertebrates and expression is altered in multiple congenital cardiomyopathies such as cardia bifida. Drosophila genome encodes two copies of Mmps, Mmp1 and Mmp2 whereas in humans up to 25 Mmps have been identified with overlapping functions. We investigated the role of Mmps during embryonic heart development in Drosophila, a process which is morphogenetically similar to early heart tube formation in vertebrates. We demonstrate that the two Mmps in Drosophila have distinct and overlapping roles in cell motility, cell adhesion and cardiac lumenogenesis. We determined that Mmp1 and Mmp2 promote Leading Edge membrane dynamics of cardioblasts during collective migration. Mmp2 is essential for cardiac lumen formation, and mutants generate a cardia bifida phenotype. Mmp1 is required for luminal expansion. Mmp1 and Mmp2 both localise to the basal domains of cardiac cells, however, occupy non-overlapping domains apically. Mmp1 and Mmp2 regulate the proteoglycan composition and size of the apical and basal ECM, yet only Mmp2 is required to restrict ECM assembly to the lumen. Mmp1 negatively regulates the size of the adhesive Cadherin cell surface domain, whereas in a complementary fashion, Mmp2 negatively regulates the size of the Integrin-ECM domain and thereby prescribes the domain to establish and restrict Slit morphogen signalling. Inhibition of Mmp activity through ectopic expression of Tissue Inhibitor of Metalloproteinase in the ectoderm blocks lumen formation. Therefore, Mmp expression and function identifies ECM differentiation and remodelling as a key element for cell polarisation and organogenesis.
Collapse
Affiliation(s)
- Qanber S. Raza
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | | - J. Roger Jacobs
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Zheng H, Yang X, Xi Y. Fat body remodeling and homeostasis control in Drosophila. Life Sci 2016; 167:22-31. [DOI: 10.1016/j.lfs.2016.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 11/29/2022]
|
48
|
Parkinson WM, Dookwah M, Dear ML, Gatto CL, Aoki K, Tiemeyer M, Broadie K. Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model. Dis Model Mech 2016; 9:513-27. [PMID: 26940433 PMCID: PMC4892659 DOI: 10.1242/dmm.022939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies. Drosophila Collection: This work generates a new Drosophila congenital disorder of glycosylation model for the most common disease category, caused by phosphomannomutase-2 mutation, and reveals a synaptic mechanism underlying associated neurological impairments.
Collapse
Affiliation(s)
- William M Parkinson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA
| | - Mary Lynn Dear
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Cheryl L Gatto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
49
|
Dear ML, Dani N, Parkinson W, Zhou S, Broadie K. Two classes of matrix metalloproteinases reciprocally regulate synaptogenesis. Development 2015; 143:75-87. [PMID: 26603384 DOI: 10.1242/dev.124461] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
Synaptogenesis requires orchestrated intercellular communication between synaptic partners, with trans-synaptic signals necessarily traversing the extracellular synaptomatrix separating presynaptic and postsynaptic cells. Extracellular matrix metalloproteinases (Mmps) regulated by secreted tissue inhibitors of metalloproteinases (Timps), cleave secreted and membrane-associated targets to sculpt the extracellular environment and modulate intercellular signaling. Here, we test the roles of Mmp at the neuromuscular junction (NMJ) model synapse in the reductionist Drosophila system, which contains just two Mmps (secreted Mmp1 and GPI-anchored Mmp2) and one secreted Timp. We found that all three matrix metalloproteome components co-dependently localize in the synaptomatrix and show that both Mmp1 and Mmp2 independently restrict synapse morphogenesis and functional differentiation. Surprisingly, either dual knockdown or simultaneous inhibition of the two Mmp classes together restores normal synapse development, identifying a reciprocal suppression mechanism. The two Mmp classes co-regulate a Wnt trans-synaptic signaling pathway modulating structural and functional synaptogenesis, including the GPI-anchored heparan sulfate proteoglycan (HSPG) Wnt co-receptor Dally-like protein (Dlp), cognate receptor Frizzled-2 (Frz2) and Wingless (Wg) ligand. Loss of either Mmp1 or Mmp2 reciprocally misregulates Dlp at the synapse, with normal signaling restored by co-removal of both Mmp classes. Correcting Wnt co-receptor Dlp levels in both Mmp mutants prevents structural and functional synaptogenic defects. Taken together, these results identify an Mmp mechanism that fine-tunes HSPG co-receptor function to modulate Wnt signaling to coordinate synapse structural and functional development.
Collapse
Affiliation(s)
- Mary Lynn Dear
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Neil Dani
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Scott Zhou
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| |
Collapse
|