1
|
Whitfield JR, Soucek L. MYC in cancer: from undruggable target to clinical trials. Nat Rev Drug Discov 2025:10.1038/s41573-025-01143-2. [PMID: 39972241 DOI: 10.1038/s41573-025-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
MYC is among the most infamous oncogenes in cancer. A notable feature that distinguishes it from other common oncogenes is that its deregulation is not usually due to direct mutation, but instead to its relentless activation by other oncogenic lesions. These signalling pathways funnel through MYC to execute the transcriptional programmes that eventually lead to the uncontrolled proliferation of cancer cells. Indeed, deregulated MYC activity may be linked to most - if not all - human cancers. Despite this unquestionable role of MYC in tumour development and maintenance, no MYC inhibitor has yet been approved for clinical use. The main reason is that MYC has long fallen into the category of 'undruggable' or 'difficult-to-drug' targets, mainly because of its intrinsically disordered structure, which is not amenable to traditional drug development strategies. However, in recent years, attempts to develop MYC inhibitors have multiplied, and the first clinical trials have been testing their efficacy in patients. We are finally reaching the point at which its inhibition seems clinically viable. This Review provides an overview of the various strategies to inhibit MYC, focusing on the most recently described inhibitors and those that have reached clinical trials.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
- Peptomyc S.L., Barcelona, Spain.
| |
Collapse
|
2
|
Li L, Zhu H, Liu S. EP-0108A is a moderation selectively BRD4 BD2 inhibitor with potential AML tumor suppression. Anticancer Drugs 2025; 36:28-38. [PMID: 39259687 DOI: 10.1097/cad.0000000000001655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Acute myeloid leukemia is the most common type of acute leukemia in adults. The epigenetic molecule BRD4 is a member of the bromodomain and extra-terminal family and plays an important role in the occurrence and development of tumors. BRD4 is essential for oncogene expression, including c-Myc. So, BRD4 inhibition is considered as an effective strategy for the treatment of hematological and solid malignancies. In recent years, several small molecule inhibitors targeting BRD4 have been developed. However, these inhibitors had excessive hematological toxicity due to the lack of specific binding to BD1 and BD2 domains of BRD4, while other inhibitors with high selectivity lose their antitumor efficacy. To balance the relationship between efficacy and safety, we developed EP-0108A, a BRD4 inhibitor with moderate selectivity for the BD2 domain over BD1 domain of BRD4. Our results show that EP-0108A has antitumor effects in MV4-11 and Kasumi-1 cell line-derived xenograft mouse models without significant effects on heart or breathing safe in rats and Beagle dogs. In repeated dose toxicity studies, EP-0108A showed reversible hematological and gastrointestinal toxicity in both rats and dogs. Our findings indicate that EP-0108A has the potential to be a new therapeutic agent for the treatment of cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| | - Hui Zhu
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| | - Shuang Liu
- Drug Screening Department, Chengdu Easton Biopharmaceuticals Co., Ltd., Chengdu, China
| |
Collapse
|
3
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Chandrashekar DS, Afaq F, Karthikeyan SK, Athar M, Shrestha S, Singh R, Manne U, Varambally S. Bromodomain inhibitor treatment leads to overexpression of multiple kinases in cancer cells. Neoplasia 2024; 57:101046. [PMID: 39241280 PMCID: PMC11408867 DOI: 10.1016/j.neo.2024.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The bromodomain and extraterminal (BET) family of proteins show altered expression across various cancers. The members of the bromodomain (BRD) family contain epigenetic reader domains that bind to acetylated lysine residues in both histone and non-histone proteins. Since BRD proteins are involved in cancer initiation and progression, therapeutic targeting of these proteins has recently been an area of interest. In experimental settings, JQ1, a commonly used BRD inhibitor, is the first known inhibitor to target BRD-containing protein 4 (BRD4), a ubiquitously expressed BRD and extraterminal family protein. BRD4 is necessary for a normal cell cycle, and its aberrant expression activates pro-inflammatory cytokines, leading to tumor initiation and progression. Various BRD4 inhibitors have been developed recently and tested in preclinical settings and are now in clinical trials. However, as with many targeted therapies, BRD inhibitor treatment can lead to resistance to treatment. Here, we investigated the kinases up-regulated on JQ1 treatment that may serve as target for combination therapy along with BRD inhibitors. To identify kinase targets, we performed a comparative analysis of gene expression data using RNA from BRD inhibitor-treated cells or BRD-modulated cells and identified overexpression of several kinases, including FYN, NEK9, and ADCK5. We further validated, by immunoblotting, the overexpression of FYN tyrosine kinase; NEK9 serine/threonine kinase and ADCK5, an atypical kinase, to confirm their overexpression after BRD inhibitor treatment. Importantly, our studies show that targeting FYN or NEK9 along with BRD inhibitor effectively reduces proliferation of cancer cells. Therefore, our research emphasizes a potential approach of utilizing inhibitors targeting some of the overexpressed kinases in conjunction with BRD inhibitors to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadeep Shrestha
- Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | | | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Informatics and Data Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
6
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. Cell Commun Signal 2024; 22:184. [PMID: 38493137 PMCID: PMC10944605 DOI: 10.1186/s12964-024-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However, the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. METHODS To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ. Additional Analysis of publicly available data sets were performed on SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. Validation of in silico findings were performed with qPCR, immunoblots, and collagen gel contraction assays measure the effect of JQ1 on cytoskeleton associated genes, proteins and contractility in mechanically active cells. Likelihood ratio test and FDR adjusted p-values were used to determine significant differentially expressed genes. Student ttest were used to calculate statistical significance of qPCR and contractility analyses. RESULTS Comparing PDGF and TGFβ stimulated SMC and fibroblasts identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. Additional in silico analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition with JQ1. In vitro validation demonstrated JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. CONCLUSIONS These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M Adam
- Urological Diseases Research Center, Boston Children's Hospital, Enders Bldg 1061.4, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Luo SH, Tian JM, Chu Y, Zhu HY, Ni JD, Huang J. The BRD4-SRPK2-SRSF2 signal modulates the splicing efficiency of ACSL3 pre-mRNA and influences erastin-induced ferroptosis in osteosarcoma cells. Cell Death Dis 2023; 14:760. [PMID: 37993451 PMCID: PMC10665344 DOI: 10.1038/s41419-023-06273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Lipid metabolism is the key to ferroptosis susceptibility. However, little is known about the underlying mechanisms in osteosarcoma cells. Functional restriction of bromodomain-containing protein 4 (BRD4) reduced the susceptibility to erastin-induced ferroptosis of osteosarcoma cells both in vitro and in vivo. Mechanically, BRD4 controls the splicing efficiency of the RNA precursor (pre-mACSL3) of ACSL3 (ACSL3) by recruiting serinerich/threonine protein kinase 2 (SRPK2) to assemble the splicing catalytic platform. Moreover, the AMP-binding domain of ACSL3 significantly influences arachidonic acid synthesis and thus determines the susceptibility to erastin-induced ferroptosis. Overall, we found a BRD4-mediated pre-mACSL3 splicing influences erastin-induced ferroptosis by affecting arachidonic acid synthesis in osteosarcoma cells. Data in this study fills some of the gap in understanding the post-transcriptional regulatory mechanisms of ACSL3 and provides new insights into the mechanisms of lipid metabolism regulation and its effect on susceptibility to ferroptosis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shun-Hong Luo
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiang-Dong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Mancarella C, Morrione A, Scotlandi K. PROTAC-Based Protein Degradation as a Promising Strategy for Targeted Therapy in Sarcomas. Int J Mol Sci 2023; 24:16346. [PMID: 38003535 PMCID: PMC10671294 DOI: 10.3390/ijms242216346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
10
|
Bigger-Allen A, Gheinani AH, Adam RM. Investigation of the impact of bromodomain inhibition on cytoskeleton stability and contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567076. [PMID: 38014184 PMCID: PMC10680757 DOI: 10.1101/2023.11.14.567076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Injury to contractile organs such as the heart, vasculature, urinary bladder and gut can stimulate a pathological response that results in loss of normal contractility. PDGF and TGFβ are among the most well studied initiators of the injury response and have been shown to induce aberrant contraction in mechanically active cells of hollow organs including smooth muscle cells (SMC) and fibroblasts. However the mechanisms driving contractile alterations downstream of PDGF and TGFβ in SMC and fibroblasts are incompletely understood, limiting therapeutic interventions. To identify potential molecular targets, we have leveraged the analysis of publicly available data, comparing transcriptomic changes in mechanically active cells stimulated with PDGF and TGFβ and identified a shared molecular profile regulated by MYC and members of the AP-1 transcription factor complex. We also analyzed data sets from SMC and fibroblasts treated in the presence or absence of the MYC inhibitor JQ1. This analysis revealed a unique set of cytoskeleton-associated genes that were sensitive to MYC inhibition. JQ1 was also able to attenuate TGFβ and PDGF induced changes to the cytoskeleton and contraction of smooth muscle cells and fibroblasts in vitro. These findings identify MYC as a key driver of aberrant cytoskeletal and contractile changes in fibroblasts and SMC, and suggest that JQ1 could be used to restore normal contractile function in hollow organs.
