1
|
Abdelnaser RA, Hiyoshi M, Takahashi N, Eltalkhawy YM, Mizuno H, Kimura S, Hase K, Ohno H, Monde K, Ono A, Suzu S. Identification of TNFAIP2 as a unique cellular regulator of CSF-1 receptor activation. Life Sci Alliance 2025; 8:e202403032. [PMID: 39939179 PMCID: PMC11821806 DOI: 10.26508/lsa.202403032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
The receptor of CSF-1 (CSF1R) encoding tyrosine kinase is essential for tissue macrophage development, and the therapeutic target for many tumors. However, it is not completely understood how CSF1R activation is regulated. Here, we identify the cellular protein TNF-α-induced protein 2 (TNFAIP2) as a unique regulator of CSF1R. CSF1R forms large aggregates in macrophages via unknown mechanisms. The inhibition or knockdown of TNFAIP2 reduced CSF1R aggregate formation and functional response of macrophages to CSF-1, which was consistent with reduced CSF1R activation after CSF-1 stimulation. When expressed in 293 cells, TNFAIP2 augmented CSF1R aggregate formation and CSF-1-induced CSF1R activation. CSF1R and TNFAIP2 bind the cellular phosphatidylinositol 4,5-bisphosphate (PIP2). The removal of the PIP2-binding motif of CSF1R or TNFAIP2, or the depletion of cellular PIP2 reduced CSF1R aggregate formation. Moreover, TNFAIP2 altered the cellular distribution of PIP2. Because CSF-1-induced dimerization of CSF1R is critical for its activation, our findings suggest that TNFAIP2 augments CSF1R aggregate formation via PIP2, which brings CSF1R monomers close to each other and enables the efficient dimerization and activation of CSF1R in response to CSF-1.
Collapse
Affiliation(s)
- Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
de Souza Cardoso R, Murakami T, Jacobovitz B, Veatch SL, Ono A. PIP 2 promotes the incorporation of CD43, PSGL-1, and CD44 into nascent HIV-1 particles. SCIENCE ADVANCES 2025; 11:eads9711. [PMID: 40184445 PMCID: PMC11970457 DOI: 10.1126/sciadv.ads9711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Determinants regulating sorting of host transmembrane proteins at sites of enveloped virus assembly on the plasma membrane (PM) remain poorly understood. Here, we demonstrate that the PM acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates this sorting into an enveloped virus, HIV-1. Incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles has profound effects on viral spread; however, the mechanisms promoting their incorporation were unknown. We found that depletion of cellular PIP2 blocks incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles. Expansion microscopy revealed that PIP2 depletion diminishes nanoscale coclustering between viral structural protein Gag and the three transmembrane proteins at the PM and that Gag induces PIP2 enrichment at its vicinity. CD43, PSGL-1, and CD44 also increased local PIP2 density, revealing their PIP2 affinity. Together, these results support a previously unknown mechanism where local enrichment of an acidic phospholipid drives coclustering between viral structural and cellular transmembrane proteins, thereby modulating the content, and hence the fate, of progeny virus particles.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Binyamin Jacobovitz
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah L. Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
4
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2025; 21:912-932. [PMID: 39494590 PMCID: PMC11780748 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Iris E. Kalenderoglou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Anna L. Duncan
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Robin A. Corey
- School of
Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K.
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Antonios Kolocouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
| |
Collapse
|
5
|
Singh PK, Rybak JA, Schuck RJ, Sahoo AR, Buck M, Barrera FN, Smith AW. Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes. SCIENCE ADVANCES 2024; 10:eadl0649. [PMID: 39630914 PMCID: PMC11616708 DOI: 10.1126/sciadv.adl0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here, we use a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated heteromultimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol 4,5-bisphosphate (PIP2). We found that higher PIP2 levels increased homomultimerization of both EGFR and EphA2, as well as heteromultimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP2 can have a substantial effect on the spatial organization of RTKs.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Jennifer A. Rybak
- Genome Sciences and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J. Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amita R. Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam W. Smith
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| |
Collapse
|
6
|
Abe M, Yanagawa M, Hiroshima M, Kobayashi T, Sako Y. Bilateral regulation of EGFR activity and local PI(4,5)P 2 dynamics in mammalian cells observed with superresolution microscopy. eLife 2024; 13:e101652. [PMID: 39513999 PMCID: PMC11548882 DOI: 10.7554/elife.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku UniversitySendaiJapan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de PharmacieIllkirchFrance
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
7
|
Veretenenko II, Trofimov YA, Krylov NA, Efremov RG. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184376. [PMID: 39111381 DOI: 10.1016/j.bbamem.2024.184376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Lateral heterogeneity, or mosaicity, is a fundamental property inherent to cell membranes that is crucial for their functioning. While microscopic inhomogeneities (e.g. rafts) are easily detected experimentally, lipid domains with nanoscale dimensions (nanoclusters of nanodomains, NDs) resist reliable characterization by instrumental methods. In such a case, important insight can be gained via computer modeling. Here, NDs composed of lipid's head groups in the mixed zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylserine (DOPS) bilayers were studied by molecular dynamics. A new algorithm has been developed to identify NDs. Unlike most similar methods, it implicitly considers the heterogeneous distribution of lipid head atomic density and does not require subjectively chosen parameters. In DOPS-rich membranes, lipids form more compact and stable NDs due to strong interlipid interactions. In DOPC-rich systems, NDs arise due to the "packing" effect of weakly bound lipid heads. The clustering picture is related to the physical properties of the bilayer surface: DOPS-rich systems show more pronounced surface heterogeneity of hydrophilic/hydrophobic regions compared to DOPC-rich ones. The results obtained are important for the effective quantitative characterization of the "dynamic molecular portrait" of a membrane surface - its "fingerprint" characterizing dynamical distribution of its physicochemical properties.
Collapse
Affiliation(s)
- Irina I Veretenenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia.