Collapse
Affiliation(s)
- Alexander Bigger-Allen
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Biological & Biomedical Sciences Program, Division of Medical Sciences, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Functional Urology Research Group, Department for BioMedical Research DBMR, University of Bern, Switzerland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
11
|
Martin-Broto J, Martinez-Garcia J, Moura DS, Redondo A, Gutierrez A, Lopez-Pousa A, Martinez-Trufero J, Sevilla I, Diaz-Beveridge R, Solis-Hernandez MP, Carnero A, Perez M, Marcilla D, Garcia-Foncillas J, Romero P, Fernandez-Jara J, Lopez-Lopez D, Arribas I, Hindi N. Phase II trial of CDK4/6 inhibitor palbociclib in advanced sarcoma based on mRNA expression of CDK4/ CDKN2A. Signal Transduct Target Ther 2023; 8:405. [PMID: 37875500 PMCID: PMC10598203 DOI: 10.1038/s41392-023-01661-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/26/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors demonstrated activity in terms of progression-free survival (PFS) in advanced dedifferentiated liposarcoma (DD-LPS), a sarcoma with CDK4 amplification. CDK4 overexpression is by far more common than amplification in sarcomas and it might be a rational target for CDK inhibitors. Preclinical investigators of this study found that CDK4 overexpression, while not of CDKN2A, was the most consistent predictive factor for palbociclib efficacy in sarcomas. Advanced adult-type soft-tissue sarcoma, excluding DD-LPS, or bone sarcoma patients, progressing after at least one systemic line, whose tumors overexpressed CDK4, but not CDKN2A at baseline biopsy, were accrued in this single-arm phase II trial (EudraCT number: 2016-004039-19). With the main endpoint of a 6-month PFS rate, 40% was considered promising in this population. Palbociclib was administered orally at 125 mg/day for 21 days in 28-day cycles. A total of 214 patients with 236 CDK4/CDKN2A determinations were assessed for prescreening, archival material (141), and screening, baseline biopsy (95). There were 28 (29%) with favorable mRNA profiles from 95 screened patients at baseline. From 23 enrolled patients, 21 evaluable, the 6-month PFS rate was 29% (95% CI 9-48), and there were 6 patients out of 21 with a PFS longer than 6 months. The median PFS and overall survival were 4.2 (95% CI 3.6-4.8) and 12 (95% CI 8.7-15.4) months, respectively. Translational research showed a significant correlation between CDK4 mRNA and protein expression. Palbociclib was active in a variety of sarcoma subtypes, selected by CDK4/CDKN2A, and deserves further investigation in the sarcoma context.
Collapse
Affiliation(s)
- Javier Martin-Broto
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain.
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain.
- General de Villalba University Hospital, 28400, Madrid, Spain.
| | | | - David S Moura
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Andres Redondo
- Department of Medical Oncology, Hospital Universitario La Paz-IdiPAZ, P. Castellana, 261, 28046, Madrid, Spain
| | - Antonio Gutierrez
- Hematology Department, University Hospital Son Espases, 07120, Mallorca, Spain
| | | | | | - Isabel Sevilla
- Investigación Clínica y Traslacional en Cáncer/ Instituto de Investigaciones Biomédicas de Malaga (IBIMA)/ Hospitales Universitarios Regional y Virgen de la Victoria de Malaga, Malaga, Spain
| | - Roberto Diaz-Beveridge
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS; HUVR, CSIC, US), 41013, Sevilla, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBiS; HUVR, CSIC, US), 41013, Sevilla, Spain
- Pathology Department, Virgen del Rocio University Hospital, 41013, Sevilla, Spain
| | - David Marcilla
- Pathology Department, Virgen del Rocio University Hospital, 41013, Sevilla, Spain
| | - Jesus Garcia-Foncillas
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Pablo Romero
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Javier Fernandez-Jara
- Radiology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
| | - Daniel Lopez-Lopez
- Instituto de Biomedicina de Sevilla (IBiS; HUVR, CSIC, US), 41013, Sevilla, Spain
- Computational Medicine Platform, Fundación progreso y salud (FPS), Hospital Virgen del Rocío, 41013, Seville, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Sevilla, Spain
| | - Ivan Arribas
- Universitat de València - ERI-CES, 46010, Valencia, Spain
| | - Nadia Hindi
- Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040, Madrid, Spain
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, 28040, Madrid, Spain
- General de Villalba University Hospital, 28400, Madrid, Spain
| |
Collapse
|
12
|
Rizq O, Mimura N, Oshima M, Momose S, Takayama N, Itokawa N, Koide S, Shibamiya A, Miyamoto-Nagai Y, Rizk M, Nakajima-Takagi Y, Aoyama K, Wang C, Saraya A, Ito R, Seimiya M, Watanabe M, Yamasaki S, Shibata T, Yamaguchi K, Furukawa Y, Chiba T, Sakaida E, Nakaseko C, Tamaru JI, Tai YT, Anderson KC, Honda H, Iwama A. UTX inactivation in germinal center B cells promotes the development of multiple myeloma with extramedullary disease. Leukemia 2023; 37:1895-1907. [PMID: 37198323 PMCID: PMC10457198 DOI: 10.1038/s41375-023-01928-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer; however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27 acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.
Collapse
Affiliation(s)
- Ola Rizq
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan.
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan.
| | - Motohiko Oshima
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Itokawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | | | - Mohamed Rizk
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yaeko Nakajima-Takagi
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumasa Aoyama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Changshan Wang
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kanagawa, Japan
| | - Masanori Seimiya
- Department of Medical Technology and Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Japan
| | - Mariko Watanabe
- Department of Clinical Laboratory, Chiba University Hospital, Chiba, Japan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Hematology, International University of Health and Welfare, Narita, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Laboratoty of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Letson CT, Balasis ME, Newman H, Binder M, Vedder A, Kinose F, Ball M, Kruer T, Quintana A, Lasho TL, Finke CM, Almada LL, Grants JM, Zhang G, Fernandez-Zapico ME, Gaspar-Maia A, Lancet J, Komrokji R, Haura E, Sallman DA, Reuther GW, Karsan A, Rix U, Patnaik MM, Padron E. Targeting BET Proteins Downregulates miR-33a To Promote Synergy with PIM Inhibitors in CMML. Clin Cancer Res 2023; 29:2919-2932. [PMID: 37223910 PMCID: PMC10524644 DOI: 10.1158/1078-0432.ccr-22-3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.
Collapse
Affiliation(s)
| | | | - Hannah Newman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexis Vedder
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Fumi Kinose
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Markus Ball
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Traci Kruer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ariel Quintana
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Terra L. Lasho
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy M. Finke
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN
| | | | - Guolin Zhang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Alexandre Gaspar-Maia
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey Lancet
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Eric Haura
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - David A. Sallman
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Gary W. Reuther
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC
| | - Uwe Rix
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - Mrinal M. Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Padron
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
14
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
15
|
NSMCE2, a novel super-enhancer-regulated gene, is linked to poor prognosis and therapy resistance in breast cancer. BMC Cancer 2022; 22:1056. [PMID: 36224576 PMCID: PMC9555101 DOI: 10.1186/s12885-022-10157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/07/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite today's advances in the treatment of cancer, breast cancer-related mortality remains high, in part due to the lack of effective targeted therapies against breast tumor types that do not respond to standard treatments. Therefore, identifying additional breast cancer molecular targets is urgently needed. Super-enhancers are large regions of open chromatin involved in the overactivation of oncogenes. Thus, inhibition of super-enhancers has become a focus in clinical trials for its therapeutic potential. Here, we aimed to identify novel super-enhancer dysregulated genes highly associated with breast cancer patients' poor prognosis and negative response to treatment. METHODS Using existing datasets containing super-enhancer-associated genes identified in breast tumors and public databases comprising genomic and clinical information for breast cancer patients, we investigated whether highly expressed super-enhancer-associated genes correlate to breast cancer patients' poor prognosis and to patients' poor response to therapy. Our computational findings were experimentally confirmed in breast cancer cells by pharmacological SE disruption and gene silencing techniques. RESULTS We bioinformatically identified two novel super-enhancer-associated genes - NSMCE2 and MAL2 - highly upregulated in breast tumors, for which high RNA levels significantly and specifically correlate with breast cancer patients' poor prognosis. Through in-vitro pharmacological super-enhancer disruption assays, we confirmed that super-enhancers upregulate NSMCE2 and MAL2 transcriptionally, and, through bioinformatics, we found that high levels of NSMCE2 strongly associate with patients' poor response to chemotherapy, especially for patients diagnosed with aggressive triple negative and HER2 positive tumor types. Finally, we showed that decreasing NSMCE2 gene expression increases breast cancer cells' sensitivity to chemotherapy treatment. CONCLUSIONS Our results indicate that moderating the transcript levels of NSMCE2 could improve patients' response to standard chemotherapy consequently improving disease outcome. Our approach offers a new avenue to identify a signature of tumor specific genes that are not frequently mutated but dysregulated by super-enhancers. As a result, this strategy can lead to the discovery of potential and novel pharmacological targets for improving targeted therapy and the treatment of breast cancer.