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow region 141701, Russia; National Research University Higher School of Economics, Moscow 101000, Russia.
| |
Collapse
|
8
|
de Souza Cardoso R, Murakami T, Jacobovitz B, Veatch SL, Ono A. PIP2 promotes the incorporation of CD43, PSGL-1 and CD44 into nascent HIV-1 particles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611432. [PMID: 39282414 PMCID: PMC11398503 DOI: 10.1101/2024.09.05.611432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Determinants regulating sorting of host transmembrane proteins at sites of enveloped virus assembly on the plasma membrane (PM) remain poorly understood. Here, we demonstrate for the first time that PM acidic phospholipid PIP2 regulates such sorting into an enveloped virus, HIV-1. Incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles is known to have profound effects on viral spread; however, the mechanisms promoting their incorporation were unknown. We found that depletion of cellular PIP2 blocks the incorporation of CD43, PSGL-1, and CD44 into HIV-1 particles. Expansion microscopy revealed that PIP2 depletion diminishes nanoscale co-clustering between viral structural protein Gag and the three transmembrane proteins at PM and that Gag induces PIP2 enrichment around itself. CD43, PSGL-1, and CD44 also increased local PIP2 density, revealing their PIP2 affinity. Altogether, these results support a new mechanism where local enrichment of an acidic phospholipid drives co-clustering between viral structural and cellular transmembrane proteins, thereby modulating the content, and hence the fate, of progeny virus particles.
Collapse
Affiliation(s)
- Ricardo de Souza Cardoso
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Sarah L Veatch
- BRCF Microscopy Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Wu Z, Li L, Zhu L, Wang R, Dong Y, Zhang Y, Wang Y, Wang J, Zhu L. Structural determinants for membrane binding of the EGFR juxtamembrane domain. FEBS Lett 2024; 598:1402-1410. [PMID: 38589226 DOI: 10.1002/1873-3468.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Overactivation of the epidermal growth factor receptor (EGFR) is critical for the development of multiple cancers. Previous studies have shown that the cell membrane is a key regulator of EGFR kinase activity through its interaction with the EGFR juxtamembrane domain (JM). However, the lipid recognition specificity of EGFR-JM and its interaction details remain unclear. Using lipid strip and liposome pulldown assays, we showed that EGFR-JM could specifically interact with PI(4,5)P2-or phosphatidylserine-containing membranes. We further characterized the JM-membrane interaction using NMR-titration-based chemical shift perturbation and paramagnetic relaxation enhancement analyses, and found that residues I649 - L659 comprised the membrane-binding site. Furthermore, the membrane-binding region contains the predicted dimerization motif of JM, 655LRRLL659, suggesting that membrane binding may affect JM dimerization and, therefore, regulate kinase activation.
Collapse
Affiliation(s)
- Ziwei Wu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Ling Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lina Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Runhan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yingkui Dong
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yaoyao Zhang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Yujuan Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lei Zhu
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- University of Science and Technology of China, Hefei, China
| |
Collapse
|
11
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
12
|
Lin CC, Suen KM, Lidster J, Ladbury JE. The emerging role of receptor tyrosine kinase phase separation in cancer. Trends Cell Biol 2024; 34:371-379. [PMID: 37777392 DOI: 10.1016/j.tcb.2023.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Receptor tyrosine kinase (RTK)-mediated signal transduction is fundamental to cell function and drives important cellular outcomes which, when dysregulated, can lead to malignant tumour growth and metastasis. The initiation of signals from plasma membrane-bound RTKs is subjected to multiple regulatory mechanisms that control downstream effector protein recruitment and function. The high propensity of RTKs to condense via liquid-liquid phase separation (LLPS) into membraneless organelles with downstream effector proteins provides a further fundamental mechanism for signal regulation. Herein we highlight how this phenomenon contributes to cancer signalling and consider the potential impact of LLPS on outcomes for cancer patients.
Collapse
Affiliation(s)
- Chi-Chuan Lin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Kin Man Suen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jessica Lidster
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
13
|
Flores KA, Pérez-Moreno JL, Durica DS, Mykles DL. Phylogenetic and transcriptomic characterization of insulin and growth factor receptor tyrosine kinases in crustaceans. Front Endocrinol (Lausanne) 2024; 15:1379231. [PMID: 38638139 PMCID: PMC11024359 DOI: 10.3389/fendo.2024.1379231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.
Collapse
Affiliation(s)
- Kaylie A. Flores
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, United States
| |
Collapse
|
14
|
Vincenzi M, Mercurio FA, Leone M. EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections. Curr Med Chem 2024; 31:5670-5701. [PMID: 37828671 DOI: 10.2174/0109298673256638231003111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS EphA2 assumes a key role in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| |
Collapse
|
15
|
Tzortzini E, Kolocouris A. Molecular Biophysics of Class A G Protein Coupled Receptors-Lipids Interactome at a Glance-Highlights from the A 2A Adenosine Receptor. Biomolecules 2023; 13:957. [PMID: 37371538 DOI: 10.3390/biom13060957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.
Collapse
Affiliation(s)
- Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
16
|
Araya-Secchi R, Bugge K, Seiffert P, Petry A, Haxholm GW, Lindorff-Larsen K, Pedersen SF, Arleth L, Kragelund BB. The prolactin receptor scaffolds Janus kinase 2 via co-structure formation with phosphoinositide-4,5-bisphosphate. eLife 2023; 12:e84645. [PMID: 37232489 PMCID: PMC10260020 DOI: 10.7554/elife.84645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/24/2023] [Indexed: 05/27/2023] Open
Abstract
Class 1 cytokine receptors transmit signals through the membrane by a single transmembrane helix to an intrinsically disordered cytoplasmic domain that lacks kinase activity. While specific binding to phosphoinositides has been reported for the prolactin receptor (PRLR), the role of lipids in PRLR signaling is unclear. Using an integrative approach combining nuclear magnetic resonance spectroscopy, cellular signaling experiments, computational modeling, and simulation, we demonstrate co-structure formation of the disordered intracellular domain of the human PRLR, the membrane constituent phosphoinositide-4,5-bisphosphate (PI(4,5)P2) and the FERM-SH2 domain of the Janus kinase 2 (JAK2). We find that the complex leads to accumulation of PI(4,5)P2 at the transmembrane helix interface and that the mutation of residues identified to interact specifically with PI(4,5)P2 negatively affects PRLR-mediated activation of signal transducer and activator of transcription 5 (STAT5). Facilitated by co-structure formation, the membrane-proximal disordered region arranges into an extended structure. We suggest that the co-structure formed between PRLR, JAK2, and PI(4,5)P2 locks the juxtamembrane disordered domain of the PRLR in an extended structure, enabling signal relay from the extracellular to the intracellular domain upon ligand binding. We find that the co-structure exists in different states which we speculate could be relevant for turning signaling on and off. Similar co-structures may be relevant for other non-receptor tyrosine kinases and their receptors.