Collapse
|
16
|
Shi L, Hu K, Li X, Zhao J, Jia M. Doxorubicin and SN-38 inhibit the proliferation of osteosarcoma cells by inducing cell cycle arrest. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
French CA, Cheng ML, Hanna GJ, DuBois SG, Chau NG, Hann CL, Storck S, Salgia R, Trucco M, Tseng J, Stathis A, Piekarz R, Lauer UM, Massard C, Bennett K, Coker S, Tontsch-Grunt U, Sos ML, Liao S, Wu CJ, Polyak K, Piha-Paul SA, Shapiro GI. Report of the First International Symposium on NUT Carcinoma. Clin Cancer Res 2022; 28:2493-2505. [PMID: 35417004 PMCID: PMC9197941 DOI: 10.1158/1078-0432.ccr-22-0591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
NUT carcinoma is a rare, aggressive cancer defined by rearrangements of the NUTM1 gene. No routinely effective treatments of NUT carcinoma exist, despite harboring a targetable oncoprotein, most commonly BRD4-NUT. The vast majority of cases are fatal. Poor awareness of the disease is a major obstacle to progress in the treatment of NUT carcinoma. While the incidence likely exceeds that of Ewing sarcoma, and BRD4-NUT heralded the bromodomain and extra-terminal domain (BET) inhibitor class of selective epigenetic modulators, NUT carcinoma is incorrectly perceived as "impossibly rare," and therefore receives comparatively little private or governmental funding or prioritization by pharma. To raise awareness, propagate scientific knowledge, and initiate a consensus on standard and targeted treatment of NUT carcinoma, we held the First International Symposium on NUT Carcinoma on March 3, 2021. This virtual event had more than eighty attendees from the Americas, Europe, Asia, and Australia. Patients with NUT carcinoma and family members were represented and shared perspectives. Broadly, the four areas discussed by experts in the field included (1) the biology of NUT carcinoma; (2) standard approaches to the treatment of NUT carcinoma; (3) results of clinical trials using BET inhibitors; and (4) future directions, including novel BET bromodomain inhibitors, combinatorial approaches, and immunotherapy. It was concluded that standard chemotherapeutic approaches and first-generation BET bromodomain inhibitors, the latter complicated by a narrow therapeutic window, are only modestly effective in a minority of cases. Nonetheless, emerging second-generation targeted inhibitors, novel rational synergistic combinations, and the incorporation of immuno-oncology approaches hold promise to improve the prognosis of this disease.
Collapse
Affiliation(s)
| | | | | | - Steven G. DuBois
- Dana-Farber Cancer Institute, Boston, MA, USA,Boston Children’s Hospital, Boston, MA, USA
| | - Nicole G. Chau
- British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | | | - Simone Storck
- Swabian Children’s Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA
| | | | | | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland and Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Lugano, Switzerland
| | - Richard Piekarz
- Investigational Drug Branch, Cancer Therapy Evaluation Program (CTEP), Bethesda, MD
| | | | - Christophe Massard
- Gustave Roussy-Molecular Radiotherapy INSERM U1030, Faculty of Medicine Kremlin-Bicêtre and Paris-Saclay University , France
| | | | - Shodeinde Coker
- Bristol-Myers Squibb Company, Lawrenceville, New Jersey, USA
| | | | - Martin L. Sos
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Molecular Pathology University of Cologne, Cologne, Germany and Department of Translational Genomics and Center for Molecular Medicine Cologne, Cologne, Germany
| | - Sida Liao
- TScan Therapeutics, Waltham, MA, USA
| | | | | | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
18
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
19
|
Liu C, Qian L, Vallega KA, Ma G, Zong D, Chen L, Wang S, Ramalingam SR, Qin Z, Sun SY. The novel BET degrader, QCA570, is highly active against the growth of human NSCLC cells and synergizes with osimertinib in suppressing osimertinib-resistant EGFR-mutant NSCLC cells. Am J Cancer Res 2022; 12:779-792. [PMID: 35261801 PMCID: PMC8900006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Lung cancer remains the leading cause of cancer deaths worldwide despite advances in knowledge in cancer biology and options of various targeted therapies. Efforts in identifying innovative and effective therapies are still highly appreciated. Targeting bromodomain and extra terminal (BET) proteins that function as epigenetic readers and master transcription coactivators is now a potential cancer therapeutic strategy. The current study evaluates the therapeutic efficacies of the novel BET degrader, QCA570, in lung cancer and explores its underlying mechanisms. QCA570 at low nanomolar ranges effectively decreased the survival of a panel of human lung cancer cell lines with induction of apoptosis in vitro. As expected, it potently induced degradation of BET proteins including BRD4, BRD3 and BRD2. Moreover, it potently decreased Mcl-1 levels due to transcriptional suppression and protein degradation; this event is critical for mediating apoptosis induced by QCA570. Moreover, QCA570 synergized with osimertinib in suppressing the growth of osimertinib-resistant cells in vitro and in vivo, suggesting potential in overcoming acquired resistance to osimertinib. These preclinical findings support the potential of QCA570 in treatment of lung cancer either as a single agent or in combination with others.
Collapse
Affiliation(s)
- Chaoyuan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
| | - Luxi Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, Jiangsu, China
| | - Karin A Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
| | - Guangzhi Ma
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
- Department of Thoracic Surgery, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Dan Zong
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, Jiangsu, China
| | - Luxiao Chen
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health of Emory UniversityAtlanta, GA 30322, USA
| | - Shaomeng Wang
- Department of Medicinal Chemistry, University of MichiganAnn Arbor, MI 48109, USA
| | - Suresh R Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health of Emory UniversityAtlanta, GA 30322, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer InstituteAtlanta, GA 30322, USA
| |
Collapse
|
20
|
Chen L, Liu Z, Li X. Recent Advances in Dual BRD4-Kinase Inhibitors Base on Polypharmacology. ChemMedChem 2022; 17:e202100731. [PMID: 35146935 DOI: 10.1002/cmdc.202100731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
Epigenetic reader BRD4 is involved in chromatin remodeling and transcriptional regulation, making it a promising therapeutic target. However, during the past decades, the results of many BRD4 inhibitors that have entered clinical trials were, in the main, unsatisfactory, due to some therapeutic limitations such as off-target effects and drug resistance. Combining a BRD4 inhibitor with another drug was expected to be an ideal option to overcome these "bottlenecks" and achieve improved therapeutic outcomes. However, combination therapy might trigger toxicity caused by drug-drug interaction, complex pharmacokinetic and additive effects. Recently, the application of dual-target drugs targeting BRD4 and other kinases has emerged to be an attractive approach to remedy defects of a single BRD4 inhibitor. Herein, this review focuses on recent advances in the discovery of dual BRD4-kinase inhibitors, with emphasis on their co-crystal structures and structure-activity relationships (SARs), as well as perspective prospects in the field.
Collapse
Affiliation(s)
- Li Chen
- Shandong University Cheeloo College of Medicine, Medicinal chemistry, West Wenhua Road 44, 250012, Jinnan, CHINA
| | - Zhaopeng Liu
- Institute of Medicinal Chemistry, Department of Organic Chemistry, School of Pharmaceutical Sciences, Shandong Un, No.44 WhenHua XiLu, 250012, Jinan, CHINA
| | - Xun Li
- Shandong First Medical University, Institute of Materia Medica, CHINA
| |
Collapse
|
21
|
Woods AD, Berlow NE, Ortiz MV, Cruz FD, Siddiquee A, Coutinho DF, Purohit R, Freier KET, Michalek JE, Lathara M, Matlock K, Srivivasa G, Royer-Pokora B, Veselska R, Kung AL, Keller C. Bromodomain 4 inhibition leads to MYCN downregulation in Wilms tumor. Pediatr Blood Cancer 2022; 69:e29401. [PMID: 34693628 PMCID: PMC9450910 DOI: 10.1002/pbc.29401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Wilms tumor is the most common childhood kidney cancer. Two distinct histological subtypes of Wilms tumor have been described: tumors lacking anaplasia (the favorable subtype) and tumors displaying anaplastic features (the unfavorable subtype). Children with favorable disease generally have a very good prognosis, whereas those with anaplasia are oftentimes refractory to standard treatments and suffer poor outcomes, leading to an unmet clinical need. MYCN dysregulation has been associated with a number of pediatric cancers including Wilms tumor. PROCEDURES In this context, we undertook a functional genomics approach to uncover novel therapeutic strategies for those patients with anaplastic Wilms tumor. Genomic analysis and in vitro experimentation demonstrate that cell growth can be reduced by modulating MYCN overexpression via bromodomain 4 (BRD4) inhibition in both anaplastic and nonanaplastic Wilms tumor models. RESULTS We observed a time-dependent reduction of MYCN and MYCC protein levels upon BRD4 inhibition in Wilms tumor cell lines, which led to cell death and proliferation suppression. BRD4 inhibition significantly reduced tumor volumes in Wilms tumor patient-derived xenograft (PDX) mouse models. CONCLUSIONS We suggest that AZD5153, a novel dual-BRD4 inhibitor, can reduce MYCN levels in both anaplastic and nonanaplastic Wilms tumor cell lines, reduces tumor volume in Wilms tumor PDXs, and should be further explored for its therapeutic potential.
Collapse
Affiliation(s)
- Andrew D. Woods
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA,correspondence to: Charles Keller MD, 12655 SW Beaverdam Rd W, Beaverton OR 97005 USA, tel: 801-232-8038, fax: 270-675-3313,
| | - Noah E. Berlow
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA
| | - Michael V. Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Filemon Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Armaan Siddiquee
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Diego F. Coutinho
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Reshma Purohit
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA
| | | | - Joel E. Michalek
- Department of Population Health Sciences, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center, San Antonio, TX USA
| | | | | | | | - Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University Duesseldorf, Germany
| | - Renata Veselska
- Department of Experimental Biology, Faculty of Science, Masaryk University Brno, Czech Republic
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York USA
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR USA,correspondence to: Charles Keller MD, 12655 SW Beaverdam Rd W, Beaverton OR 97005 USA, tel: 801-232-8038, fax: 270-675-3313,
| |
Collapse
|
22
|
Fourniols T, Maggio V, Rafael D, Colaco A, García Vidal E, Lopes A, Schwartz S, Martínez-Barriocanal Á, Preat V, Arango D. Colorectal cancer inhibition by BET inhibitor JQ1 is MYC-independent and not improved by nanoencapsulation. Eur J Pharm Biopharm 2022; 171:39-49. [PMID: 34998911 DOI: 10.1016/j.ejpb.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Bromodomain and extraterminal domain protein inhibitors (BETi) for cancer treatment did not convince during their first clinical trials. Their epigenetic mechanism of action is still not well understood, even if MYC is generally considered as its main downstream target. In this context, we intended to assess two new nanoformulations of the BETi JQ1 for the treatment of colorectal cancer (CRC). JQ1 was encapsulated at 10 mg/mL in lipid nanocapsules (LNC) or polymeric micelles (PM), both compatible for an intravenous administration. Their effect was compared with free JQ1 on several CRC cell lines in vitro and with daily intraperitoneal cyclodextrin (CD)-loaded JQ1 on the CT26 CRC tumor model in vivo. We showed that LNC preferentially accumulated in tumor, liver, and lymph nodes. LNC-JQ1 and CD-JQ1 similarly delayed tumor growth and increased median survival from 15 to 23 or 20.5 days. JQ1 altered MYC in only two among four CRC cell lines. This MYC-independence found in CT26 was confirmed in vivo by PCR and immunohistochemistry. The main explanation of the JQ1 anticancer effect was an increase in apoptosis. The investigation of its impact on the tumor microenvironment did not show significant effects. Finally, JQ1 association with irinotecan did not synergize in vivo with JQ1 nanoformulations. In conclusion, we demonstrated that the JQ1 anticancer effect was not improved by nanoencapsulation even if their tumor delivery was probably higher. MYC inhibition was not associated to JQ1 efficacy in the case of the CT26 CRC murine model.
Collapse
Affiliation(s)
- Thibaut Fourniols
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Valentina Maggio
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ariana Colaco
- UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria
| | - Elia García Vidal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Alessandra Lopes
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria
| | - Veronique Preat
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria.
| |
Collapse
|
23
|
Gokani S, Bhatt LK. Bromodomains: A novel target for the anticancer therapy. Eur J Pharmacol 2021; 911:174523. [PMID: 34563497 DOI: 10.1016/j.ejphar.2021.174523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
Bromodomains are a group of structurally diverse proteins characterized as readers of post-translational modifications. They bear unique structural topology and are known to have diverse cellular functions. As epigenetic readers of histone acetylation, bromodomains appear to have both physiological and pathological implications. Among the various types of bromodomain-containing proteins, BRD2 and BRD4 proteins are expressed ubiquitously and act as critical regulators of the cell cycle in normal mammalian cells. Therefore, they are increasingly involved in the process of oncogenesis. Bromodomains are the emerging novel epigenetic targets for the treatment of cancer. Various small molecules are proposed to target the bromodomain proteins as the readers of acetyl-lysine residues. In recent years, inhibiting the interaction of acetyl-lysine residues and bromodomain proteins on chromatin has served as an interesting target to regulate the expression of various pathological genes, including BCL-2, MYC, and NF-κB. The review summarizes bromodomains as potential targets in cancer and various bromodomain inhibitors in the early stages of the clinical trial.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| |
Collapse
|
24
|
BET Proteins as Attractive Targets for Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222011102. [PMID: 34681760 PMCID: PMC8538173 DOI: 10.3390/ijms222011102] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be an essential driver of cancer initiation and progression. Loss of transcriptional control can cause cancer cells to become dependent on certain regulators of gene expression. Bromodomain and extraterminal domain (BET) proteins are epigenetic readers that regulate the expression of multiple genes involved in carcinogenesis. BET inhibitors (BETis) disrupt BET protein binding to acetylated lysine residues of chromatin and suppress the transcription of various genes, including oncogenic transcription factors. Phase I and II clinical trials demonstrated BETis’ potential as anticancer drugs against solid tumours and haematological malignancies; however, their clinical success was limited as monotherapies. Emerging treatment-associated toxicities, drug resistance and a lack of predictive biomarkers limited BETis’ clinical progress. The preclinical evaluation demonstrated that BETis synergised with different classes of compounds, including DNA repair inhibitors, thus supporting further clinical development of BETis. The combination of BET and PARP inhibitors triggered synthetic lethality in cells with proficient homologous recombination. Mechanistic studies revealed that BETis targeted multiple essential homologous recombination pathway proteins, including RAD51, BRCA1 and CtIP. The exact mechanism of BETis’ anticancer action remains poorly understood; nevertheless, these agents provide a novel approach to epigenome and transcriptome anticancer therapy.
Collapse
|
25
|
Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chem Biol 2021; 28:934-951. [PMID: 34004187 PMCID: PMC8286327 DOI: 10.1016/j.chembiol.2021.04.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or "proteostasis," is indispensable for a balanced, healthy environment within the cell. However, when natural proteostasis mechanisms are overwhelmed from excessive loads of dysregulated proteins, their accumulation can lead to disease initiation and progression. Recently, the induced degradation of such disease-causing proteins by heterobifunctional molecules, i.e., PROteolysis TArgeting Chimeras (PROTACs), is emerging as a potential therapeutic modality. In the 2 decades since the PROTAC concept was proposed, several additional Targeted Protein Degradation (TPD) strategies have also been explored to target previously undruggable proteins, such as transcription factors. In this review, we discuss the progress and evolution of the TPD field, the breadth of the proteins targeted by PROTACs and the biological effects of their degradation.
Collapse
Affiliation(s)
- Kusal T G Samarasinghe
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Craig M Crews
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Department of Pharmacology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target Inhibitors Based on BRD4: Novel Therapeutic Approaches for Cancer. Curr Med Chem 2021; 28:1775-1795. [PMID: 32520674 DOI: 10.2174/0929867327666200610174453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.
Collapse
Affiliation(s)
- Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yanzhao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yujing He
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| |
Collapse
|
27
|
Efficacy of combined CDK9/BET inhibition in preclinical models of MLL-rearranged acute leukemia. Blood Adv 2021; 4:296-300. [PMID: 31971998 DOI: 10.1182/bloodadvances.2019000586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/27/2019] [Indexed: 12/30/2022] Open
Abstract
Key Points
Cyclin-dependent kinase 9 and bromodomain and extraterminal inhibitors are synergistic in MLL-rearranged leukemia. Multiple AML driver genes are downregulated by the combined therapy suggesting broad applicability for this subtype.