Collapse
Affiliation(s)
- Raul Araya-Secchi
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
- Facultad de Ingenieria Arquitectura y Diseño, Universidad San SebastianSantiagoChile
| | - Katrine Bugge
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Amalie Petry
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Gitte W Haxholm
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Lise Arleth
- Structural Biophysics, Section for Neutron and X-ray Science, Niels Bohr Institute, University of CopenhagenCopenhagenDenmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab), Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
17
|
Aarhus TI, Eickhoff J, Klebl B, Unger A, Boros J, Choidas A, Zischinsky ML, Wolowczyk C, Bjørkøy G, Sundby E, Hoff BH. A highly selective purine-based inhibitor of CSF1R potently inhibits osteoclast differentiation. Eur J Med Chem 2023; 255:115344. [PMID: 37141705 DOI: 10.1016/j.ejmech.2023.115344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) plays an important role in the regulation of many inflammatory processes, and overexpression of the kinase is implicated in several disease states. Identifying selective, small-molecule inhibitors of CSF1R may be a crucial step toward treating these disorders. Through modelling, synthesis, and a systematic structure-activity relationship study, we have identified a number of potent and highly selective purine-based inhibitors of CSF1R. The optimized 6,8-disubstituted antagonist, compound 9, has enzymatic IC50 of 0.2 nM, and displays a strong affinity toward the autoinhibited form of CSF1R, contrasting that of other previously reported inhibitors. As a result of its binding mode, the inhibitor shows excellent selectivity (Selectivity score: 0.06), evidenced by profiling towards a panel of 468 kinases. In cell-based assays, this inhibitor shows dose-dependent blockade of CSF1-mediated downstream signalling in murine bone marrow-derived macrophages (IC50 = 106 nM) as well as disruption of osteoclast differentiation at nanomolar levels. In vivo experiments, however, indicate that improve metabolic stability is needed in order to further progress this compound class.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Joanna Boros
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
18
|
Proteome-Wide Detection and Annotation of Receptor Tyrosine Kinases (RTKs): RTK-PRED and the TyReK Database. Biomolecules 2023; 13:biom13020270. [PMID: 36830638 PMCID: PMC9953206 DOI: 10.3390/biom13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) form a highly important group of protein receptors of the eukaryotic cell membrane. They control many vital cellular functions and are involved in the regulation of complex signaling networks. Mutations in RTKs have been associated with different types of cancers and other diseases. Although they are very important for proper cell function, they have been experimentally studied in a limited range of eukaryotic species. Currently, there is no available database for RTKs providing information about their function, expression, and interactions. Therefore, the identification of RTKs in multiple organisms, the documentation of their characteristics, and the collection of related information would be very useful. In this paper, we present a novel RTK detection pipeline (RTK-PRED) and the Receptor Tyrosine Kinases Database (TyReK-DB). RTK-PRED combines profile HMMs with transmembrane topology prediction to identify and classify potential RTKs. Proteins of all eukaryotic reference proteomes of the UniProt database were used as input in RTK-PRED leading to a filtered dataset of 20,478 RTKs. Based on the information collected for these RTKs from multiple databases, the relational TyReK database was created.
Collapse
|
19
|
Keller F, Alavizargar A, Wedlich-Söldner R, Heuer A. The impact of bilayer composition on the dimerization properties of the Slg1 stress sensor TMD from a multiscale analysis. Phys Chem Chem Phys 2023; 25:1299-1309. [PMID: 36533706 DOI: 10.1039/d2cp03497b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The impact of mutual interactions between the transmembrane domains of membrane proteins and lipids on bilayer properties has gained major attraction. Most simulation studies of membranes rely on the Martini force field, which has proven extremely helpful in providing molecular insights into realistic systems. Accordingly, an evaluation of the accuracy of the Martini force field is crucial to be able to correctly interpret the reported data. In this study, we combine atomistic and coarse-grained Martini simulations to investigate the properties of transmembrane domains (TMDs) in a model yeast membrane. The results show that the TMD binding state (monomeric and dimeric with positive or negative crossing angle) and the membrane composition significantly influence the properties around the TMDs and change TMD-TMD and TMD-lipid affinities. Furthermore, ergosterol (ERG) exhibits a strong affinity to TMD dimers. Importantly, the right-handed TMD dimer configuration is stabilized via TMD-TMD contacts by the addition of asymmetric anionic phosphatidylserine (PS). The coarse-grained simulations corroborate many of these findings, with two notable exceptions: a systematic overestimation of TMD-ERG interaction and lack of stabilization of the right-handed TMD dimers with the addition of PS.
Collapse
Affiliation(s)
- Fabian Keller
- Institut für Physikalische Chemie, Corrensstraße 28, Münster, Germany.
| | | | | | - Andreas Heuer
- Institut für Physikalische Chemie, Corrensstraße 28, Münster, Germany.
| |
Collapse
|
20
|
徐 茂, 姜 雨, 姚 青, 于 栋. [Research progress on non-surgical treatment of vestibular schwannomas]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:971-976. [PMID: 36543410 PMCID: PMC10128271 DOI: 10.13201/j.issn.2096-7993.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 12/24/2022]
Abstract
At present, the main treatment for vestibular schwannomas is surgery. Considering the risk of multiple complications from surgery and the subjective and objective conditions of patients, a non-surgical treatment modality, namely stereotactic radiotherapy, has gradually been included in the treatment of vestibular schwannomas. Studies have shown that Gamma Knife therapy has a more prominent therapeutic effect on smaller tumors and can alleviate facial nerve disorders caused by space occupying of tumor mass. Cyberknife not only has a better effect on tumor control, but also has an ideal retention rate for patients' auditory function. Proton beam therapy has also been gradually applied to the treatment of vestibular schwannomas, but the effect of treatment remains to be further studied. Drug therapy includes a variety of target inhibitors and anti-angiogenic drugs. At present, drug treatment focuses more on preclinical research. This article reviews the clinical research of various radiotherapy and the progress of drug treatment.