Collapse
|
28
|
Resistance to BET inhibitors in lung adenocarcinoma is mediated by casein kinase phosphorylation of BRD4. Oncogenesis 2021; 10:27. [PMID: 33712563 PMCID: PMC7955060 DOI: 10.1038/s41389-021-00316-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting the epigenome to modulate gene expression programs driving cancer development has emerged as an exciting avenue for therapeutic intervention. Pharmacological inhibition of the bromodomain and extraterminal (BET) family of chromatin adapter proteins has proven effective in this regard, suppressing growth of diverse cancer types mainly through downregulation of the c-MYC oncogene, and its downstream transcriptional program. While initially effective, resistance to BET inhibitors (BETi) typically occurs through mechanisms that reactivate MYC expression. We have previously shown that lung adenocarcinoma (LAC) is inhibited by JQ1 through suppression of FOSL1, suggesting that the epigenetic landscape of tumor cells from different origins and differentiation states influences BETi response. Here, we assessed how these differences affect mechanisms of BETi resistance through the establishment of isogenic pairs of JQ1 sensitive and resistant LAC cell lines. We found that resistance to JQ1 in LAC occurs independent of FOSL1 while MYC levels remain unchanged between resistant cells and their JQ1-treated parental counterparts. Furthermore, while epithelial–mesenchymal transition (EMT) is observed upon resistance, TGF-β induced EMT did not confer resistance in JQ1 sensitive LAC lines, suggesting this is a consequence, rather than a driver of BETi resistance in our model systems. Importantly, siRNA knockdown demonstrated that JQ1 resistant cell lines are still dependent on BRD4 expression for survival and we found that phosphorylation of BRD4 is elevated in resistant LACs, identifying casein kinase 2 (CK2) as a candidate protein mediating this effect. Inhibition of CK2, as well as downstream transcriptional targets of phosphorylated BRD4—including AXL and activators of the PI3K pathway—synergize with JQ1 to inhibit BETi resistant LAC. Overall, this demonstrates that the mechanism of resistance to BETi varies depending on cancer type, with LAC cells developing JQ1 resistance independent of MYC regulation, and identifying CK2 phosphorylation of BRD4 as a potential target to overcome resistance in this cancer.
Collapse
|
29
|
Dutzmann J, Haertlé M, Daniel JM, Kloss F, Musmann RJ, Kalies K, Knöpp K, Pilowski C, Sirisko M, Sieweke JT, Bauersachs J, Sedding DG, Gegel S. BET bromodomain-containing epigenetic reader proteins regulate vascular smooth muscle cell proliferation and neointima formation. Cardiovasc Res 2021; 117:850-862. [PMID: 32353113 DOI: 10.1093/cvr/cvaa121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/27/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Recent studies revealed that the bromodomain and extra-terminal (BET) epigenetic reader proteins resemble key regulators in the underlying pathophysiology of cancer, diabetes, or cardiovascular disease. However, whether they also regulate vascular remodelling processes by direct effects on vascular cells is unknown. In this study, we investigated the effects of the BET proteins on human smooth muscle cell (SMC) function in vitro and neointima formation in response to vascular injury in vivo. METHODS AND RESULTS Selective inhibition of BETs by the small molecule (+)-JQ1 dose-dependently reduced proliferation and migration of SMCs without apoptotic or toxic effects. Flow cytometric analysis revealed a cell cycle arrest in the G0/G1 phase in the presence of (+)-JQ1. Microarray- and pathway analyses revealed a substantial transcriptional regulation of gene sets controlled by the Forkhead box O (FOXO1)1-transcription factor. Silencing of the most significantly regulated FOXO1-dependent gene, CDKN1A, abolished the antiproliferative effects. Immunohistochemical colocalization, co-immunoprecipitation, and promoter-binding ELISA assay data confirmed that the BET protein BRD4 directly binds to FOXO1 and regulates FOXO1 transactivational capacity. In vivo, local application of (+)-JQ1 significantly attenuated SMC proliferation and neointimal lesion formation following wire-induced injury of the femoral artery in C57BL/6 mice. CONCLUSION Inhibition of the BET-containing protein BRD4 after vascular injury by (+)-JQ1 restores FOXO1 transactivational activity, subsequent CDKN1A expression, cell cycle arrest and thus prevents SMC proliferation in vitro and neointima formation in vivo. Inhibition of BET epigenetic reader proteins might thus represent a promising therapeutic strategy to prevent adverse vascular remodelling.
Collapse
MESH Headings
- Animals
- Azepines/pharmacology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Disease Models, Animal
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Heterocyclic Compounds, 4 or More Rings/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Mice
Collapse
Affiliation(s)
- Jochen Dutzmann
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marco Haertlé
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan-Marcus Daniel
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frederik Kloss
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert-Jonathan Musmann
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Katrin Kalies
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
| | - Kai Knöpp
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Claudia Pilowski
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
| | - Mirja Sirisko
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan-Thorben Sieweke
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Simona Gegel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
30
|
Wan P, Chen Z, Zhong W, Jiang H, Huang Z, Peng D, He Q, Chen N. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol Rep 2020; 44:2475-2486. [PMID: 33125143 PMCID: PMC7610328 DOI: 10.3892/or.2020.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Among all types of kidney diseases, renal cell carcinoma (RCC) has the highest mortality, recurrence and metastasis rates, which results in high numbers of tumor-associated mortalities in China. Identifying a novel therapeutic target has attracted increasing attention. Bromodomain and extraterminal domain (BET) proteins have the ability to read the epigenome, leading to regulation of gene transcription. As an important member of the BET family, bromodomain testis-specific protein (BRDT) has been well studied; however, the mechanism underlying BRDT in the regulation of RCC has not been fully investigated. Eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1) is a binding partner of eIF4E that is involved in affecting the progression of various cancer types via regulating gene transcription. To identify novel regulators of eIF4EBP1, an immunoprecipitation assay and mass spectrometry analysis was performed in RCC cells. It was revealed that eIF4EBP1 interacted with BRDT, a novel interacting protein. In addition, the present study further demonstrated that BRDT inhibitors PLX51107 and INCB054329 blocked the progression of RCC cells, along with suppressing eIF4EBP1 and c-myc expression. Small interfering (si) RNAs were used to knock down BRDT expression, which suppressed RCC cell proliferation and eIF4EBP1 protein expression. In addition, overexpression of eIF4EBP1 partially abolished the inhibited growth function of PLX51107 but knocking down eIF4EBP1 improved the inhibitory effects of PLX51107. Furthermore, treatment with PLX51107 or knockdown of BRDT expression decreased c-myc expression at both the mRNA and protein levels, and attenuated its promoter activity, as determined by luciferase reporter assays. PLX51107 also significantly altered the interaction between the c-myc promoter with eIF4EBP1 and significantly attenuated the increase of RCC tumors, accompanied by decreased c-myc mRNA and protein levels in vivo. Taken together, these data suggested that blocking of BRDT by PLX51107, INCB054329 or BRDT knockdown suppressed the growth of RCC via decreasing eIF4EBP1, thereby leading to decreased c-myc transcription levels. Considering the regulatory function of BET proteins in gene transcription, the present study suggested that there is a novel mechanism underlying eIF4EBP1 regulation by BRDT, and subsequently decreased c-myc in RCC, and further identified a new approach by regulating eIF4EBP1 or c-myc for enhancing BRDT-targeting RCC therapy.
Collapse
Affiliation(s)
- Pei Wan
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhilin Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Weifeng Zhong
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Huiming Jiang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhicheng Huang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Dong Peng
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Qiang He
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Nanhui Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
31
|
Lv K, Chen W, Chen D, Mou J, Zhang H, Fan T, Li Y, Cao D, Wang X, Chen L, Shen J, Pei D, Xiong B. Rational Design and Evaluation of 6-(Pyrimidin-2-ylamino)-3,4-dihydroquinoxalin-2(1 H)-ones as Polypharmacological Inhibitors of BET and Kinases. J Med Chem 2020; 63:9787-9802. [PMID: 32787081 DOI: 10.1021/acs.jmedchem.0c00962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer exhibits diverse heterogeneity with a complicated molecular basis that usually harbors genetic and epigenetic abnormality, which poses a big challenge for single-target agents. In the current work, we proposed a hybrid strategy by incorporating pharmacophores that bind to the acetylated lysine binding pocket of BET proteins with a typical kinase hinge binder to generate novel polypharmacological inhibitors of BET and kinases. Through elaborating the core structure of 6-(pyrimidin-2-ylamino)-3,4-dihydroquinoxalin-2(1H)-one, we demonstrated that this rational design can produce high potent inhibitors of CDK9 and BET proteins. In this series, compound 40 was identified as the potential lead compound with balanced activities of BRD4 (IC50 = 12.7 nM) and CDK9 (IC50 = 22.4 nM), as well as good antiproliferative activities on a small cancer cell panel. Together, the current study provided a new method for the discovery of bromodomain and kinase dual inhibitors rather than only being discovered by serendipity.
Collapse
Affiliation(s)
- Kaikai Lv
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weicong Chen
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tiantian Fan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
32
|
Cummin TEC, Cox KL, Murray TD, Turaj AH, Dunning L, English VL, Fell R, Packham G, Ma Y, Powell B, Johnson PWM, Cragg MS, Carter MJ. BET inhibitors synergize with venetoclax to induce apoptosis in MYC-driven lymphomas with high BCL-2 expression. Blood Adv 2020; 4:3316-3328. [PMID: 32717030 PMCID: PMC7391160 DOI: 10.1182/bloodadvances.2020002231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Although the MYC oncogenic network represents an attractive therapeutic target for lymphoma, MYC inhibitors have been difficult to develop. Alternatively, inhibitors of epigenetic/ transcriptional regulators, particularly the bromodomain and extraterminal (BET) family, have been used to modulate MYC. However, current benzodiazepine-derivative BET inhibitors (BETi) elicit disappointing responses and dose-limiting toxicity in relapsed/refractory lymphoma, potentially because of enrichment of high-risk molecular features and chemical backbone-associated toxicities. Consequently, novel nonbenzodiazepine BETi and improved mechanistic understanding are required. Here we characterize the responses of aggressive MYC-driven lymphomas to 2 nonbenzodiazepine BETi: PLX51107 and PLX2853. Both invoked BIM-dependent apoptosis and in vivo therapy, associated with miR-17∼92 repression, in murine Eµ-myc lymphomas, with PLX2853 exhibiting enhanced potency. Accordingly, exogenous BCL-2 expression abrogated these effects. Because high BCL-2 expression is common in diffuse large B-cell lymphoma (DLBCL), BETi were ineffective in driving apoptosis and in vivo therapy of DLBCL cell lines, mirroring clinical results. However, BETi-mediated BIM upregulation and miR-17∼92 repression remained intact. Consequently, coadministration of BETi and ABT199/venetoclax restored cell death and in vivo therapy. Collectively, these data identify BIM-dependent apoptosis as a critical mechanism of action for this class of BETi that, via coadministration of BH3 mimetics, can deliver effective tumor control in DLBCL.
Collapse
Affiliation(s)
| | - Kerry L Cox
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Tom D Murray
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Anna H Turaj
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | - Lisa Dunning
- Preclinical Unit, Centre for Cancer Immunology, and
| | | | - Rachel Fell
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Yan Ma
- Plexxikon Inc., Berkeley, CA
| | | | - Peter W M Johnson
- Cancer Research UK Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; and
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology
| | | |
Collapse
|
33
|
Jahangiri L, Tsaprouni L, Trigg RM, Williams JA, Gkoutos GV, Turner SD, Pereira J. Core regulatory circuitries in defining cancer cell identity across the malignant spectrum. Open Biol 2020; 10:200121. [PMID: 32634370 PMCID: PMC7574545 DOI: 10.1098/rsob.200121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene expression programmes driving cell identity are established by tightly regulated transcription factors that auto- and cross-regulate in a feed-forward manner, forming core regulatory circuitries (CRCs). CRC transcription factors create and engage super-enhancers by recruiting acetylation writers depositing permissive H3K27ac chromatin marks. These super-enhancers are largely associated with BET proteins, including BRD4, that influence higher-order chromatin structure. The orchestration of these events triggers accessibility of RNA polymerase machinery and the imposition of lineage-specific gene expression. In cancers, CRCs drive cell identity by superimposing developmental programmes on a background of genetic alterations. Further, the establishment and maintenance of oncogenic states are reliant on CRCs that drive factors involved in tumour development. Hence, the molecular dissection of CRC components driving cell identity and cancer state can contribute to elucidating mechanisms of diversion from pre-determined developmental programmes and highlight cancer dependencies. These insights can provide valuable opportunities for identifying and re-purposing drug targets. In this article, we review the current understanding of CRCs across solid and liquid malignancies and avenues of investigation for drug development efforts. We also review techniques used to understand CRCs and elaborate the indication of discussed CRC transcription factors in the wider context of cancer CRC models.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham, UK.,Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham, UK
| | - Ricky M Trigg
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Functional Genomics, GlaxoSmithKline, Stevenage, UK
| | - John A Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire, UK
| | - Georgios V Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,MRC Health Data Research, UK.,NIHR Experimental Cancer Medicine Centre, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK.,NIHR Biomedical Research Centre, Birmingham, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
34
|
Zong D, Gu J, Cavalcante GC, Yao W, Zhang G, Wang S, Owonikoko TK, He X, Sun SY. BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of Mcl-1. Cancer Res 2020; 80:2380-2393. [PMID: 32156781 DOI: 10.1158/0008-5472.can-19-3674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer consists of approximately 80% non-small cell lung cancer (NSCLC) and 20% small cell lung cancer (SCLC) and remains the leading cause of cancer-related deaths worldwide despite advances in early diagnosis, targeted therapy, and immunotherapy. Thus, novel therapies are still urgently needed. Bromodomain and extraterminal (BET) proteins, primarily comprised of BRD2, BRD3, and BRD4 proteins, function as epigenetic readers and master transcription coactivators and are now recognized cancer therapeutic targets. BET degraders such as ZBC260 and dBET represent a novel class of BET inhibitors that act by inducing BET degradation. The current study demonstrates the therapeutic efficacies of BET degraders, particularly ZBC260, against lung cancer, as well as understanding the underlying mechanisms and identifying molecular markers that determine cell sensitivity to BET degraders. A panel of NSCLC cell lines possessed similar response patterns to ZBC260 and dBET but different responses to BET inhibitor JQ-1. BRD levels, particularly BRD4, correlated positively with high sensitivity to BET degraders but not to JQ-1. BET degraders potently induced apoptosis in sensitive NSCLC cells and were accompanied by reduction of Mcl-1 and c-FLIP levels, which are critical for mediating induction of apoptosis and enhancement of TRAIL-induced apoptosis. Accordingly, ZBC260 exerted more potent activity than JQ-1 in vivo against the growth of NSCLC xenografts and patient-derived xenografts. These findings warrant future clinical validation of the efficacy of BET degraders in NSCLC, particularly those with high levels of BRD proteins, especially BRD4. SIGNIFICANCE: The current study demonstrates the potential of novel BET degraders in the treatment of lung cancer and warrants clinical validation of BET degraders in lung cancer with high levels of BRD4.
Collapse
Affiliation(s)
- Dan Zong
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Jiajia Gu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Giovanna C Cavalcante
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Laboratory of Human and Medical Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Weilong Yao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Shaomeng Wang
- Departments of Medicinal Chemistry, Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, P. R. China.
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia.
| |
Collapse
|
35
|
Talotta F, Casalino L, Verde P. The nuclear oncoprotein Fra-1: a transcription factor knocking on therapeutic applications' door. Oncogene 2020; 39:4491-4506. [PMID: 32385348 DOI: 10.1038/s41388-020-1306-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022]
Abstract
Among the FOS-related members of the AP-1 dimeric complex, the transcription factor Fra-1, encoded by FOSL1, is crucially involved in human tumor progression and metastasis, thus representing a promising therapeutic target. Here we review the state of the art and discuss the emerging topics and perspectives on FOSL1 and its gene product. First, we summarize the present knowledge on the FOSL1 transcriptional and epigenetic controls, driving Fra-1 accumulation in a variety of human solid tumors. We also present a model on the regulatory interactions between Fra-1, p53, and miRNAs. Then, we outline the multiple roles of Fra-1 posttranslational modifications and transactivation mechanisms of select Fra-1 target genes. In addition to summarizing the Fra-1-dependent gene networks controlling proliferation, survival, and epithelial-mesenchymal transitions (EMT) in multiple cancer cell types, we highlight the roles played by Fra-1 in nonneoplastic cell populations recruited to the tumor microenvironment, and in mouse models of tumorigenesis. Next, we review the prognostic power of the Fra-1-associated gene signatures, and envisage potential strategies aimed at Fra-1 therapeutic inhibition. Finally, we discuss several recent reports showing the emerging roles of Fra-1 in the mechanisms of both resistance and addiction to targeted therapies.