Collapse
Affiliation(s)
- 茂翔 徐
- 上海市第六人民医院耳鼻咽喉头颈外科(上海, 200233)Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - 雨萌 姜
- 上海市第六人民医院耳鼻咽喉头颈外科(上海, 200233)Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - 青秀 姚
- 上海市第六人民医院耳鼻咽喉头颈外科(上海, 200233)Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - 栋祯 于
- 上海市第六人民医院耳鼻咽喉头颈外科(上海, 200233)Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| |
Collapse
|
21
|
Sandoval-Pérez A, Winger BA, Jacobson MP. Assessing the Activation of Tyrosine Kinase KIT through Free Energy Calculations. J Chem Theory Comput 2022; 18:6251-6258. [PMID: 36166736 PMCID: PMC9558371 DOI: 10.1021/acs.jctc.2c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KIT is a type 3 receptor tyrosine kinase that plays a crucial role in cellular growth and proliferation. Mutations in KIT can dysregulate its active-inactive equilibrium. Activating mutations drive cancer growth, while deactivating mutations result in the loss of skin and hair pigmentation in a disease known as piebaldism. Here, we propose a method based on molecular dynamics and free energy calculations to predict the functional effect of KIT mutations. Our calculations may have important clinical implications by defining the functional significance of previously uncharacterized KIT mutations and guiding targeted therapy.
Collapse
Affiliation(s)
- Angélica Sandoval-Pérez
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco 94158, California, United States
| | - Beth Apsel Winger
- Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, San Francisco 94158, California, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco 94158, California, United States
| |
Collapse
|
22
|
Le Huray KIP, Wang H, Sobott F, Kalli AC. Systematic simulation of the interactions of pleckstrin homology domains with membranes. SCIENCE ADVANCES 2022; 8:eabn6992. [PMID: 35857458 PMCID: PMC9258823 DOI: 10.1126/sciadv.abn6992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Pleckstrin homology (PH) domains can recruit proteins to membranes by recognition of phosphatidylinositol phosphate (PIP) lipids. Several family members are linked to diseases including cancer. We report the systematic simulation of the interactions of 100 mammalian PH domains with PIP-containing membranes. The observed PIP interaction hotspots recapitulate crystallographic binding sites and reveal a number of insights: (i) The β1 and β2 strands and their connecting loop constitute the primary PIP interaction site but are typically supplemented by interactions at the β3-β4 and β5-β6 loops; (ii) we reveal exceptional cases such as the Exoc8 PH domain; (iii) PH domains adopt different membrane-bound orientations and induce clustering of anionic lipids; and (iv) beyond family-level insights, our dataset sheds new light on individual PH domains, e.g., by providing molecular detail of secondary PIP binding sites. This work provides a global view of PH domain/membrane association involving multivalent association with anionic lipids.
Collapse
Affiliation(s)
- Kyle I. P. Le Huray
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - He Wang
- School of Computing, University of Leeds, Leeds, UK
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C. Kalli
- Astbury Centre for Structural and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
It Takes More than Two to Tango: Complex, Hierarchal, and Membrane-Modulated Interactions in the Regulation of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14040944. [PMID: 35205690 PMCID: PMC8869822 DOI: 10.3390/cancers14040944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The search for an understanding of how cell fate and motility are regulated is not a purely scientific undertaking, but it can also lead to rationally designed therapies against cancer. The discovery of tyrosine kinases about half a century ago, the subsequent characterization of certain transmembrane receptors harboring tyrosine kinase activity, and their connection to the development of human cancer ushered in a new age with the hope of finding a treatment for malignant diseases in the foreseeable future. However, painstaking efforts were required to uncover the principles of how these receptors with intrinsic tyrosine kinase activity are regulated. Developments in molecular and structural biology and biophysical approaches paved the way towards better understanding of these pathways. Discoveries in the past twenty years first resulted in the formulation of textbook dogmas, such as dimerization-driven receptor association, which were followed by fine-tuning the model. In this review, the role of molecular interactions taking place during the activation of receptor tyrosine kinases, with special attention to the epidermal growth factor receptor family, will be discussed. The fact that these receptors are anchored in the membrane provides ample opportunities for modulatory lipid-protein interactions that will be considered in detail in the second part of the manuscript. Although qualitative and quantitative alterations in lipids in cancer are not sufficient in their own right to drive the malignant transformation, they both contribute to tumor formation and also provide ways to treat cancer. The review will be concluded with a summary of these medical aspects of lipid-protein interactions.
Collapse
|
24
|
Li M, Xu Y, Guo J. Insights into the negative regulation of EGFR upon the binding of an allosteric inhibitor. Chem Biol Drug Des 2022; 99:650-661. [DOI: 10.1111/cbdd.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Miaomiao Li
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Yan Xu
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Jingjing Guo
- College of Life Sciences Nanjing Agricultural University Nanjing 210095 China
| |
Collapse
|
25
|
Structural Insight and Development of EGFR Tyrosine Kinase Inhibitors. Molecules 2022; 27:molecules27030819. [PMID: 35164092 PMCID: PMC8838133 DOI: 10.3390/molecules27030819] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has a high prevalence, with a growing number of new cases and mortality every year. Furthermore, the survival rate of patients with non-small-cell lung carcinoma (NSCLC) is still quite low in the majority of cases. Despite the use of conventional therapy such as tyrosine kinase inhibitor for Epidermal Growth Factor Receptor (EGFR), which is highly expressed in most NSCLC cases, there was still no substantial improvement in patient survival. This is due to the drug’s ineffectiveness and high rate of resistance among individuals with mutant EGFR. Therefore, the development of new inhibitors is urgently needed. Understanding the EGFR structure, including its kinase domain and other parts of the protein, and its activation mechanism can accelerate the discovery of novel compounds targeting this protein. This study described the structure of the extracellular, transmembrane, and intracellular domains of EGFR. This was carried out along with identifying the binding pose of commercially available inhibitors in the ATP-binding and allosteric sites, thereby clarifying the research gaps that can be filled. The binding mechanism of inhibitors that have been used clinically was also explained, thereby aiding the structure-based development of new drugs.
Collapse
|
26
|
Buyan A, Corry B. Initiating Coarse-Grained MD Simulations for Membrane-Bound Proteins. Methods Mol Biol 2022; 2402:131-141. [PMID: 34854041 DOI: 10.1007/978-1-0716-1843-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics (MD) simulations have become a widely used tool in the scientific community for understanding molecular scale phenomena that are challenging to address with wet-lab techniques. Coarse-grained simulations, in which multiple atoms are combined into single beads, allow for larger systems and longer time scales to be explored than atomistic techniques. Here, we describe the procedures and equipment required to set up coarse-grained simulations of membrane-bound proteins in a lipid bilayer that can mimic many membrane environments.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Devi M, Verma I, Pal SK. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface. Analyst 2021; 146:7152-7159. [PMID: 34734590 DOI: 10.1039/d1an01444g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfaces formed between a lipid decorated liquid crystal (LC) film and an aqueous phase can mimic the bimolecular membrane where interfacially occurring biological phenomena (e.g., lipid-protein interactions, protein adsorption) can be visually monitored by observing the surface-sensitive orientations of LCs. The ordering behavior of LCs at different phospholipid-based LC interfaces (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and lysophosphatidic acid (LPA)) were investigated to determine the sensing of an important cytoplasmic protein (juxtamembrane of epidermal growth factor receptor (JM-EGFR)). At both DLPC and LPA decorated interfaces, the LC adopts homeotropic ordering, causing a dark optical appearance under crossed polarizers. Interestingly, upon the introduction of JM-EGFR to these LC-aqueous interfaces, the homeotropic orientation of the LC changed to planar (bright optical appearance), suggesting the potential of the designed system for JM-EGFR sensing. The use of different lipid decorated LC-aqueous interfaces results in the emergence of distinct optical patterns. For example, at a DLPC laden interface, elongated bright domains are observed, whereas a uniform bright texture is observed on an LPA laden interface. The DLPC decorated LC-aqueous interface is found to be highly selective for the sensing of JM-EGFR with a detection limit in the nanomolar concentration region (∼ 50 nM). When compared to spectroscopic and other conventional techniques, the LC-based design is simpler, and it allows the simple and label-free optical sensing of JM-EGFR at fluidic interfaces.
Collapse
Affiliation(s)
- Manisha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Indu Verma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
28
|
Sahoo AR, Buck M. Structural and Functional Insights into the Transmembrane Domain Association of Eph Receptors. Int J Mol Sci 2021; 22:ijms22168593. [PMID: 34445298 PMCID: PMC8395321 DOI: 10.3390/ijms22168593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/04/2022] Open
Abstract
Eph receptors are the largest family of receptor tyrosine kinases and by interactions with ephrin ligands mediate a myriad of processes from embryonic development to adult tissue homeostasis. The interaction of Eph receptors, especially at their transmembrane (TM) domains is key to understanding their mechanism of signal transduction across cellular membranes. We review the structural and functional aspects of EphA1/A2 association and the techniques used to investigate their TM domains: NMR, molecular modelling/dynamics simulations and fluorescence. We also introduce transmembrane peptides, which can be used to alter Eph receptor signaling and we provide a perspective for future studies.
Collapse
Affiliation(s)
- Amita R. Sahoo
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA;
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
29
|
Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans 2021; 49:1685-1694. [PMID: 34346484 DOI: 10.1042/bst20201074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.
Collapse
|
30
|
Prakaash D, Cook GP, Acuto O, Kalli AC. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLoS Comput Biol 2021; 17:e1009232. [PMID: 34280187 PMCID: PMC8321403 DOI: 10.1371/journal.pcbi.1009232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/29/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
The T cell receptor (TCR-CD3) initiates T cell activation by binding to peptides of Major Histocompatibility Complexes (pMHC). The TCR-CD3 topology is well understood but the arrangement and dynamics of its cytoplasmic tails remains unknown, limiting our grasp of the signalling mechanism. Here, we use molecular dynamics simulations and modelling to investigate the entire TCR-CD3 embedded in a model membrane. Our study demonstrates conformational changes in the extracellular and transmembrane domains, and the arrangement of the TCR-CD3 cytoplasmic tails. The cytoplasmic tails formed highly interlaced structures while some tyrosines within the immunoreceptor tyrosine-based activation motifs (ITAMs) penetrated the hydrophobic core of the membrane. Interactions between the cytoplasmic tails and phosphatidylinositol phosphate lipids in the inner membrane leaflet led to the formation of a distinct anionic lipid fingerprint around the TCR-CD3. These results increase our understanding of the TCR-CD3 dynamics and the importance of membrane lipids in regulating T cell activation.
Collapse
Affiliation(s)
- Dheeraj Prakaash
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Medical Research at St James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Oreste Acuto
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Antreas C. Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021; 10:cells10051191. [PMID: 34068055 PMCID: PMC8152464 DOI: 10.3390/cells10051191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.
Collapse
|
32
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers (Basel) 2021; 13:1685. [PMID: 33918490 PMCID: PMC8038208 DOI: 10.3390/cancers13071685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| |
Collapse
|
33
|
Biochemical and NMR characterization of the interactions of Vav2-SH2 domain with lipids and the EphA2 juxtamembrane region on membrane. Biochem J 2021; 477:3791-3801. [PMID: 32897354 DOI: 10.1042/bcj20200300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Vav2 is a ubiquitous guanine nucleotide exchange factor (GEF) for Rho family GTPases that is involved in regulating a wide range of biological processes. It interacts with several tyrosine-phosphorylated cell surface receptors, including the Eph family receptors, through its SH2 domain. The interaction of Vav2 with EphA2 is crucial for EphA2-mediated tumor angiogenesis. Here we show that Vav2-SH2 domain is a lipid-binding module that can recognize PI(4,5)P2 and PI(3,4,5)P3 lipids weakly but specifically. The specific lipid-binding site in Vav2-SH2 domain was identified by NMR chemical shift perturbation experiments using the head groups of PI(4,5)P2 and PI(3,4,5)P3, both of which bind to Vav2-SH2 with millimolar binding affinities. In addition, the interaction between Vav2-SH2 and the phosphorylated juxtamembrane region (JM) of EphA2 (Y594 phosphorylated) was investigated using NMR techniques. Furthermore, by using a nickel-lipid containing peptide-based nanodiscs system, we studied the binding of Vav2-SH2 to the phosphorylated JM region of EphA2 on lipid membrane and uncovered a role of membrane environment in modulating this protein-protein recognition.