Collapse
Affiliation(s)
- Francesco Talotta
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.,ReiThera Srl, Castel Romano, Rome, Italy
| | - Laura Casalino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy
| | - Pasquale Verde
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, Naples, Italy.
| |
Collapse
|
36
|
Jia Q, Chen S, Tan Y, Li Y, Tang F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp Mol Med 2020; 52:713-723. [PMID: 32382065 PMCID: PMC7272638 DOI: 10.1038/s12276-020-0428-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Super-enhancers (SEs) consist of a cluster of many enhancers bound to a great number of transcription factors. They are critical cis-regulatory elements that determine the identity of various human cell types. During tumorigenesis, DNA mutations and indels, chromosomal rearrangements, three-dimensional chromatin structural changes, and viral infections mediate oncogenic SE activation, and activated SEs have been found to regulate the expression of oncogenic genes. Inhibition specifically targeted to oncogenic SE assembly and activation provides a novel powerful therapeutic strategy for various cancers. In this paper, we first introduce the current understanding of oncogenic SE assembly and activation and then summarize the pathogenic factors and mechanism of oncogenic SE activation. Next, we elaborate on the oncogenic functions of SEs in cancers and the application of SEs as therapeutic targets. Finally, we turn our focus to the use of SEs in basic research and clinical trials. Drugs that block the assembly and activation of large DNA segments involved in enhancing gene expression could help in the treatment of cancer. Faqing Tang of Hunan Cancer Hospital in Changsha, China, and colleagues review the ways in which cancer cells hijack clusters of gene-regulating sequences known as super-enhancers, regulatory gene regions that normally help determine a cell’s unique identity, to drive the aberrant gene activity that fuels tumor growth. The researchers describe how numerous factors, ranging from internal DNA alterations, both large and small, to viral infections and other external assaults, can spur the formation of cancer-causing super-enhancers, leading to out-of-control gene expression. Therapies that selectively target these super-enhancers are now in early clinical testing. However, more studies of super-enhancers and their role in cancer development are needed to inform future drug development.
Collapse
Affiliation(s)
- Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shuhua Chen
- Department of Otolaryngology, The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
37
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
38
|
Schott C, Shah AT, Sweet-Cordero EA. Genomic Complexity of Osteosarcoma and Its Implication for Preclinical and Clinical Targeted Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:1-19. [PMID: 32767231 DOI: 10.1007/978-3-030-43085-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a genomically complex disease characterized by few recurrent single-nucleotide mutations or in-frame fusions. In contrast, structural alterations, including copy number changes, chromothripsis, kataegis, loss of heterozygosity (LOH), and other large-scale genomic alterations, are frequent and widespread across the osteosarcoma genome. These observed structural alterations lead to activation of oncogenes and loss of tumor suppressors which together contribute to oncogenesis. To date, few targeted therapies for osteosarcoma have been identified. It is likely that effectiveness of targeted therapies will vary greatly in subsets of tumors with distinct key driver events. Model systems which can recapitulate the genetic heterogeneity of this disease are needed to test this hypothesis. One possible approach is to use patient-derived xenograft (PDX) models characterized with regards to their similarity to the human tumor samples from which they were derived. Here we review evidence pointing to the genomic complexity of osteosarcoma and how this is reflected in available model systems. We also review the current state of preclinical testing for targeted therapies using these models.
Collapse
Affiliation(s)
- Courtney Schott
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Avanthi Tayi Shah
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Jacques C, Lavaud M, Georges S, Tesfaye R, Baud’huin M, Lamoureux F, Ory B. BET bromodomains’ functions in bone-related pathologies. Epigenomics 2020; 12:127-144. [DOI: 10.2217/epi-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Throughout life, bones are subjected to the so-called ‘bone-remodeling’ process, which is a balanced mechanism between the apposition and the resorption of bone. This remodeling process depends on the activities of bone-specialized cells, namely the osteoblasts and the osteoclasts. Any deregulation in this process results in bone-related pathologies, classified as either metabolic nonmalignant diseases (such as osteoporosis) or malignant primary bone sarcomas. As these pathologies are not characterized by common targetable genetic alterations, epigenetic strategies could be relevant and promising options. Recently, targeting epigenetic regulators such as the bromodomains and extraterminal domains (BET) readers have achieved success in numerous other pathologies, including cancers. In this review, we highlight the current state of the art in terms of the diverse implications of BET bromodomain proteins in the bone’s biology and its defects. Consequently, their role in bone-related pathologies will also be developed, especially in the context of the primary bone sarcomas.
Collapse
Affiliation(s)
- Camille Jacques
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Melanie Lavaud
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Steven Georges
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Robel Tesfaye
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| | - Marc Baud’huin
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - François Lamoureux
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
| | - Benjamin Ory
- Nantes Université, INSERM, Bone sarcomas & remodeling of calcified tissues, UMR 1238, F-44000 Nantes, France
- ‘Niches & Epigenetics of Tumors’ Network from Cancéropôle Grand Ouest
| |
Collapse
|
40
|
Lu T, Lu W, Luo C. A patent review of BRD4 inhibitors (2013-2019). Expert Opin Ther Pat 2020; 30:57-81. [PMID: 31815566 DOI: 10.1080/13543776.2020.1702645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Introduction: The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family, functions as an 'epigenetic reader' that binds to acetylated lysine (KAc) residues on histone tails sophisticatedly regulating chromatin structure and gene expression. Recently, emerging evidence demonstrates that BRD4 plays a significant role in the occurrence and progression of several malignant human diseases especially cancers, making it a hot target in cancer therapy.Areas covered: This review mainly summarizes the patents of BRD4 inhibitors that have been authorized from 2013 to 2019. The patents are mostly described in terms of chemical structures, molecular mechanisms of action, pharmacological activities and potential clinical applications, including combination therapies. The development of BRD4 inhibitors in the clinical phase has been highlighted. Prospects for further development of more selective BRD4 inhibitors are provided.Expert opinion: In 2013-2019, several previously known chemical scaffolds have been further developed and disclosed. Although many small molecule BRD4 inhibitors with high potency and diverse scaffolds have been developed, the selectivity of most BRD4 inhibitors still needs to be improved. Therefore, the development of more selective small molecule inhibitors or combined use of drugs such as immunotherapy may provide new ideas for drug development.
Collapse
Affiliation(s)
- Tian Lu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenchao Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheng Luo
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Zhang Y, Xu B, Shi J, Li J, Lu X, Xu L, Yang H, Hamad N, Wang C, Napier D, He S, Liu C, Liu Z, Qian H, Chen L, Wei X, Zheng X, Huang JA, Thibault O, Craven R, Wei D, Pan Y, Zhou BP, Wu Y, Yang XH. BRD4 modulates vulnerability of triple-negative breast cancer to targeting of integrin-dependent signaling pathways. Cell Oncol (Dordr) 2020; 43:1049-1066. [PMID: 33006750 PMCID: PMC7716866 DOI: 10.1007/s13402-020-00537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. METHODS Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. RESULTS We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. CONCLUSION Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Bingwei Xu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Junfeng Shi
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jieming Li
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinlan Lu
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Li Xu
- Department of Statistics, University of Kentucky, Lexington, KY, USA
| | - Helen Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Nevean Hamad
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dana Napier
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Shuixiang He
- Department of Medical Oncology, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province, People's Republic of China
| | - Chunming Liu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zeyi Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hai Qian
- Center of Drug Discovery, China Pharmaceutical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Chen
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xiaowei Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xucai Zheng
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China
| | - Jian-An Huang
- Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Rolf Craven
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Dongping Wei
- Department of Oncology, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Yueyin Pan
- The First Affiliated Hospital of University of Science & Technology of China and Provincial Hospital, Hefei, Anhui Province, People's Republic of China.
| | - Binhua P Zhou
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Xiuwei H Yang
- Department of Pharmacology and Nutritional Sciences, Department of Molecular and Cellular Biochemistry, and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
42
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
43
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
44
|
Shi C, Zhang H, Wang P, Wang K, Xu D, Wang H, Yin L, Zhang S, Zhang Y. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis 2019; 10:815. [PMID: 31653826 PMCID: PMC6814818 DOI: 10.1038/s41419-019-2022-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
Targeting oncogenic proteins for degradation using proteolysis-targeting chimera (PROTAC) recently has drawn increasing attention in the field of cancer research. Bromodomain and extra-terminal (BET) family proteins are newly identified cancer-related epigenetic regulators, which have a role in the pathogenesis and progression of osteosarcoma. In this study, we investigated the in vitro and in vivo anti-osteosarcoma activity by targeting BET with a PROTAC molecule BETd-260. The results showed that BETd-260 completely depletes BET proteins and potently suppresses cell viability in MNNG/HOS, Saos-2, MG-63, and SJSA-1 osteosarcoma cell lines. Compared with BET inhibitors HJB-97 and JQ1, the activity of BETd-260 increased over 1000 times. Moreover, BETd-260 substantially inhibited the expression of anti-apoptotic Mcl-1, Bcl-xl while increased the expression of pro-apoptotic Noxa, which resulted in massive apoptosis in osteosarcoma cells within hours. In addition, pro-oncogenic protein c-Myc also was substantially inhibited by BETd-260 in the OS cells. Of note, BETd-260 induced degradation of BET proteins, triggered apoptosis in xenograft osteosarcoma tumor tissue, and profoundly inhibited the growth of cell-derived and patient-derived osteosarcoma xenografts in mice. Our findings indicate that BET PROTACs represent a promising therapeutic agent for human osteosarcoma.