Collapse
|
34
|
Stefanski KM, Russell CM, Westerfield JM, Lamichhane R, Barrera FN. PIP 2 promotes conformation-specific dimerization of the EphA2 membrane region. J Biol Chem 2021; 296:100149. [PMID: 33277361 PMCID: PMC7900517 DOI: 10.1074/jbc.ra120.016423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
The impact of the EphA2 receptor on cancer malignancy hinges on the two different ways it can be activated. EphA2 induces antioncogenic signaling after ligand binding, but ligand-independent activation of EphA2 is pro-oncogenic. It is believed that the transmembrane (TM) domain of EphA2 adopts two alternate conformations in the ligand-dependent and the ligand-independent states. However, it is poorly understood how the difference in TM helical crossing angles found in the two conformations impacts the activity and regulation of EphA2. We devised a method that uses hydrophobic matching to stabilize two conformations of a peptide comprising the EphA2 TM domain and a portion of the intracellular juxtamembrane (JM) segment. The two conformations exhibit different TM crossing angles, resembling the ligand-dependent and ligand-independent states. We developed a single-molecule technique using styrene maleic acid lipid particles to measure dimerization in membranes. We observed that the signaling lipid PIP2 promotes TM dimerization, but only in the small crossing angle state, which we propose corresponds to the ligand-independent conformation. In this state the two TMs are almost parallel, and the positively charged JM segments are expected to be close to each other, causing electrostatic repulsion. The mechanism PIP2 uses to promote dimerization might involve alleviating this repulsion due to its high density of negative charges. Our data reveal a conformational coupling between the TM and JM regions and suggest that PIP2 might directly exert a regulatory effect on EphA2 activation in cells that is specific to the ligand-independent conformation of the receptor.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, USA
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | - Rajan Lamichhane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, USA.
| |
Collapse
|
35
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
36
|
Mohr JD, Wagenknecht-Wiesner A, Holowka DA, Baird BA. Basic Amino Acids Within the Juxtamembrane Domain of the Epidermal Growth Factor Receptor Regulate Receptor Dimerization and Auto-phosphorylation. Protein J 2020; 39:476-486. [PMID: 33211253 DOI: 10.1007/s10930-020-09943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) dysregulation is observed in many human cancers and is both a cause of oncogenesis and a target for chemotherapy. We previously showed that partial charge neutralization of the juxtamembrane (JX) region of EGFR via the EGFR R1-6 mutant construct induces constitutive receptor activation and transformation of NIH 3T3 cells, both from the plasma membrane and from the ER when combined with the ER-retaining L417H mutation (Bryant et al. in J Biol Chem 288:34930-34942, 2013). Here, we use chemical crosslinking and immunoblotting to show that these mutant constructs form constitutive, phosphorylated dimers in both the plasma membrane and the ER. Furthermore, we combine this electrostatic perturbation with conformationally-restricted receptor mutants to provide evidence that activation of EGFR R1-6 dimers requires functional coupling both between the EGFR extracellular dimerization arms and between intracellular tyrosine kinase domains. These findings provide evidence that the electrostatic charge of the JX region normally serves as a negative regulator of functional dimerization of EGFR.
Collapse
Affiliation(s)
- Jordan D Mohr
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Graduate Field of Pharmacology, Cornell University, Ithaca, NY, USA
| | | | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA. .,Graduate Field of Pharmacology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
37
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
38
|
Joshi SK, Qian K, Bisson WH, Watanabe-Smith K, Huang A, Bottomly D, Traer E, Tyner JW, McWeeney SK, Davare MA, Druker BJ, Tognon CE. Discovery and characterization of targetable NTRK point mutations in hematologic neoplasms. Blood 2020; 135:2159-2170. [PMID: 32315394 PMCID: PMC7290093 DOI: 10.1182/blood.2019003691] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Much of what is known about the neurotrophic receptor tyrosine kinase (NTRK) genes in cancer was revealed through identification and characterization of activating Trk fusions across many tumor types. A resurgence of interest in these receptors has emerged owing to the realization that they are promising therapeutic targets. The remarkable efficacy of pan-Trk inhibitors larotrectinib and entrectinib in clinical trials led to their accelerated, tissue-agnostic US Food and Drug Administration (FDA) approval for adult and pediatric patients with Trk-driven solid tumors. Despite our enhanced understanding of Trk biology in solid tumors, the importance of Trk signaling in hematological malignancies is underexplored and warrants further investigation. Herein, we describe mutations in NTRK2 and NTRK3 identified via deep sequencing of 185 patients with hematological malignancies. Ten patients contained a point mutation in NTRK2 or NTRK3; among these, we identified 9 unique point mutations. Of these 9 mutations, 4 were oncogenic (NTRK2A203T, NTRK2R458G, NTRK3E176D, and NTRK3L449F), determined via cytokine-independent cellular assays. Our data demonstrate that these mutations have transformative potential to promote downstream survival signaling and leukemogenesis. Specifically, the 3 mutations located within extracellular (ie, NTRK2A203T and NTRK3E176D) and transmembrane (ie, NTRK3L449F) domains increased receptor dimerization and cell-surface abundance. The fourth mutation, NTRK2R458G, residing in the juxtamembrane domain, activates TrkB via noncanonical mechanisms that may involve altered interactions between the mutant receptor and lipids in the surrounding environment. Importantly, these 4 activating mutations can be clinically targeted using entrectinib. Our findings contribute to ongoing efforts to define the mutational landscape driving hematological malignancies and underscore the utility of FDA-approved Trk inhibitors for patients with aggressive Trk-driven leukemias.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute
- Department of Physiology and Pharmacology, School of Medicine, and
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR
| | | | - William H Bisson
- Knight Cancer Institute
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR; and
| | | | | | | | - Elie Traer
- Knight Cancer Institute
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR
- Department of Cell, Development, and Cancer Biology
| | - Jeffrey W Tyner
- Knight Cancer Institute
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR
- Department of Cell, Development, and Cancer Biology
| | - Shannon K McWeeney
- Knight Cancer Institute
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology
| | - Monika A Davare
- Department of Cell, Development, and Cancer Biology
- Papé Pediatric Research Institute
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, and
| | - Brian J Druker
- Knight Cancer Institute
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR
- Department of Cell, Development, and Cancer Biology
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR
| | - Cristina E Tognon
- Knight Cancer Institute
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
39
|
Sun F, Schroer CFE, Palacios CR, Xu L, Luo SZ, Marrink SJ. Molecular mechanism for bidirectional regulation of CD44 for lipid raft affiliation by palmitoylations and PIP2. PLoS Comput Biol 2020; 16:e1007777. [PMID: 32271757 PMCID: PMC7173942 DOI: 10.1371/journal.pcbi.1007777] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/21/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
The co-localization of Cluster-of-Differentiation-44 protein (CD44) and cytoplasmic adaptors in specific membrane environments is crucial for cell adhesion and migration. The process is controlled by two different pathways: On the one hand palmitoylation keeps CD44 in lipid raft domains and disables the linking to the cytoplasmic adaptor, whereas on the other hand, the presence of phosphatidylinositol-4,5-biphosphate (PIP2) lipids accelerates the formation of the CD44-adaptor complex. The molecular mechanism explaining how CD44 is migrating into and out of the lipid raft domains and its dependence on both palmitoylations and the presence of PIP2 remains, however, elusive. In this study, we performed extensive molecular dynamics simulations to study the raft affinity and translocation of CD44 in phase separated model membranes as well as more realistic plasma membrane environments. We observe a delicate balance between the influence of the palmitoylations and the presence of PIP2 lipids: whereas the palmitoylations of CD44 increases the affinity for raft domains, PIP2 lipids have the opposite effect. Additionally, we studied the association between CD44 and the membrane adaptor FERM in dependence of these factors. We find that the presence of PIP2 lipids allows CD44 and FERM to associate in an experimentally observed binding mode whereas the highly palmitoylated species shows no binding affinity. Together, our results shed light on the sophisticated mechanism on how membrane translocation and peripheral protein association can be controlled by both protein modifications and membrane composition. Cytoskeleton protein complex involving with association of CD44 and ERMs is critical for cancer-related cellular adhesion and migration. The protein interactions are found to be modulated by chemical modification and membrane microenvironments, but the inherent mechanism is unclear. We obtained molecular dynamic details of CD44 localization switching between raft/non-raft subdomains regulated by palmitoylations and PIP2 molecules. Binding of PIP2 on the palmitoylated CD44 enables it to release from lipid raft, revealing an exceptional role of PIP2 in mediating protein translocation. PIP2 is beneficial for CD44 to associate with the active domain of ERM, in a nearly crystal structure mode. The molecular information will enhance our understanding for PIP2 regulation to protein translocation and membrane association.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, China
| | - Carsten F E Schroer
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Carlos R Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh, Groningen, The Netherlands
| |
Collapse
|
40
|
Sejdiu BI, Tieleman DP. Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Biophys J 2020; 118:1887-1900. [PMID: 32272057 DOI: 10.1016/j.bpj.2020.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound proteins that depend on their lipid environment to carry out their physiological function. Combined efforts from many theoretical and experimental studies on the lipid-protein interaction profile of several GPCRs hint at an intricate relationship of these receptors with their surrounding membrane environment, with several lipids emerging as particularly important. Using coarse-grained molecular dynamics simulations, we explore the lipid-protein interaction profiles of 28 different GPCRs, spanning different levels of classification and conformational states and totaling to 1 ms of simulation time. We find a close relationship with lipids for all GPCRs simulated, in particular, cholesterol and phosphatidylinositol phosphate (PIP) lipids, but the number, location, and estimated strength of these interactions is dependent on the specific GPCR as well as its conformational state. Although both cholesterol and PIP lipids bind specifically to GPCRs, they utilize distinct mechanisms. Interactions with PIP lipids are mediated by charge-charge interactions with intracellular loop residues and stabilized by one or both of the transmembrane helices linked by the loop. Interactions with cholesterol, on the other hand, are mediated by a hydrophobic environment, usually made up of residues from more than one helix, capable of accommodating its ring structure and stabilized by interactions with aromatic and charged/polar residues. Cholesterol binding to GPCRs occurs in a small number of sites, some of which (like the binding site on the extracellular side of transmembrane 6/7) are shared among many class A GPCRs. Combined with a thorough investigation of the local membrane structure, our results provide a detailed picture of GPCR-lipid interactions. Additionally, we provide an accompanying website to interactively explore the lipid-protein interaction profile of all GPCRs simulated to facilitate analysis and comparison of our data.
Collapse
Affiliation(s)
- Besian I Sejdiu
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
41
|
EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide. Biochem J 2020; 477:45-60. [DOI: 10.1042/bcj20190452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications.
Collapse
|
42
|
Molecular Architecture of a Network of Potential Intracellular EGFR Modulators: ARNO, CaM, Phospholipids, and the Juxtamembrane Segment. Structure 2020; 28:54-62.e5. [DOI: 10.1016/j.str.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 01/24/2023]
|
43
|
Wang Z, Fan H, Hu X, Khamo J, Diao J, Zhang K, Pogorelov TV. Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain. J Phys Chem B 2019; 123:10709-10717. [PMID: 31751135 DOI: 10.1021/acs.jpcb.9b09352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the receptor tyrosine kinase family, conformational change induced by ligand binding is transmitted across the membrane via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with highly mobile membrane mimetic (HMMM) to capture the native conformation of the JMD in tropomyosin receptor kinase A (TrkA). We find that phosphatidylinositol 4,5-bisphosphate (PIP2) lipids engage in stable binding with multiple basic residues. Anionic lipids can compete with salt bridges within the peptide and alter TrkA-JMD conformation. We discover three-residue insertion into the membrane and are able to either enhance or reduce the level of insertion through computationally-designed point mutations. The vesicle-binding experiment supports computational results and indicates that hydrophobic insertion is comparable to electrostatic binding for membrane anchoring. Biochemical assays on cell lines with mutated TrkA show that enhanced TrkA-JMD insertion promotes receptor degradation but does not affect the short-term signaling capacity. Our joint work points to a scenario where lipid headgroups and tails interact with basic and hydrophobic residues on disordered domain, respectively, to restrain flexibility and potentially modulate protein function.