Collapse
Affiliation(s)
- Chengcheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Penglei Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Kai Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Denghui Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Yin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, Henan, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
- Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Zhengzhou, Henan, China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
45
|
Castillo-Tandazo W, Mutsaers AJ, Walkley CR. Osteosarcoma in the Post Genome Era: Preclinical Models and Approaches to Identify Tractable Therapeutic Targets. Curr Osteoporos Rep 2019; 17:343-352. [PMID: 31529263 DOI: 10.1007/s11914-019-00534-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Osteosarcoma (OS) is the most common cancer of bone, yet is classified as a rare cancer. Treatment and outcomes for OS have not substantively changed in several decades. While the decoding of the OS genome greatly advanced the understanding of the mutational landscape of OS, immediately actionable therapeutic targets were not apparent. Here we describe recent preclinical models that can be leveraged to identify, test, and prioritize therapeutic candidates. RECENT FINDINGS The generation of multiple high fidelity murine models of OS, the spontaneous disease that arises in pet dogs, and the establishment of a diverse collection of patient-derived OS xenografts provide a robust preclinical platform for OS. These models enable evidence to be accumulated across multiple stages of preclinical evaluation. Chemical and genetic screening has identified therapeutic targets, often demonstrating cross species activity. Clinical trials in both PDX models and in canine OS have effectively tested new therapies for prioritization. Improving clinical outcomes in OS has proven elusive. The integrated target discovery and testing possible through a cross species platform provides validation of a putative target and may enable the rigorous evaluation of new therapies in models where endpoints can be rapidly assessed.
Collapse
Affiliation(s)
- Wilson Castillo-Tandazo
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Carl R Walkley
- St. Vincent's Institute, 9 Princes St, Fitzroy, VIC, 3065, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia.
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
46
|
Lu Q, Ding X, Huang T, Zhang S, Li Y, Xu L, Chen G, Ying Y, Wang Y, Feng Z, Wang L, Zou X. BRD4 degrader ARV-825 produces long-lasting loss of BRD4 protein and exhibits potent efficacy against cholangiocarcinoma cells. Am J Transl Res 2019; 11:5728-5739. [PMID: 31632543 PMCID: PMC6789278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
BRD4, a member of the bromodomain and extraterminal domain (BET) family and an important epigenetic reader, has emerged as an attractive oncology target. Cholangiocarcinoma is a lethal neoplasm without approved targeted therapies. BET bromodomain inhibitors have shown promising effects in certain cancers including cholangiocarcinoma. Recently developed BRD4 Proteolysis Targeting Chimera (PROTAC) compounds lead to fast and efficient degradation of BRD4 and provides longer-lasting effect than small molecule BRD4 inhibitors. In this study, we investigated the antitumor effect of a newly developed BRD4 degrader ARV-825 in cholangiocarcinoma. Immunohistochemistry and Western blotting were used to determine the expression level of BRD4. CCK-8 assay and BrdU ELISA assay were used to assess cell proliferation. Caspase 3/7 activity and Annexin V/PI staining were used to assess apoptosis. We demonstrated that BRD4 expression was elevated in cholangiocarcinoma tissues compared to normal bile duct or surrounding normal liver tissues. ARV-825 produced fast and long-lasting loss of BRD4 protein, resulting in more inhibition of CCA cell proliferation and induction of apoptosis than BRD4 inhibitors OTX-015 and JQ1. C-Myc is a well-known downstream target of BRD4. We found that ARV-825 suppressed c-Myc levels more effectively than BRD4 inhibitors. However, ARV-825 did not inhibit c-Myc expression in CCA cells with low basal c-Myc levels. Further analysis showed that ARV-825 significantly upregulated p21 expression and arrested cell cycle progression at G1 phase. In conclusion, BRD4 degrader ARV-825 leads to rapid and sustained degradation of BRD4 and is effective against cholangiocarcinoma.
Collapse
Affiliation(s)
- Qin Lu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, Jiangsu, China
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Xiwei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Tianlu Huang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, Anhui, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, Jiangsu, China
| | - Gang Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Yuyao Ying
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Yun Wang
- Suqian People’s Hospital of Nanjing Drum-Tower Hospital GroupSuqian 223800, Jiangsu, China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, Jiangsu, China
| |
Collapse
|
47
|
Damaneh MS, Hu JP, Huan XJ, Song SS, Tian CQ, Chen DQ, Meng T, Chen YL, Shen JK, Xiong B, Miao ZH, Wang YQ. A new BET inhibitor, 171, inhibits tumor growth through cell proliferation inhibition more than apoptosis induction. Invest New Drugs 2019; 38:700-713. [DOI: 10.1007/s10637-019-00818-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
48
|
Li F, Yang C, Zhang HB, Ma J, Jia J, Tang X, Zeng J, Chong T, Wang X, He D, Guo P. BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells. Cancer Med 2019; 8:4792-4805. [PMID: 31250978 PMCID: PMC6712466 DOI: 10.1002/cam4.2385] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
AIM JQ1, a BET bromodomain inhibitor, is a promising therapeutic approach for bladder cancer (BC). Our study aimed to determine whether autophagy is induced by JQ1 and its potential role toward proliferation in BC. METHODS Cell proliferation was determined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, cell counting assay, and colony formation assay. Autophagosomes and autolysosomes were observed by transmission electron microscopy and mRFP-EGFP-LC3 fluorescence assay. 3-MA, BAFA1, NH4 Cl, and siATG5 were used to inhibit autophagy. AMPK siRNA was used to knock down AMPK. T24 xenograft model in mice was chosen to perform in vivo studies. Autophagy markers LC-3B and p62, p-AMPKα, p-ACC, p-ULK1, p-mTOR and p-LKB1 were determined by western blot in vitro studies and by immunohistochemistry (IHC) in vivo specimens. RESULTS We found that BC cell proliferation was suppressed by JQ1; moreover, JQ1 induced the accumulation of autophagosomes and autolysosomes, and autophagy flux, and the growth suppression capacity of JQ1 was attenuated by autophagy inhibitors. Furthermore, we found that JQ1 induced the phosphorylation of AMPKα, and AMPKα knockdown attenuated autophagy induction and anti-proliferation effect induced by JQ1 in BC cells, indicating that autophagy induced by JQ1 is dependent on AMPKα. Through endogenous immunoprecipitation analysis, we found that JQ1 dramatically increased the interaction between LKB1 and AMPKα, which may lead to more AMPK activation. Proliferation inhibition, autophagy induction, and LKB1/AMPK activation capacities of JQ1 were further confirmed in vivo. CONCLUSIONS Taken together, our results demonstrate that autophagy is induced by JQ1 through activation of LKB1/AMPK pathway, and the autophagy induced by JQ1 positively contributes to the inhibition of BC cell proliferation. These findings provide a novel point of view to understand the mechanism of how targeting BET bromodomain suppress cancer cell growth and suggest that targeting BET bromodomain might be a potential approach to treat BC in the future.
Collapse
Affiliation(s)
- Feng Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hai-Bao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianbin Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Jia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoshuang Tang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
49
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
50
|
Carmagnani Pestana R, Groisberg R, Roszik J, Subbiah V. Precision Oncology in Sarcomas: Divide and Conquer. JCO Precis Oncol 2019; 3:PO.18.00247. [PMID: 32914012 PMCID: PMC7446356 DOI: 10.1200/po.18.00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies that exhibit remarkable heterogeneity, with more than 50 subtypes recognized. Advances in next-generation sequencing technology have resulted in the discovery of genetic events in these mesenchymal tumors, which in addition to enhancing understanding of the biology, have opened up avenues for molecularly targeted therapy and immunotherapy. This review focuses on how incorporation of next-generation sequencing has affected drug development in sarcomas and strategies for optimizing precision oncology for these rare cancers. In a significant percentage of soft tissue sarcomas, which represent up to 40% of all sarcomas, specific driver molecular abnormalities have been identified. The challenge to evaluate these mutations across rare cancer subtypes requires the careful characterization of these genetic alterations to further define compelling drivers with therapeutic implications. Novel models of clinical trial design also are needed. This shift would entail sustained efforts by the sarcoma community to move from one-size-fits-all trials, in which all sarcomas are treated similarly, to divide-and-conquer subtype-specific strategies.
Collapse
Affiliation(s)
| | - Roman Groisberg
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Roszik
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|