Collapse
Affiliation(s)
| | | | - Xiao Hu
- Department of Cancer Biology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | | | - Jiajie Diao
- Department of Cancer Biology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | | | | |
Collapse
|
44
|
Matsuoka D, Kamiya M, Sato T, Sugita Y. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3. J Comput Chem 2019; 41:561-572. [PMID: 31804721 DOI: 10.1002/jcc.26122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) is a member of receptor tyrosine kinases, which is involved in skeletal cell growth, differentiation, and migration. FGFR3 transduces biochemical signals from the extracellular ligand-binding domain to the intracellular kinase domain through the conformational changes of the transmembrane (TM) helix dimer. Here, we apply generalized replica exchange with solute tempering method to wild type (WT) and G380R mutant (G380R) of FGFR3. The dimer interface in G380R is different from WT and the simulation results are in good agreement with the solid-state nuclear magnetic resonance (NMR) spectroscopy. TM helices in G380R are extended more than WT, and thereby, G375 in G380R contacts near the N-termini of the TM helix dimer. Considering that both G380R and G375C show the constitutive activation, the formation of the N-terminal contacts of the TM helices can be generally important for the activation mechanism. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daisuke Matsuoka
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
| | - Motoshi Kamiya
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan
| | - Takeshi Sato
- Division of Liberal Arts and Science, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.,Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, 650-0047, Japan.,Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystem Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
45
|
Agarwal G, Smith AW, Jones B. Discoidin domain receptors: Micro insights into macro assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118496. [PMID: 31229648 DOI: 10.1016/j.bbamcr.2019.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
Assembly of cell-surface receptors into specific oligomeric states and/or clusters before and after ligand binding is an important feature governing their biological function. Receptor oligomerization can be mediated by specific domains of the receptor, ligand binding, configurational changes or other interacting molecules. In this review we summarize our understanding of the oligomeric state of discoidin domain receptors (DDR1 and DDR2), which belong to the receptor tyrosine kinase family (RTK). DDRs form an interesting system from an oligomerization perspective as their ligand collagen(s) can also undergo supramolecular assembly to form fibrils. Even though DDR1 and DDR2 differ in the domains responsible to form ligand-free dimers they share similarities in binding to soluble, monomeric collagen. However, only DDR1b forms globular clusters in response to monomeric collagen and not DDR2. Interestingly, both DDR1 and DDR2 are assembled into linear clusters by the collagen fibril. Formation of these clusters is important for receptor phosphorylation and is mediated in part by other membrane components. We summarize how the oligomeric status of DDRs shares similarities with other members of the RTK family and with collagen receptors. Unraveling the multiple macro-molecular configurations adopted by this receptor-ligand pair can provide novel insights into the intricacies of cell-matrix interactions.
Collapse
Affiliation(s)
- Gunjan Agarwal
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA.
| | - Adam W Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Blain Jones
- Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Molecular Dynamics of the Association of L-Selectin and FERM Regulated by PIP2. Biophys J 2019; 114:1858-1868. [PMID: 29694864 DOI: 10.1016/j.bpj.2018.02.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) acts as a signaling lipid, mediating membrane trafficking and recruitment of proteins to membranes. A key example is the PIP2-dependent regulation of the adhesion of L-selectin to the cytoskeleton adaptors of the N-terminal subdomain of ezrin-radixin-moesin (FERM). The molecular details of the mediating behavior of multivalent anionic PIP2 lipids in this process, however, remain unclear. Here, we use coarse-grained molecular dynamics simulation to explore the mechanistic details of PIP2 in the transformation, translocation, and association of the FERM/L-selectin complex. We compare membranes of different compositions and find that anionic phospholipids are necessary for both FERM and the cytoplasmic domain of L-selectin to absorb on the membrane surface. The subsequent formation of the FERM/L-selectin complex is strongly favored by the presence of PIP2, which clusters around both proteins and triggers a conformational transition in the cytoplasmic domain of L-selectin. We are able to quantify the effect of PIP2 on the association free energy of the complex by means of a potential of mean force. We conclude that PIP2 behaves as an adhesive agent to enhance the stability of the FERM/L-selectin complex and identify key residues involved. The molecular information revealed in this study highlights the specific role of membrane lipids such as PIP2 in protein translocation and potential signaling.
Collapse
|
47
|
Minh Hung H, Dieu Hang T, Nguyen MT. Structural Investigation of Human Prolactin Receptor Transmembrane Domain Homodimerization in a Membrane Environment through Multiscale Simulations. J Phys Chem B 2019; 123:4858-4866. [PMID: 31099581 DOI: 10.1021/acs.jpcb.9b01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well established that prolactin (PRL) and its receptor (PRLR) are associated with hundreds of biological functions. They have been postulated to be linked to breast and prostate cancers, and PRLR signaling has attracted considerable medical and pharmaceutical interest in the development of compounds targeting PRLR. Dimerization of the receptor through its transmembrane (TM) domain is a key step for understanding its signaling and related issues. Our multiscale simulation results revealed that its TM domain can form dimers in a membrane environment with distinct states stabilized by different residue motifs. On the basis of the simulated data, an activation mechanism of PRL with the importance of two symmetrical tryptophan residues was proposed in detail to determine the conformational change of its receptor, which is essential for signal transduction. The better knowledge of PRLR structure and its protein-protein interaction can considerably contribute to a further understanding of PRLR signaling action and thereby help to develop some new PRLR signaling-based strategies for PRL-related diseases.
Collapse
Affiliation(s)
- Huynh Minh Hung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Department of Chemistry , Quy Nhon University , Quy Nhon 590000 , Vietnam
| | - Tran Dieu Hang
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium.,Department of Chemistry , Quy Nhon University , Quy Nhon 590000 , Vietnam
| | - Minh Tho Nguyen
- Computational Chemistry Research Group , Ton Duc Thang University , Ho Chi Minh City 700000 Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
48
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
49
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
50
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|